Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clintopcllaw Structured version   Visualization version   GIF version

Theorem clintopcllaw 48055
Description: The closure law holds for a closed (internal binary) operation for a set. (Contributed by AV, 20-Jan-2020.)
Assertion
Ref Expression
clintopcllaw ( ∈ ( clIntOp ‘𝑀) → clLaw 𝑀)

Proof of Theorem clintopcllaw
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 clintop 48052 . . 3 ( ∈ ( clIntOp ‘𝑀) → :(𝑀 × 𝑀)⟶𝑀)
2 ffnov 7559 . . . 4 ( :(𝑀 × 𝑀)⟶𝑀 ↔ ( Fn (𝑀 × 𝑀) ∧ ∀𝑥𝑀𝑦𝑀 (𝑥 𝑦) ∈ 𝑀))
32simprbi 496 . . 3 ( :(𝑀 × 𝑀)⟶𝑀 → ∀𝑥𝑀𝑦𝑀 (𝑥 𝑦) ∈ 𝑀)
41, 3syl 17 . 2 ( ∈ ( clIntOp ‘𝑀) → ∀𝑥𝑀𝑦𝑀 (𝑥 𝑦) ∈ 𝑀)
5 elfvex 6945 . . 3 ( ∈ ( clIntOp ‘𝑀) → 𝑀 ∈ V)
6 iscllaw 48033 . . 3 (( ∈ ( clIntOp ‘𝑀) ∧ 𝑀 ∈ V) → ( clLaw 𝑀 ↔ ∀𝑥𝑀𝑦𝑀 (𝑥 𝑦) ∈ 𝑀))
75, 6mpdan 687 . 2 ( ∈ ( clIntOp ‘𝑀) → ( clLaw 𝑀 ↔ ∀𝑥𝑀𝑦𝑀 (𝑥 𝑦) ∈ 𝑀))
84, 7mpbird 257 1 ( ∈ ( clIntOp ‘𝑀) → clLaw 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2106  wral 3059  Vcvv 3478   class class class wbr 5148   × cxp 5687   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431   clLaw ccllaw 48027   clIntOp cclintop 48041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8867  df-cllaw 48030  df-intop 48043  df-clintop 48044
This theorem is referenced by:  assintopcllaw  48056
  Copyright terms: Public domain W3C validator