| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lgsqrlem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for lgsqr 27289. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| Ref | Expression |
|---|---|
| lgsqr.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑃) |
| lgsqr.s | ⊢ 𝑆 = (Poly1‘𝑌) |
| lgsqr.b | ⊢ 𝐵 = (Base‘𝑆) |
| lgsqr.d | ⊢ 𝐷 = (deg1‘𝑌) |
| lgsqr.o | ⊢ 𝑂 = (eval1‘𝑌) |
| lgsqr.e | ⊢ ↑ = (.g‘(mulGrp‘𝑆)) |
| lgsqr.x | ⊢ 𝑋 = (var1‘𝑌) |
| lgsqr.m | ⊢ − = (-g‘𝑆) |
| lgsqr.u | ⊢ 1 = (1r‘𝑆) |
| lgsqr.t | ⊢ 𝑇 = ((((𝑃 − 1) / 2) ↑ 𝑋) − 1 ) |
| lgsqr.l | ⊢ 𝐿 = (ℤRHom‘𝑌) |
| lgsqr.1 | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) |
| lgsqr.g | ⊢ 𝐺 = (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑦↑2))) |
| lgsqr.3 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| lgsqr.4 | ⊢ (𝜑 → (𝐴 /L 𝑃) = 1) |
| Ref | Expression |
|---|---|
| lgsqrlem3 | ⊢ (𝜑 → (𝐿‘𝐴) ∈ (◡(𝑂‘𝑇) “ {(0g‘𝑌)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lgsqr.1 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
| 2 | 1 | eldifad 3909 | . . . . . . . . 9 ⊢ (𝜑 → 𝑃 ∈ ℙ) |
| 3 | lgsqr.y | . . . . . . . . . 10 ⊢ 𝑌 = (ℤ/nℤ‘𝑃) | |
| 4 | 3 | znfld 21497 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℙ → 𝑌 ∈ Field) |
| 5 | 2, 4 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ Field) |
| 6 | fldidom 20686 | . . . . . . . 8 ⊢ (𝑌 ∈ Field → 𝑌 ∈ IDomn) | |
| 7 | 5, 6 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ IDomn) |
| 8 | isidom 20640 | . . . . . . . 8 ⊢ (𝑌 ∈ IDomn ↔ (𝑌 ∈ CRing ∧ 𝑌 ∈ Domn)) | |
| 9 | 8 | simplbi 497 | . . . . . . 7 ⊢ (𝑌 ∈ IDomn → 𝑌 ∈ CRing) |
| 10 | 7, 9 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ CRing) |
| 11 | crngring 20163 | . . . . . 6 ⊢ (𝑌 ∈ CRing → 𝑌 ∈ Ring) | |
| 12 | 10, 11 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ Ring) |
| 13 | lgsqr.l | . . . . . 6 ⊢ 𝐿 = (ℤRHom‘𝑌) | |
| 14 | 13 | zrhrhm 21448 | . . . . 5 ⊢ (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌)) |
| 15 | 12, 14 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ (ℤring RingHom 𝑌)) |
| 16 | zringbas 21390 | . . . . 5 ⊢ ℤ = (Base‘ℤring) | |
| 17 | eqid 2731 | . . . . 5 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
| 18 | 16, 17 | rhmf 20402 | . . . 4 ⊢ (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿:ℤ⟶(Base‘𝑌)) |
| 19 | 15, 18 | syl 17 | . . 3 ⊢ (𝜑 → 𝐿:ℤ⟶(Base‘𝑌)) |
| 20 | lgsqr.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
| 21 | 19, 20 | ffvelcdmd 7018 | . 2 ⊢ (𝜑 → (𝐿‘𝐴) ∈ (Base‘𝑌)) |
| 22 | lgsqr.s | . . 3 ⊢ 𝑆 = (Poly1‘𝑌) | |
| 23 | lgsqr.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
| 24 | lgsqr.d | . . 3 ⊢ 𝐷 = (deg1‘𝑌) | |
| 25 | lgsqr.o | . . 3 ⊢ 𝑂 = (eval1‘𝑌) | |
| 26 | lgsqr.e | . . 3 ⊢ ↑ = (.g‘(mulGrp‘𝑆)) | |
| 27 | lgsqr.x | . . 3 ⊢ 𝑋 = (var1‘𝑌) | |
| 28 | lgsqr.m | . . 3 ⊢ − = (-g‘𝑆) | |
| 29 | lgsqr.u | . . 3 ⊢ 1 = (1r‘𝑆) | |
| 30 | lgsqr.t | . . 3 ⊢ 𝑇 = ((((𝑃 − 1) / 2) ↑ 𝑋) − 1 ) | |
| 31 | lgsvalmod 27254 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃)) | |
| 32 | 20, 1, 31 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃)) |
| 33 | lgsqr.4 | . . . . 5 ⊢ (𝜑 → (𝐴 /L 𝑃) = 1) | |
| 34 | 33 | oveq1d 7361 | . . . 4 ⊢ (𝜑 → ((𝐴 /L 𝑃) mod 𝑃) = (1 mod 𝑃)) |
| 35 | 32, 34 | eqtr3d 2768 | . . 3 ⊢ (𝜑 → ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃) = (1 mod 𝑃)) |
| 36 | 3, 22, 23, 24, 25, 26, 27, 28, 29, 30, 13, 1, 20, 35 | lgsqrlem1 27284 | . 2 ⊢ (𝜑 → ((𝑂‘𝑇)‘(𝐿‘𝐴)) = (0g‘𝑌)) |
| 37 | eqid 2731 | . . . . 5 ⊢ (𝑌 ↑s (Base‘𝑌)) = (𝑌 ↑s (Base‘𝑌)) | |
| 38 | eqid 2731 | . . . . 5 ⊢ (Base‘(𝑌 ↑s (Base‘𝑌))) = (Base‘(𝑌 ↑s (Base‘𝑌))) | |
| 39 | fvexd 6837 | . . . . 5 ⊢ (𝜑 → (Base‘𝑌) ∈ V) | |
| 40 | 25, 22, 37, 17 | evl1rhm 22247 | . . . . . . . 8 ⊢ (𝑌 ∈ CRing → 𝑂 ∈ (𝑆 RingHom (𝑌 ↑s (Base‘𝑌)))) |
| 41 | 10, 40 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑂 ∈ (𝑆 RingHom (𝑌 ↑s (Base‘𝑌)))) |
| 42 | 23, 38 | rhmf 20402 | . . . . . . 7 ⊢ (𝑂 ∈ (𝑆 RingHom (𝑌 ↑s (Base‘𝑌))) → 𝑂:𝐵⟶(Base‘(𝑌 ↑s (Base‘𝑌)))) |
| 43 | 41, 42 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑂:𝐵⟶(Base‘(𝑌 ↑s (Base‘𝑌)))) |
| 44 | 22 | ply1ring 22160 | . . . . . . . . . 10 ⊢ (𝑌 ∈ Ring → 𝑆 ∈ Ring) |
| 45 | 12, 44 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑆 ∈ Ring) |
| 46 | ringgrp 20156 | . . . . . . . . 9 ⊢ (𝑆 ∈ Ring → 𝑆 ∈ Grp) | |
| 47 | 45, 46 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ Grp) |
| 48 | eqid 2731 | . . . . . . . . . 10 ⊢ (mulGrp‘𝑆) = (mulGrp‘𝑆) | |
| 49 | 48, 23 | mgpbas 20063 | . . . . . . . . 9 ⊢ 𝐵 = (Base‘(mulGrp‘𝑆)) |
| 50 | 48 | ringmgp 20157 | . . . . . . . . . 10 ⊢ (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd) |
| 51 | 45, 50 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (mulGrp‘𝑆) ∈ Mnd) |
| 52 | oddprm 16722 | . . . . . . . . . . 11 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ) | |
| 53 | 1, 52 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ) |
| 54 | 53 | nnnn0d 12442 | . . . . . . . . 9 ⊢ (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ0) |
| 55 | 27, 22, 23 | vr1cl 22130 | . . . . . . . . . 10 ⊢ (𝑌 ∈ Ring → 𝑋 ∈ 𝐵) |
| 56 | 12, 55 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 57 | 49, 26, 51, 54, 56 | mulgnn0cld 19008 | . . . . . . . 8 ⊢ (𝜑 → (((𝑃 − 1) / 2) ↑ 𝑋) ∈ 𝐵) |
| 58 | 23, 29 | ringidcl 20183 | . . . . . . . . 9 ⊢ (𝑆 ∈ Ring → 1 ∈ 𝐵) |
| 59 | 45, 58 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 1 ∈ 𝐵) |
| 60 | 23, 28 | grpsubcl 18933 | . . . . . . . 8 ⊢ ((𝑆 ∈ Grp ∧ (((𝑃 − 1) / 2) ↑ 𝑋) ∈ 𝐵 ∧ 1 ∈ 𝐵) → ((((𝑃 − 1) / 2) ↑ 𝑋) − 1 ) ∈ 𝐵) |
| 61 | 47, 57, 59, 60 | syl3anc 1373 | . . . . . . 7 ⊢ (𝜑 → ((((𝑃 − 1) / 2) ↑ 𝑋) − 1 ) ∈ 𝐵) |
| 62 | 30, 61 | eqeltrid 2835 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ 𝐵) |
| 63 | 43, 62 | ffvelcdmd 7018 | . . . . 5 ⊢ (𝜑 → (𝑂‘𝑇) ∈ (Base‘(𝑌 ↑s (Base‘𝑌)))) |
| 64 | 37, 17, 38, 5, 39, 63 | pwselbas 17393 | . . . 4 ⊢ (𝜑 → (𝑂‘𝑇):(Base‘𝑌)⟶(Base‘𝑌)) |
| 65 | 64 | ffnd 6652 | . . 3 ⊢ (𝜑 → (𝑂‘𝑇) Fn (Base‘𝑌)) |
| 66 | fniniseg 6993 | . . 3 ⊢ ((𝑂‘𝑇) Fn (Base‘𝑌) → ((𝐿‘𝐴) ∈ (◡(𝑂‘𝑇) “ {(0g‘𝑌)}) ↔ ((𝐿‘𝐴) ∈ (Base‘𝑌) ∧ ((𝑂‘𝑇)‘(𝐿‘𝐴)) = (0g‘𝑌)))) | |
| 67 | 65, 66 | syl 17 | . 2 ⊢ (𝜑 → ((𝐿‘𝐴) ∈ (◡(𝑂‘𝑇) “ {(0g‘𝑌)}) ↔ ((𝐿‘𝐴) ∈ (Base‘𝑌) ∧ ((𝑂‘𝑇)‘(𝐿‘𝐴)) = (0g‘𝑌)))) |
| 68 | 21, 36, 67 | mpbir2and 713 | 1 ⊢ (𝜑 → (𝐿‘𝐴) ∈ (◡(𝑂‘𝑇) “ {(0g‘𝑌)})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∖ cdif 3894 {csn 4573 ↦ cmpt 5170 ◡ccnv 5613 “ cima 5617 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 1c1 11007 − cmin 11344 / cdiv 11774 ℕcn 12125 2c2 12180 ℤcz 12468 ...cfz 13407 mod cmo 13773 ↑cexp 13968 ℙcprime 16582 Basecbs 17120 0gc0g 17343 ↑s cpws 17350 Mndcmnd 18642 Grpcgrp 18846 -gcsg 18848 .gcmg 18980 mulGrpcmgp 20058 1rcur 20099 Ringcrg 20151 CRingccrg 20152 RingHom crh 20387 Domncdomn 20607 IDomncidom 20608 Fieldcfield 20645 ℤringczring 21383 ℤRHomczrh 21436 ℤ/nℤczn 21439 var1cv1 22088 Poly1cpl1 22089 eval1ce1 22229 deg1cdg1 25986 /L clgs 27232 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 ax-mulf 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-ofr 7611 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-er 8622 df-ec 8624 df-qs 8628 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-inf 9327 df-oi 9396 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-xnn0 12455 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-fz 13408 df-fzo 13555 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-gcd 16406 df-prm 16583 df-phi 16677 df-pc 16749 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-imas 17412 df-qus 17413 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-mulg 18981 df-subg 19036 df-nsg 19037 df-eqg 19038 df-ghm 19125 df-cntz 19229 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-srg 20105 df-ring 20153 df-cring 20154 df-oppr 20255 df-dvdsr 20275 df-unit 20276 df-invr 20306 df-dvr 20319 df-rhm 20390 df-nzr 20428 df-subrng 20461 df-subrg 20485 df-rlreg 20609 df-domn 20610 df-idom 20611 df-drng 20646 df-field 20647 df-lmod 20795 df-lss 20865 df-lsp 20905 df-sra 21107 df-rgmod 21108 df-lidl 21145 df-rsp 21146 df-2idl 21187 df-cnfld 21292 df-zring 21384 df-zrh 21440 df-zn 21443 df-assa 21790 df-asp 21791 df-ascl 21792 df-psr 21846 df-mvr 21847 df-mpl 21848 df-opsr 21850 df-evls 22009 df-evl 22010 df-psr1 22092 df-vr1 22093 df-ply1 22094 df-evl1 22231 df-lgs 27233 |
| This theorem is referenced by: lgsqrlem4 27287 |
| Copyright terms: Public domain | W3C validator |