| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clintopcllaw | Structured version Visualization version GIF version | ||
| Description: The closure law holds for a closed (internal binary) operation for a set. (Contributed by AV, 20-Jan-2020.) |
| Ref | Expression |
|---|---|
| clintopcllaw | ⊢ ( ⚬ ∈ ( clIntOp ‘𝑀) → ⚬ clLaw 𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clintop 48318 | . . 3 ⊢ ( ⚬ ∈ ( clIntOp ‘𝑀) → ⚬ :(𝑀 × 𝑀)⟶𝑀) | |
| 2 | ffnov 7472 | . . . 4 ⊢ ( ⚬ :(𝑀 × 𝑀)⟶𝑀 ↔ ( ⚬ Fn (𝑀 × 𝑀) ∧ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) ∈ 𝑀)) | |
| 3 | 2 | simprbi 496 | . . 3 ⊢ ( ⚬ :(𝑀 × 𝑀)⟶𝑀 → ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) ∈ 𝑀) |
| 4 | 1, 3 | syl 17 | . 2 ⊢ ( ⚬ ∈ ( clIntOp ‘𝑀) → ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) ∈ 𝑀) |
| 5 | elfvex 6857 | . . 3 ⊢ ( ⚬ ∈ ( clIntOp ‘𝑀) → 𝑀 ∈ V) | |
| 6 | iscllaw 48299 | . . 3 ⊢ (( ⚬ ∈ ( clIntOp ‘𝑀) ∧ 𝑀 ∈ V) → ( ⚬ clLaw 𝑀 ↔ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) ∈ 𝑀)) | |
| 7 | 5, 6 | mpdan 687 | . 2 ⊢ ( ⚬ ∈ ( clIntOp ‘𝑀) → ( ⚬ clLaw 𝑀 ↔ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) ∈ 𝑀)) |
| 8 | 4, 7 | mpbird 257 | 1 ⊢ ( ⚬ ∈ ( clIntOp ‘𝑀) → ⚬ clLaw 𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 class class class wbr 5089 × cxp 5612 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 clLaw ccllaw 48293 clIntOp cclintop 48307 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-cllaw 48296 df-intop 48309 df-clintop 48310 |
| This theorem is referenced by: assintopcllaw 48322 |
| Copyright terms: Public domain | W3C validator |