MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlim0 Structured version   Visualization version   GIF version

Theorem nlim0 6361
Description: The empty set is not a limit ordinal. (Contributed by NM, 24-Mar-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
nlim0 ¬ Lim ∅

Proof of Theorem nlim0
StepHypRef Expression
1 noel 4283 . . 3 ¬ ∅ ∈ ∅
2 simp2 1137 . . 3 ((Ord ∅ ∧ ∅ ∈ ∅ ∧ ∅ = ∅) → ∅ ∈ ∅)
31, 2mto 197 . 2 ¬ (Ord ∅ ∧ ∅ ∈ ∅ ∧ ∅ = ∅)
4 dflim2 6359 . 2 (Lim ∅ ↔ (Ord ∅ ∧ ∅ ∈ ∅ ∧ ∅ = ∅))
53, 4mtbir 323 1 ¬ Lim ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  w3a 1086   = wceq 1541  wcel 2111  c0 4278   cuni 4854  Ord word 6300  Lim wlim 6302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-tr 5194  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-ord 6304  df-lim 6306
This theorem is referenced by:  tz7.44lem1  8319  tz7.44-3  8322  1ellim  8408  2ellim  8409  cflim2  10149  rankcf  10663  dfrdg4  35985  limsucncmpi  36479  onov0suclim  43307
  Copyright terms: Public domain W3C validator