MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlim0 Structured version   Visualization version   GIF version

Theorem nlim0 6412
Description: The empty set is not a limit ordinal. (Contributed by NM, 24-Mar-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
nlim0 ¬ Lim ∅

Proof of Theorem nlim0
StepHypRef Expression
1 noel 4313 . . 3 ¬ ∅ ∈ ∅
2 simp2 1137 . . 3 ((Ord ∅ ∧ ∅ ∈ ∅ ∧ ∅ = ∅) → ∅ ∈ ∅)
31, 2mto 197 . 2 ¬ (Ord ∅ ∧ ∅ ∈ ∅ ∧ ∅ = ∅)
4 dflim2 6410 . 2 (Lim ∅ ↔ (Ord ∅ ∧ ∅ ∈ ∅ ∧ ∅ = ∅))
53, 4mtbir 323 1 ¬ Lim ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  w3a 1086   = wceq 1540  wcel 2108  c0 4308   cuni 4883  Ord word 6351  Lim wlim 6353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-tr 5230  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-ord 6355  df-lim 6357
This theorem is referenced by:  0ellim  6416  tz7.44lem1  8417  tz7.44-3  8420  1ellim  8508  2ellim  8509  cflim2  10275  rankcf  10789  dfrdg4  35915  limsucncmpi  36409  onov0suclim  43245
  Copyright terms: Public domain W3C validator