Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nlim0 | Structured version Visualization version GIF version |
Description: The empty set is not a limit ordinal. (Contributed by NM, 24-Mar-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
nlim0 | ⊢ ¬ Lim ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4264 | . . 3 ⊢ ¬ ∅ ∈ ∅ | |
2 | simp2 1136 | . . 3 ⊢ ((Ord ∅ ∧ ∅ ∈ ∅ ∧ ∅ = ∪ ∅) → ∅ ∈ ∅) | |
3 | 1, 2 | mto 196 | . 2 ⊢ ¬ (Ord ∅ ∧ ∅ ∈ ∅ ∧ ∅ = ∪ ∅) |
4 | dflim2 6322 | . 2 ⊢ (Lim ∅ ↔ (Ord ∅ ∧ ∅ ∈ ∅ ∧ ∅ = ∪ ∅)) | |
5 | 3, 4 | mtbir 323 | 1 ⊢ ¬ Lim ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∅c0 4256 ∪ cuni 4839 Ord word 6265 Lim wlim 6267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6269 df-lim 6271 |
This theorem is referenced by: 0ellim 6328 tz7.44lem1 8236 tz7.44-3 8239 1ellim 8328 2ellim 8329 cflim2 10019 rankcf 10533 dfrdg4 34253 limsucncmpi 34634 |
Copyright terms: Public domain | W3C validator |