| Step | Hyp | Ref
| Expression |
| 1 | | isidom 20698 |
. . . 4
⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) |
| 2 | 1 | simplbi 497 |
. . 3
⊢ (𝑅 ∈ IDomn → 𝑅 ∈ CRing) |
| 3 | 1 | simprbi 496 |
. . . 4
⊢ (𝑅 ∈ IDomn → 𝑅 ∈ Domn) |
| 4 | | domnnzr 20679 |
. . . 4
⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) |
| 5 | 3, 4 | syl 17 |
. . 3
⊢ (𝑅 ∈ IDomn → 𝑅 ∈ NzRing) |
| 6 | | fta1b.p |
. . . . 5
⊢ 𝑃 = (Poly1‘𝑅) |
| 7 | | fta1b.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑃) |
| 8 | | fta1b.d |
. . . . 5
⊢ 𝐷 = (deg1‘𝑅) |
| 9 | | fta1b.o |
. . . . 5
⊢ 𝑂 = (eval1‘𝑅) |
| 10 | | fta1b.w |
. . . . 5
⊢ 𝑊 = (0g‘𝑅) |
| 11 | | fta1b.z |
. . . . 5
⊢ 0 =
(0g‘𝑃) |
| 12 | | simpl 482 |
. . . . 5
⊢ ((𝑅 ∈ IDomn ∧ 𝑓 ∈ (𝐵 ∖ { 0 })) → 𝑅 ∈ IDomn) |
| 13 | | eldifsn 4768 |
. . . . . . 7
⊢ (𝑓 ∈ (𝐵 ∖ { 0 }) ↔ (𝑓 ∈ 𝐵 ∧ 𝑓 ≠ 0 )) |
| 14 | 13 | simplbi 497 |
. . . . . 6
⊢ (𝑓 ∈ (𝐵 ∖ { 0 }) → 𝑓 ∈ 𝐵) |
| 15 | 14 | adantl 481 |
. . . . 5
⊢ ((𝑅 ∈ IDomn ∧ 𝑓 ∈ (𝐵 ∖ { 0 })) → 𝑓 ∈ 𝐵) |
| 16 | 13 | simprbi 496 |
. . . . . 6
⊢ (𝑓 ∈ (𝐵 ∖ { 0 }) → 𝑓 ≠ 0 ) |
| 17 | 16 | adantl 481 |
. . . . 5
⊢ ((𝑅 ∈ IDomn ∧ 𝑓 ∈ (𝐵 ∖ { 0 })) → 𝑓 ≠ 0 ) |
| 18 | 6, 7, 8, 9, 10, 11, 12, 15, 17 | fta1g 26164 |
. . . 4
⊢ ((𝑅 ∈ IDomn ∧ 𝑓 ∈ (𝐵 ∖ { 0 })) →
(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) |
| 19 | 18 | ralrimiva 3133 |
. . 3
⊢ (𝑅 ∈ IDomn →
∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) |
| 20 | 2, 5, 19 | 3jca 1128 |
. 2
⊢ (𝑅 ∈ IDomn → (𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧
∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓))) |
| 21 | | simp1 1136 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧
∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) → 𝑅 ∈ CRing) |
| 22 | | simp2 1137 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧
∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) → 𝑅 ∈ NzRing) |
| 23 | | df-ne 2932 |
. . . . . . . 8
⊢ (𝑥 ≠ 𝑊 ↔ ¬ 𝑥 = 𝑊) |
| 24 | | eqid 2734 |
. . . . . . . . . 10
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 25 | | eqid 2734 |
. . . . . . . . . 10
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 26 | | eqid 2734 |
. . . . . . . . . 10
⊢
(var1‘𝑅) = (var1‘𝑅) |
| 27 | | eqid 2734 |
. . . . . . . . . 10
⊢ (
·𝑠 ‘𝑃) = ( ·𝑠
‘𝑃) |
| 28 | | simpll1 1212 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧
∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) ∧ ((𝑥(.r‘𝑅)𝑦) = 𝑊 ∧ 𝑥 ≠ 𝑊)) → 𝑅 ∈ CRing) |
| 29 | | simplrl 776 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧
∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) ∧ ((𝑥(.r‘𝑅)𝑦) = 𝑊 ∧ 𝑥 ≠ 𝑊)) → 𝑥 ∈ (Base‘𝑅)) |
| 30 | | simplrr 777 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧
∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) ∧ ((𝑥(.r‘𝑅)𝑦) = 𝑊 ∧ 𝑥 ≠ 𝑊)) → 𝑦 ∈ (Base‘𝑅)) |
| 31 | | simprl 770 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧
∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) ∧ ((𝑥(.r‘𝑅)𝑦) = 𝑊 ∧ 𝑥 ≠ 𝑊)) → (𝑥(.r‘𝑅)𝑦) = 𝑊) |
| 32 | | simprr 772 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧
∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) ∧ ((𝑥(.r‘𝑅)𝑦) = 𝑊 ∧ 𝑥 ≠ 𝑊)) → 𝑥 ≠ 𝑊) |
| 33 | | simpll3 1214 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧
∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) ∧ ((𝑥(.r‘𝑅)𝑦) = 𝑊 ∧ 𝑥 ≠ 𝑊)) → ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) |
| 34 | | fveq2 6887 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = (𝑥( ·𝑠
‘𝑃)(var1‘𝑅)) → (𝑂‘𝑓) = (𝑂‘(𝑥( ·𝑠
‘𝑃)(var1‘𝑅)))) |
| 35 | 34 | cnveqd 5868 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = (𝑥( ·𝑠
‘𝑃)(var1‘𝑅)) → ◡(𝑂‘𝑓) = ◡(𝑂‘(𝑥( ·𝑠
‘𝑃)(var1‘𝑅)))) |
| 36 | 35 | imaeq1d 6059 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = (𝑥( ·𝑠
‘𝑃)(var1‘𝑅)) → (◡(𝑂‘𝑓) “ {𝑊}) = (◡(𝑂‘(𝑥( ·𝑠
‘𝑃)(var1‘𝑅))) “ {𝑊})) |
| 37 | 36 | fveq2d 6891 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (𝑥( ·𝑠
‘𝑃)(var1‘𝑅)) → (♯‘(◡(𝑂‘𝑓) “ {𝑊})) = (♯‘(◡(𝑂‘(𝑥( ·𝑠
‘𝑃)(var1‘𝑅))) “ {𝑊}))) |
| 38 | | fveq2 6887 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (𝑥( ·𝑠
‘𝑃)(var1‘𝑅)) → (𝐷‘𝑓) = (𝐷‘(𝑥( ·𝑠
‘𝑃)(var1‘𝑅)))) |
| 39 | 37, 38 | breq12d 5138 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑥( ·𝑠
‘𝑃)(var1‘𝑅)) → ((♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓) ↔ (♯‘(◡(𝑂‘(𝑥( ·𝑠
‘𝑃)(var1‘𝑅))) “ {𝑊})) ≤ (𝐷‘(𝑥( ·𝑠
‘𝑃)(var1‘𝑅))))) |
| 40 | 39 | rspccv 3603 |
. . . . . . . . . . 11
⊢
(∀𝑓 ∈
(𝐵 ∖ { 0
})(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓) → ((𝑥( ·𝑠
‘𝑃)(var1‘𝑅)) ∈ (𝐵 ∖ { 0 }) →
(♯‘(◡(𝑂‘(𝑥( ·𝑠
‘𝑃)(var1‘𝑅))) “ {𝑊})) ≤ (𝐷‘(𝑥( ·𝑠
‘𝑃)(var1‘𝑅))))) |
| 41 | 33, 40 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧
∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) ∧ ((𝑥(.r‘𝑅)𝑦) = 𝑊 ∧ 𝑥 ≠ 𝑊)) → ((𝑥( ·𝑠
‘𝑃)(var1‘𝑅)) ∈ (𝐵 ∖ { 0 }) →
(♯‘(◡(𝑂‘(𝑥( ·𝑠
‘𝑃)(var1‘𝑅))) “ {𝑊})) ≤ (𝐷‘(𝑥( ·𝑠
‘𝑃)(var1‘𝑅))))) |
| 42 | 6, 7, 8, 9, 10, 11, 24, 25, 26, 27, 28, 29, 30, 31, 32, 41 | fta1blem 26165 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧
∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) ∧ ((𝑥(.r‘𝑅)𝑦) = 𝑊 ∧ 𝑥 ≠ 𝑊)) → 𝑦 = 𝑊) |
| 43 | 42 | expr 456 |
. . . . . . . 8
⊢ ((((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧
∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) ∧ (𝑥(.r‘𝑅)𝑦) = 𝑊) → (𝑥 ≠ 𝑊 → 𝑦 = 𝑊)) |
| 44 | 23, 43 | biimtrrid 243 |
. . . . . . 7
⊢ ((((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧
∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) ∧ (𝑥(.r‘𝑅)𝑦) = 𝑊) → (¬ 𝑥 = 𝑊 → 𝑦 = 𝑊)) |
| 45 | 44 | orrd 863 |
. . . . . 6
⊢ ((((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧
∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) ∧ (𝑥(.r‘𝑅)𝑦) = 𝑊) → (𝑥 = 𝑊 ∨ 𝑦 = 𝑊)) |
| 46 | 45 | ex 412 |
. . . . 5
⊢ (((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧
∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((𝑥(.r‘𝑅)𝑦) = 𝑊 → (𝑥 = 𝑊 ∨ 𝑦 = 𝑊))) |
| 47 | 46 | ralrimivva 3189 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧
∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = 𝑊 → (𝑥 = 𝑊 ∨ 𝑦 = 𝑊))) |
| 48 | 24, 25, 10 | isdomn 20678 |
. . . 4
⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧
∀𝑥 ∈
(Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = 𝑊 → (𝑥 = 𝑊 ∨ 𝑦 = 𝑊)))) |
| 49 | 22, 47, 48 | sylanbrc 583 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧
∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) → 𝑅 ∈ Domn) |
| 50 | 21, 49, 1 | sylanbrc 583 |
. 2
⊢ ((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧
∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) → 𝑅 ∈ IDomn) |
| 51 | 20, 50 | impbii 209 |
1
⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧
∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓))) |