![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nlim0 | Structured version Visualization version GIF version |
Description: The empty set is not a limit ordinal. (Contributed by NM, 24-Mar-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
nlim0 | ⊢ ¬ Lim ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4343 | . . 3 ⊢ ¬ ∅ ∈ ∅ | |
2 | simp2 1136 | . . 3 ⊢ ((Ord ∅ ∧ ∅ ∈ ∅ ∧ ∅ = ∪ ∅) → ∅ ∈ ∅) | |
3 | 1, 2 | mto 197 | . 2 ⊢ ¬ (Ord ∅ ∧ ∅ ∈ ∅ ∧ ∅ = ∪ ∅) |
4 | dflim2 6442 | . 2 ⊢ (Lim ∅ ↔ (Ord ∅ ∧ ∅ ∈ ∅ ∧ ∅ = ∪ ∅)) | |
5 | 3, 4 | mtbir 323 | 1 ⊢ ¬ Lim ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ∅c0 4338 ∪ cuni 4911 Ord word 6384 Lim wlim 6386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-tr 5265 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-ord 6388 df-lim 6390 |
This theorem is referenced by: 0ellim 6448 tz7.44lem1 8443 tz7.44-3 8446 1ellim 8534 2ellim 8535 cflim2 10300 rankcf 10814 dfrdg4 35932 limsucncmpi 36427 onov0suclim 43263 |
Copyright terms: Public domain | W3C validator |