Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nlim0 | Structured version Visualization version GIF version |
Description: The empty set is not a limit ordinal. (Contributed by NM, 24-Mar-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
nlim0 | ⊢ ¬ Lim ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4245 | . . 3 ⊢ ¬ ∅ ∈ ∅ | |
2 | simp2 1139 | . . 3 ⊢ ((Ord ∅ ∧ ∅ ∈ ∅ ∧ ∅ = ∪ ∅) → ∅ ∈ ∅) | |
3 | 1, 2 | mto 200 | . 2 ⊢ ¬ (Ord ∅ ∧ ∅ ∈ ∅ ∧ ∅ = ∪ ∅) |
4 | dflim2 6269 | . 2 ⊢ (Lim ∅ ↔ (Ord ∅ ∧ ∅ ∈ ∅ ∧ ∅ = ∪ ∅)) | |
5 | 3, 4 | mtbir 326 | 1 ⊢ ¬ Lim ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ∅c0 4237 ∪ cuni 4819 Ord word 6212 Lim wlim 6214 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-11 2158 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-tr 5162 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-ord 6216 df-lim 6218 |
This theorem is referenced by: 0ellim 6275 tz7.44lem1 8141 tz7.44-3 8144 cflim2 9877 rankcf 10391 dfrdg4 33990 limsucncmpi 34371 |
Copyright terms: Public domain | W3C validator |