MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsqrlem3 Structured version   Visualization version   GIF version

Theorem lgsqrlem3 27410
Description: Lemma for lgsqr 27413. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
lgsqr.y 𝑌 = (ℤ/nℤ‘𝑃)
lgsqr.s 𝑆 = (Poly1𝑌)
lgsqr.b 𝐵 = (Base‘𝑆)
lgsqr.d 𝐷 = (deg1𝑌)
lgsqr.o 𝑂 = (eval1𝑌)
lgsqr.e = (.g‘(mulGrp‘𝑆))
lgsqr.x 𝑋 = (var1𝑌)
lgsqr.m = (-g𝑆)
lgsqr.u 1 = (1r𝑆)
lgsqr.t 𝑇 = ((((𝑃 − 1) / 2) 𝑋) 1 )
lgsqr.l 𝐿 = (ℤRHom‘𝑌)
lgsqr.1 (𝜑𝑃 ∈ (ℙ ∖ {2}))
lgsqr.g 𝐺 = (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑦↑2)))
lgsqr.3 (𝜑𝐴 ∈ ℤ)
lgsqr.4 (𝜑 → (𝐴 /L 𝑃) = 1)
Assertion
Ref Expression
lgsqrlem3 (𝜑 → (𝐿𝐴) ∈ ((𝑂𝑇) “ {(0g𝑌)}))
Distinct variable groups:   𝑦,𝑂   𝑦,𝑃   𝜑,𝑦   𝑦,𝑇   𝑦,𝐿   𝑦,𝑌
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)   𝐷(𝑦)   𝑆(𝑦)   1 (𝑦)   (𝑦)   𝐺(𝑦)   (𝑦)   𝑋(𝑦)

Proof of Theorem lgsqrlem3
StepHypRef Expression
1 lgsqr.1 . . . . . . . . . 10 (𝜑𝑃 ∈ (ℙ ∖ {2}))
21eldifad 3988 . . . . . . . . 9 (𝜑𝑃 ∈ ℙ)
3 lgsqr.y . . . . . . . . . 10 𝑌 = (ℤ/nℤ‘𝑃)
43znfld 21602 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑌 ∈ Field)
52, 4syl 17 . . . . . . . 8 (𝜑𝑌 ∈ Field)
6 fldidom 20793 . . . . . . . 8 (𝑌 ∈ Field → 𝑌 ∈ IDomn)
75, 6syl 17 . . . . . . 7 (𝜑𝑌 ∈ IDomn)
8 isidom 20747 . . . . . . . 8 (𝑌 ∈ IDomn ↔ (𝑌 ∈ CRing ∧ 𝑌 ∈ Domn))
98simplbi 497 . . . . . . 7 (𝑌 ∈ IDomn → 𝑌 ∈ CRing)
107, 9syl 17 . . . . . 6 (𝜑𝑌 ∈ CRing)
11 crngring 20272 . . . . . 6 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
1210, 11syl 17 . . . . 5 (𝜑𝑌 ∈ Ring)
13 lgsqr.l . . . . . 6 𝐿 = (ℤRHom‘𝑌)
1413zrhrhm 21545 . . . . 5 (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌))
1512, 14syl 17 . . . 4 (𝜑𝐿 ∈ (ℤring RingHom 𝑌))
16 zringbas 21487 . . . . 5 ℤ = (Base‘ℤring)
17 eqid 2740 . . . . 5 (Base‘𝑌) = (Base‘𝑌)
1816, 17rhmf 20511 . . . 4 (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿:ℤ⟶(Base‘𝑌))
1915, 18syl 17 . . 3 (𝜑𝐿:ℤ⟶(Base‘𝑌))
20 lgsqr.3 . . 3 (𝜑𝐴 ∈ ℤ)
2119, 20ffvelcdmd 7119 . 2 (𝜑 → (𝐿𝐴) ∈ (Base‘𝑌))
22 lgsqr.s . . 3 𝑆 = (Poly1𝑌)
23 lgsqr.b . . 3 𝐵 = (Base‘𝑆)
24 lgsqr.d . . 3 𝐷 = (deg1𝑌)
25 lgsqr.o . . 3 𝑂 = (eval1𝑌)
26 lgsqr.e . . 3 = (.g‘(mulGrp‘𝑆))
27 lgsqr.x . . 3 𝑋 = (var1𝑌)
28 lgsqr.m . . 3 = (-g𝑆)
29 lgsqr.u . . 3 1 = (1r𝑆)
30 lgsqr.t . . 3 𝑇 = ((((𝑃 − 1) / 2) 𝑋) 1 )
31 lgsvalmod 27378 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃))
3220, 1, 31syl2anc 583 . . . 4 (𝜑 → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃))
33 lgsqr.4 . . . . 5 (𝜑 → (𝐴 /L 𝑃) = 1)
3433oveq1d 7463 . . . 4 (𝜑 → ((𝐴 /L 𝑃) mod 𝑃) = (1 mod 𝑃))
3532, 34eqtr3d 2782 . . 3 (𝜑 → ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃) = (1 mod 𝑃))
363, 22, 23, 24, 25, 26, 27, 28, 29, 30, 13, 1, 20, 35lgsqrlem1 27408 . 2 (𝜑 → ((𝑂𝑇)‘(𝐿𝐴)) = (0g𝑌))
37 eqid 2740 . . . . 5 (𝑌s (Base‘𝑌)) = (𝑌s (Base‘𝑌))
38 eqid 2740 . . . . 5 (Base‘(𝑌s (Base‘𝑌))) = (Base‘(𝑌s (Base‘𝑌)))
39 fvexd 6935 . . . . 5 (𝜑 → (Base‘𝑌) ∈ V)
4025, 22, 37, 17evl1rhm 22357 . . . . . . . 8 (𝑌 ∈ CRing → 𝑂 ∈ (𝑆 RingHom (𝑌s (Base‘𝑌))))
4110, 40syl 17 . . . . . . 7 (𝜑𝑂 ∈ (𝑆 RingHom (𝑌s (Base‘𝑌))))
4223, 38rhmf 20511 . . . . . . 7 (𝑂 ∈ (𝑆 RingHom (𝑌s (Base‘𝑌))) → 𝑂:𝐵⟶(Base‘(𝑌s (Base‘𝑌))))
4341, 42syl 17 . . . . . 6 (𝜑𝑂:𝐵⟶(Base‘(𝑌s (Base‘𝑌))))
4422ply1ring 22270 . . . . . . . . . 10 (𝑌 ∈ Ring → 𝑆 ∈ Ring)
4512, 44syl 17 . . . . . . . . 9 (𝜑𝑆 ∈ Ring)
46 ringgrp 20265 . . . . . . . . 9 (𝑆 ∈ Ring → 𝑆 ∈ Grp)
4745, 46syl 17 . . . . . . . 8 (𝜑𝑆 ∈ Grp)
48 eqid 2740 . . . . . . . . . 10 (mulGrp‘𝑆) = (mulGrp‘𝑆)
4948, 23mgpbas 20167 . . . . . . . . 9 𝐵 = (Base‘(mulGrp‘𝑆))
5048ringmgp 20266 . . . . . . . . . 10 (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd)
5145, 50syl 17 . . . . . . . . 9 (𝜑 → (mulGrp‘𝑆) ∈ Mnd)
52 oddprm 16857 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
531, 52syl 17 . . . . . . . . . 10 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ)
5453nnnn0d 12613 . . . . . . . . 9 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ0)
5527, 22, 23vr1cl 22240 . . . . . . . . . 10 (𝑌 ∈ Ring → 𝑋𝐵)
5612, 55syl 17 . . . . . . . . 9 (𝜑𝑋𝐵)
5749, 26, 51, 54, 56mulgnn0cld 19135 . . . . . . . 8 (𝜑 → (((𝑃 − 1) / 2) 𝑋) ∈ 𝐵)
5823, 29ringidcl 20289 . . . . . . . . 9 (𝑆 ∈ Ring → 1𝐵)
5945, 58syl 17 . . . . . . . 8 (𝜑1𝐵)
6023, 28grpsubcl 19060 . . . . . . . 8 ((𝑆 ∈ Grp ∧ (((𝑃 − 1) / 2) 𝑋) ∈ 𝐵1𝐵) → ((((𝑃 − 1) / 2) 𝑋) 1 ) ∈ 𝐵)
6147, 57, 59, 60syl3anc 1371 . . . . . . 7 (𝜑 → ((((𝑃 − 1) / 2) 𝑋) 1 ) ∈ 𝐵)
6230, 61eqeltrid 2848 . . . . . 6 (𝜑𝑇𝐵)
6343, 62ffvelcdmd 7119 . . . . 5 (𝜑 → (𝑂𝑇) ∈ (Base‘(𝑌s (Base‘𝑌))))
6437, 17, 38, 5, 39, 63pwselbas 17549 . . . 4 (𝜑 → (𝑂𝑇):(Base‘𝑌)⟶(Base‘𝑌))
6564ffnd 6748 . . 3 (𝜑 → (𝑂𝑇) Fn (Base‘𝑌))
66 fniniseg 7093 . . 3 ((𝑂𝑇) Fn (Base‘𝑌) → ((𝐿𝐴) ∈ ((𝑂𝑇) “ {(0g𝑌)}) ↔ ((𝐿𝐴) ∈ (Base‘𝑌) ∧ ((𝑂𝑇)‘(𝐿𝐴)) = (0g𝑌))))
6765, 66syl 17 . 2 (𝜑 → ((𝐿𝐴) ∈ ((𝑂𝑇) “ {(0g𝑌)}) ↔ ((𝐿𝐴) ∈ (Base‘𝑌) ∧ ((𝑂𝑇)‘(𝐿𝐴)) = (0g𝑌))))
6821, 36, 67mpbir2and 712 1 (𝜑 → (𝐿𝐴) ∈ ((𝑂𝑇) “ {(0g𝑌)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cdif 3973  {csn 4648  cmpt 5249  ccnv 5699  cima 5703   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  1c1 11185  cmin 11520   / cdiv 11947  cn 12293  2c2 12348  cz 12639  ...cfz 13567   mod cmo 13920  cexp 14112  cprime 16718  Basecbs 17258  0gc0g 17499  s cpws 17506  Mndcmnd 18772  Grpcgrp 18973  -gcsg 18975  .gcmg 19107  mulGrpcmgp 20161  1rcur 20208  Ringcrg 20260  CRingccrg 20261   RingHom crh 20495  Domncdomn 20714  IDomncidom 20715  Fieldcfield 20752  ringczring 21480  ℤRHomczrh 21533  ℤ/nczn 21536  var1cv1 22198  Poly1cpl1 22199  eval1ce1 22339  deg1cdg1 26113   /L clgs 27356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-ec 8765  df-qs 8769  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-gcd 16541  df-prm 16719  df-phi 16813  df-pc 16884  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-imas 17568  df-qus 17569  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-nsg 19164  df-eqg 19165  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-srg 20214  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-rhm 20498  df-nzr 20539  df-subrng 20572  df-subrg 20597  df-rlreg 20716  df-domn 20717  df-idom 20718  df-drng 20753  df-field 20754  df-lmod 20882  df-lss 20953  df-lsp 20993  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-rsp 21242  df-2idl 21283  df-cnfld 21388  df-zring 21481  df-zrh 21537  df-zn 21540  df-assa 21896  df-asp 21897  df-ascl 21898  df-psr 21952  df-mvr 21953  df-mpl 21954  df-opsr 21956  df-evls 22121  df-evl 22122  df-psr1 22202  df-vr1 22203  df-ply1 22204  df-evl1 22341  df-lgs 27357
This theorem is referenced by:  lgsqrlem4  27411
  Copyright terms: Public domain W3C validator