Step | Hyp | Ref
| Expression |
1 | | isidom 20565 |
. . . 4
⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) |
2 | 1 | simplbi 498 |
. . 3
⊢ (𝑅 ∈ IDomn → 𝑅 ∈ CRing) |
3 | 1 | simprbi 497 |
. . . 4
⊢ (𝑅 ∈ IDomn → 𝑅 ∈ Domn) |
4 | | domnnzr 20556 |
. . . 4
⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) |
5 | 3, 4 | syl 17 |
. . 3
⊢ (𝑅 ∈ IDomn → 𝑅 ∈ NzRing) |
6 | | fta1b.p |
. . . . 5
⊢ 𝑃 = (Poly1‘𝑅) |
7 | | fta1b.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑃) |
8 | | fta1b.d |
. . . . 5
⊢ 𝐷 = ( deg1
‘𝑅) |
9 | | fta1b.o |
. . . . 5
⊢ 𝑂 = (eval1‘𝑅) |
10 | | fta1b.w |
. . . . 5
⊢ 𝑊 = (0g‘𝑅) |
11 | | fta1b.z |
. . . . 5
⊢ 0 =
(0g‘𝑃) |
12 | | simpl 483 |
. . . . 5
⊢ ((𝑅 ∈ IDomn ∧ 𝑓 ∈ (𝐵 ∖ { 0 })) → 𝑅 ∈ IDomn) |
13 | | eldifsn 4726 |
. . . . . . 7
⊢ (𝑓 ∈ (𝐵 ∖ { 0 }) ↔ (𝑓 ∈ 𝐵 ∧ 𝑓 ≠ 0 )) |
14 | 13 | simplbi 498 |
. . . . . 6
⊢ (𝑓 ∈ (𝐵 ∖ { 0 }) → 𝑓 ∈ 𝐵) |
15 | 14 | adantl 482 |
. . . . 5
⊢ ((𝑅 ∈ IDomn ∧ 𝑓 ∈ (𝐵 ∖ { 0 })) → 𝑓 ∈ 𝐵) |
16 | 13 | simprbi 497 |
. . . . . 6
⊢ (𝑓 ∈ (𝐵 ∖ { 0 }) → 𝑓 ≠ 0 ) |
17 | 16 | adantl 482 |
. . . . 5
⊢ ((𝑅 ∈ IDomn ∧ 𝑓 ∈ (𝐵 ∖ { 0 })) → 𝑓 ≠ 0 ) |
18 | 6, 7, 8, 9, 10, 11, 12, 15, 17 | fta1g 25322 |
. . . 4
⊢ ((𝑅 ∈ IDomn ∧ 𝑓 ∈ (𝐵 ∖ { 0 })) →
(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) |
19 | 18 | ralrimiva 3110 |
. . 3
⊢ (𝑅 ∈ IDomn →
∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) |
20 | 2, 5, 19 | 3jca 1127 |
. 2
⊢ (𝑅 ∈ IDomn → (𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧
∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓))) |
21 | | simp1 1135 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧
∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) → 𝑅 ∈ CRing) |
22 | | simp2 1136 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧
∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) → 𝑅 ∈ NzRing) |
23 | | df-ne 2946 |
. . . . . . . 8
⊢ (𝑥 ≠ 𝑊 ↔ ¬ 𝑥 = 𝑊) |
24 | | eqid 2740 |
. . . . . . . . . 10
⊢
(Base‘𝑅) =
(Base‘𝑅) |
25 | | eqid 2740 |
. . . . . . . . . 10
⊢
(.r‘𝑅) = (.r‘𝑅) |
26 | | eqid 2740 |
. . . . . . . . . 10
⊢
(var1‘𝑅) = (var1‘𝑅) |
27 | | eqid 2740 |
. . . . . . . . . 10
⊢ (
·𝑠 ‘𝑃) = ( ·𝑠
‘𝑃) |
28 | | simpll1 1211 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧
∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) ∧ ((𝑥(.r‘𝑅)𝑦) = 𝑊 ∧ 𝑥 ≠ 𝑊)) → 𝑅 ∈ CRing) |
29 | | simplrl 774 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧
∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) ∧ ((𝑥(.r‘𝑅)𝑦) = 𝑊 ∧ 𝑥 ≠ 𝑊)) → 𝑥 ∈ (Base‘𝑅)) |
30 | | simplrr 775 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧
∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) ∧ ((𝑥(.r‘𝑅)𝑦) = 𝑊 ∧ 𝑥 ≠ 𝑊)) → 𝑦 ∈ (Base‘𝑅)) |
31 | | simprl 768 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧
∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) ∧ ((𝑥(.r‘𝑅)𝑦) = 𝑊 ∧ 𝑥 ≠ 𝑊)) → (𝑥(.r‘𝑅)𝑦) = 𝑊) |
32 | | simprr 770 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧
∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) ∧ ((𝑥(.r‘𝑅)𝑦) = 𝑊 ∧ 𝑥 ≠ 𝑊)) → 𝑥 ≠ 𝑊) |
33 | | simpll3 1213 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧
∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) ∧ ((𝑥(.r‘𝑅)𝑦) = 𝑊 ∧ 𝑥 ≠ 𝑊)) → ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) |
34 | | fveq2 6769 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = (𝑥( ·𝑠
‘𝑃)(var1‘𝑅)) → (𝑂‘𝑓) = (𝑂‘(𝑥( ·𝑠
‘𝑃)(var1‘𝑅)))) |
35 | 34 | cnveqd 5782 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = (𝑥( ·𝑠
‘𝑃)(var1‘𝑅)) → ◡(𝑂‘𝑓) = ◡(𝑂‘(𝑥( ·𝑠
‘𝑃)(var1‘𝑅)))) |
36 | 35 | imaeq1d 5966 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = (𝑥( ·𝑠
‘𝑃)(var1‘𝑅)) → (◡(𝑂‘𝑓) “ {𝑊}) = (◡(𝑂‘(𝑥( ·𝑠
‘𝑃)(var1‘𝑅))) “ {𝑊})) |
37 | 36 | fveq2d 6773 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (𝑥( ·𝑠
‘𝑃)(var1‘𝑅)) → (♯‘(◡(𝑂‘𝑓) “ {𝑊})) = (♯‘(◡(𝑂‘(𝑥( ·𝑠
‘𝑃)(var1‘𝑅))) “ {𝑊}))) |
38 | | fveq2 6769 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (𝑥( ·𝑠
‘𝑃)(var1‘𝑅)) → (𝐷‘𝑓) = (𝐷‘(𝑥( ·𝑠
‘𝑃)(var1‘𝑅)))) |
39 | 37, 38 | breq12d 5092 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑥( ·𝑠
‘𝑃)(var1‘𝑅)) → ((♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓) ↔ (♯‘(◡(𝑂‘(𝑥( ·𝑠
‘𝑃)(var1‘𝑅))) “ {𝑊})) ≤ (𝐷‘(𝑥( ·𝑠
‘𝑃)(var1‘𝑅))))) |
40 | 39 | rspccv 3558 |
. . . . . . . . . . 11
⊢
(∀𝑓 ∈
(𝐵 ∖ { 0
})(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓) → ((𝑥( ·𝑠
‘𝑃)(var1‘𝑅)) ∈ (𝐵 ∖ { 0 }) →
(♯‘(◡(𝑂‘(𝑥( ·𝑠
‘𝑃)(var1‘𝑅))) “ {𝑊})) ≤ (𝐷‘(𝑥( ·𝑠
‘𝑃)(var1‘𝑅))))) |
41 | 33, 40 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧
∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) ∧ ((𝑥(.r‘𝑅)𝑦) = 𝑊 ∧ 𝑥 ≠ 𝑊)) → ((𝑥( ·𝑠
‘𝑃)(var1‘𝑅)) ∈ (𝐵 ∖ { 0 }) →
(♯‘(◡(𝑂‘(𝑥( ·𝑠
‘𝑃)(var1‘𝑅))) “ {𝑊})) ≤ (𝐷‘(𝑥( ·𝑠
‘𝑃)(var1‘𝑅))))) |
42 | 6, 7, 8, 9, 10, 11, 24, 25, 26, 27, 28, 29, 30, 31, 32, 41 | fta1blem 25323 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧
∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) ∧ ((𝑥(.r‘𝑅)𝑦) = 𝑊 ∧ 𝑥 ≠ 𝑊)) → 𝑦 = 𝑊) |
43 | 42 | expr 457 |
. . . . . . . 8
⊢ ((((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧
∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) ∧ (𝑥(.r‘𝑅)𝑦) = 𝑊) → (𝑥 ≠ 𝑊 → 𝑦 = 𝑊)) |
44 | 23, 43 | syl5bir 242 |
. . . . . . 7
⊢ ((((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧
∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) ∧ (𝑥(.r‘𝑅)𝑦) = 𝑊) → (¬ 𝑥 = 𝑊 → 𝑦 = 𝑊)) |
45 | 44 | orrd 860 |
. . . . . 6
⊢ ((((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧
∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) ∧ (𝑥(.r‘𝑅)𝑦) = 𝑊) → (𝑥 = 𝑊 ∨ 𝑦 = 𝑊)) |
46 | 45 | ex 413 |
. . . . 5
⊢ (((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧
∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((𝑥(.r‘𝑅)𝑦) = 𝑊 → (𝑥 = 𝑊 ∨ 𝑦 = 𝑊))) |
47 | 46 | ralrimivva 3117 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧
∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = 𝑊 → (𝑥 = 𝑊 ∨ 𝑦 = 𝑊))) |
48 | 24, 25, 10 | isdomn 20555 |
. . . 4
⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧
∀𝑥 ∈
(Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = 𝑊 → (𝑥 = 𝑊 ∨ 𝑦 = 𝑊)))) |
49 | 22, 47, 48 | sylanbrc 583 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧
∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) → 𝑅 ∈ Domn) |
50 | 21, 49, 1 | sylanbrc 583 |
. 2
⊢ ((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧
∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) → 𝑅 ∈ IDomn) |
51 | 20, 50 | impbii 208 |
1
⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧
∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓))) |