| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nlim0 | Structured version Visualization version GIF version | ||
| Description: The empty set is not a limit ordinal. (Contributed by NM, 24-Mar-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| nlim0 | ⊢ ¬ Lim ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4283 | . . 3 ⊢ ¬ ∅ ∈ ∅ | |
| 2 | simp2 1137 | . . 3 ⊢ ((Ord ∅ ∧ ∅ ∈ ∅ ∧ ∅ = ∪ ∅) → ∅ ∈ ∅) | |
| 3 | 1, 2 | mto 197 | . 2 ⊢ ¬ (Ord ∅ ∧ ∅ ∈ ∅ ∧ ∅ = ∪ ∅) |
| 4 | dflim2 6359 | . 2 ⊢ (Lim ∅ ↔ (Ord ∅ ∧ ∅ ∈ ∅ ∧ ∅ = ∪ ∅)) | |
| 5 | 3, 4 | mtbir 323 | 1 ⊢ ¬ Lim ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∅c0 4278 ∪ cuni 4854 Ord word 6300 Lim wlim 6302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-tr 5194 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-ord 6304 df-lim 6306 |
| This theorem is referenced by: tz7.44lem1 8319 tz7.44-3 8322 1ellim 8408 2ellim 8409 cflim2 10149 rankcf 10663 dfrdg4 35985 limsucncmpi 36479 onov0suclim 43307 |
| Copyright terms: Public domain | W3C validator |