| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nlim0 | Structured version Visualization version GIF version | ||
| Description: The empty set is not a limit ordinal. (Contributed by NM, 24-Mar-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| nlim0 | ⊢ ¬ Lim ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4313 | . . 3 ⊢ ¬ ∅ ∈ ∅ | |
| 2 | simp2 1137 | . . 3 ⊢ ((Ord ∅ ∧ ∅ ∈ ∅ ∧ ∅ = ∪ ∅) → ∅ ∈ ∅) | |
| 3 | 1, 2 | mto 197 | . 2 ⊢ ¬ (Ord ∅ ∧ ∅ ∈ ∅ ∧ ∅ = ∪ ∅) |
| 4 | dflim2 6410 | . 2 ⊢ (Lim ∅ ↔ (Ord ∅ ∧ ∅ ∈ ∅ ∧ ∅ = ∪ ∅)) | |
| 5 | 3, 4 | mtbir 323 | 1 ⊢ ¬ Lim ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∅c0 4308 ∪ cuni 4883 Ord word 6351 Lim wlim 6353 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-ord 6355 df-lim 6357 |
| This theorem is referenced by: 0ellim 6416 tz7.44lem1 8417 tz7.44-3 8420 1ellim 8508 2ellim 8509 cflim2 10275 rankcf 10789 dfrdg4 35915 limsucncmpi 36409 onov0suclim 43245 |
| Copyright terms: Public domain | W3C validator |