Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idomrootle Structured version   Visualization version   GIF version

Theorem idomrootle 41922
Description: No element of an integral domain can have more than 𝑁 𝑁-th roots. (Contributed by Stefan O'Rear, 11-Sep-2015.)
Hypotheses
Ref Expression
idomrootle.b 𝐡 = (Baseβ€˜π‘…)
idomrootle.e ↑ = (.gβ€˜(mulGrpβ€˜π‘…))
Assertion
Ref Expression
idomrootle ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (β™―β€˜{𝑦 ∈ 𝐡 ∣ (𝑁 ↑ 𝑦) = 𝑋}) ≀ 𝑁)
Distinct variable groups:   𝑦,𝐡   𝑦,𝑁   𝑦,𝑅   𝑦,𝑋
Allowed substitution hint:   ↑ (𝑦)

Proof of Theorem idomrootle
StepHypRef Expression
1 eqid 2732 . . 3 (Poly1β€˜π‘…) = (Poly1β€˜π‘…)
2 eqid 2732 . . 3 (Baseβ€˜(Poly1β€˜π‘…)) = (Baseβ€˜(Poly1β€˜π‘…))
3 eqid 2732 . . 3 ( deg1 β€˜π‘…) = ( deg1 β€˜π‘…)
4 eqid 2732 . . 3 (eval1β€˜π‘…) = (eval1β€˜π‘…)
5 eqid 2732 . . 3 (0gβ€˜π‘…) = (0gβ€˜π‘…)
6 eqid 2732 . . 3 (0gβ€˜(Poly1β€˜π‘…)) = (0gβ€˜(Poly1β€˜π‘…))
7 simp1 1136 . . 3 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ 𝑅 ∈ IDomn)
8 isidom 20914 . . . . . . . . 9 (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
98simplbi 498 . . . . . . . 8 (𝑅 ∈ IDomn β†’ 𝑅 ∈ CRing)
107, 9syl 17 . . . . . . 7 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ 𝑅 ∈ CRing)
11 crngring 20061 . . . . . . 7 (𝑅 ∈ CRing β†’ 𝑅 ∈ Ring)
1210, 11syl 17 . . . . . 6 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ 𝑅 ∈ Ring)
131ply1ring 21761 . . . . . 6 (𝑅 ∈ Ring β†’ (Poly1β€˜π‘…) ∈ Ring)
1412, 13syl 17 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (Poly1β€˜π‘…) ∈ Ring)
15 ringgrp 20054 . . . . 5 ((Poly1β€˜π‘…) ∈ Ring β†’ (Poly1β€˜π‘…) ∈ Grp)
1614, 15syl 17 . . . 4 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (Poly1β€˜π‘…) ∈ Grp)
17 eqid 2732 . . . . . . . 8 (mulGrpβ€˜(Poly1β€˜π‘…)) = (mulGrpβ€˜(Poly1β€˜π‘…))
1817ringmgp 20055 . . . . . . 7 ((Poly1β€˜π‘…) ∈ Ring β†’ (mulGrpβ€˜(Poly1β€˜π‘…)) ∈ Mnd)
1914, 18syl 17 . . . . . 6 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (mulGrpβ€˜(Poly1β€˜π‘…)) ∈ Mnd)
20 mndmgm 18628 . . . . . 6 ((mulGrpβ€˜(Poly1β€˜π‘…)) ∈ Mnd β†’ (mulGrpβ€˜(Poly1β€˜π‘…)) ∈ Mgm)
2119, 20syl 17 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (mulGrpβ€˜(Poly1β€˜π‘…)) ∈ Mgm)
22 simp3 1138 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ 𝑁 ∈ β„•)
23 eqid 2732 . . . . . . 7 (var1β€˜π‘…) = (var1β€˜π‘…)
2423, 1, 2vr1cl 21732 . . . . . 6 (𝑅 ∈ Ring β†’ (var1β€˜π‘…) ∈ (Baseβ€˜(Poly1β€˜π‘…)))
2512, 24syl 17 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (var1β€˜π‘…) ∈ (Baseβ€˜(Poly1β€˜π‘…)))
2617, 2mgpbas 19987 . . . . . 6 (Baseβ€˜(Poly1β€˜π‘…)) = (Baseβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))
27 eqid 2732 . . . . . 6 (.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…))) = (.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))
2826, 27mulgnncl 18963 . . . . 5 (((mulGrpβ€˜(Poly1β€˜π‘…)) ∈ Mgm ∧ 𝑁 ∈ β„• ∧ (var1β€˜π‘…) ∈ (Baseβ€˜(Poly1β€˜π‘…))) β†’ (𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…)) ∈ (Baseβ€˜(Poly1β€˜π‘…)))
2921, 22, 25, 28syl3anc 1371 . . . 4 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…)) ∈ (Baseβ€˜(Poly1β€˜π‘…)))
30 eqid 2732 . . . . . . 7 (algScβ€˜(Poly1β€˜π‘…)) = (algScβ€˜(Poly1β€˜π‘…))
31 idomrootle.b . . . . . . 7 𝐡 = (Baseβ€˜π‘…)
321, 30, 31, 2ply1sclf 21798 . . . . . 6 (𝑅 ∈ Ring β†’ (algScβ€˜(Poly1β€˜π‘…)):𝐡⟢(Baseβ€˜(Poly1β€˜π‘…)))
3312, 32syl 17 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (algScβ€˜(Poly1β€˜π‘…)):𝐡⟢(Baseβ€˜(Poly1β€˜π‘…)))
34 simp2 1137 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ 𝑋 ∈ 𝐡)
3533, 34ffvelcdmd 7084 . . . 4 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ ((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹) ∈ (Baseβ€˜(Poly1β€˜π‘…)))
36 eqid 2732 . . . . 5 (-gβ€˜(Poly1β€˜π‘…)) = (-gβ€˜(Poly1β€˜π‘…))
372, 36grpsubcl 18899 . . . 4 (((Poly1β€˜π‘…) ∈ Grp ∧ (𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…)) ∈ (Baseβ€˜(Poly1β€˜π‘…)) ∧ ((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹) ∈ (Baseβ€˜(Poly1β€˜π‘…))) β†’ ((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹)) ∈ (Baseβ€˜(Poly1β€˜π‘…)))
3816, 29, 35, 37syl3anc 1371 . . 3 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ ((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹)) ∈ (Baseβ€˜(Poly1β€˜π‘…)))
393, 1, 2deg1xrcl 25591 . . . . . . . . . 10 (((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹) ∈ (Baseβ€˜(Poly1β€˜π‘…)) β†’ (( deg1 β€˜π‘…)β€˜((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹)) ∈ ℝ*)
4035, 39syl 17 . . . . . . . . 9 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (( deg1 β€˜π‘…)β€˜((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹)) ∈ ℝ*)
41 0xr 11257 . . . . . . . . . 10 0 ∈ ℝ*
4241a1i 11 . . . . . . . . 9 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ 0 ∈ ℝ*)
43 nnre 12215 . . . . . . . . . . 11 (𝑁 ∈ β„• β†’ 𝑁 ∈ ℝ)
4443rexrd 11260 . . . . . . . . . 10 (𝑁 ∈ β„• β†’ 𝑁 ∈ ℝ*)
45443ad2ant3 1135 . . . . . . . . 9 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ 𝑁 ∈ ℝ*)
463, 1, 31, 30deg1sclle 25621 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐡) β†’ (( deg1 β€˜π‘…)β€˜((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹)) ≀ 0)
4712, 34, 46syl2anc 584 . . . . . . . . 9 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (( deg1 β€˜π‘…)β€˜((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹)) ≀ 0)
48 nngt0 12239 . . . . . . . . . 10 (𝑁 ∈ β„• β†’ 0 < 𝑁)
49483ad2ant3 1135 . . . . . . . . 9 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ 0 < 𝑁)
5040, 42, 45, 47, 49xrlelttrd 13135 . . . . . . . 8 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (( deg1 β€˜π‘…)β€˜((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹)) < 𝑁)
518simprbi 497 . . . . . . . . . . 11 (𝑅 ∈ IDomn β†’ 𝑅 ∈ Domn)
52 domnnzr 20903 . . . . . . . . . . 11 (𝑅 ∈ Domn β†’ 𝑅 ∈ NzRing)
5351, 52syl 17 . . . . . . . . . 10 (𝑅 ∈ IDomn β†’ 𝑅 ∈ NzRing)
547, 53syl 17 . . . . . . . . 9 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ 𝑅 ∈ NzRing)
55 nnnn0 12475 . . . . . . . . . 10 (𝑁 ∈ β„• β†’ 𝑁 ∈ β„•0)
56553ad2ant3 1135 . . . . . . . . 9 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ 𝑁 ∈ β„•0)
573, 1, 23, 17, 27deg1pw 25629 . . . . . . . . 9 ((𝑅 ∈ NzRing ∧ 𝑁 ∈ β„•0) β†’ (( deg1 β€˜π‘…)β€˜(𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))) = 𝑁)
5854, 56, 57syl2anc 584 . . . . . . . 8 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (( deg1 β€˜π‘…)β€˜(𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))) = 𝑁)
5950, 58breqtrrd 5175 . . . . . . 7 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (( deg1 β€˜π‘…)β€˜((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹)) < (( deg1 β€˜π‘…)β€˜(𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))))
601, 3, 12, 2, 36, 29, 35, 59deg1sub 25617 . . . . . 6 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (( deg1 β€˜π‘…)β€˜((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹))) = (( deg1 β€˜π‘…)β€˜(𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))))
6160, 58eqtrd 2772 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (( deg1 β€˜π‘…)β€˜((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹))) = 𝑁)
6261, 56eqeltrd 2833 . . . 4 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (( deg1 β€˜π‘…)β€˜((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹))) ∈ β„•0)
633, 1, 6, 2deg1nn0clb 25599 . . . . 5 ((𝑅 ∈ Ring ∧ ((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹)) ∈ (Baseβ€˜(Poly1β€˜π‘…))) β†’ (((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹)) β‰  (0gβ€˜(Poly1β€˜π‘…)) ↔ (( deg1 β€˜π‘…)β€˜((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹))) ∈ β„•0))
6412, 38, 63syl2anc 584 . . . 4 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹)) β‰  (0gβ€˜(Poly1β€˜π‘…)) ↔ (( deg1 β€˜π‘…)β€˜((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹))) ∈ β„•0))
6562, 64mpbird 256 . . 3 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ ((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹)) β‰  (0gβ€˜(Poly1β€˜π‘…)))
661, 2, 3, 4, 5, 6, 7, 38, 65fta1g 25676 . 2 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (β™―β€˜(β—‘((eval1β€˜π‘…)β€˜((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹))) β€œ {(0gβ€˜π‘…)})) ≀ (( deg1 β€˜π‘…)β€˜((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹))))
67 eqid 2732 . . . . . . 7 (𝑅 ↑s 𝐡) = (𝑅 ↑s 𝐡)
68 eqid 2732 . . . . . . 7 (Baseβ€˜(𝑅 ↑s 𝐡)) = (Baseβ€˜(𝑅 ↑s 𝐡))
6931fvexi 6902 . . . . . . . 8 𝐡 ∈ V
7069a1i 11 . . . . . . 7 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ 𝐡 ∈ V)
714, 1, 67, 31evl1rhm 21842 . . . . . . . . . 10 (𝑅 ∈ CRing β†’ (eval1β€˜π‘…) ∈ ((Poly1β€˜π‘…) RingHom (𝑅 ↑s 𝐡)))
7210, 71syl 17 . . . . . . . . 9 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (eval1β€˜π‘…) ∈ ((Poly1β€˜π‘…) RingHom (𝑅 ↑s 𝐡)))
732, 68rhmf 20255 . . . . . . . . 9 ((eval1β€˜π‘…) ∈ ((Poly1β€˜π‘…) RingHom (𝑅 ↑s 𝐡)) β†’ (eval1β€˜π‘…):(Baseβ€˜(Poly1β€˜π‘…))⟢(Baseβ€˜(𝑅 ↑s 𝐡)))
7472, 73syl 17 . . . . . . . 8 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (eval1β€˜π‘…):(Baseβ€˜(Poly1β€˜π‘…))⟢(Baseβ€˜(𝑅 ↑s 𝐡)))
7574, 38ffvelcdmd 7084 . . . . . . 7 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ ((eval1β€˜π‘…)β€˜((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹))) ∈ (Baseβ€˜(𝑅 ↑s 𝐡)))
7667, 31, 68, 7, 70, 75pwselbas 17431 . . . . . 6 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ ((eval1β€˜π‘…)β€˜((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹))):𝐡⟢𝐡)
7776ffnd 6715 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ ((eval1β€˜π‘…)β€˜((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹))) Fn 𝐡)
78 fniniseg2 7060 . . . . 5 (((eval1β€˜π‘…)β€˜((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹))) Fn 𝐡 β†’ (β—‘((eval1β€˜π‘…)β€˜((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹))) β€œ {(0gβ€˜π‘…)}) = {𝑦 ∈ 𝐡 ∣ (((eval1β€˜π‘…)β€˜((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹)))β€˜π‘¦) = (0gβ€˜π‘…)})
7977, 78syl 17 . . . 4 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (β—‘((eval1β€˜π‘…)β€˜((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹))) β€œ {(0gβ€˜π‘…)}) = {𝑦 ∈ 𝐡 ∣ (((eval1β€˜π‘…)β€˜((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹)))β€˜π‘¦) = (0gβ€˜π‘…)})
8010adantr 481 . . . . . . . . 9 (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) ∧ 𝑦 ∈ 𝐡) β†’ 𝑅 ∈ CRing)
81 simpr 485 . . . . . . . . 9 (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) ∧ 𝑦 ∈ 𝐡) β†’ 𝑦 ∈ 𝐡)
824, 23, 31, 1, 2, 80, 81evl1vard 21847 . . . . . . . . . 10 (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) ∧ 𝑦 ∈ 𝐡) β†’ ((var1β€˜π‘…) ∈ (Baseβ€˜(Poly1β€˜π‘…)) ∧ (((eval1β€˜π‘…)β€˜(var1β€˜π‘…))β€˜π‘¦) = 𝑦))
83 idomrootle.e . . . . . . . . . 10 ↑ = (.gβ€˜(mulGrpβ€˜π‘…))
84 simpl3 1193 . . . . . . . . . . 11 (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) ∧ 𝑦 ∈ 𝐡) β†’ 𝑁 ∈ β„•)
8584, 55syl 17 . . . . . . . . . 10 (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) ∧ 𝑦 ∈ 𝐡) β†’ 𝑁 ∈ β„•0)
864, 1, 31, 2, 80, 81, 82, 27, 83, 85evl1expd 21855 . . . . . . . . 9 (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) ∧ 𝑦 ∈ 𝐡) β†’ ((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…)) ∈ (Baseβ€˜(Poly1β€˜π‘…)) ∧ (((eval1β€˜π‘…)β€˜(𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…)))β€˜π‘¦) = (𝑁 ↑ 𝑦)))
87 simpl2 1192 . . . . . . . . . 10 (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) ∧ 𝑦 ∈ 𝐡) β†’ 𝑋 ∈ 𝐡)
884, 1, 31, 30, 2, 80, 87, 81evl1scad 21845 . . . . . . . . 9 (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) ∧ 𝑦 ∈ 𝐡) β†’ (((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹) ∈ (Baseβ€˜(Poly1β€˜π‘…)) ∧ (((eval1β€˜π‘…)β€˜((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹))β€˜π‘¦) = 𝑋))
89 eqid 2732 . . . . . . . . 9 (-gβ€˜π‘…) = (-gβ€˜π‘…)
904, 1, 31, 2, 80, 81, 86, 88, 36, 89evl1subd 21852 . . . . . . . 8 (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) ∧ 𝑦 ∈ 𝐡) β†’ (((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹)) ∈ (Baseβ€˜(Poly1β€˜π‘…)) ∧ (((eval1β€˜π‘…)β€˜((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹)))β€˜π‘¦) = ((𝑁 ↑ 𝑦)(-gβ€˜π‘…)𝑋)))
9190simprd 496 . . . . . . 7 (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) ∧ 𝑦 ∈ 𝐡) β†’ (((eval1β€˜π‘…)β€˜((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹)))β€˜π‘¦) = ((𝑁 ↑ 𝑦)(-gβ€˜π‘…)𝑋))
9291eqeq1d 2734 . . . . . 6 (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) ∧ 𝑦 ∈ 𝐡) β†’ ((((eval1β€˜π‘…)β€˜((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹)))β€˜π‘¦) = (0gβ€˜π‘…) ↔ ((𝑁 ↑ 𝑦)(-gβ€˜π‘…)𝑋) = (0gβ€˜π‘…)))
93 ringgrp 20054 . . . . . . . . 9 (𝑅 ∈ Ring β†’ 𝑅 ∈ Grp)
9412, 93syl 17 . . . . . . . 8 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ 𝑅 ∈ Grp)
9594adantr 481 . . . . . . 7 (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) ∧ 𝑦 ∈ 𝐡) β†’ 𝑅 ∈ Grp)
96 eqid 2732 . . . . . . . . . . . 12 (mulGrpβ€˜π‘…) = (mulGrpβ€˜π‘…)
9796ringmgp 20055 . . . . . . . . . . 11 (𝑅 ∈ Ring β†’ (mulGrpβ€˜π‘…) ∈ Mnd)
9812, 97syl 17 . . . . . . . . . 10 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (mulGrpβ€˜π‘…) ∈ Mnd)
9998adantr 481 . . . . . . . . 9 (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) ∧ 𝑦 ∈ 𝐡) β†’ (mulGrpβ€˜π‘…) ∈ Mnd)
100 mndmgm 18628 . . . . . . . . 9 ((mulGrpβ€˜π‘…) ∈ Mnd β†’ (mulGrpβ€˜π‘…) ∈ Mgm)
10199, 100syl 17 . . . . . . . 8 (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) ∧ 𝑦 ∈ 𝐡) β†’ (mulGrpβ€˜π‘…) ∈ Mgm)
10296, 31mgpbas 19987 . . . . . . . . 9 𝐡 = (Baseβ€˜(mulGrpβ€˜π‘…))
103102, 83mulgnncl 18963 . . . . . . . 8 (((mulGrpβ€˜π‘…) ∈ Mgm ∧ 𝑁 ∈ β„• ∧ 𝑦 ∈ 𝐡) β†’ (𝑁 ↑ 𝑦) ∈ 𝐡)
104101, 84, 81, 103syl3anc 1371 . . . . . . 7 (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) ∧ 𝑦 ∈ 𝐡) β†’ (𝑁 ↑ 𝑦) ∈ 𝐡)
10531, 5, 89grpsubeq0 18905 . . . . . . 7 ((𝑅 ∈ Grp ∧ (𝑁 ↑ 𝑦) ∈ 𝐡 ∧ 𝑋 ∈ 𝐡) β†’ (((𝑁 ↑ 𝑦)(-gβ€˜π‘…)𝑋) = (0gβ€˜π‘…) ↔ (𝑁 ↑ 𝑦) = 𝑋))
10695, 104, 87, 105syl3anc 1371 . . . . . 6 (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) ∧ 𝑦 ∈ 𝐡) β†’ (((𝑁 ↑ 𝑦)(-gβ€˜π‘…)𝑋) = (0gβ€˜π‘…) ↔ (𝑁 ↑ 𝑦) = 𝑋))
10792, 106bitrd 278 . . . . 5 (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) ∧ 𝑦 ∈ 𝐡) β†’ ((((eval1β€˜π‘…)β€˜((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹)))β€˜π‘¦) = (0gβ€˜π‘…) ↔ (𝑁 ↑ 𝑦) = 𝑋))
108107rabbidva 3439 . . . 4 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ {𝑦 ∈ 𝐡 ∣ (((eval1β€˜π‘…)β€˜((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹)))β€˜π‘¦) = (0gβ€˜π‘…)} = {𝑦 ∈ 𝐡 ∣ (𝑁 ↑ 𝑦) = 𝑋})
10979, 108eqtrd 2772 . . 3 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (β—‘((eval1β€˜π‘…)β€˜((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹))) β€œ {(0gβ€˜π‘…)}) = {𝑦 ∈ 𝐡 ∣ (𝑁 ↑ 𝑦) = 𝑋})
110109fveq2d 6892 . 2 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (β™―β€˜(β—‘((eval1β€˜π‘…)β€˜((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹))) β€œ {(0gβ€˜π‘…)})) = (β™―β€˜{𝑦 ∈ 𝐡 ∣ (𝑁 ↑ 𝑦) = 𝑋}))
11166, 110, 613brtr3d 5178 1 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (β™―β€˜{𝑦 ∈ 𝐡 ∣ (𝑁 ↑ 𝑦) = 𝑋}) ≀ 𝑁)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  {crab 3432  Vcvv 3474  {csn 4627   class class class wbr 5147  β—‘ccnv 5674   β€œ cima 5678   Fn wfn 6535  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405  0cc0 11106  β„*cxr 11243   < clt 11244   ≀ cle 11245  β„•cn 12208  β„•0cn0 12468  β™―chash 14286  Basecbs 17140  0gc0g 17381   ↑s cpws 17388  Mgmcmgm 18555  Mndcmnd 18621  Grpcgrp 18815  -gcsg 18817  .gcmg 18944  mulGrpcmgp 19981  Ringcrg 20049  CRingccrg 20050   RingHom crh 20240  NzRingcnzr 20283  Domncdomn 20888  IDomncidom 20889  algSccascl 21398  var1cv1 21691  Poly1cpl1 21692  eval1ce1 21824   deg1 cdg1 25560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-ofr 7667  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-oadd 8466  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-sup 9433  df-oi 9501  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-xnn0 12541  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-fzo 13624  df-seq 13963  df-hash 14287  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-starv 17208  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-hom 17217  df-cco 17218  df-0g 17383  df-gsum 17384  df-prds 17389  df-pws 17391  df-mre 17526  df-mrc 17527  df-acs 17529  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mhm 18667  df-submnd 18668  df-grp 18818  df-minusg 18819  df-sbg 18820  df-mulg 18945  df-subg 18997  df-ghm 19084  df-cntz 19175  df-cmn 19644  df-abl 19645  df-mgp 19982  df-ur 19999  df-srg 20003  df-ring 20051  df-cring 20052  df-oppr 20142  df-dvdsr 20163  df-unit 20164  df-invr 20194  df-rnghom 20243  df-nzr 20284  df-subrg 20353  df-lmod 20465  df-lss 20535  df-lsp 20575  df-rlreg 20891  df-domn 20892  df-idom 20893  df-cnfld 20937  df-assa 21399  df-asp 21400  df-ascl 21401  df-psr 21453  df-mvr 21454  df-mpl 21455  df-opsr 21457  df-evls 21626  df-evl 21627  df-psr1 21695  df-vr1 21696  df-ply1 21697  df-coe1 21698  df-evl1 21826  df-mdeg 25561  df-deg1 25562  df-mon1 25639  df-uc1p 25640  df-q1p 25641  df-r1p 25642
This theorem is referenced by:  idomodle  41923
  Copyright terms: Public domain W3C validator