Proof of Theorem idomrootle
Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . 3
⊢
(Poly1‘𝑅) = (Poly1‘𝑅) |
2 | | eqid 2738 |
. . 3
⊢
(Base‘(Poly1‘𝑅)) =
(Base‘(Poly1‘𝑅)) |
3 | | eqid 2738 |
. . 3
⊢ (
deg1 ‘𝑅) =
( deg1 ‘𝑅) |
4 | | eqid 2738 |
. . 3
⊢
(eval1‘𝑅) = (eval1‘𝑅) |
5 | | eqid 2738 |
. . 3
⊢
(0g‘𝑅) = (0g‘𝑅) |
6 | | eqid 2738 |
. . 3
⊢
(0g‘(Poly1‘𝑅)) =
(0g‘(Poly1‘𝑅)) |
7 | | simp1 1135 |
. . 3
⊢ ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) → 𝑅 ∈ IDomn) |
8 | | isidom 20575 |
. . . . . . . . 9
⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) |
9 | 8 | simplbi 498 |
. . . . . . . 8
⊢ (𝑅 ∈ IDomn → 𝑅 ∈ CRing) |
10 | 7, 9 | syl 17 |
. . . . . . 7
⊢ ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) → 𝑅 ∈ CRing) |
11 | | crngring 19795 |
. . . . . . 7
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
12 | 10, 11 | syl 17 |
. . . . . 6
⊢ ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) → 𝑅 ∈ Ring) |
13 | 1 | ply1ring 21419 |
. . . . . 6
⊢ (𝑅 ∈ Ring →
(Poly1‘𝑅)
∈ Ring) |
14 | 12, 13 | syl 17 |
. . . . 5
⊢ ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) →
(Poly1‘𝑅)
∈ Ring) |
15 | | ringgrp 19788 |
. . . . 5
⊢
((Poly1‘𝑅) ∈ Ring →
(Poly1‘𝑅)
∈ Grp) |
16 | 14, 15 | syl 17 |
. . . 4
⊢ ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) →
(Poly1‘𝑅)
∈ Grp) |
17 | | eqid 2738 |
. . . . . . . 8
⊢
(mulGrp‘(Poly1‘𝑅)) =
(mulGrp‘(Poly1‘𝑅)) |
18 | 17 | ringmgp 19789 |
. . . . . . 7
⊢
((Poly1‘𝑅) ∈ Ring →
(mulGrp‘(Poly1‘𝑅)) ∈ Mnd) |
19 | 14, 18 | syl 17 |
. . . . . 6
⊢ ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) →
(mulGrp‘(Poly1‘𝑅)) ∈ Mnd) |
20 | | mndmgm 18392 |
. . . . . 6
⊢
((mulGrp‘(Poly1‘𝑅)) ∈ Mnd →
(mulGrp‘(Poly1‘𝑅)) ∈ Mgm) |
21 | 19, 20 | syl 17 |
. . . . 5
⊢ ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) →
(mulGrp‘(Poly1‘𝑅)) ∈ Mgm) |
22 | | simp3 1137 |
. . . . 5
⊢ ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) |
23 | | eqid 2738 |
. . . . . . 7
⊢
(var1‘𝑅) = (var1‘𝑅) |
24 | 23, 1, 2 | vr1cl 21388 |
. . . . . 6
⊢ (𝑅 ∈ Ring →
(var1‘𝑅)
∈ (Base‘(Poly1‘𝑅))) |
25 | 12, 24 | syl 17 |
. . . . 5
⊢ ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) →
(var1‘𝑅)
∈ (Base‘(Poly1‘𝑅))) |
26 | 17, 2 | mgpbas 19726 |
. . . . . 6
⊢
(Base‘(Poly1‘𝑅)) =
(Base‘(mulGrp‘(Poly1‘𝑅))) |
27 | | eqid 2738 |
. . . . . 6
⊢
(.g‘(mulGrp‘(Poly1‘𝑅))) =
(.g‘(mulGrp‘(Poly1‘𝑅))) |
28 | 26, 27 | mulgnncl 18719 |
. . . . 5
⊢
(((mulGrp‘(Poly1‘𝑅)) ∈ Mgm ∧ 𝑁 ∈ ℕ ∧
(var1‘𝑅)
∈ (Base‘(Poly1‘𝑅))) → (𝑁(.g‘(mulGrp‘(Poly1‘𝑅)))(var1‘𝑅)) ∈ (Base‘(Poly1‘𝑅))) |
29 | 21, 22, 25, 28 | syl3anc 1370 |
. . . 4
⊢ ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) → (𝑁(.g‘(mulGrp‘(Poly1‘𝑅)))(var1‘𝑅)) ∈ (Base‘(Poly1‘𝑅))) |
30 | | eqid 2738 |
. . . . . . 7
⊢
(algSc‘(Poly1‘𝑅)) =
(algSc‘(Poly1‘𝑅)) |
31 | | idomrootle.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑅) |
32 | 1, 30, 31, 2 | ply1sclf 21456 |
. . . . . 6
⊢ (𝑅 ∈ Ring →
(algSc‘(Poly1‘𝑅)):𝐵⟶(Base‘(Poly1‘𝑅))) |
33 | 12, 32 | syl 17 |
. . . . 5
⊢ ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) →
(algSc‘(Poly1‘𝑅)):𝐵⟶(Base‘(Poly1‘𝑅))) |
34 | | simp2 1136 |
. . . . 5
⊢ ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) → 𝑋 ∈ 𝐵) |
35 | 33, 34 | ffvelrnd 6962 |
. . . 4
⊢ ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) →
((algSc‘(Poly1‘𝑅))‘𝑋) ∈
(Base‘(Poly1‘𝑅))) |
36 | | eqid 2738 |
. . . . 5
⊢
(-g‘(Poly1‘𝑅)) =
(-g‘(Poly1‘𝑅)) |
37 | 2, 36 | grpsubcl 18655 |
. . . 4
⊢
(((Poly1‘𝑅) ∈ Grp ∧ (𝑁(.g‘(mulGrp‘(Poly1‘𝑅)))(var1‘𝑅)) ∈ (Base‘(Poly1‘𝑅)) ∧ ((algSc‘(Poly1‘𝑅))‘𝑋)
∈ (Base‘(Poly1‘𝑅)))
→ ((𝑁(.g‘(mulGrp‘(Poly1‘𝑅)))(var1‘𝑅))(-g‘(Poly1‘𝑅))((algSc‘(Poly1‘𝑅))‘𝑋))
∈ (Base‘(Poly1‘𝑅))) |
38 | 16, 29, 35, 37 | syl3anc 1370 |
. . 3
⊢ ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) → ((𝑁(.g‘(mulGrp‘(Poly1‘𝑅)))(var1‘𝑅))(-g‘(Poly1‘𝑅))((algSc‘(Poly1‘𝑅))‘𝑋))
∈ (Base‘(Poly1‘𝑅))) |
39 | 3, 1, 2 | deg1xrcl 25247 |
. . . . . . . . . 10
⊢
(((algSc‘(Poly1‘𝑅))‘𝑋) ∈
(Base‘(Poly1‘𝑅)) → (( deg1 ‘𝑅)‘((algSc‘(Poly1‘𝑅))‘𝑋)) ∈ ℝ*) |
40 | 35, 39 | syl 17 |
. . . . . . . . 9
⊢ ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) → (( deg1
‘𝑅)‘((algSc‘(Poly1‘𝑅))‘𝑋)) ∈ ℝ*) |
41 | | 0xr 11022 |
. . . . . . . . . 10
⊢ 0 ∈
ℝ* |
42 | 41 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) → 0 ∈
ℝ*) |
43 | | nnre 11980 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℝ) |
44 | 43 | rexrd 11025 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℝ*) |
45 | 44 | 3ad2ant3 1134 |
. . . . . . . . 9
⊢ ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈
ℝ*) |
46 | 3, 1, 31, 30 | deg1sclle 25277 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (( deg1 ‘𝑅)‘((algSc‘(Poly1‘𝑅))‘𝑋)) ≤ 0) |
47 | 12, 34, 46 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) → (( deg1
‘𝑅)‘((algSc‘(Poly1‘𝑅))‘𝑋)) ≤ 0) |
48 | | nngt0 12004 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → 0 <
𝑁) |
49 | 48 | 3ad2ant3 1134 |
. . . . . . . . 9
⊢ ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) → 0 < 𝑁) |
50 | 40, 42, 45, 47, 49 | xrlelttrd 12894 |
. . . . . . . 8
⊢ ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) → (( deg1
‘𝑅)‘((algSc‘(Poly1‘𝑅))‘𝑋)) < 𝑁) |
51 | 8 | simprbi 497 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ IDomn → 𝑅 ∈ Domn) |
52 | | domnnzr 20566 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) |
53 | 51, 52 | syl 17 |
. . . . . . . . . 10
⊢ (𝑅 ∈ IDomn → 𝑅 ∈ NzRing) |
54 | 7, 53 | syl 17 |
. . . . . . . . 9
⊢ ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) → 𝑅 ∈ NzRing) |
55 | | nnnn0 12240 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
56 | 55 | 3ad2ant3 1134 |
. . . . . . . . 9
⊢ ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈
ℕ0) |
57 | 3, 1, 23, 17, 27 | deg1pw 25285 |
. . . . . . . . 9
⊢ ((𝑅 ∈ NzRing ∧ 𝑁 ∈ ℕ0)
→ (( deg1 ‘𝑅)‘(𝑁(.g‘(mulGrp‘(Poly1‘𝑅)))(var1‘𝑅))) = 𝑁) |
58 | 54, 56, 57 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) → (( deg1
‘𝑅)‘(𝑁(.g‘(mulGrp‘(Poly1‘𝑅)))(var1‘𝑅))) = 𝑁) |
59 | 50, 58 | breqtrrd 5102 |
. . . . . . 7
⊢ ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) → (( deg1
‘𝑅)‘((algSc‘(Poly1‘𝑅))‘𝑋)) < (( deg1 ‘𝑅)‘(𝑁(.g‘(mulGrp‘(Poly1‘𝑅)))(var1‘𝑅)))) |
60 | 1, 3, 12, 2, 36, 29, 35, 59 | deg1sub 25273 |
. . . . . 6
⊢ ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) → (( deg1
‘𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1‘𝑅)))(var1‘𝑅))(-g‘(Poly1‘𝑅))((algSc‘(Poly1‘𝑅))‘𝑋))) = (( deg1 ‘𝑅)‘(𝑁(.g‘(mulGrp‘(Poly1‘𝑅)))(var1‘𝑅)))) |
61 | 60, 58 | eqtrd 2778 |
. . . . 5
⊢ ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) → (( deg1
‘𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1‘𝑅)))(var1‘𝑅))(-g‘(Poly1‘𝑅))((algSc‘(Poly1‘𝑅))‘𝑋))) = 𝑁) |
62 | 61, 56 | eqeltrd 2839 |
. . . 4
⊢ ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) → (( deg1
‘𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1‘𝑅)))(var1‘𝑅))(-g‘(Poly1‘𝑅))((algSc‘(Poly1‘𝑅))‘𝑋))) ∈ ℕ0) |
63 | 3, 1, 6, 2 | deg1nn0clb 25255 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ ((𝑁(.g‘(mulGrp‘(Poly1‘𝑅)))(var1‘𝑅))(-g‘(Poly1‘𝑅))((algSc‘(Poly1‘𝑅))‘𝑋))
∈ (Base‘(Poly1‘𝑅)))
→ (((𝑁(.g‘(mulGrp‘(Poly1‘𝑅)))(var1‘𝑅))(-g‘(Poly1‘𝑅))((algSc‘(Poly1‘𝑅))‘𝑋))
≠ (0g‘(Poly1‘𝑅)) ↔ (( deg1 ‘𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1‘𝑅)))(var1‘𝑅))(-g‘(Poly1‘𝑅))((algSc‘(Poly1‘𝑅))‘𝑋))) ∈ ℕ0)) |
64 | 12, 38, 63 | syl2anc 584 |
. . . 4
⊢ ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) → (((𝑁(.g‘(mulGrp‘(Poly1‘𝑅)))(var1‘𝑅))(-g‘(Poly1‘𝑅))((algSc‘(Poly1‘𝑅))‘𝑋))
≠ (0g‘(Poly1‘𝑅)) ↔ (( deg1 ‘𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1‘𝑅)))(var1‘𝑅))(-g‘(Poly1‘𝑅))((algSc‘(Poly1‘𝑅))‘𝑋))) ∈ ℕ0)) |
65 | 62, 64 | mpbird 256 |
. . 3
⊢ ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) → ((𝑁(.g‘(mulGrp‘(Poly1‘𝑅)))(var1‘𝑅))(-g‘(Poly1‘𝑅))((algSc‘(Poly1‘𝑅))‘𝑋))
≠ (0g‘(Poly1‘𝑅))) |
66 | 1, 2, 3, 4, 5, 6, 7, 38, 65 | fta1g 25332 |
. 2
⊢ ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) →
(♯‘(◡((eval1‘𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1‘𝑅)))(var1‘𝑅))(-g‘(Poly1‘𝑅))((algSc‘(Poly1‘𝑅))‘𝑋))) “ {(0g‘𝑅)})) ≤ (( deg1 ‘𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1‘𝑅)))(var1‘𝑅))(-g‘(Poly1‘𝑅))((algSc‘(Poly1‘𝑅))‘𝑋)))) |
67 | | eqid 2738 |
. . . . . . 7
⊢ (𝑅 ↑s 𝐵) = (𝑅 ↑s 𝐵) |
68 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘(𝑅
↑s 𝐵)) = (Base‘(𝑅 ↑s 𝐵)) |
69 | 31 | fvexi 6788 |
. . . . . . . 8
⊢ 𝐵 ∈ V |
70 | 69 | a1i 11 |
. . . . . . 7
⊢ ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) → 𝐵 ∈ V) |
71 | 4, 1, 67, 31 | evl1rhm 21498 |
. . . . . . . . . 10
⊢ (𝑅 ∈ CRing →
(eval1‘𝑅)
∈ ((Poly1‘𝑅) RingHom (𝑅 ↑s 𝐵))) |
72 | 10, 71 | syl 17 |
. . . . . . . . 9
⊢ ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) →
(eval1‘𝑅)
∈ ((Poly1‘𝑅) RingHom (𝑅 ↑s 𝐵))) |
73 | 2, 68 | rhmf 19970 |
. . . . . . . . 9
⊢
((eval1‘𝑅) ∈ ((Poly1‘𝑅) RingHom (𝑅 ↑s 𝐵)) → (eval1‘𝑅):(Base‘(Poly1‘𝑅))⟶(Base‘(𝑅 ↑s 𝐵))) |
74 | 72, 73 | syl 17 |
. . . . . . . 8
⊢ ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) →
(eval1‘𝑅):(Base‘(Poly1‘𝑅))⟶(Base‘(𝑅 ↑s 𝐵))) |
75 | 74, 38 | ffvelrnd 6962 |
. . . . . . 7
⊢ ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) →
((eval1‘𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1‘𝑅)))(var1‘𝑅))(-g‘(Poly1‘𝑅))((algSc‘(Poly1‘𝑅))‘𝑋))) ∈ (Base‘(𝑅 ↑s 𝐵))) |
76 | 67, 31, 68, 7, 70, 75 | pwselbas 17200 |
. . . . . 6
⊢ ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) →
((eval1‘𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1‘𝑅)))(var1‘𝑅))(-g‘(Poly1‘𝑅))((algSc‘(Poly1‘𝑅))‘𝑋))):𝐵⟶𝐵) |
77 | 76 | ffnd 6601 |
. . . . 5
⊢ ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) →
((eval1‘𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1‘𝑅)))(var1‘𝑅))(-g‘(Poly1‘𝑅))((algSc‘(Poly1‘𝑅))‘𝑋))) Fn 𝐵) |
78 | | fniniseg2 6939 |
. . . . 5
⊢
(((eval1‘𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1‘𝑅)))(var1‘𝑅))(-g‘(Poly1‘𝑅))((algSc‘(Poly1‘𝑅))‘𝑋))) Fn 𝐵
→ (◡((eval1‘𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1‘𝑅)))(var1‘𝑅))(-g‘(Poly1‘𝑅))((algSc‘(Poly1‘𝑅))‘𝑋))) “ {(0g‘𝑅)}) = {𝑦
∈ 𝐵 ∣
(((eval1‘𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1‘𝑅)))(var1‘𝑅))(-g‘(Poly1‘𝑅))((algSc‘(Poly1‘𝑅))‘𝑋)))‘𝑦)
= (0g‘𝑅)}) |
79 | 77, 78 | syl 17 |
. . . 4
⊢ ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) → (◡((eval1‘𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1‘𝑅)))(var1‘𝑅))(-g‘(Poly1‘𝑅))((algSc‘(Poly1‘𝑅))‘𝑋))) “ {(0g‘𝑅)}) = {𝑦
∈ 𝐵 ∣
(((eval1‘𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1‘𝑅)))(var1‘𝑅))(-g‘(Poly1‘𝑅))((algSc‘(Poly1‘𝑅))‘𝑋)))‘𝑦)
= (0g‘𝑅)}) |
80 | 10 | adantr 481 |
. . . . . . . . 9
⊢ (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) → 𝑅 ∈ CRing) |
81 | | simpr 485 |
. . . . . . . . 9
⊢ (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
82 | 4, 23, 31, 1, 2, 80, 81 | evl1vard 21503 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) → ((var1‘𝑅) ∈
(Base‘(Poly1‘𝑅)) ∧ (((eval1‘𝑅)‘(var1‘𝑅))‘𝑦) = 𝑦)) |
83 | | idomrootle.e |
. . . . . . . . . 10
⊢ ↑ =
(.g‘(mulGrp‘𝑅)) |
84 | | simpl3 1192 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) → 𝑁 ∈ ℕ) |
85 | 84, 55 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) → 𝑁 ∈
ℕ0) |
86 | 4, 1, 31, 2, 80, 81, 82, 27, 83, 85 | evl1expd 21511 |
. . . . . . . . 9
⊢ (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) → ((𝑁(.g‘(mulGrp‘(Poly1‘𝑅)))(var1‘𝑅)) ∈ (Base‘(Poly1‘𝑅)) ∧ (((eval1‘𝑅)‘(𝑁(.g‘(mulGrp‘(Poly1‘𝑅)))(var1‘𝑅)))‘𝑦)
= (𝑁 ↑ 𝑦))) |
87 | | simpl2 1191 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
88 | 4, 1, 31, 30, 2, 80, 87, 81 | evl1scad 21501 |
. . . . . . . . 9
⊢ (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) →
(((algSc‘(Poly1‘𝑅))‘𝑋) ∈
(Base‘(Poly1‘𝑅)) ∧ (((eval1‘𝑅)‘((algSc‘(Poly1‘𝑅))‘𝑋))‘𝑦) = 𝑋)) |
89 | | eqid 2738 |
. . . . . . . . 9
⊢
(-g‘𝑅) = (-g‘𝑅) |
90 | 4, 1, 31, 2, 80, 81, 86, 88, 36, 89 | evl1subd 21508 |
. . . . . . . 8
⊢ (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) → (((𝑁(.g‘(mulGrp‘(Poly1‘𝑅)))(var1‘𝑅))(-g‘(Poly1‘𝑅))((algSc‘(Poly1‘𝑅))‘𝑋))
∈ (Base‘(Poly1‘𝑅))
∧ (((eval1‘𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1‘𝑅)))(var1‘𝑅))(-g‘(Poly1‘𝑅))((algSc‘(Poly1‘𝑅))‘𝑋)))‘𝑦)
= ((𝑁 ↑ 𝑦)(-g‘𝑅)𝑋))) |
91 | 90 | simprd 496 |
. . . . . . 7
⊢ (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) → (((eval1‘𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1‘𝑅)))(var1‘𝑅))(-g‘(Poly1‘𝑅))((algSc‘(Poly1‘𝑅))‘𝑋)))‘𝑦)
= ((𝑁 ↑ 𝑦)(-g‘𝑅)𝑋)) |
92 | 91 | eqeq1d 2740 |
. . . . . 6
⊢ (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) → ((((eval1‘𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1‘𝑅)))(var1‘𝑅))(-g‘(Poly1‘𝑅))((algSc‘(Poly1‘𝑅))‘𝑋)))‘𝑦)
= (0g‘𝑅) ↔ ((𝑁 ↑ 𝑦)(-g‘𝑅)𝑋) =
(0g‘𝑅))) |
93 | | ringgrp 19788 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
94 | 12, 93 | syl 17 |
. . . . . . . 8
⊢ ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) → 𝑅 ∈ Grp) |
95 | 94 | adantr 481 |
. . . . . . 7
⊢ (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) → 𝑅 ∈ Grp) |
96 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
97 | 96 | ringmgp 19789 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Ring →
(mulGrp‘𝑅) ∈
Mnd) |
98 | 12, 97 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) → (mulGrp‘𝑅) ∈ Mnd) |
99 | 98 | adantr 481 |
. . . . . . . . 9
⊢ (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) → (mulGrp‘𝑅) ∈ Mnd) |
100 | | mndmgm 18392 |
. . . . . . . . 9
⊢
((mulGrp‘𝑅)
∈ Mnd → (mulGrp‘𝑅) ∈ Mgm) |
101 | 99, 100 | syl 17 |
. . . . . . . 8
⊢ (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) → (mulGrp‘𝑅) ∈ Mgm) |
102 | 96, 31 | mgpbas 19726 |
. . . . . . . . 9
⊢ 𝐵 =
(Base‘(mulGrp‘𝑅)) |
103 | 102, 83 | mulgnncl 18719 |
. . . . . . . 8
⊢
(((mulGrp‘𝑅)
∈ Mgm ∧ 𝑁 ∈
ℕ ∧ 𝑦 ∈
𝐵) → (𝑁 ↑ 𝑦) ∈ 𝐵) |
104 | 101, 84, 81, 103 | syl3anc 1370 |
. . . . . . 7
⊢ (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) → (𝑁 ↑ 𝑦) ∈ 𝐵) |
105 | 31, 5, 89 | grpsubeq0 18661 |
. . . . . . 7
⊢ ((𝑅 ∈ Grp ∧ (𝑁 ↑ 𝑦) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (((𝑁 ↑ 𝑦)(-g‘𝑅)𝑋) = (0g‘𝑅) ↔ (𝑁 ↑ 𝑦) = 𝑋)) |
106 | 95, 104, 87, 105 | syl3anc 1370 |
. . . . . 6
⊢ (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) → (((𝑁 ↑ 𝑦)(-g‘𝑅)𝑋) = (0g‘𝑅) ↔ (𝑁 ↑ 𝑦) = 𝑋)) |
107 | 92, 106 | bitrd 278 |
. . . . 5
⊢ (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) ∧ 𝑦 ∈ 𝐵) → ((((eval1‘𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1‘𝑅)))(var1‘𝑅))(-g‘(Poly1‘𝑅))((algSc‘(Poly1‘𝑅))‘𝑋)))‘𝑦)
= (0g‘𝑅) ↔ (𝑁 ↑ 𝑦) = 𝑋)) |
108 | 107 | rabbidva 3413 |
. . . 4
⊢ ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) → {𝑦 ∈ 𝐵 ∣ (((eval1‘𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1‘𝑅)))(var1‘𝑅))(-g‘(Poly1‘𝑅))((algSc‘(Poly1‘𝑅))‘𝑋)))‘𝑦)
= (0g‘𝑅)} = {𝑦 ∈ 𝐵 ∣ (𝑁
↑ 𝑦) = 𝑋}) |
109 | 79, 108 | eqtrd 2778 |
. . 3
⊢ ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) → (◡((eval1‘𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1‘𝑅)))(var1‘𝑅))(-g‘(Poly1‘𝑅))((algSc‘(Poly1‘𝑅))‘𝑋))) “ {(0g‘𝑅)}) = {𝑦
∈ 𝐵 ∣ (𝑁 ↑ 𝑦) = 𝑋}) |
110 | 109 | fveq2d 6778 |
. 2
⊢ ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) →
(♯‘(◡((eval1‘𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1‘𝑅)))(var1‘𝑅))(-g‘(Poly1‘𝑅))((algSc‘(Poly1‘𝑅))‘𝑋))) “ {(0g‘𝑅)})) = (♯‘{𝑦 ∈ 𝐵
∣ (𝑁 ↑ 𝑦) = 𝑋})) |
111 | 66, 110, 61 | 3brtr3d 5105 |
1
⊢ ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ) →
(♯‘{𝑦 ∈
𝐵 ∣ (𝑁 ↑ 𝑦) = 𝑋}) ≤ 𝑁) |