MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idomrootle Structured version   Visualization version   GIF version

Theorem idomrootle 26128
Description: No element of an integral domain can have more than 𝑁 𝑁-th roots. (Contributed by Stefan O'Rear, 11-Sep-2015.)
Hypotheses
Ref Expression
idomrootle.b 𝐵 = (Base‘𝑅)
idomrootle.e = (.g‘(mulGrp‘𝑅))
Assertion
Ref Expression
idomrootle ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → (♯‘{𝑦𝐵 ∣ (𝑁 𝑦) = 𝑋}) ≤ 𝑁)
Distinct variable groups:   𝑦,𝐵   𝑦,𝑁   𝑦,𝑅   𝑦,𝑋
Allowed substitution hint:   (𝑦)

Proof of Theorem idomrootle
StepHypRef Expression
1 eqid 2735 . . 3 (Poly1𝑅) = (Poly1𝑅)
2 eqid 2735 . . 3 (Base‘(Poly1𝑅)) = (Base‘(Poly1𝑅))
3 eqid 2735 . . 3 (deg1𝑅) = (deg1𝑅)
4 eqid 2735 . . 3 (eval1𝑅) = (eval1𝑅)
5 eqid 2735 . . 3 (0g𝑅) = (0g𝑅)
6 eqid 2735 . . 3 (0g‘(Poly1𝑅)) = (0g‘(Poly1𝑅))
7 simp1 1136 . . 3 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → 𝑅 ∈ IDomn)
8 isidom 20683 . . . . . . . . 9 (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
98simplbi 497 . . . . . . . 8 (𝑅 ∈ IDomn → 𝑅 ∈ CRing)
107, 9syl 17 . . . . . . 7 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → 𝑅 ∈ CRing)
11 crngring 20203 . . . . . . 7 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
1210, 11syl 17 . . . . . 6 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → 𝑅 ∈ Ring)
131ply1ring 22181 . . . . . 6 (𝑅 ∈ Ring → (Poly1𝑅) ∈ Ring)
1412, 13syl 17 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → (Poly1𝑅) ∈ Ring)
15 ringgrp 20196 . . . . 5 ((Poly1𝑅) ∈ Ring → (Poly1𝑅) ∈ Grp)
1614, 15syl 17 . . . 4 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → (Poly1𝑅) ∈ Grp)
17 eqid 2735 . . . . . . . 8 (mulGrp‘(Poly1𝑅)) = (mulGrp‘(Poly1𝑅))
1817ringmgp 20197 . . . . . . 7 ((Poly1𝑅) ∈ Ring → (mulGrp‘(Poly1𝑅)) ∈ Mnd)
1914, 18syl 17 . . . . . 6 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → (mulGrp‘(Poly1𝑅)) ∈ Mnd)
20 mndmgm 18717 . . . . . 6 ((mulGrp‘(Poly1𝑅)) ∈ Mnd → (mulGrp‘(Poly1𝑅)) ∈ Mgm)
2119, 20syl 17 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → (mulGrp‘(Poly1𝑅)) ∈ Mgm)
22 simp3 1138 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
23 eqid 2735 . . . . . . 7 (var1𝑅) = (var1𝑅)
2423, 1, 2vr1cl 22151 . . . . . 6 (𝑅 ∈ Ring → (var1𝑅) ∈ (Base‘(Poly1𝑅)))
2512, 24syl 17 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → (var1𝑅) ∈ (Base‘(Poly1𝑅)))
2617, 2mgpbas 20103 . . . . . 6 (Base‘(Poly1𝑅)) = (Base‘(mulGrp‘(Poly1𝑅)))
27 eqid 2735 . . . . . 6 (.g‘(mulGrp‘(Poly1𝑅))) = (.g‘(mulGrp‘(Poly1𝑅)))
2826, 27mulgnncl 19070 . . . . 5 (((mulGrp‘(Poly1𝑅)) ∈ Mgm ∧ 𝑁 ∈ ℕ ∧ (var1𝑅) ∈ (Base‘(Poly1𝑅))) → (𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅)) ∈ (Base‘(Poly1𝑅)))
2921, 22, 25, 28syl3anc 1373 . . . 4 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → (𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅)) ∈ (Base‘(Poly1𝑅)))
30 eqid 2735 . . . . . . 7 (algSc‘(Poly1𝑅)) = (algSc‘(Poly1𝑅))
31 idomrootle.b . . . . . . 7 𝐵 = (Base‘𝑅)
321, 30, 31, 2ply1sclf 22220 . . . . . 6 (𝑅 ∈ Ring → (algSc‘(Poly1𝑅)):𝐵⟶(Base‘(Poly1𝑅)))
3312, 32syl 17 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → (algSc‘(Poly1𝑅)):𝐵⟶(Base‘(Poly1𝑅)))
34 simp2 1137 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → 𝑋𝐵)
3533, 34ffvelcdmd 7074 . . . 4 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → ((algSc‘(Poly1𝑅))‘𝑋) ∈ (Base‘(Poly1𝑅)))
36 eqid 2735 . . . . 5 (-g‘(Poly1𝑅)) = (-g‘(Poly1𝑅))
372, 36grpsubcl 19001 . . . 4 (((Poly1𝑅) ∈ Grp ∧ (𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅)) ∈ (Base‘(Poly1𝑅)) ∧ ((algSc‘(Poly1𝑅))‘𝑋) ∈ (Base‘(Poly1𝑅))) → ((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋)) ∈ (Base‘(Poly1𝑅)))
3816, 29, 35, 37syl3anc 1373 . . 3 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → ((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋)) ∈ (Base‘(Poly1𝑅)))
393, 1, 2deg1xrcl 26037 . . . . . . . . . 10 (((algSc‘(Poly1𝑅))‘𝑋) ∈ (Base‘(Poly1𝑅)) → ((deg1𝑅)‘((algSc‘(Poly1𝑅))‘𝑋)) ∈ ℝ*)
4035, 39syl 17 . . . . . . . . 9 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → ((deg1𝑅)‘((algSc‘(Poly1𝑅))‘𝑋)) ∈ ℝ*)
41 0xr 11280 . . . . . . . . . 10 0 ∈ ℝ*
4241a1i 11 . . . . . . . . 9 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → 0 ∈ ℝ*)
43 nnre 12245 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
4443rexrd 11283 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ*)
45443ad2ant3 1135 . . . . . . . . 9 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → 𝑁 ∈ ℝ*)
463, 1, 31, 30deg1sclle 26067 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ((deg1𝑅)‘((algSc‘(Poly1𝑅))‘𝑋)) ≤ 0)
4712, 34, 46syl2anc 584 . . . . . . . . 9 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → ((deg1𝑅)‘((algSc‘(Poly1𝑅))‘𝑋)) ≤ 0)
48 nngt0 12269 . . . . . . . . . 10 (𝑁 ∈ ℕ → 0 < 𝑁)
49483ad2ant3 1135 . . . . . . . . 9 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → 0 < 𝑁)
5040, 42, 45, 47, 49xrlelttrd 13174 . . . . . . . 8 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → ((deg1𝑅)‘((algSc‘(Poly1𝑅))‘𝑋)) < 𝑁)
518simprbi 496 . . . . . . . . . . 11 (𝑅 ∈ IDomn → 𝑅 ∈ Domn)
52 domnnzr 20664 . . . . . . . . . . 11 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
5351, 52syl 17 . . . . . . . . . 10 (𝑅 ∈ IDomn → 𝑅 ∈ NzRing)
547, 53syl 17 . . . . . . . . 9 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → 𝑅 ∈ NzRing)
55 nnnn0 12506 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
56553ad2ant3 1135 . . . . . . . . 9 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
573, 1, 23, 17, 27deg1pw 26076 . . . . . . . . 9 ((𝑅 ∈ NzRing ∧ 𝑁 ∈ ℕ0) → ((deg1𝑅)‘(𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))) = 𝑁)
5854, 56, 57syl2anc 584 . . . . . . . 8 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → ((deg1𝑅)‘(𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))) = 𝑁)
5950, 58breqtrrd 5147 . . . . . . 7 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → ((deg1𝑅)‘((algSc‘(Poly1𝑅))‘𝑋)) < ((deg1𝑅)‘(𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))))
601, 3, 12, 2, 36, 29, 35, 59deg1sub 26063 . . . . . 6 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → ((deg1𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋))) = ((deg1𝑅)‘(𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))))
6160, 58eqtrd 2770 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → ((deg1𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋))) = 𝑁)
6261, 56eqeltrd 2834 . . . 4 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → ((deg1𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋))) ∈ ℕ0)
633, 1, 6, 2deg1nn0clb 26045 . . . . 5 ((𝑅 ∈ Ring ∧ ((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋)) ∈ (Base‘(Poly1𝑅))) → (((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋)) ≠ (0g‘(Poly1𝑅)) ↔ ((deg1𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋))) ∈ ℕ0))
6412, 38, 63syl2anc 584 . . . 4 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → (((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋)) ≠ (0g‘(Poly1𝑅)) ↔ ((deg1𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋))) ∈ ℕ0))
6562, 64mpbird 257 . . 3 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → ((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋)) ≠ (0g‘(Poly1𝑅)))
661, 2, 3, 4, 5, 6, 7, 38, 65fta1g 26125 . 2 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → (♯‘(((eval1𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋))) “ {(0g𝑅)})) ≤ ((deg1𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋))))
67 eqid 2735 . . . . . . 7 (𝑅s 𝐵) = (𝑅s 𝐵)
68 eqid 2735 . . . . . . 7 (Base‘(𝑅s 𝐵)) = (Base‘(𝑅s 𝐵))
6931fvexi 6889 . . . . . . . 8 𝐵 ∈ V
7069a1i 11 . . . . . . 7 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → 𝐵 ∈ V)
714, 1, 67, 31evl1rhm 22268 . . . . . . . . . 10 (𝑅 ∈ CRing → (eval1𝑅) ∈ ((Poly1𝑅) RingHom (𝑅s 𝐵)))
7210, 71syl 17 . . . . . . . . 9 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → (eval1𝑅) ∈ ((Poly1𝑅) RingHom (𝑅s 𝐵)))
732, 68rhmf 20443 . . . . . . . . 9 ((eval1𝑅) ∈ ((Poly1𝑅) RingHom (𝑅s 𝐵)) → (eval1𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s 𝐵)))
7472, 73syl 17 . . . . . . . 8 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → (eval1𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s 𝐵)))
7574, 38ffvelcdmd 7074 . . . . . . 7 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → ((eval1𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋))) ∈ (Base‘(𝑅s 𝐵)))
7667, 31, 68, 7, 70, 75pwselbas 17501 . . . . . 6 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → ((eval1𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋))):𝐵𝐵)
7776ffnd 6706 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → ((eval1𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋))) Fn 𝐵)
78 fniniseg2 7051 . . . . 5 (((eval1𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋))) Fn 𝐵 → (((eval1𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋))) “ {(0g𝑅)}) = {𝑦𝐵 ∣ (((eval1𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋)))‘𝑦) = (0g𝑅)})
7977, 78syl 17 . . . 4 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → (((eval1𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋))) “ {(0g𝑅)}) = {𝑦𝐵 ∣ (((eval1𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋)))‘𝑦) = (0g𝑅)})
8010adantr 480 . . . . . . . . 9 (((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) ∧ 𝑦𝐵) → 𝑅 ∈ CRing)
81 simpr 484 . . . . . . . . 9 (((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) ∧ 𝑦𝐵) → 𝑦𝐵)
824, 23, 31, 1, 2, 80, 81evl1vard 22273 . . . . . . . . . 10 (((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) ∧ 𝑦𝐵) → ((var1𝑅) ∈ (Base‘(Poly1𝑅)) ∧ (((eval1𝑅)‘(var1𝑅))‘𝑦) = 𝑦))
83 idomrootle.e . . . . . . . . . 10 = (.g‘(mulGrp‘𝑅))
84 simpl3 1194 . . . . . . . . . . 11 (((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) ∧ 𝑦𝐵) → 𝑁 ∈ ℕ)
8584, 55syl 17 . . . . . . . . . 10 (((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) ∧ 𝑦𝐵) → 𝑁 ∈ ℕ0)
864, 1, 31, 2, 80, 81, 82, 27, 83, 85evl1expd 22281 . . . . . . . . 9 (((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) ∧ 𝑦𝐵) → ((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅)) ∈ (Base‘(Poly1𝑅)) ∧ (((eval1𝑅)‘(𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅)))‘𝑦) = (𝑁 𝑦)))
87 simpl2 1193 . . . . . . . . . 10 (((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) ∧ 𝑦𝐵) → 𝑋𝐵)
884, 1, 31, 30, 2, 80, 87, 81evl1scad 22271 . . . . . . . . 9 (((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) ∧ 𝑦𝐵) → (((algSc‘(Poly1𝑅))‘𝑋) ∈ (Base‘(Poly1𝑅)) ∧ (((eval1𝑅)‘((algSc‘(Poly1𝑅))‘𝑋))‘𝑦) = 𝑋))
89 eqid 2735 . . . . . . . . 9 (-g𝑅) = (-g𝑅)
904, 1, 31, 2, 80, 81, 86, 88, 36, 89evl1subd 22278 . . . . . . . 8 (((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) ∧ 𝑦𝐵) → (((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋)) ∈ (Base‘(Poly1𝑅)) ∧ (((eval1𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋)))‘𝑦) = ((𝑁 𝑦)(-g𝑅)𝑋)))
9190simprd 495 . . . . . . 7 (((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) ∧ 𝑦𝐵) → (((eval1𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋)))‘𝑦) = ((𝑁 𝑦)(-g𝑅)𝑋))
9291eqeq1d 2737 . . . . . 6 (((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) ∧ 𝑦𝐵) → ((((eval1𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋)))‘𝑦) = (0g𝑅) ↔ ((𝑁 𝑦)(-g𝑅)𝑋) = (0g𝑅)))
93 ringgrp 20196 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
9412, 93syl 17 . . . . . . . 8 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → 𝑅 ∈ Grp)
9594adantr 480 . . . . . . 7 (((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) ∧ 𝑦𝐵) → 𝑅 ∈ Grp)
96 eqid 2735 . . . . . . . . . . . 12 (mulGrp‘𝑅) = (mulGrp‘𝑅)
9796ringmgp 20197 . . . . . . . . . . 11 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
9812, 97syl 17 . . . . . . . . . 10 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → (mulGrp‘𝑅) ∈ Mnd)
9998adantr 480 . . . . . . . . 9 (((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) ∧ 𝑦𝐵) → (mulGrp‘𝑅) ∈ Mnd)
100 mndmgm 18717 . . . . . . . . 9 ((mulGrp‘𝑅) ∈ Mnd → (mulGrp‘𝑅) ∈ Mgm)
10199, 100syl 17 . . . . . . . 8 (((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) ∧ 𝑦𝐵) → (mulGrp‘𝑅) ∈ Mgm)
10296, 31mgpbas 20103 . . . . . . . . 9 𝐵 = (Base‘(mulGrp‘𝑅))
103102, 83mulgnncl 19070 . . . . . . . 8 (((mulGrp‘𝑅) ∈ Mgm ∧ 𝑁 ∈ ℕ ∧ 𝑦𝐵) → (𝑁 𝑦) ∈ 𝐵)
104101, 84, 81, 103syl3anc 1373 . . . . . . 7 (((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) ∧ 𝑦𝐵) → (𝑁 𝑦) ∈ 𝐵)
10531, 5, 89grpsubeq0 19007 . . . . . . 7 ((𝑅 ∈ Grp ∧ (𝑁 𝑦) ∈ 𝐵𝑋𝐵) → (((𝑁 𝑦)(-g𝑅)𝑋) = (0g𝑅) ↔ (𝑁 𝑦) = 𝑋))
10695, 104, 87, 105syl3anc 1373 . . . . . 6 (((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) ∧ 𝑦𝐵) → (((𝑁 𝑦)(-g𝑅)𝑋) = (0g𝑅) ↔ (𝑁 𝑦) = 𝑋))
10792, 106bitrd 279 . . . . 5 (((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) ∧ 𝑦𝐵) → ((((eval1𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋)))‘𝑦) = (0g𝑅) ↔ (𝑁 𝑦) = 𝑋))
108107rabbidva 3422 . . . 4 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → {𝑦𝐵 ∣ (((eval1𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋)))‘𝑦) = (0g𝑅)} = {𝑦𝐵 ∣ (𝑁 𝑦) = 𝑋})
10979, 108eqtrd 2770 . . 3 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → (((eval1𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋))) “ {(0g𝑅)}) = {𝑦𝐵 ∣ (𝑁 𝑦) = 𝑋})
110109fveq2d 6879 . 2 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → (♯‘(((eval1𝑅)‘((𝑁(.g‘(mulGrp‘(Poly1𝑅)))(var1𝑅))(-g‘(Poly1𝑅))((algSc‘(Poly1𝑅))‘𝑋))) “ {(0g𝑅)})) = (♯‘{𝑦𝐵 ∣ (𝑁 𝑦) = 𝑋}))
11166, 110, 613brtr3d 5150 1 ((𝑅 ∈ IDomn ∧ 𝑋𝐵𝑁 ∈ ℕ) → (♯‘{𝑦𝐵 ∣ (𝑁 𝑦) = 𝑋}) ≤ 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  {crab 3415  Vcvv 3459  {csn 4601   class class class wbr 5119  ccnv 5653  cima 5657   Fn wfn 6525  wf 6526  cfv 6530  (class class class)co 7403  0cc0 11127  *cxr 11266   < clt 11267  cle 11268  cn 12238  0cn0 12499  chash 14346  Basecbs 17226  0gc0g 17451  s cpws 17458  Mgmcmgm 18614  Mndcmnd 18710  Grpcgrp 18914  -gcsg 18916  .gcmg 19048  mulGrpcmgp 20098  Ringcrg 20191  CRingccrg 20192   RingHom crh 20427  NzRingcnzr 20470  Domncdomn 20650  IDomncidom 20651  algSccascl 21810  var1cv1 22109  Poly1cpl1 22110  eval1ce1 22250  deg1cdg1 26009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-ofr 7670  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-tpos 8223  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-er 8717  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-sup 9452  df-oi 9522  df-dju 9913  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-xnn0 12573  df-z 12587  df-dec 12707  df-uz 12851  df-fz 13523  df-fzo 13670  df-seq 14018  df-hash 14347  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-0g 17453  df-gsum 17454  df-prds 17459  df-pws 17461  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-mhm 18759  df-submnd 18760  df-grp 18917  df-minusg 18918  df-sbg 18919  df-mulg 19049  df-subg 19104  df-ghm 19194  df-cntz 19298  df-cmn 19761  df-abl 19762  df-mgp 20099  df-rng 20111  df-ur 20140  df-srg 20145  df-ring 20193  df-cring 20194  df-oppr 20295  df-dvdsr 20315  df-unit 20316  df-invr 20346  df-rhm 20430  df-nzr 20471  df-subrng 20504  df-subrg 20528  df-rlreg 20652  df-domn 20653  df-idom 20654  df-lmod 20817  df-lss 20887  df-lsp 20927  df-cnfld 21314  df-assa 21811  df-asp 21812  df-ascl 21813  df-psr 21867  df-mvr 21868  df-mpl 21869  df-opsr 21871  df-evls 22030  df-evl 22031  df-psr1 22113  df-vr1 22114  df-ply1 22115  df-coe1 22116  df-evl1 22252  df-mdeg 26010  df-deg1 26011  df-mon1 26086  df-uc1p 26087  df-q1p 26088  df-r1p 26089
This theorem is referenced by:  unitscyglem5  42158  idomodle  43162
  Copyright terms: Public domain W3C validator