![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nlim0 | Structured version Visualization version GIF version |
Description: The empty set is not a limit ordinal. (Contributed by NM, 24-Mar-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
nlim0 | ⊢ ¬ Lim ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4323 | . . 3 ⊢ ¬ ∅ ∈ ∅ | |
2 | simp2 1134 | . . 3 ⊢ ((Ord ∅ ∧ ∅ ∈ ∅ ∧ ∅ = ∪ ∅) → ∅ ∈ ∅) | |
3 | 1, 2 | mto 196 | . 2 ⊢ ¬ (Ord ∅ ∧ ∅ ∈ ∅ ∧ ∅ = ∪ ∅) |
4 | dflim2 6412 | . 2 ⊢ (Lim ∅ ↔ (Ord ∅ ∧ ∅ ∈ ∅ ∧ ∅ = ∪ ∅)) | |
5 | 3, 4 | mtbir 323 | 1 ⊢ ¬ Lim ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∅c0 4315 ∪ cuni 4900 Ord word 6354 Lim wlim 6356 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-tr 5257 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-ord 6358 df-lim 6360 |
This theorem is referenced by: 0ellim 6418 tz7.44lem1 8401 tz7.44-3 8404 1ellim 8494 2ellim 8495 cflim2 10255 rankcf 10769 dfrdg4 35419 limsucncmpi 35821 onov0suclim 42538 |
Copyright terms: Public domain | W3C validator |