MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idomrootle Structured version   Visualization version   GIF version

Theorem idomrootle 26123
Description: No element of an integral domain can have more than 𝑁 𝑁-th roots. (Contributed by Stefan O'Rear, 11-Sep-2015.)
Hypotheses
Ref Expression
idomrootle.b 𝐡 = (Baseβ€˜π‘…)
idomrootle.e ↑ = (.gβ€˜(mulGrpβ€˜π‘…))
Assertion
Ref Expression
idomrootle ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (β™―β€˜{𝑦 ∈ 𝐡 ∣ (𝑁 ↑ 𝑦) = 𝑋}) ≀ 𝑁)
Distinct variable groups:   𝑦,𝐡   𝑦,𝑁   𝑦,𝑅   𝑦,𝑋
Allowed substitution hint:   ↑ (𝑦)

Proof of Theorem idomrootle
StepHypRef Expression
1 eqid 2725 . . 3 (Poly1β€˜π‘…) = (Poly1β€˜π‘…)
2 eqid 2725 . . 3 (Baseβ€˜(Poly1β€˜π‘…)) = (Baseβ€˜(Poly1β€˜π‘…))
3 eqid 2725 . . 3 ( deg1 β€˜π‘…) = ( deg1 β€˜π‘…)
4 eqid 2725 . . 3 (eval1β€˜π‘…) = (eval1β€˜π‘…)
5 eqid 2725 . . 3 (0gβ€˜π‘…) = (0gβ€˜π‘…)
6 eqid 2725 . . 3 (0gβ€˜(Poly1β€˜π‘…)) = (0gβ€˜(Poly1β€˜π‘…))
7 simp1 1133 . . 3 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ 𝑅 ∈ IDomn)
8 isidom 21256 . . . . . . . . 9 (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
98simplbi 496 . . . . . . . 8 (𝑅 ∈ IDomn β†’ 𝑅 ∈ CRing)
107, 9syl 17 . . . . . . 7 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ 𝑅 ∈ CRing)
11 crngring 20187 . . . . . . 7 (𝑅 ∈ CRing β†’ 𝑅 ∈ Ring)
1210, 11syl 17 . . . . . 6 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ 𝑅 ∈ Ring)
131ply1ring 22173 . . . . . 6 (𝑅 ∈ Ring β†’ (Poly1β€˜π‘…) ∈ Ring)
1412, 13syl 17 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (Poly1β€˜π‘…) ∈ Ring)
15 ringgrp 20180 . . . . 5 ((Poly1β€˜π‘…) ∈ Ring β†’ (Poly1β€˜π‘…) ∈ Grp)
1614, 15syl 17 . . . 4 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (Poly1β€˜π‘…) ∈ Grp)
17 eqid 2725 . . . . . . . 8 (mulGrpβ€˜(Poly1β€˜π‘…)) = (mulGrpβ€˜(Poly1β€˜π‘…))
1817ringmgp 20181 . . . . . . 7 ((Poly1β€˜π‘…) ∈ Ring β†’ (mulGrpβ€˜(Poly1β€˜π‘…)) ∈ Mnd)
1914, 18syl 17 . . . . . 6 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (mulGrpβ€˜(Poly1β€˜π‘…)) ∈ Mnd)
20 mndmgm 18698 . . . . . 6 ((mulGrpβ€˜(Poly1β€˜π‘…)) ∈ Mnd β†’ (mulGrpβ€˜(Poly1β€˜π‘…)) ∈ Mgm)
2119, 20syl 17 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (mulGrpβ€˜(Poly1β€˜π‘…)) ∈ Mgm)
22 simp3 1135 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ 𝑁 ∈ β„•)
23 eqid 2725 . . . . . . 7 (var1β€˜π‘…) = (var1β€˜π‘…)
2423, 1, 2vr1cl 22143 . . . . . 6 (𝑅 ∈ Ring β†’ (var1β€˜π‘…) ∈ (Baseβ€˜(Poly1β€˜π‘…)))
2512, 24syl 17 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (var1β€˜π‘…) ∈ (Baseβ€˜(Poly1β€˜π‘…)))
2617, 2mgpbas 20082 . . . . . 6 (Baseβ€˜(Poly1β€˜π‘…)) = (Baseβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))
27 eqid 2725 . . . . . 6 (.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…))) = (.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))
2826, 27mulgnncl 19046 . . . . 5 (((mulGrpβ€˜(Poly1β€˜π‘…)) ∈ Mgm ∧ 𝑁 ∈ β„• ∧ (var1β€˜π‘…) ∈ (Baseβ€˜(Poly1β€˜π‘…))) β†’ (𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…)) ∈ (Baseβ€˜(Poly1β€˜π‘…)))
2921, 22, 25, 28syl3anc 1368 . . . 4 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…)) ∈ (Baseβ€˜(Poly1β€˜π‘…)))
30 eqid 2725 . . . . . . 7 (algScβ€˜(Poly1β€˜π‘…)) = (algScβ€˜(Poly1β€˜π‘…))
31 idomrootle.b . . . . . . 7 𝐡 = (Baseβ€˜π‘…)
321, 30, 31, 2ply1sclf 22211 . . . . . 6 (𝑅 ∈ Ring β†’ (algScβ€˜(Poly1β€˜π‘…)):𝐡⟢(Baseβ€˜(Poly1β€˜π‘…)))
3312, 32syl 17 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (algScβ€˜(Poly1β€˜π‘…)):𝐡⟢(Baseβ€˜(Poly1β€˜π‘…)))
34 simp2 1134 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ 𝑋 ∈ 𝐡)
3533, 34ffvelcdmd 7089 . . . 4 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ ((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹) ∈ (Baseβ€˜(Poly1β€˜π‘…)))
36 eqid 2725 . . . . 5 (-gβ€˜(Poly1β€˜π‘…)) = (-gβ€˜(Poly1β€˜π‘…))
372, 36grpsubcl 18978 . . . 4 (((Poly1β€˜π‘…) ∈ Grp ∧ (𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…)) ∈ (Baseβ€˜(Poly1β€˜π‘…)) ∧ ((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹) ∈ (Baseβ€˜(Poly1β€˜π‘…))) β†’ ((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹)) ∈ (Baseβ€˜(Poly1β€˜π‘…)))
3816, 29, 35, 37syl3anc 1368 . . 3 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ ((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹)) ∈ (Baseβ€˜(Poly1β€˜π‘…)))
393, 1, 2deg1xrcl 26034 . . . . . . . . . 10 (((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹) ∈ (Baseβ€˜(Poly1β€˜π‘…)) β†’ (( deg1 β€˜π‘…)β€˜((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹)) ∈ ℝ*)
4035, 39syl 17 . . . . . . . . 9 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (( deg1 β€˜π‘…)β€˜((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹)) ∈ ℝ*)
41 0xr 11289 . . . . . . . . . 10 0 ∈ ℝ*
4241a1i 11 . . . . . . . . 9 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ 0 ∈ ℝ*)
43 nnre 12247 . . . . . . . . . . 11 (𝑁 ∈ β„• β†’ 𝑁 ∈ ℝ)
4443rexrd 11292 . . . . . . . . . 10 (𝑁 ∈ β„• β†’ 𝑁 ∈ ℝ*)
45443ad2ant3 1132 . . . . . . . . 9 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ 𝑁 ∈ ℝ*)
463, 1, 31, 30deg1sclle 26064 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐡) β†’ (( deg1 β€˜π‘…)β€˜((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹)) ≀ 0)
4712, 34, 46syl2anc 582 . . . . . . . . 9 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (( deg1 β€˜π‘…)β€˜((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹)) ≀ 0)
48 nngt0 12271 . . . . . . . . . 10 (𝑁 ∈ β„• β†’ 0 < 𝑁)
49483ad2ant3 1132 . . . . . . . . 9 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ 0 < 𝑁)
5040, 42, 45, 47, 49xrlelttrd 13169 . . . . . . . 8 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (( deg1 β€˜π‘…)β€˜((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹)) < 𝑁)
518simprbi 495 . . . . . . . . . . 11 (𝑅 ∈ IDomn β†’ 𝑅 ∈ Domn)
52 domnnzr 21244 . . . . . . . . . . 11 (𝑅 ∈ Domn β†’ 𝑅 ∈ NzRing)
5351, 52syl 17 . . . . . . . . . 10 (𝑅 ∈ IDomn β†’ 𝑅 ∈ NzRing)
547, 53syl 17 . . . . . . . . 9 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ 𝑅 ∈ NzRing)
55 nnnn0 12507 . . . . . . . . . 10 (𝑁 ∈ β„• β†’ 𝑁 ∈ β„•0)
56553ad2ant3 1132 . . . . . . . . 9 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ 𝑁 ∈ β„•0)
573, 1, 23, 17, 27deg1pw 26072 . . . . . . . . 9 ((𝑅 ∈ NzRing ∧ 𝑁 ∈ β„•0) β†’ (( deg1 β€˜π‘…)β€˜(𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))) = 𝑁)
5854, 56, 57syl2anc 582 . . . . . . . 8 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (( deg1 β€˜π‘…)β€˜(𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))) = 𝑁)
5950, 58breqtrrd 5171 . . . . . . 7 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (( deg1 β€˜π‘…)β€˜((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹)) < (( deg1 β€˜π‘…)β€˜(𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))))
601, 3, 12, 2, 36, 29, 35, 59deg1sub 26060 . . . . . 6 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (( deg1 β€˜π‘…)β€˜((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹))) = (( deg1 β€˜π‘…)β€˜(𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))))
6160, 58eqtrd 2765 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (( deg1 β€˜π‘…)β€˜((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹))) = 𝑁)
6261, 56eqeltrd 2825 . . . 4 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (( deg1 β€˜π‘…)β€˜((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹))) ∈ β„•0)
633, 1, 6, 2deg1nn0clb 26042 . . . . 5 ((𝑅 ∈ Ring ∧ ((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹)) ∈ (Baseβ€˜(Poly1β€˜π‘…))) β†’ (((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹)) β‰  (0gβ€˜(Poly1β€˜π‘…)) ↔ (( deg1 β€˜π‘…)β€˜((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹))) ∈ β„•0))
6412, 38, 63syl2anc 582 . . . 4 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹)) β‰  (0gβ€˜(Poly1β€˜π‘…)) ↔ (( deg1 β€˜π‘…)β€˜((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹))) ∈ β„•0))
6562, 64mpbird 256 . . 3 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ ((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹)) β‰  (0gβ€˜(Poly1β€˜π‘…)))
661, 2, 3, 4, 5, 6, 7, 38, 65fta1g 26120 . 2 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (β™―β€˜(β—‘((eval1β€˜π‘…)β€˜((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹))) β€œ {(0gβ€˜π‘…)})) ≀ (( deg1 β€˜π‘…)β€˜((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹))))
67 eqid 2725 . . . . . . 7 (𝑅 ↑s 𝐡) = (𝑅 ↑s 𝐡)
68 eqid 2725 . . . . . . 7 (Baseβ€˜(𝑅 ↑s 𝐡)) = (Baseβ€˜(𝑅 ↑s 𝐡))
6931fvexi 6905 . . . . . . . 8 𝐡 ∈ V
7069a1i 11 . . . . . . 7 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ 𝐡 ∈ V)
714, 1, 67, 31evl1rhm 22258 . . . . . . . . . 10 (𝑅 ∈ CRing β†’ (eval1β€˜π‘…) ∈ ((Poly1β€˜π‘…) RingHom (𝑅 ↑s 𝐡)))
7210, 71syl 17 . . . . . . . . 9 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (eval1β€˜π‘…) ∈ ((Poly1β€˜π‘…) RingHom (𝑅 ↑s 𝐡)))
732, 68rhmf 20426 . . . . . . . . 9 ((eval1β€˜π‘…) ∈ ((Poly1β€˜π‘…) RingHom (𝑅 ↑s 𝐡)) β†’ (eval1β€˜π‘…):(Baseβ€˜(Poly1β€˜π‘…))⟢(Baseβ€˜(𝑅 ↑s 𝐡)))
7472, 73syl 17 . . . . . . . 8 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (eval1β€˜π‘…):(Baseβ€˜(Poly1β€˜π‘…))⟢(Baseβ€˜(𝑅 ↑s 𝐡)))
7574, 38ffvelcdmd 7089 . . . . . . 7 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ ((eval1β€˜π‘…)β€˜((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹))) ∈ (Baseβ€˜(𝑅 ↑s 𝐡)))
7667, 31, 68, 7, 70, 75pwselbas 17468 . . . . . 6 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ ((eval1β€˜π‘…)β€˜((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹))):𝐡⟢𝐡)
7776ffnd 6717 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ ((eval1β€˜π‘…)β€˜((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹))) Fn 𝐡)
78 fniniseg2 7065 . . . . 5 (((eval1β€˜π‘…)β€˜((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹))) Fn 𝐡 β†’ (β—‘((eval1β€˜π‘…)β€˜((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹))) β€œ {(0gβ€˜π‘…)}) = {𝑦 ∈ 𝐡 ∣ (((eval1β€˜π‘…)β€˜((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹)))β€˜π‘¦) = (0gβ€˜π‘…)})
7977, 78syl 17 . . . 4 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (β—‘((eval1β€˜π‘…)β€˜((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹))) β€œ {(0gβ€˜π‘…)}) = {𝑦 ∈ 𝐡 ∣ (((eval1β€˜π‘…)β€˜((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹)))β€˜π‘¦) = (0gβ€˜π‘…)})
8010adantr 479 . . . . . . . . 9 (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) ∧ 𝑦 ∈ 𝐡) β†’ 𝑅 ∈ CRing)
81 simpr 483 . . . . . . . . 9 (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) ∧ 𝑦 ∈ 𝐡) β†’ 𝑦 ∈ 𝐡)
824, 23, 31, 1, 2, 80, 81evl1vard 22263 . . . . . . . . . 10 (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) ∧ 𝑦 ∈ 𝐡) β†’ ((var1β€˜π‘…) ∈ (Baseβ€˜(Poly1β€˜π‘…)) ∧ (((eval1β€˜π‘…)β€˜(var1β€˜π‘…))β€˜π‘¦) = 𝑦))
83 idomrootle.e . . . . . . . . . 10 ↑ = (.gβ€˜(mulGrpβ€˜π‘…))
84 simpl3 1190 . . . . . . . . . . 11 (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) ∧ 𝑦 ∈ 𝐡) β†’ 𝑁 ∈ β„•)
8584, 55syl 17 . . . . . . . . . 10 (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) ∧ 𝑦 ∈ 𝐡) β†’ 𝑁 ∈ β„•0)
864, 1, 31, 2, 80, 81, 82, 27, 83, 85evl1expd 22271 . . . . . . . . 9 (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) ∧ 𝑦 ∈ 𝐡) β†’ ((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…)) ∈ (Baseβ€˜(Poly1β€˜π‘…)) ∧ (((eval1β€˜π‘…)β€˜(𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…)))β€˜π‘¦) = (𝑁 ↑ 𝑦)))
87 simpl2 1189 . . . . . . . . . 10 (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) ∧ 𝑦 ∈ 𝐡) β†’ 𝑋 ∈ 𝐡)
884, 1, 31, 30, 2, 80, 87, 81evl1scad 22261 . . . . . . . . 9 (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) ∧ 𝑦 ∈ 𝐡) β†’ (((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹) ∈ (Baseβ€˜(Poly1β€˜π‘…)) ∧ (((eval1β€˜π‘…)β€˜((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹))β€˜π‘¦) = 𝑋))
89 eqid 2725 . . . . . . . . 9 (-gβ€˜π‘…) = (-gβ€˜π‘…)
904, 1, 31, 2, 80, 81, 86, 88, 36, 89evl1subd 22268 . . . . . . . 8 (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) ∧ 𝑦 ∈ 𝐡) β†’ (((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹)) ∈ (Baseβ€˜(Poly1β€˜π‘…)) ∧ (((eval1β€˜π‘…)β€˜((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹)))β€˜π‘¦) = ((𝑁 ↑ 𝑦)(-gβ€˜π‘…)𝑋)))
9190simprd 494 . . . . . . 7 (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) ∧ 𝑦 ∈ 𝐡) β†’ (((eval1β€˜π‘…)β€˜((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹)))β€˜π‘¦) = ((𝑁 ↑ 𝑦)(-gβ€˜π‘…)𝑋))
9291eqeq1d 2727 . . . . . 6 (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) ∧ 𝑦 ∈ 𝐡) β†’ ((((eval1β€˜π‘…)β€˜((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹)))β€˜π‘¦) = (0gβ€˜π‘…) ↔ ((𝑁 ↑ 𝑦)(-gβ€˜π‘…)𝑋) = (0gβ€˜π‘…)))
93 ringgrp 20180 . . . . . . . . 9 (𝑅 ∈ Ring β†’ 𝑅 ∈ Grp)
9412, 93syl 17 . . . . . . . 8 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ 𝑅 ∈ Grp)
9594adantr 479 . . . . . . 7 (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) ∧ 𝑦 ∈ 𝐡) β†’ 𝑅 ∈ Grp)
96 eqid 2725 . . . . . . . . . . . 12 (mulGrpβ€˜π‘…) = (mulGrpβ€˜π‘…)
9796ringmgp 20181 . . . . . . . . . . 11 (𝑅 ∈ Ring β†’ (mulGrpβ€˜π‘…) ∈ Mnd)
9812, 97syl 17 . . . . . . . . . 10 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (mulGrpβ€˜π‘…) ∈ Mnd)
9998adantr 479 . . . . . . . . 9 (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) ∧ 𝑦 ∈ 𝐡) β†’ (mulGrpβ€˜π‘…) ∈ Mnd)
100 mndmgm 18698 . . . . . . . . 9 ((mulGrpβ€˜π‘…) ∈ Mnd β†’ (mulGrpβ€˜π‘…) ∈ Mgm)
10199, 100syl 17 . . . . . . . 8 (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) ∧ 𝑦 ∈ 𝐡) β†’ (mulGrpβ€˜π‘…) ∈ Mgm)
10296, 31mgpbas 20082 . . . . . . . . 9 𝐡 = (Baseβ€˜(mulGrpβ€˜π‘…))
103102, 83mulgnncl 19046 . . . . . . . 8 (((mulGrpβ€˜π‘…) ∈ Mgm ∧ 𝑁 ∈ β„• ∧ 𝑦 ∈ 𝐡) β†’ (𝑁 ↑ 𝑦) ∈ 𝐡)
104101, 84, 81, 103syl3anc 1368 . . . . . . 7 (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) ∧ 𝑦 ∈ 𝐡) β†’ (𝑁 ↑ 𝑦) ∈ 𝐡)
10531, 5, 89grpsubeq0 18984 . . . . . . 7 ((𝑅 ∈ Grp ∧ (𝑁 ↑ 𝑦) ∈ 𝐡 ∧ 𝑋 ∈ 𝐡) β†’ (((𝑁 ↑ 𝑦)(-gβ€˜π‘…)𝑋) = (0gβ€˜π‘…) ↔ (𝑁 ↑ 𝑦) = 𝑋))
10695, 104, 87, 105syl3anc 1368 . . . . . 6 (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) ∧ 𝑦 ∈ 𝐡) β†’ (((𝑁 ↑ 𝑦)(-gβ€˜π‘…)𝑋) = (0gβ€˜π‘…) ↔ (𝑁 ↑ 𝑦) = 𝑋))
10792, 106bitrd 278 . . . . 5 (((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) ∧ 𝑦 ∈ 𝐡) β†’ ((((eval1β€˜π‘…)β€˜((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹)))β€˜π‘¦) = (0gβ€˜π‘…) ↔ (𝑁 ↑ 𝑦) = 𝑋))
108107rabbidva 3426 . . . 4 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ {𝑦 ∈ 𝐡 ∣ (((eval1β€˜π‘…)β€˜((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹)))β€˜π‘¦) = (0gβ€˜π‘…)} = {𝑦 ∈ 𝐡 ∣ (𝑁 ↑ 𝑦) = 𝑋})
10979, 108eqtrd 2765 . . 3 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (β—‘((eval1β€˜π‘…)β€˜((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹))) β€œ {(0gβ€˜π‘…)}) = {𝑦 ∈ 𝐡 ∣ (𝑁 ↑ 𝑦) = 𝑋})
110109fveq2d 6895 . 2 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (β™―β€˜(β—‘((eval1β€˜π‘…)β€˜((𝑁(.gβ€˜(mulGrpβ€˜(Poly1β€˜π‘…)))(var1β€˜π‘…))(-gβ€˜(Poly1β€˜π‘…))((algScβ€˜(Poly1β€˜π‘…))β€˜π‘‹))) β€œ {(0gβ€˜π‘…)})) = (β™―β€˜{𝑦 ∈ 𝐡 ∣ (𝑁 ↑ 𝑦) = 𝑋}))
11166, 110, 613brtr3d 5174 1 ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (β™―β€˜{𝑦 ∈ 𝐡 ∣ (𝑁 ↑ 𝑦) = 𝑋}) ≀ 𝑁)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2930  {crab 3419  Vcvv 3463  {csn 4624   class class class wbr 5143  β—‘ccnv 5671   β€œ cima 5675   Fn wfn 6537  βŸΆwf 6538  β€˜cfv 6542  (class class class)co 7415  0cc0 11136  β„*cxr 11275   < clt 11276   ≀ cle 11277  β„•cn 12240  β„•0cn0 12500  β™―chash 14319  Basecbs 17177  0gc0g 17418   ↑s cpws 17425  Mgmcmgm 18595  Mndcmnd 18691  Grpcgrp 18892  -gcsg 18894  .gcmg 19025  mulGrpcmgp 20076  Ringcrg 20175  CRingccrg 20176   RingHom crh 20410  NzRingcnzr 20453  Domncdomn 21229  IDomncidom 21230  algSccascl 21788  var1cv1 22101  Poly1cpl1 22102  eval1ce1 22240   deg1 cdg1 26003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213  ax-pre-sup 11214  ax-addf 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-of 7681  df-ofr 7682  df-om 7868  df-1st 7989  df-2nd 7990  df-supp 8162  df-tpos 8228  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-1o 8483  df-oadd 8487  df-er 8721  df-map 8843  df-pm 8844  df-ixp 8913  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-fsupp 9384  df-sup 9463  df-oi 9531  df-dju 9922  df-card 9960  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12501  df-xnn0 12573  df-z 12587  df-dec 12706  df-uz 12851  df-fz 13515  df-fzo 13658  df-seq 13997  df-hash 14320  df-struct 17113  df-sets 17130  df-slot 17148  df-ndx 17160  df-base 17178  df-ress 17207  df-plusg 17243  df-mulr 17244  df-starv 17245  df-sca 17246  df-vsca 17247  df-ip 17248  df-tset 17249  df-ple 17250  df-ds 17252  df-unif 17253  df-hom 17254  df-cco 17255  df-0g 17420  df-gsum 17421  df-prds 17426  df-pws 17428  df-mre 17563  df-mrc 17564  df-acs 17566  df-mgm 18597  df-sgrp 18676  df-mnd 18692  df-mhm 18737  df-submnd 18738  df-grp 18895  df-minusg 18896  df-sbg 18897  df-mulg 19026  df-subg 19080  df-ghm 19170  df-cntz 19270  df-cmn 19739  df-abl 19740  df-mgp 20077  df-rng 20095  df-ur 20124  df-srg 20129  df-ring 20177  df-cring 20178  df-oppr 20275  df-dvdsr 20298  df-unit 20299  df-invr 20329  df-rhm 20413  df-nzr 20454  df-subrng 20485  df-subrg 20510  df-lmod 20747  df-lss 20818  df-lsp 20858  df-rlreg 21232  df-domn 21233  df-idom 21234  df-cnfld 21282  df-assa 21789  df-asp 21790  df-ascl 21791  df-psr 21844  df-mvr 21845  df-mpl 21846  df-opsr 21848  df-evls 22023  df-evl 22024  df-psr1 22105  df-vr1 22106  df-ply1 22107  df-coe1 22108  df-evl1 22242  df-mdeg 26004  df-deg1 26005  df-mon1 26082  df-uc1p 26083  df-q1p 26084  df-r1p 26085
This theorem is referenced by:  idomodle  42683
  Copyright terms: Public domain W3C validator