| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nlim0 | Structured version Visualization version GIF version | ||
| Description: The empty set is not a limit ordinal. (Contributed by NM, 24-Mar-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| nlim0 | ⊢ ¬ Lim ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4291 | . . 3 ⊢ ¬ ∅ ∈ ∅ | |
| 2 | simp2 1137 | . . 3 ⊢ ((Ord ∅ ∧ ∅ ∈ ∅ ∧ ∅ = ∪ ∅) → ∅ ∈ ∅) | |
| 3 | 1, 2 | mto 197 | . 2 ⊢ ¬ (Ord ∅ ∧ ∅ ∈ ∅ ∧ ∅ = ∪ ∅) |
| 4 | dflim2 6369 | . 2 ⊢ (Lim ∅ ↔ (Ord ∅ ∧ ∅ ∈ ∅ ∧ ∅ = ∪ ∅)) | |
| 5 | 3, 4 | mtbir 323 | 1 ⊢ ¬ Lim ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∅c0 4286 ∪ cuni 4861 Ord word 6310 Lim wlim 6312 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-tr 5203 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-ord 6314 df-lim 6316 |
| This theorem is referenced by: tz7.44lem1 8334 tz7.44-3 8337 1ellim 8423 2ellim 8424 cflim2 10176 rankcf 10690 dfrdg4 35944 limsucncmpi 36438 onov0suclim 43267 |
| Copyright terms: Public domain | W3C validator |