MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlim0 Structured version   Visualization version   GIF version

Theorem nlim0 6454
Description: The empty set is not a limit ordinal. (Contributed by NM, 24-Mar-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
nlim0 ¬ Lim ∅

Proof of Theorem nlim0
StepHypRef Expression
1 noel 4360 . . 3 ¬ ∅ ∈ ∅
2 simp2 1137 . . 3 ((Ord ∅ ∧ ∅ ∈ ∅ ∧ ∅ = ∅) → ∅ ∈ ∅)
31, 2mto 197 . 2 ¬ (Ord ∅ ∧ ∅ ∈ ∅ ∧ ∅ = ∅)
4 dflim2 6452 . 2 (Lim ∅ ↔ (Ord ∅ ∧ ∅ ∈ ∅ ∧ ∅ = ∅))
53, 4mtbir 323 1 ¬ Lim ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  w3a 1087   = wceq 1537  wcel 2108  c0 4352   cuni 4931  Ord word 6394  Lim wlim 6396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-lim 6400
This theorem is referenced by:  0ellim  6458  tz7.44lem1  8461  tz7.44-3  8464  1ellim  8554  2ellim  8555  cflim2  10332  rankcf  10846  dfrdg4  35915  limsucncmpi  36411  onov0suclim  43236
  Copyright terms: Public domain W3C validator