![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lgsqrlem3 | Structured version Visualization version GIF version |
Description: Lemma for lgsqr 27410. (Contributed by Mario Carneiro, 15-Jun-2015.) |
Ref | Expression |
---|---|
lgsqr.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑃) |
lgsqr.s | ⊢ 𝑆 = (Poly1‘𝑌) |
lgsqr.b | ⊢ 𝐵 = (Base‘𝑆) |
lgsqr.d | ⊢ 𝐷 = (deg1‘𝑌) |
lgsqr.o | ⊢ 𝑂 = (eval1‘𝑌) |
lgsqr.e | ⊢ ↑ = (.g‘(mulGrp‘𝑆)) |
lgsqr.x | ⊢ 𝑋 = (var1‘𝑌) |
lgsqr.m | ⊢ − = (-g‘𝑆) |
lgsqr.u | ⊢ 1 = (1r‘𝑆) |
lgsqr.t | ⊢ 𝑇 = ((((𝑃 − 1) / 2) ↑ 𝑋) − 1 ) |
lgsqr.l | ⊢ 𝐿 = (ℤRHom‘𝑌) |
lgsqr.1 | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) |
lgsqr.g | ⊢ 𝐺 = (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑦↑2))) |
lgsqr.3 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
lgsqr.4 | ⊢ (𝜑 → (𝐴 /L 𝑃) = 1) |
Ref | Expression |
---|---|
lgsqrlem3 | ⊢ (𝜑 → (𝐿‘𝐴) ∈ (◡(𝑂‘𝑇) “ {(0g‘𝑌)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lgsqr.1 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
2 | 1 | eldifad 3975 | . . . . . . . . 9 ⊢ (𝜑 → 𝑃 ∈ ℙ) |
3 | lgsqr.y | . . . . . . . . . 10 ⊢ 𝑌 = (ℤ/nℤ‘𝑃) | |
4 | 3 | znfld 21597 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℙ → 𝑌 ∈ Field) |
5 | 2, 4 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ Field) |
6 | fldidom 20788 | . . . . . . . 8 ⊢ (𝑌 ∈ Field → 𝑌 ∈ IDomn) | |
7 | 5, 6 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ IDomn) |
8 | isidom 20742 | . . . . . . . 8 ⊢ (𝑌 ∈ IDomn ↔ (𝑌 ∈ CRing ∧ 𝑌 ∈ Domn)) | |
9 | 8 | simplbi 497 | . . . . . . 7 ⊢ (𝑌 ∈ IDomn → 𝑌 ∈ CRing) |
10 | 7, 9 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ CRing) |
11 | crngring 20263 | . . . . . 6 ⊢ (𝑌 ∈ CRing → 𝑌 ∈ Ring) | |
12 | 10, 11 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ Ring) |
13 | lgsqr.l | . . . . . 6 ⊢ 𝐿 = (ℤRHom‘𝑌) | |
14 | 13 | zrhrhm 21540 | . . . . 5 ⊢ (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌)) |
15 | 12, 14 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ (ℤring RingHom 𝑌)) |
16 | zringbas 21482 | . . . . 5 ⊢ ℤ = (Base‘ℤring) | |
17 | eqid 2735 | . . . . 5 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
18 | 16, 17 | rhmf 20502 | . . . 4 ⊢ (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿:ℤ⟶(Base‘𝑌)) |
19 | 15, 18 | syl 17 | . . 3 ⊢ (𝜑 → 𝐿:ℤ⟶(Base‘𝑌)) |
20 | lgsqr.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
21 | 19, 20 | ffvelcdmd 7105 | . 2 ⊢ (𝜑 → (𝐿‘𝐴) ∈ (Base‘𝑌)) |
22 | lgsqr.s | . . 3 ⊢ 𝑆 = (Poly1‘𝑌) | |
23 | lgsqr.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
24 | lgsqr.d | . . 3 ⊢ 𝐷 = (deg1‘𝑌) | |
25 | lgsqr.o | . . 3 ⊢ 𝑂 = (eval1‘𝑌) | |
26 | lgsqr.e | . . 3 ⊢ ↑ = (.g‘(mulGrp‘𝑆)) | |
27 | lgsqr.x | . . 3 ⊢ 𝑋 = (var1‘𝑌) | |
28 | lgsqr.m | . . 3 ⊢ − = (-g‘𝑆) | |
29 | lgsqr.u | . . 3 ⊢ 1 = (1r‘𝑆) | |
30 | lgsqr.t | . . 3 ⊢ 𝑇 = ((((𝑃 − 1) / 2) ↑ 𝑋) − 1 ) | |
31 | lgsvalmod 27375 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃)) | |
32 | 20, 1, 31 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃)) |
33 | lgsqr.4 | . . . . 5 ⊢ (𝜑 → (𝐴 /L 𝑃) = 1) | |
34 | 33 | oveq1d 7446 | . . . 4 ⊢ (𝜑 → ((𝐴 /L 𝑃) mod 𝑃) = (1 mod 𝑃)) |
35 | 32, 34 | eqtr3d 2777 | . . 3 ⊢ (𝜑 → ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃) = (1 mod 𝑃)) |
36 | 3, 22, 23, 24, 25, 26, 27, 28, 29, 30, 13, 1, 20, 35 | lgsqrlem1 27405 | . 2 ⊢ (𝜑 → ((𝑂‘𝑇)‘(𝐿‘𝐴)) = (0g‘𝑌)) |
37 | eqid 2735 | . . . . 5 ⊢ (𝑌 ↑s (Base‘𝑌)) = (𝑌 ↑s (Base‘𝑌)) | |
38 | eqid 2735 | . . . . 5 ⊢ (Base‘(𝑌 ↑s (Base‘𝑌))) = (Base‘(𝑌 ↑s (Base‘𝑌))) | |
39 | fvexd 6922 | . . . . 5 ⊢ (𝜑 → (Base‘𝑌) ∈ V) | |
40 | 25, 22, 37, 17 | evl1rhm 22352 | . . . . . . . 8 ⊢ (𝑌 ∈ CRing → 𝑂 ∈ (𝑆 RingHom (𝑌 ↑s (Base‘𝑌)))) |
41 | 10, 40 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑂 ∈ (𝑆 RingHom (𝑌 ↑s (Base‘𝑌)))) |
42 | 23, 38 | rhmf 20502 | . . . . . . 7 ⊢ (𝑂 ∈ (𝑆 RingHom (𝑌 ↑s (Base‘𝑌))) → 𝑂:𝐵⟶(Base‘(𝑌 ↑s (Base‘𝑌)))) |
43 | 41, 42 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑂:𝐵⟶(Base‘(𝑌 ↑s (Base‘𝑌)))) |
44 | 22 | ply1ring 22265 | . . . . . . . . . 10 ⊢ (𝑌 ∈ Ring → 𝑆 ∈ Ring) |
45 | 12, 44 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑆 ∈ Ring) |
46 | ringgrp 20256 | . . . . . . . . 9 ⊢ (𝑆 ∈ Ring → 𝑆 ∈ Grp) | |
47 | 45, 46 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ Grp) |
48 | eqid 2735 | . . . . . . . . . 10 ⊢ (mulGrp‘𝑆) = (mulGrp‘𝑆) | |
49 | 48, 23 | mgpbas 20158 | . . . . . . . . 9 ⊢ 𝐵 = (Base‘(mulGrp‘𝑆)) |
50 | 48 | ringmgp 20257 | . . . . . . . . . 10 ⊢ (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd) |
51 | 45, 50 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (mulGrp‘𝑆) ∈ Mnd) |
52 | oddprm 16844 | . . . . . . . . . . 11 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ) | |
53 | 1, 52 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ) |
54 | 53 | nnnn0d 12585 | . . . . . . . . 9 ⊢ (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ0) |
55 | 27, 22, 23 | vr1cl 22235 | . . . . . . . . . 10 ⊢ (𝑌 ∈ Ring → 𝑋 ∈ 𝐵) |
56 | 12, 55 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
57 | 49, 26, 51, 54, 56 | mulgnn0cld 19126 | . . . . . . . 8 ⊢ (𝜑 → (((𝑃 − 1) / 2) ↑ 𝑋) ∈ 𝐵) |
58 | 23, 29 | ringidcl 20280 | . . . . . . . . 9 ⊢ (𝑆 ∈ Ring → 1 ∈ 𝐵) |
59 | 45, 58 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 1 ∈ 𝐵) |
60 | 23, 28 | grpsubcl 19051 | . . . . . . . 8 ⊢ ((𝑆 ∈ Grp ∧ (((𝑃 − 1) / 2) ↑ 𝑋) ∈ 𝐵 ∧ 1 ∈ 𝐵) → ((((𝑃 − 1) / 2) ↑ 𝑋) − 1 ) ∈ 𝐵) |
61 | 47, 57, 59, 60 | syl3anc 1370 | . . . . . . 7 ⊢ (𝜑 → ((((𝑃 − 1) / 2) ↑ 𝑋) − 1 ) ∈ 𝐵) |
62 | 30, 61 | eqeltrid 2843 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ 𝐵) |
63 | 43, 62 | ffvelcdmd 7105 | . . . . 5 ⊢ (𝜑 → (𝑂‘𝑇) ∈ (Base‘(𝑌 ↑s (Base‘𝑌)))) |
64 | 37, 17, 38, 5, 39, 63 | pwselbas 17536 | . . . 4 ⊢ (𝜑 → (𝑂‘𝑇):(Base‘𝑌)⟶(Base‘𝑌)) |
65 | 64 | ffnd 6738 | . . 3 ⊢ (𝜑 → (𝑂‘𝑇) Fn (Base‘𝑌)) |
66 | fniniseg 7080 | . . 3 ⊢ ((𝑂‘𝑇) Fn (Base‘𝑌) → ((𝐿‘𝐴) ∈ (◡(𝑂‘𝑇) “ {(0g‘𝑌)}) ↔ ((𝐿‘𝐴) ∈ (Base‘𝑌) ∧ ((𝑂‘𝑇)‘(𝐿‘𝐴)) = (0g‘𝑌)))) | |
67 | 65, 66 | syl 17 | . 2 ⊢ (𝜑 → ((𝐿‘𝐴) ∈ (◡(𝑂‘𝑇) “ {(0g‘𝑌)}) ↔ ((𝐿‘𝐴) ∈ (Base‘𝑌) ∧ ((𝑂‘𝑇)‘(𝐿‘𝐴)) = (0g‘𝑌)))) |
68 | 21, 36, 67 | mpbir2and 713 | 1 ⊢ (𝜑 → (𝐿‘𝐴) ∈ (◡(𝑂‘𝑇) “ {(0g‘𝑌)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ∖ cdif 3960 {csn 4631 ↦ cmpt 5231 ◡ccnv 5688 “ cima 5692 Fn wfn 6558 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 1c1 11154 − cmin 11490 / cdiv 11918 ℕcn 12264 2c2 12319 ℤcz 12611 ...cfz 13544 mod cmo 13906 ↑cexp 14099 ℙcprime 16705 Basecbs 17245 0gc0g 17486 ↑s cpws 17493 Mndcmnd 18760 Grpcgrp 18964 -gcsg 18966 .gcmg 19098 mulGrpcmgp 20152 1rcur 20199 Ringcrg 20251 CRingccrg 20252 RingHom crh 20486 Domncdomn 20709 IDomncidom 20710 Fieldcfield 20747 ℤringczring 21475 ℤRHomczrh 21528 ℤ/nℤczn 21531 var1cv1 22193 Poly1cpl1 22194 eval1ce1 22334 deg1cdg1 26108 /L clgs 27353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 ax-mulf 11233 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-ofr 7698 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-tpos 8250 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-oadd 8509 df-er 8744 df-ec 8746 df-qs 8750 df-map 8867 df-pm 8868 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-sup 9480 df-inf 9481 df-oi 9548 df-dju 9939 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-xnn0 12598 df-z 12612 df-dec 12732 df-uz 12877 df-q 12989 df-rp 13033 df-fz 13545 df-fzo 13692 df-fl 13829 df-mod 13907 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-dvds 16288 df-gcd 16529 df-prm 16706 df-phi 16800 df-pc 16871 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-0g 17488 df-gsum 17489 df-prds 17494 df-pws 17496 df-imas 17555 df-qus 17556 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-mhm 18809 df-submnd 18810 df-grp 18967 df-minusg 18968 df-sbg 18969 df-mulg 19099 df-subg 19154 df-nsg 19155 df-eqg 19156 df-ghm 19244 df-cntz 19348 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-srg 20205 df-ring 20253 df-cring 20254 df-oppr 20351 df-dvdsr 20374 df-unit 20375 df-invr 20405 df-dvr 20418 df-rhm 20489 df-nzr 20530 df-subrng 20563 df-subrg 20587 df-rlreg 20711 df-domn 20712 df-idom 20713 df-drng 20748 df-field 20749 df-lmod 20877 df-lss 20948 df-lsp 20988 df-sra 21190 df-rgmod 21191 df-lidl 21236 df-rsp 21237 df-2idl 21278 df-cnfld 21383 df-zring 21476 df-zrh 21532 df-zn 21535 df-assa 21891 df-asp 21892 df-ascl 21893 df-psr 21947 df-mvr 21948 df-mpl 21949 df-opsr 21951 df-evls 22116 df-evl 22117 df-psr1 22197 df-vr1 22198 df-ply1 22199 df-evl1 22336 df-lgs 27354 |
This theorem is referenced by: lgsqrlem4 27408 |
Copyright terms: Public domain | W3C validator |