Step | Hyp | Ref
| Expression |
1 | | eqid 2732 |
. . 3
β’
(Poly1βπ
) = (Poly1βπ
) |
2 | | eqid 2732 |
. . 3
β’
(Baseβ(Poly1βπ
)) =
(Baseβ(Poly1βπ
)) |
3 | | eqid 2732 |
. . 3
β’ (
deg1 βπ
) =
( deg1 βπ
) |
4 | | eqid 2732 |
. . 3
β’
(eval1βπ
) = (eval1βπ
) |
5 | | eqid 2732 |
. . 3
β’
(0gβπ
) = (0gβπ
) |
6 | | eqid 2732 |
. . 3
β’
(0gβ(Poly1βπ
)) =
(0gβ(Poly1βπ
)) |
7 | | simp1 1136 |
. . 3
β’ ((π
β IDomn β§ π β π΅ β§ π β β) β π
β IDomn) |
8 | | isidom 20914 |
. . . . . . . . 9
β’ (π
β IDomn β (π
β CRing β§ π
β Domn)) |
9 | 8 | simplbi 498 |
. . . . . . . 8
β’ (π
β IDomn β π
β CRing) |
10 | 7, 9 | syl 17 |
. . . . . . 7
β’ ((π
β IDomn β§ π β π΅ β§ π β β) β π
β CRing) |
11 | | crngring 20061 |
. . . . . . 7
β’ (π
β CRing β π
β Ring) |
12 | 10, 11 | syl 17 |
. . . . . 6
β’ ((π
β IDomn β§ π β π΅ β§ π β β) β π
β Ring) |
13 | 1 | ply1ring 21761 |
. . . . . 6
β’ (π
β Ring β
(Poly1βπ
)
β Ring) |
14 | 12, 13 | syl 17 |
. . . . 5
β’ ((π
β IDomn β§ π β π΅ β§ π β β) β
(Poly1βπ
)
β Ring) |
15 | | ringgrp 20054 |
. . . . 5
β’
((Poly1βπ
) β Ring β
(Poly1βπ
)
β Grp) |
16 | 14, 15 | syl 17 |
. . . 4
β’ ((π
β IDomn β§ π β π΅ β§ π β β) β
(Poly1βπ
)
β Grp) |
17 | | eqid 2732 |
. . . . . . . 8
β’
(mulGrpβ(Poly1βπ
)) =
(mulGrpβ(Poly1βπ
)) |
18 | 17 | ringmgp 20055 |
. . . . . . 7
β’
((Poly1βπ
) β Ring β
(mulGrpβ(Poly1βπ
)) β Mnd) |
19 | 14, 18 | syl 17 |
. . . . . 6
β’ ((π
β IDomn β§ π β π΅ β§ π β β) β
(mulGrpβ(Poly1βπ
)) β Mnd) |
20 | | mndmgm 18628 |
. . . . . 6
β’
((mulGrpβ(Poly1βπ
)) β Mnd β
(mulGrpβ(Poly1βπ
)) β Mgm) |
21 | 19, 20 | syl 17 |
. . . . 5
β’ ((π
β IDomn β§ π β π΅ β§ π β β) β
(mulGrpβ(Poly1βπ
)) β Mgm) |
22 | | simp3 1138 |
. . . . 5
β’ ((π
β IDomn β§ π β π΅ β§ π β β) β π β β) |
23 | | eqid 2732 |
. . . . . . 7
β’
(var1βπ
) = (var1βπ
) |
24 | 23, 1, 2 | vr1cl 21732 |
. . . . . 6
β’ (π
β Ring β
(var1βπ
)
β (Baseβ(Poly1βπ
))) |
25 | 12, 24 | syl 17 |
. . . . 5
β’ ((π
β IDomn β§ π β π΅ β§ π β β) β
(var1βπ
)
β (Baseβ(Poly1βπ
))) |
26 | 17, 2 | mgpbas 19987 |
. . . . . 6
β’
(Baseβ(Poly1βπ
)) =
(Baseβ(mulGrpβ(Poly1βπ
))) |
27 | | eqid 2732 |
. . . . . 6
β’
(.gβ(mulGrpβ(Poly1βπ
))) =
(.gβ(mulGrpβ(Poly1βπ
))) |
28 | 26, 27 | mulgnncl 18963 |
. . . . 5
β’
(((mulGrpβ(Poly1βπ
)) β Mgm β§ π β β β§
(var1βπ
)
β (Baseβ(Poly1βπ
))) β (π(.gβ(mulGrpβ(Poly1βπ
)))(var1βπ
)) β (Baseβ(Poly1βπ
))) |
29 | 21, 22, 25, 28 | syl3anc 1371 |
. . . 4
β’ ((π
β IDomn β§ π β π΅ β§ π β β) β (π(.gβ(mulGrpβ(Poly1βπ
)))(var1βπ
)) β (Baseβ(Poly1βπ
))) |
30 | | eqid 2732 |
. . . . . . 7
β’
(algScβ(Poly1βπ
)) =
(algScβ(Poly1βπ
)) |
31 | | idomrootle.b |
. . . . . . 7
β’ π΅ = (Baseβπ
) |
32 | 1, 30, 31, 2 | ply1sclf 21798 |
. . . . . 6
β’ (π
β Ring β
(algScβ(Poly1βπ
)):π΅βΆ(Baseβ(Poly1βπ
))) |
33 | 12, 32 | syl 17 |
. . . . 5
β’ ((π
β IDomn β§ π β π΅ β§ π β β) β
(algScβ(Poly1βπ
)):π΅βΆ(Baseβ(Poly1βπ
))) |
34 | | simp2 1137 |
. . . . 5
β’ ((π
β IDomn β§ π β π΅ β§ π β β) β π β π΅) |
35 | 33, 34 | ffvelcdmd 7084 |
. . . 4
β’ ((π
β IDomn β§ π β π΅ β§ π β β) β
((algScβ(Poly1βπ
))βπ) β
(Baseβ(Poly1βπ
))) |
36 | | eqid 2732 |
. . . . 5
β’
(-gβ(Poly1βπ
)) =
(-gβ(Poly1βπ
)) |
37 | 2, 36 | grpsubcl 18899 |
. . . 4
β’
(((Poly1βπ
) β Grp β§ (π(.gβ(mulGrpβ(Poly1βπ
)))(var1βπ
)) β (Baseβ(Poly1βπ
)) β§ ((algScβ(Poly1βπ
))βπ)
β (Baseβ(Poly1βπ
)))
β ((π(.gβ(mulGrpβ(Poly1βπ
)))(var1βπ
))(-gβ(Poly1βπ
))((algScβ(Poly1βπ
))βπ))
β (Baseβ(Poly1βπ
))) |
38 | 16, 29, 35, 37 | syl3anc 1371 |
. . 3
β’ ((π
β IDomn β§ π β π΅ β§ π β β) β ((π(.gβ(mulGrpβ(Poly1βπ
)))(var1βπ
))(-gβ(Poly1βπ
))((algScβ(Poly1βπ
))βπ))
β (Baseβ(Poly1βπ
))) |
39 | 3, 1, 2 | deg1xrcl 25591 |
. . . . . . . . . 10
β’
(((algScβ(Poly1βπ
))βπ) β
(Baseβ(Poly1βπ
)) β (( deg1 βπ
)β((algScβ(Poly1βπ
))βπ)) β β*) |
40 | 35, 39 | syl 17 |
. . . . . . . . 9
β’ ((π
β IDomn β§ π β π΅ β§ π β β) β (( deg1
βπ
)β((algScβ(Poly1βπ
))βπ)) β β*) |
41 | | 0xr 11257 |
. . . . . . . . . 10
β’ 0 β
β* |
42 | 41 | a1i 11 |
. . . . . . . . 9
β’ ((π
β IDomn β§ π β π΅ β§ π β β) β 0 β
β*) |
43 | | nnre 12215 |
. . . . . . . . . . 11
β’ (π β β β π β
β) |
44 | 43 | rexrd 11260 |
. . . . . . . . . 10
β’ (π β β β π β
β*) |
45 | 44 | 3ad2ant3 1135 |
. . . . . . . . 9
β’ ((π
β IDomn β§ π β π΅ β§ π β β) β π β
β*) |
46 | 3, 1, 31, 30 | deg1sclle 25621 |
. . . . . . . . . 10
β’ ((π
β Ring β§ π β π΅) β (( deg1 βπ
)β((algScβ(Poly1βπ
))βπ)) β€ 0) |
47 | 12, 34, 46 | syl2anc 584 |
. . . . . . . . 9
β’ ((π
β IDomn β§ π β π΅ β§ π β β) β (( deg1
βπ
)β((algScβ(Poly1βπ
))βπ)) β€ 0) |
48 | | nngt0 12239 |
. . . . . . . . . 10
β’ (π β β β 0 <
π) |
49 | 48 | 3ad2ant3 1135 |
. . . . . . . . 9
β’ ((π
β IDomn β§ π β π΅ β§ π β β) β 0 < π) |
50 | 40, 42, 45, 47, 49 | xrlelttrd 13135 |
. . . . . . . 8
β’ ((π
β IDomn β§ π β π΅ β§ π β β) β (( deg1
βπ
)β((algScβ(Poly1βπ
))βπ)) < π) |
51 | 8 | simprbi 497 |
. . . . . . . . . . 11
β’ (π
β IDomn β π
β Domn) |
52 | | domnnzr 20903 |
. . . . . . . . . . 11
β’ (π
β Domn β π
β NzRing) |
53 | 51, 52 | syl 17 |
. . . . . . . . . 10
β’ (π
β IDomn β π
β NzRing) |
54 | 7, 53 | syl 17 |
. . . . . . . . 9
β’ ((π
β IDomn β§ π β π΅ β§ π β β) β π
β NzRing) |
55 | | nnnn0 12475 |
. . . . . . . . . 10
β’ (π β β β π β
β0) |
56 | 55 | 3ad2ant3 1135 |
. . . . . . . . 9
β’ ((π
β IDomn β§ π β π΅ β§ π β β) β π β
β0) |
57 | 3, 1, 23, 17, 27 | deg1pw 25629 |
. . . . . . . . 9
β’ ((π
β NzRing β§ π β β0)
β (( deg1 βπ
)β(π(.gβ(mulGrpβ(Poly1βπ
)))(var1βπ
))) = π) |
58 | 54, 56, 57 | syl2anc 584 |
. . . . . . . 8
β’ ((π
β IDomn β§ π β π΅ β§ π β β) β (( deg1
βπ
)β(π(.gβ(mulGrpβ(Poly1βπ
)))(var1βπ
))) = π) |
59 | 50, 58 | breqtrrd 5175 |
. . . . . . 7
β’ ((π
β IDomn β§ π β π΅ β§ π β β) β (( deg1
βπ
)β((algScβ(Poly1βπ
))βπ)) < (( deg1 βπ
)β(π(.gβ(mulGrpβ(Poly1βπ
)))(var1βπ
)))) |
60 | 1, 3, 12, 2, 36, 29, 35, 59 | deg1sub 25617 |
. . . . . 6
β’ ((π
β IDomn β§ π β π΅ β§ π β β) β (( deg1
βπ
)β((π(.gβ(mulGrpβ(Poly1βπ
)))(var1βπ
))(-gβ(Poly1βπ
))((algScβ(Poly1βπ
))βπ))) = (( deg1 βπ
)β(π(.gβ(mulGrpβ(Poly1βπ
)))(var1βπ
)))) |
61 | 60, 58 | eqtrd 2772 |
. . . . 5
β’ ((π
β IDomn β§ π β π΅ β§ π β β) β (( deg1
βπ
)β((π(.gβ(mulGrpβ(Poly1βπ
)))(var1βπ
))(-gβ(Poly1βπ
))((algScβ(Poly1βπ
))βπ))) = π) |
62 | 61, 56 | eqeltrd 2833 |
. . . 4
β’ ((π
β IDomn β§ π β π΅ β§ π β β) β (( deg1
βπ
)β((π(.gβ(mulGrpβ(Poly1βπ
)))(var1βπ
))(-gβ(Poly1βπ
))((algScβ(Poly1βπ
))βπ))) β β0) |
63 | 3, 1, 6, 2 | deg1nn0clb 25599 |
. . . . 5
β’ ((π
β Ring β§ ((π(.gβ(mulGrpβ(Poly1βπ
)))(var1βπ
))(-gβ(Poly1βπ
))((algScβ(Poly1βπ
))βπ))
β (Baseβ(Poly1βπ
)))
β (((π(.gβ(mulGrpβ(Poly1βπ
)))(var1βπ
))(-gβ(Poly1βπ
))((algScβ(Poly1βπ
))βπ))
β (0gβ(Poly1βπ
)) β (( deg1 βπ
)β((π(.gβ(mulGrpβ(Poly1βπ
)))(var1βπ
))(-gβ(Poly1βπ
))((algScβ(Poly1βπ
))βπ))) β β0)) |
64 | 12, 38, 63 | syl2anc 584 |
. . . 4
β’ ((π
β IDomn β§ π β π΅ β§ π β β) β (((π(.gβ(mulGrpβ(Poly1βπ
)))(var1βπ
))(-gβ(Poly1βπ
))((algScβ(Poly1βπ
))βπ))
β (0gβ(Poly1βπ
)) β (( deg1 βπ
)β((π(.gβ(mulGrpβ(Poly1βπ
)))(var1βπ
))(-gβ(Poly1βπ
))((algScβ(Poly1βπ
))βπ))) β β0)) |
65 | 62, 64 | mpbird 256 |
. . 3
β’ ((π
β IDomn β§ π β π΅ β§ π β β) β ((π(.gβ(mulGrpβ(Poly1βπ
)))(var1βπ
))(-gβ(Poly1βπ
))((algScβ(Poly1βπ
))βπ))
β (0gβ(Poly1βπ
))) |
66 | 1, 2, 3, 4, 5, 6, 7, 38, 65 | fta1g 25676 |
. 2
β’ ((π
β IDomn β§ π β π΅ β§ π β β) β
(β―β(β‘((eval1βπ
)β((π(.gβ(mulGrpβ(Poly1βπ
)))(var1βπ
))(-gβ(Poly1βπ
))((algScβ(Poly1βπ
))βπ))) β {(0gβπ
)})) β€ (( deg1 βπ
)β((π(.gβ(mulGrpβ(Poly1βπ
)))(var1βπ
))(-gβ(Poly1βπ
))((algScβ(Poly1βπ
))βπ)))) |
67 | | eqid 2732 |
. . . . . . 7
β’ (π
βs π΅) = (π
βs π΅) |
68 | | eqid 2732 |
. . . . . . 7
β’
(Baseβ(π
βs π΅)) = (Baseβ(π
βs π΅)) |
69 | 31 | fvexi 6902 |
. . . . . . . 8
β’ π΅ β V |
70 | 69 | a1i 11 |
. . . . . . 7
β’ ((π
β IDomn β§ π β π΅ β§ π β β) β π΅ β V) |
71 | 4, 1, 67, 31 | evl1rhm 21842 |
. . . . . . . . . 10
β’ (π
β CRing β
(eval1βπ
)
β ((Poly1βπ
) RingHom (π
βs π΅))) |
72 | 10, 71 | syl 17 |
. . . . . . . . 9
β’ ((π
β IDomn β§ π β π΅ β§ π β β) β
(eval1βπ
)
β ((Poly1βπ
) RingHom (π
βs π΅))) |
73 | 2, 68 | rhmf 20255 |
. . . . . . . . 9
β’
((eval1βπ
) β ((Poly1βπ
) RingHom (π
βs π΅)) β (eval1βπ
):(Baseβ(Poly1βπ
))βΆ(Baseβ(π
βs π΅))) |
74 | 72, 73 | syl 17 |
. . . . . . . 8
β’ ((π
β IDomn β§ π β π΅ β§ π β β) β
(eval1βπ
):(Baseβ(Poly1βπ
))βΆ(Baseβ(π
βs π΅))) |
75 | 74, 38 | ffvelcdmd 7084 |
. . . . . . 7
β’ ((π
β IDomn β§ π β π΅ β§ π β β) β
((eval1βπ
)β((π(.gβ(mulGrpβ(Poly1βπ
)))(var1βπ
))(-gβ(Poly1βπ
))((algScβ(Poly1βπ
))βπ))) β (Baseβ(π
βs π΅))) |
76 | 67, 31, 68, 7, 70, 75 | pwselbas 17431 |
. . . . . 6
β’ ((π
β IDomn β§ π β π΅ β§ π β β) β
((eval1βπ
)β((π(.gβ(mulGrpβ(Poly1βπ
)))(var1βπ
))(-gβ(Poly1βπ
))((algScβ(Poly1βπ
))βπ))):π΅βΆπ΅) |
77 | 76 | ffnd 6715 |
. . . . 5
β’ ((π
β IDomn β§ π β π΅ β§ π β β) β
((eval1βπ
)β((π(.gβ(mulGrpβ(Poly1βπ
)))(var1βπ
))(-gβ(Poly1βπ
))((algScβ(Poly1βπ
))βπ))) Fn π΅) |
78 | | fniniseg2 7060 |
. . . . 5
β’
(((eval1βπ
)β((π(.gβ(mulGrpβ(Poly1βπ
)))(var1βπ
))(-gβ(Poly1βπ
))((algScβ(Poly1βπ
))βπ))) Fn π΅
β (β‘((eval1βπ
)β((π(.gβ(mulGrpβ(Poly1βπ
)))(var1βπ
))(-gβ(Poly1βπ
))((algScβ(Poly1βπ
))βπ))) β {(0gβπ
)}) = {π¦
β π΅ β£
(((eval1βπ
)β((π(.gβ(mulGrpβ(Poly1βπ
)))(var1βπ
))(-gβ(Poly1βπ
))((algScβ(Poly1βπ
))βπ)))βπ¦)
= (0gβπ
)}) |
79 | 77, 78 | syl 17 |
. . . 4
β’ ((π
β IDomn β§ π β π΅ β§ π β β) β (β‘((eval1βπ
)β((π(.gβ(mulGrpβ(Poly1βπ
)))(var1βπ
))(-gβ(Poly1βπ
))((algScβ(Poly1βπ
))βπ))) β {(0gβπ
)}) = {π¦
β π΅ β£
(((eval1βπ
)β((π(.gβ(mulGrpβ(Poly1βπ
)))(var1βπ
))(-gβ(Poly1βπ
))((algScβ(Poly1βπ
))βπ)))βπ¦)
= (0gβπ
)}) |
80 | 10 | adantr 481 |
. . . . . . . . 9
β’ (((π
β IDomn β§ π β π΅ β§ π β β) β§ π¦ β π΅) β π
β CRing) |
81 | | simpr 485 |
. . . . . . . . 9
β’ (((π
β IDomn β§ π β π΅ β§ π β β) β§ π¦ β π΅) β π¦ β π΅) |
82 | 4, 23, 31, 1, 2, 80, 81 | evl1vard 21847 |
. . . . . . . . . 10
β’ (((π
β IDomn β§ π β π΅ β§ π β β) β§ π¦ β π΅) β ((var1βπ
) β
(Baseβ(Poly1βπ
)) β§ (((eval1βπ
)β(var1βπ
))βπ¦) = π¦)) |
83 | | idomrootle.e |
. . . . . . . . . 10
β’ β =
(.gβ(mulGrpβπ
)) |
84 | | simpl3 1193 |
. . . . . . . . . . 11
β’ (((π
β IDomn β§ π β π΅ β§ π β β) β§ π¦ β π΅) β π β β) |
85 | 84, 55 | syl 17 |
. . . . . . . . . 10
β’ (((π
β IDomn β§ π β π΅ β§ π β β) β§ π¦ β π΅) β π β
β0) |
86 | 4, 1, 31, 2, 80, 81, 82, 27, 83, 85 | evl1expd 21855 |
. . . . . . . . 9
β’ (((π
β IDomn β§ π β π΅ β§ π β β) β§ π¦ β π΅) β ((π(.gβ(mulGrpβ(Poly1βπ
)))(var1βπ
)) β (Baseβ(Poly1βπ
)) β§ (((eval1βπ
)β(π(.gβ(mulGrpβ(Poly1βπ
)))(var1βπ
)))βπ¦)
= (π β π¦))) |
87 | | simpl2 1192 |
. . . . . . . . . 10
β’ (((π
β IDomn β§ π β π΅ β§ π β β) β§ π¦ β π΅) β π β π΅) |
88 | 4, 1, 31, 30, 2, 80, 87, 81 | evl1scad 21845 |
. . . . . . . . 9
β’ (((π
β IDomn β§ π β π΅ β§ π β β) β§ π¦ β π΅) β
(((algScβ(Poly1βπ
))βπ) β
(Baseβ(Poly1βπ
)) β§ (((eval1βπ
)β((algScβ(Poly1βπ
))βπ))βπ¦) = π)) |
89 | | eqid 2732 |
. . . . . . . . 9
β’
(-gβπ
) = (-gβπ
) |
90 | 4, 1, 31, 2, 80, 81, 86, 88, 36, 89 | evl1subd 21852 |
. . . . . . . 8
β’ (((π
β IDomn β§ π β π΅ β§ π β β) β§ π¦ β π΅) β (((π(.gβ(mulGrpβ(Poly1βπ
)))(var1βπ
))(-gβ(Poly1βπ
))((algScβ(Poly1βπ
))βπ))
β (Baseβ(Poly1βπ
))
β§ (((eval1βπ
)β((π(.gβ(mulGrpβ(Poly1βπ
)))(var1βπ
))(-gβ(Poly1βπ
))((algScβ(Poly1βπ
))βπ)))βπ¦)
= ((π β π¦)(-gβπ
)π))) |
91 | 90 | simprd 496 |
. . . . . . 7
β’ (((π
β IDomn β§ π β π΅ β§ π β β) β§ π¦ β π΅) β (((eval1βπ
)β((π(.gβ(mulGrpβ(Poly1βπ
)))(var1βπ
))(-gβ(Poly1βπ
))((algScβ(Poly1βπ
))βπ)))βπ¦)
= ((π β π¦)(-gβπ
)π)) |
92 | 91 | eqeq1d 2734 |
. . . . . 6
β’ (((π
β IDomn β§ π β π΅ β§ π β β) β§ π¦ β π΅) β ((((eval1βπ
)β((π(.gβ(mulGrpβ(Poly1βπ
)))(var1βπ
))(-gβ(Poly1βπ
))((algScβ(Poly1βπ
))βπ)))βπ¦)
= (0gβπ
) β ((π β π¦)(-gβπ
)π) =
(0gβπ
))) |
93 | | ringgrp 20054 |
. . . . . . . . 9
β’ (π
β Ring β π
β Grp) |
94 | 12, 93 | syl 17 |
. . . . . . . 8
β’ ((π
β IDomn β§ π β π΅ β§ π β β) β π
β Grp) |
95 | 94 | adantr 481 |
. . . . . . 7
β’ (((π
β IDomn β§ π β π΅ β§ π β β) β§ π¦ β π΅) β π
β Grp) |
96 | | eqid 2732 |
. . . . . . . . . . . 12
β’
(mulGrpβπ
) =
(mulGrpβπ
) |
97 | 96 | ringmgp 20055 |
. . . . . . . . . . 11
β’ (π
β Ring β
(mulGrpβπ
) β
Mnd) |
98 | 12, 97 | syl 17 |
. . . . . . . . . 10
β’ ((π
β IDomn β§ π β π΅ β§ π β β) β (mulGrpβπ
) β Mnd) |
99 | 98 | adantr 481 |
. . . . . . . . 9
β’ (((π
β IDomn β§ π β π΅ β§ π β β) β§ π¦ β π΅) β (mulGrpβπ
) β Mnd) |
100 | | mndmgm 18628 |
. . . . . . . . 9
β’
((mulGrpβπ
)
β Mnd β (mulGrpβπ
) β Mgm) |
101 | 99, 100 | syl 17 |
. . . . . . . 8
β’ (((π
β IDomn β§ π β π΅ β§ π β β) β§ π¦ β π΅) β (mulGrpβπ
) β Mgm) |
102 | 96, 31 | mgpbas 19987 |
. . . . . . . . 9
β’ π΅ =
(Baseβ(mulGrpβπ
)) |
103 | 102, 83 | mulgnncl 18963 |
. . . . . . . 8
β’
(((mulGrpβπ
)
β Mgm β§ π β
β β§ π¦ β
π΅) β (π β π¦) β π΅) |
104 | 101, 84, 81, 103 | syl3anc 1371 |
. . . . . . 7
β’ (((π
β IDomn β§ π β π΅ β§ π β β) β§ π¦ β π΅) β (π β π¦) β π΅) |
105 | 31, 5, 89 | grpsubeq0 18905 |
. . . . . . 7
β’ ((π
β Grp β§ (π β π¦) β π΅ β§ π β π΅) β (((π β π¦)(-gβπ
)π) = (0gβπ
) β (π β π¦) = π)) |
106 | 95, 104, 87, 105 | syl3anc 1371 |
. . . . . 6
β’ (((π
β IDomn β§ π β π΅ β§ π β β) β§ π¦ β π΅) β (((π β π¦)(-gβπ
)π) = (0gβπ
) β (π β π¦) = π)) |
107 | 92, 106 | bitrd 278 |
. . . . 5
β’ (((π
β IDomn β§ π β π΅ β§ π β β) β§ π¦ β π΅) β ((((eval1βπ
)β((π(.gβ(mulGrpβ(Poly1βπ
)))(var1βπ
))(-gβ(Poly1βπ
))((algScβ(Poly1βπ
))βπ)))βπ¦)
= (0gβπ
) β (π β π¦) = π)) |
108 | 107 | rabbidva 3439 |
. . . 4
β’ ((π
β IDomn β§ π β π΅ β§ π β β) β {π¦ β π΅ β£ (((eval1βπ
)β((π(.gβ(mulGrpβ(Poly1βπ
)))(var1βπ
))(-gβ(Poly1βπ
))((algScβ(Poly1βπ
))βπ)))βπ¦)
= (0gβπ
)} = {π¦ β π΅ β£ (π
β π¦) = π}) |
109 | 79, 108 | eqtrd 2772 |
. . 3
β’ ((π
β IDomn β§ π β π΅ β§ π β β) β (β‘((eval1βπ
)β((π(.gβ(mulGrpβ(Poly1βπ
)))(var1βπ
))(-gβ(Poly1βπ
))((algScβ(Poly1βπ
))βπ))) β {(0gβπ
)}) = {π¦
β π΅ β£ (π β π¦) = π}) |
110 | 109 | fveq2d 6892 |
. 2
β’ ((π
β IDomn β§ π β π΅ β§ π β β) β
(β―β(β‘((eval1βπ
)β((π(.gβ(mulGrpβ(Poly1βπ
)))(var1βπ
))(-gβ(Poly1βπ
))((algScβ(Poly1βπ
))βπ))) β {(0gβπ
)})) = (β―β{π¦ β π΅
β£ (π β π¦) = π})) |
111 | 66, 110, 61 | 3brtr3d 5178 |
1
β’ ((π
β IDomn β§ π β π΅ β§ π β β) β
(β―β{π¦ β
π΅ β£ (π β π¦) = π}) β€ π) |