MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fta1b Structured version   Visualization version   GIF version

Theorem fta1b 24366
Description: The assumption that 𝑅 be a domain in fta1g 24364 is necessary. Here we show that the statement is strong enough to prove that 𝑅 is a domain. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
fta1b.p 𝑃 = (Poly1𝑅)
fta1b.b 𝐵 = (Base‘𝑃)
fta1b.d 𝐷 = ( deg1𝑅)
fta1b.o 𝑂 = (eval1𝑅)
fta1b.w 𝑊 = (0g𝑅)
fta1b.z 0 = (0g𝑃)
Assertion
Ref Expression
fta1b (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))
Distinct variable groups:   𝐵,𝑓   𝐷,𝑓   𝑓,𝑂   𝑅,𝑓   𝑓,𝑊   𝑃,𝑓   0 ,𝑓

Proof of Theorem fta1b
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isidom 19701 . . . 4 (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
21simplbi 493 . . 3 (𝑅 ∈ IDomn → 𝑅 ∈ CRing)
31simprbi 492 . . . 4 (𝑅 ∈ IDomn → 𝑅 ∈ Domn)
4 domnnzr 19692 . . . 4 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
53, 4syl 17 . . 3 (𝑅 ∈ IDomn → 𝑅 ∈ NzRing)
6 fta1b.p . . . . 5 𝑃 = (Poly1𝑅)
7 fta1b.b . . . . 5 𝐵 = (Base‘𝑃)
8 fta1b.d . . . . 5 𝐷 = ( deg1𝑅)
9 fta1b.o . . . . 5 𝑂 = (eval1𝑅)
10 fta1b.w . . . . 5 𝑊 = (0g𝑅)
11 fta1b.z . . . . 5 0 = (0g𝑃)
12 simpl 476 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑓 ∈ (𝐵 ∖ { 0 })) → 𝑅 ∈ IDomn)
13 eldifsn 4549 . . . . . . 7 (𝑓 ∈ (𝐵 ∖ { 0 }) ↔ (𝑓𝐵𝑓0 ))
1413simplbi 493 . . . . . 6 (𝑓 ∈ (𝐵 ∖ { 0 }) → 𝑓𝐵)
1514adantl 475 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑓 ∈ (𝐵 ∖ { 0 })) → 𝑓𝐵)
1613simprbi 492 . . . . . 6 (𝑓 ∈ (𝐵 ∖ { 0 }) → 𝑓0 )
1716adantl 475 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑓 ∈ (𝐵 ∖ { 0 })) → 𝑓0 )
186, 7, 8, 9, 10, 11, 12, 15, 17fta1g 24364 . . . 4 ((𝑅 ∈ IDomn ∧ 𝑓 ∈ (𝐵 ∖ { 0 })) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))
1918ralrimiva 3147 . . 3 (𝑅 ∈ IDomn → ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))
202, 5, 193jca 1119 . 2 (𝑅 ∈ IDomn → (𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))
21 simp1 1127 . . 3 ((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) → 𝑅 ∈ CRing)
22 simp2 1128 . . . 4 ((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) → 𝑅 ∈ NzRing)
23 df-ne 2969 . . . . . . . 8 (𝑥𝑊 ↔ ¬ 𝑥 = 𝑊)
24 eqid 2777 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
25 eqid 2777 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
26 eqid 2777 . . . . . . . . . 10 (var1𝑅) = (var1𝑅)
27 eqid 2777 . . . . . . . . . 10 ( ·𝑠𝑃) = ( ·𝑠𝑃)
28 simpll1 1226 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) ∧ ((𝑥(.r𝑅)𝑦) = 𝑊𝑥𝑊)) → 𝑅 ∈ CRing)
29 simplrl 767 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) ∧ ((𝑥(.r𝑅)𝑦) = 𝑊𝑥𝑊)) → 𝑥 ∈ (Base‘𝑅))
30 simplrr 768 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) ∧ ((𝑥(.r𝑅)𝑦) = 𝑊𝑥𝑊)) → 𝑦 ∈ (Base‘𝑅))
31 simprl 761 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) ∧ ((𝑥(.r𝑅)𝑦) = 𝑊𝑥𝑊)) → (𝑥(.r𝑅)𝑦) = 𝑊)
32 simprr 763 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) ∧ ((𝑥(.r𝑅)𝑦) = 𝑊𝑥𝑊)) → 𝑥𝑊)
33 simpll3 1230 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) ∧ ((𝑥(.r𝑅)𝑦) = 𝑊𝑥𝑊)) → ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))
34 fveq2 6446 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑥( ·𝑠𝑃)(var1𝑅)) → (𝑂𝑓) = (𝑂‘(𝑥( ·𝑠𝑃)(var1𝑅))))
3534cnveqd 5543 . . . . . . . . . . . . . . 15 (𝑓 = (𝑥( ·𝑠𝑃)(var1𝑅)) → (𝑂𝑓) = (𝑂‘(𝑥( ·𝑠𝑃)(var1𝑅))))
3635imaeq1d 5719 . . . . . . . . . . . . . 14 (𝑓 = (𝑥( ·𝑠𝑃)(var1𝑅)) → ((𝑂𝑓) “ {𝑊}) = ((𝑂‘(𝑥( ·𝑠𝑃)(var1𝑅))) “ {𝑊}))
3736fveq2d 6450 . . . . . . . . . . . . 13 (𝑓 = (𝑥( ·𝑠𝑃)(var1𝑅)) → (♯‘((𝑂𝑓) “ {𝑊})) = (♯‘((𝑂‘(𝑥( ·𝑠𝑃)(var1𝑅))) “ {𝑊})))
38 fveq2 6446 . . . . . . . . . . . . 13 (𝑓 = (𝑥( ·𝑠𝑃)(var1𝑅)) → (𝐷𝑓) = (𝐷‘(𝑥( ·𝑠𝑃)(var1𝑅))))
3937, 38breq12d 4899 . . . . . . . . . . . 12 (𝑓 = (𝑥( ·𝑠𝑃)(var1𝑅)) → ((♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓) ↔ (♯‘((𝑂‘(𝑥( ·𝑠𝑃)(var1𝑅))) “ {𝑊})) ≤ (𝐷‘(𝑥( ·𝑠𝑃)(var1𝑅)))))
4039rspccv 3507 . . . . . . . . . . 11 (∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓) → ((𝑥( ·𝑠𝑃)(var1𝑅)) ∈ (𝐵 ∖ { 0 }) → (♯‘((𝑂‘(𝑥( ·𝑠𝑃)(var1𝑅))) “ {𝑊})) ≤ (𝐷‘(𝑥( ·𝑠𝑃)(var1𝑅)))))
4133, 40syl 17 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) ∧ ((𝑥(.r𝑅)𝑦) = 𝑊𝑥𝑊)) → ((𝑥( ·𝑠𝑃)(var1𝑅)) ∈ (𝐵 ∖ { 0 }) → (♯‘((𝑂‘(𝑥( ·𝑠𝑃)(var1𝑅))) “ {𝑊})) ≤ (𝐷‘(𝑥( ·𝑠𝑃)(var1𝑅)))))
426, 7, 8, 9, 10, 11, 24, 25, 26, 27, 28, 29, 30, 31, 32, 41fta1blem 24365 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) ∧ ((𝑥(.r𝑅)𝑦) = 𝑊𝑥𝑊)) → 𝑦 = 𝑊)
4342expr 450 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) ∧ (𝑥(.r𝑅)𝑦) = 𝑊) → (𝑥𝑊𝑦 = 𝑊))
4423, 43syl5bir 235 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) ∧ (𝑥(.r𝑅)𝑦) = 𝑊) → (¬ 𝑥 = 𝑊𝑦 = 𝑊))
4544orrd 852 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) ∧ (𝑥(.r𝑅)𝑦) = 𝑊) → (𝑥 = 𝑊𝑦 = 𝑊))
4645ex 403 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((𝑥(.r𝑅)𝑦) = 𝑊 → (𝑥 = 𝑊𝑦 = 𝑊)))
4746ralrimivva 3152 . . . 4 ((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 𝑊 → (𝑥 = 𝑊𝑦 = 𝑊)))
4824, 25, 10isdomn 19691 . . . 4 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = 𝑊 → (𝑥 = 𝑊𝑦 = 𝑊))))
4922, 47, 48sylanbrc 578 . . 3 ((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) → 𝑅 ∈ Domn)
5021, 49, 1sylanbrc 578 . 2 ((𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) → 𝑅 ∈ IDomn)
5120, 50impbii 201 1 (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀𝑓 ∈ (𝐵 ∖ { 0 })(♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wo 836  w3a 1071   = wceq 1601  wcel 2106  wne 2968  wral 3089  cdif 3788  {csn 4397   class class class wbr 4886  ccnv 5354  cima 5358  cfv 6135  (class class class)co 6922  cle 10412  chash 13435  Basecbs 16255  .rcmulr 16339   ·𝑠 cvsca 16342  0gc0g 16486  CRingccrg 18935  NzRingcnzr 19654  Domncdomn 19677  IDomncidom 19678  var1cv1 19942  Poly1cpl1 19943  eval1ce1 20075   deg1 cdg1 24251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351  ax-mulf 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-ofr 7175  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-tpos 7634  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-map 8142  df-pm 8143  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-sup 8636  df-oi 8704  df-card 9098  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-xnn0 11715  df-z 11729  df-dec 11846  df-uz 11993  df-fz 12644  df-fzo 12785  df-seq 13120  df-hash 13436  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-hom 16362  df-cco 16363  df-0g 16488  df-gsum 16489  df-prds 16494  df-pws 16496  df-mre 16632  df-mrc 16633  df-acs 16635  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-mhm 17721  df-submnd 17722  df-grp 17812  df-minusg 17813  df-sbg 17814  df-mulg 17928  df-subg 17975  df-ghm 18042  df-cntz 18133  df-cmn 18581  df-abl 18582  df-mgp 18877  df-ur 18889  df-srg 18893  df-ring 18936  df-cring 18937  df-oppr 19010  df-dvdsr 19028  df-unit 19029  df-invr 19059  df-rnghom 19104  df-subrg 19170  df-lmod 19257  df-lss 19325  df-lsp 19367  df-nzr 19655  df-rlreg 19680  df-domn 19681  df-idom 19682  df-assa 19709  df-asp 19710  df-ascl 19711  df-psr 19753  df-mvr 19754  df-mpl 19755  df-opsr 19757  df-evls 19902  df-evl 19903  df-psr1 19946  df-vr1 19947  df-ply1 19948  df-coe1 19949  df-evl1 20077  df-cnfld 20143  df-mdeg 24252  df-deg1 24253  df-mon1 24327  df-uc1p 24328  df-q1p 24329  df-r1p 24330
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator