![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > clintopcllaw | Structured version Visualization version GIF version |
Description: The closure law holds for a closed (internal binary) operation for a set. (Contributed by AV, 20-Jan-2020.) |
Ref | Expression |
---|---|
clintopcllaw | ⊢ ( ⚬ ∈ ( clIntOp ‘𝑀) → ⚬ clLaw 𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clintop 46604 | . . 3 ⊢ ( ⚬ ∈ ( clIntOp ‘𝑀) → ⚬ :(𝑀 × 𝑀)⟶𝑀) | |
2 | ffnov 7531 | . . . 4 ⊢ ( ⚬ :(𝑀 × 𝑀)⟶𝑀 ↔ ( ⚬ Fn (𝑀 × 𝑀) ∧ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) ∈ 𝑀)) | |
3 | 2 | simprbi 497 | . . 3 ⊢ ( ⚬ :(𝑀 × 𝑀)⟶𝑀 → ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) ∈ 𝑀) |
4 | 1, 3 | syl 17 | . 2 ⊢ ( ⚬ ∈ ( clIntOp ‘𝑀) → ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) ∈ 𝑀) |
5 | elfvex 6926 | . . 3 ⊢ ( ⚬ ∈ ( clIntOp ‘𝑀) → 𝑀 ∈ V) | |
6 | iscllaw 46585 | . . 3 ⊢ (( ⚬ ∈ ( clIntOp ‘𝑀) ∧ 𝑀 ∈ V) → ( ⚬ clLaw 𝑀 ↔ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) ∈ 𝑀)) | |
7 | 5, 6 | mpdan 685 | . 2 ⊢ ( ⚬ ∈ ( clIntOp ‘𝑀) → ( ⚬ clLaw 𝑀 ↔ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) ∈ 𝑀)) |
8 | 4, 7 | mpbird 256 | 1 ⊢ ( ⚬ ∈ ( clIntOp ‘𝑀) → ⚬ clLaw 𝑀) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2106 ∀wral 3061 Vcvv 3474 class class class wbr 5147 × cxp 5673 Fn wfn 6535 ⟶wf 6536 ‘cfv 6540 (class class class)co 7405 clLaw ccllaw 46579 clIntOp cclintop 46593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-map 8818 df-cllaw 46582 df-intop 46595 df-clintop 46596 |
This theorem is referenced by: assintopcllaw 46608 |
Copyright terms: Public domain | W3C validator |