![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > clintopcllaw | Structured version Visualization version GIF version |
Description: The closure law holds for a closed (internal binary) operation for a set. (Contributed by AV, 20-Jan-2020.) |
Ref | Expression |
---|---|
clintopcllaw | ⊢ ( ⚬ ∈ ( clIntOp ‘𝑀) → ⚬ clLaw 𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clintop 47621 | . . 3 ⊢ ( ⚬ ∈ ( clIntOp ‘𝑀) → ⚬ :(𝑀 × 𝑀)⟶𝑀) | |
2 | ffnov 7544 | . . . 4 ⊢ ( ⚬ :(𝑀 × 𝑀)⟶𝑀 ↔ ( ⚬ Fn (𝑀 × 𝑀) ∧ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) ∈ 𝑀)) | |
3 | 2 | simprbi 495 | . . 3 ⊢ ( ⚬ :(𝑀 × 𝑀)⟶𝑀 → ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) ∈ 𝑀) |
4 | 1, 3 | syl 17 | . 2 ⊢ ( ⚬ ∈ ( clIntOp ‘𝑀) → ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) ∈ 𝑀) |
5 | elfvex 6931 | . . 3 ⊢ ( ⚬ ∈ ( clIntOp ‘𝑀) → 𝑀 ∈ V) | |
6 | iscllaw 47602 | . . 3 ⊢ (( ⚬ ∈ ( clIntOp ‘𝑀) ∧ 𝑀 ∈ V) → ( ⚬ clLaw 𝑀 ↔ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) ∈ 𝑀)) | |
7 | 5, 6 | mpdan 685 | . 2 ⊢ ( ⚬ ∈ ( clIntOp ‘𝑀) → ( ⚬ clLaw 𝑀 ↔ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) ∈ 𝑀)) |
8 | 4, 7 | mpbird 256 | 1 ⊢ ( ⚬ ∈ ( clIntOp ‘𝑀) → ⚬ clLaw 𝑀) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2099 ∀wral 3051 Vcvv 3462 class class class wbr 5145 × cxp 5672 Fn wfn 6541 ⟶wf 6542 ‘cfv 6546 (class class class)co 7416 clLaw ccllaw 47596 clIntOp cclintop 47610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-fv 6554 df-ov 7419 df-oprab 7420 df-mpo 7421 df-map 8849 df-cllaw 47599 df-intop 47612 df-clintop 47613 |
This theorem is referenced by: assintopcllaw 47625 |
Copyright terms: Public domain | W3C validator |