MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fta1b Structured version   Visualization version   GIF version

Theorem fta1b 24770
Description: The assumption that 𝑅 be a domain in fta1g 24768 is necessary. Here we show that the statement is strong enough to prove that 𝑅 is a domain. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
fta1b.p 𝑃 = (Poly1𝑅)
fta1b.b 𝐵 = (Base‘𝑃)
fta1b.d 𝐷 = ( deg1𝑅)
fta1b.o 𝑂 = (eval1𝑅)
fta1b.w 𝑊 = (0g𝑅)
fta1b.z 0 = (0g𝑃)
Assertion
Ref Expression
fta1b (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))
Distinct variable groups:   𝐵,𝑓   𝐷,𝑓   𝑓,𝑂   𝑅,𝑓   𝑓,𝑊   𝑃,𝑓   0 ,𝑓

Proof of Theorem fta1b
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isidom 20070 . . . 4 (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
21simplbi 501 . . 3 (𝑅 ∈ IDomn → 𝑅 ∈ CRing)
31simprbi 500 . . . 4 (𝑅 ∈ IDomn → 𝑅 ∈ Domn)
4 domnnzr 20061 . . . 4 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
53, 4syl 17 . . 3 (𝑅 ∈ IDomn → 𝑅 ∈ NzRing)
6 fta1b.p . . . . 5 𝑃 = (Poly1𝑅)
7 fta1b.b . . . . 5 𝐵 = (Base‘𝑃)
8 fta1b.d . . . . 5 𝐷 = ( deg1𝑅)
9 fta1b.o . . . . 5 𝑂 = (eval1𝑅)
10 fta1b.w . . . . 5 𝑊 = (0g𝑅)
11 fta1b.z . . . . 5 0 = (0g𝑃)
12 simpl 486 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑓 ∈ (𝐵 ∖ { 0 })) → 𝑅 ∈ IDomn)
13 eldifsn 4680 . . . . . . 7 (𝑓 ∈ (𝐵 ∖ { 0 }) ↔ (𝑓𝐵𝑓0 ))
1413simplbi 501 . . . . . 6 (𝑓 ∈ (𝐵 ∖ { 0 }) → 𝑓𝐵)
1514adantl 485 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑓 ∈ (𝐵 ∖ { 0 })) → 𝑓𝐵)
1613simprbi 500 . . . . . 6 (𝑓 ∈ (𝐵 ∖ { 0 }) → 𝑓0 )
1716adantl 485 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑓 ∈ (𝐵 ∖ { 0 })) → 𝑓0 )
186, 7, 8, 9, 10, 11, 12, 15, 17fta1g 24768 . . . 4 ((𝑅 ∈ IDomn ∧ 𝑓 ∈ (𝐵 ∖ { 0 })) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))
1918ralrimiva 3149 . . 3 (𝑅 ∈ IDomn → ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))
202, 5, 193jca 1125 . 2 (𝑅 ∈ IDomn → (𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))
21 simp1 1133 . . 3 ((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) → 𝑅 ∈ CRing)
22 simp2 1134 . . . 4 ((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) → 𝑅 ∈ NzRing)
23 df-ne 2988 . . . . . . . 8 (𝑥𝑊 ↔ ¬ 𝑥 = 𝑊)
24 eqid 2798 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
25 eqid 2798 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
26 eqid 2798 . . . . . . . . . 10 (var1𝑅) = (var1𝑅)
27 eqid 2798 . . . . . . . . . 10 ( ·𝑠𝑃) = ( ·𝑠𝑃)
28 simpll1 1209 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) ∧ ((𝑥(.r𝑅)𝑦) = 𝑊𝑥𝑊)) → 𝑅 ∈ CRing)
29 simplrl 776 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) ∧ ((𝑥(.r𝑅)𝑦) = 𝑊𝑥𝑊)) → 𝑥 ∈ (Base‘𝑅))
30 simplrr 777 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) ∧ ((𝑥(.r𝑅)𝑦) = 𝑊𝑥𝑊)) → 𝑦 ∈ (Base‘𝑅))
31 simprl 770 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) ∧ ((𝑥(.r𝑅)𝑦) = 𝑊𝑥𝑊)) → (𝑥(.r𝑅)𝑦) = 𝑊)
32 simprr 772 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) ∧ ((𝑥(.r𝑅)𝑦) = 𝑊𝑥𝑊)) → 𝑥𝑊)
33 simpll3 1211 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) ∧ ((𝑥(.r𝑅)𝑦) = 𝑊𝑥𝑊)) → ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))
34 fveq2 6645 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑥( ·𝑠𝑃)(var1𝑅)) → (𝑂𝑓) = (𝑂‘(𝑥( ·𝑠𝑃)(var1𝑅))))
3534cnveqd 5710 . . . . . . . . . . . . . . 15 (𝑓 = (𝑥( ·𝑠𝑃)(var1𝑅)) → (𝑂𝑓) = (𝑂‘(𝑥( ·𝑠𝑃)(var1𝑅))))
3635imaeq1d 5895 . . . . . . . . . . . . . 14 (𝑓 = (𝑥( ·𝑠𝑃)(var1𝑅)) → ((𝑂𝑓) “ {𝑊}) = ((𝑂‘(𝑥( ·𝑠𝑃)(var1𝑅))) “ {𝑊}))
3736fveq2d 6649 . . . . . . . . . . . . 13 (𝑓 = (𝑥( ·𝑠𝑃)(var1𝑅)) → (♯‘((𝑂𝑓) “ {𝑊})) = (♯‘((𝑂‘(𝑥( ·𝑠𝑃)(var1𝑅))) “ {𝑊})))
38 fveq2 6645 . . . . . . . . . . . . 13 (𝑓 = (𝑥( ·𝑠𝑃)(var1𝑅)) → (𝐷𝑓) = (𝐷‘(𝑥( ·𝑠𝑃)(var1𝑅))))
3937, 38breq12d 5043 . . . . . . . . . . . 12 (𝑓 = (𝑥( ·𝑠𝑃)(var1𝑅)) → ((♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓) ↔ (♯‘((𝑂‘(𝑥( ·𝑠𝑃)(var1𝑅))) “ {𝑊})) ≤ (𝐷‘(𝑥( ·𝑠𝑃)(var1𝑅)))))
4039rspccv 3568 . . . . . . . . . . 11 (∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓) → ((𝑥( ·𝑠𝑃)(var1𝑅)) ∈ (𝐵 ∖ { 0 }) → (♯‘((𝑂‘(𝑥( ·𝑠𝑃)(var1𝑅))) “ {𝑊})) ≤ (𝐷‘(𝑥( ·𝑠𝑃)(var1𝑅)))))
4133, 40syl 17 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) ∧ ((𝑥(.r𝑅)𝑦) = 𝑊𝑥𝑊)) → ((𝑥( ·𝑠𝑃)(var1𝑅)) ∈ (𝐵 ∖ { 0 }) → (♯‘((𝑂‘(𝑥( ·𝑠𝑃)(var1𝑅))) “ {𝑊})) ≤ (𝐷‘(𝑥( ·𝑠𝑃)(var1𝑅)))))
426, 7, 8, 9, 10, 11, 24, 25, 26, 27, 28, 29, 30, 31, 32, 41fta1blem 24769 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) ∧ ((𝑥(.r𝑅)𝑦) = 𝑊𝑥𝑊)) → 𝑦 = 𝑊)
4342expr 460 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) ∧ (𝑥(.r𝑅)𝑦) = 𝑊) → (𝑥𝑊𝑦 = 𝑊))
4423, 43syl5bir 246 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) ∧ (𝑥(.r𝑅)𝑦) = 𝑊) → (¬ 𝑥 = 𝑊𝑦 = 𝑊))
4544orrd 860 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) ∧ (𝑥(.r𝑅)𝑦) = 𝑊) → (𝑥 = 𝑊𝑦 = 𝑊))
4645ex 416 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((𝑥(.r𝑅)𝑦) = 𝑊 → (𝑥 = 𝑊𝑦 = 𝑊)))
4746ralrimivva 3156 . . . 4 ((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 𝑊 → (𝑥 = 𝑊𝑦 = 𝑊)))
4824, 25, 10isdomn 20060 . . . 4 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 𝑊 → (𝑥 = 𝑊𝑦 = 𝑊))))
4922, 47, 48sylanbrc 586 . . 3 ((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) → 𝑅 ∈ Domn)
5021, 49, 1sylanbrc 586 . 2 ((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) → 𝑅 ∈ IDomn)
5120, 50impbii 212 1 (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  cdif 3878  {csn 4525   class class class wbr 5030  ccnv 5518  cima 5522  cfv 6324  (class class class)co 7135  cle 10665  chash 13686  Basecbs 16475  .rcmulr 16558   ·𝑠 cvsca 16561  0gc0g 16705  CRingccrg 19291  NzRingcnzr 20023  Domncdomn 20046  IDomncidom 20047  var1cv1 20805  Poly1cpl1 20806  eval1ce1 20938   deg1 cdg1 24655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-ofr 7390  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-sup 8890  df-oi 8958  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-0g 16707  df-gsum 16708  df-prds 16713  df-pws 16715  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-ghm 18348  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-srg 19249  df-ring 19292  df-cring 19293  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-rnghom 19463  df-subrg 19526  df-lmod 19629  df-lss 19697  df-lsp 19737  df-nzr 20024  df-rlreg 20049  df-domn 20050  df-idom 20051  df-cnfld 20092  df-assa 20542  df-asp 20543  df-ascl 20544  df-psr 20594  df-mvr 20595  df-mpl 20596  df-opsr 20598  df-evls 20745  df-evl 20746  df-psr1 20809  df-vr1 20810  df-ply1 20811  df-coe1 20812  df-evl1 20940  df-mdeg 24656  df-deg1 24657  df-mon1 24731  df-uc1p 24732  df-q1p 24733  df-r1p 24734
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator