![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lgsqrlem3 | Structured version Visualization version GIF version |
Description: Lemma for lgsqr 25644. (Contributed by Mario Carneiro, 15-Jun-2015.) |
Ref | Expression |
---|---|
lgsqr.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑃) |
lgsqr.s | ⊢ 𝑆 = (Poly1‘𝑌) |
lgsqr.b | ⊢ 𝐵 = (Base‘𝑆) |
lgsqr.d | ⊢ 𝐷 = ( deg1 ‘𝑌) |
lgsqr.o | ⊢ 𝑂 = (eval1‘𝑌) |
lgsqr.e | ⊢ ↑ = (.g‘(mulGrp‘𝑆)) |
lgsqr.x | ⊢ 𝑋 = (var1‘𝑌) |
lgsqr.m | ⊢ − = (-g‘𝑆) |
lgsqr.u | ⊢ 1 = (1r‘𝑆) |
lgsqr.t | ⊢ 𝑇 = ((((𝑃 − 1) / 2) ↑ 𝑋) − 1 ) |
lgsqr.l | ⊢ 𝐿 = (ℤRHom‘𝑌) |
lgsqr.1 | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) |
lgsqr.g | ⊢ 𝐺 = (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑦↑2))) |
lgsqr.3 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
lgsqr.4 | ⊢ (𝜑 → (𝐴 /L 𝑃) = 1) |
Ref | Expression |
---|---|
lgsqrlem3 | ⊢ (𝜑 → (𝐿‘𝐴) ∈ (◡(𝑂‘𝑇) “ {(0g‘𝑌)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lgsqr.1 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
2 | 1 | eldifad 3843 | . . . . . . . . 9 ⊢ (𝜑 → 𝑃 ∈ ℙ) |
3 | lgsqr.y | . . . . . . . . . 10 ⊢ 𝑌 = (ℤ/nℤ‘𝑃) | |
4 | 3 | znfld 20424 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℙ → 𝑌 ∈ Field) |
5 | 2, 4 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ Field) |
6 | fldidom 19811 | . . . . . . . 8 ⊢ (𝑌 ∈ Field → 𝑌 ∈ IDomn) | |
7 | 5, 6 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ IDomn) |
8 | isidom 19810 | . . . . . . . 8 ⊢ (𝑌 ∈ IDomn ↔ (𝑌 ∈ CRing ∧ 𝑌 ∈ Domn)) | |
9 | 8 | simplbi 490 | . . . . . . 7 ⊢ (𝑌 ∈ IDomn → 𝑌 ∈ CRing) |
10 | 7, 9 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ CRing) |
11 | crngring 19043 | . . . . . 6 ⊢ (𝑌 ∈ CRing → 𝑌 ∈ Ring) | |
12 | 10, 11 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ Ring) |
13 | lgsqr.l | . . . . . 6 ⊢ 𝐿 = (ℤRHom‘𝑌) | |
14 | 13 | zrhrhm 20376 | . . . . 5 ⊢ (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌)) |
15 | 12, 14 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ (ℤring RingHom 𝑌)) |
16 | zringbas 20340 | . . . . 5 ⊢ ℤ = (Base‘ℤring) | |
17 | eqid 2780 | . . . . 5 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
18 | 16, 17 | rhmf 19213 | . . . 4 ⊢ (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿:ℤ⟶(Base‘𝑌)) |
19 | 15, 18 | syl 17 | . . 3 ⊢ (𝜑 → 𝐿:ℤ⟶(Base‘𝑌)) |
20 | lgsqr.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
21 | 19, 20 | ffvelrnd 6683 | . 2 ⊢ (𝜑 → (𝐿‘𝐴) ∈ (Base‘𝑌)) |
22 | lgsqr.s | . . 3 ⊢ 𝑆 = (Poly1‘𝑌) | |
23 | lgsqr.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
24 | lgsqr.d | . . 3 ⊢ 𝐷 = ( deg1 ‘𝑌) | |
25 | lgsqr.o | . . 3 ⊢ 𝑂 = (eval1‘𝑌) | |
26 | lgsqr.e | . . 3 ⊢ ↑ = (.g‘(mulGrp‘𝑆)) | |
27 | lgsqr.x | . . 3 ⊢ 𝑋 = (var1‘𝑌) | |
28 | lgsqr.m | . . 3 ⊢ − = (-g‘𝑆) | |
29 | lgsqr.u | . . 3 ⊢ 1 = (1r‘𝑆) | |
30 | lgsqr.t | . . 3 ⊢ 𝑇 = ((((𝑃 − 1) / 2) ↑ 𝑋) − 1 ) | |
31 | lgsvalmod 25609 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃)) | |
32 | 20, 1, 31 | syl2anc 576 | . . . 4 ⊢ (𝜑 → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃)) |
33 | lgsqr.4 | . . . . 5 ⊢ (𝜑 → (𝐴 /L 𝑃) = 1) | |
34 | 33 | oveq1d 6997 | . . . 4 ⊢ (𝜑 → ((𝐴 /L 𝑃) mod 𝑃) = (1 mod 𝑃)) |
35 | 32, 34 | eqtr3d 2818 | . . 3 ⊢ (𝜑 → ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃) = (1 mod 𝑃)) |
36 | 3, 22, 23, 24, 25, 26, 27, 28, 29, 30, 13, 1, 20, 35 | lgsqrlem1 25639 | . 2 ⊢ (𝜑 → ((𝑂‘𝑇)‘(𝐿‘𝐴)) = (0g‘𝑌)) |
37 | eqid 2780 | . . . . 5 ⊢ (𝑌 ↑s (Base‘𝑌)) = (𝑌 ↑s (Base‘𝑌)) | |
38 | eqid 2780 | . . . . 5 ⊢ (Base‘(𝑌 ↑s (Base‘𝑌))) = (Base‘(𝑌 ↑s (Base‘𝑌))) | |
39 | fvexd 6519 | . . . . 5 ⊢ (𝜑 → (Base‘𝑌) ∈ V) | |
40 | 25, 22, 37, 17 | evl1rhm 20212 | . . . . . . . 8 ⊢ (𝑌 ∈ CRing → 𝑂 ∈ (𝑆 RingHom (𝑌 ↑s (Base‘𝑌)))) |
41 | 10, 40 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑂 ∈ (𝑆 RingHom (𝑌 ↑s (Base‘𝑌)))) |
42 | 23, 38 | rhmf 19213 | . . . . . . 7 ⊢ (𝑂 ∈ (𝑆 RingHom (𝑌 ↑s (Base‘𝑌))) → 𝑂:𝐵⟶(Base‘(𝑌 ↑s (Base‘𝑌)))) |
43 | 41, 42 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑂:𝐵⟶(Base‘(𝑌 ↑s (Base‘𝑌)))) |
44 | 22 | ply1ring 20134 | . . . . . . . . . 10 ⊢ (𝑌 ∈ Ring → 𝑆 ∈ Ring) |
45 | 12, 44 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑆 ∈ Ring) |
46 | ringgrp 19037 | . . . . . . . . 9 ⊢ (𝑆 ∈ Ring → 𝑆 ∈ Grp) | |
47 | 45, 46 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ Grp) |
48 | eqid 2780 | . . . . . . . . . . 11 ⊢ (mulGrp‘𝑆) = (mulGrp‘𝑆) | |
49 | 48 | ringmgp 19038 | . . . . . . . . . 10 ⊢ (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd) |
50 | 45, 49 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (mulGrp‘𝑆) ∈ Mnd) |
51 | oddprm 16009 | . . . . . . . . . . 11 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ) | |
52 | 1, 51 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ) |
53 | 52 | nnnn0d 11773 | . . . . . . . . 9 ⊢ (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ0) |
54 | 27, 22, 23 | vr1cl 20103 | . . . . . . . . . 10 ⊢ (𝑌 ∈ Ring → 𝑋 ∈ 𝐵) |
55 | 12, 54 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
56 | 48, 23 | mgpbas 18980 | . . . . . . . . . 10 ⊢ 𝐵 = (Base‘(mulGrp‘𝑆)) |
57 | 56, 26 | mulgnn0cl 18041 | . . . . . . . . 9 ⊢ (((mulGrp‘𝑆) ∈ Mnd ∧ ((𝑃 − 1) / 2) ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (((𝑃 − 1) / 2) ↑ 𝑋) ∈ 𝐵) |
58 | 50, 53, 55, 57 | syl3anc 1352 | . . . . . . . 8 ⊢ (𝜑 → (((𝑃 − 1) / 2) ↑ 𝑋) ∈ 𝐵) |
59 | 23, 29 | ringidcl 19053 | . . . . . . . . 9 ⊢ (𝑆 ∈ Ring → 1 ∈ 𝐵) |
60 | 45, 59 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 1 ∈ 𝐵) |
61 | 23, 28 | grpsubcl 17978 | . . . . . . . 8 ⊢ ((𝑆 ∈ Grp ∧ (((𝑃 − 1) / 2) ↑ 𝑋) ∈ 𝐵 ∧ 1 ∈ 𝐵) → ((((𝑃 − 1) / 2) ↑ 𝑋) − 1 ) ∈ 𝐵) |
62 | 47, 58, 60, 61 | syl3anc 1352 | . . . . . . 7 ⊢ (𝜑 → ((((𝑃 − 1) / 2) ↑ 𝑋) − 1 ) ∈ 𝐵) |
63 | 30, 62 | syl5eqel 2872 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ 𝐵) |
64 | 43, 63 | ffvelrnd 6683 | . . . . 5 ⊢ (𝜑 → (𝑂‘𝑇) ∈ (Base‘(𝑌 ↑s (Base‘𝑌)))) |
65 | 37, 17, 38, 5, 39, 64 | pwselbas 16624 | . . . 4 ⊢ (𝜑 → (𝑂‘𝑇):(Base‘𝑌)⟶(Base‘𝑌)) |
66 | 65 | ffnd 6350 | . . 3 ⊢ (𝜑 → (𝑂‘𝑇) Fn (Base‘𝑌)) |
67 | fniniseg 6661 | . . 3 ⊢ ((𝑂‘𝑇) Fn (Base‘𝑌) → ((𝐿‘𝐴) ∈ (◡(𝑂‘𝑇) “ {(0g‘𝑌)}) ↔ ((𝐿‘𝐴) ∈ (Base‘𝑌) ∧ ((𝑂‘𝑇)‘(𝐿‘𝐴)) = (0g‘𝑌)))) | |
68 | 66, 67 | syl 17 | . 2 ⊢ (𝜑 → ((𝐿‘𝐴) ∈ (◡(𝑂‘𝑇) “ {(0g‘𝑌)}) ↔ ((𝐿‘𝐴) ∈ (Base‘𝑌) ∧ ((𝑂‘𝑇)‘(𝐿‘𝐴)) = (0g‘𝑌)))) |
69 | 21, 36, 68 | mpbir2and 701 | 1 ⊢ (𝜑 → (𝐿‘𝐴) ∈ (◡(𝑂‘𝑇) “ {(0g‘𝑌)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1508 ∈ wcel 2051 Vcvv 3417 ∖ cdif 3828 {csn 4444 ↦ cmpt 5013 ◡ccnv 5410 “ cima 5414 Fn wfn 6188 ⟶wf 6189 ‘cfv 6193 (class class class)co 6982 1c1 10342 − cmin 10676 / cdiv 11104 ℕcn 11445 2c2 11501 ℕ0cn0 11713 ℤcz 11799 ...cfz 12714 mod cmo 13058 ↑cexp 13250 ℙcprime 15877 Basecbs 16345 0gc0g 16575 ↑s cpws 16582 Mndcmnd 17774 Grpcgrp 17903 -gcsg 17905 .gcmg 18023 mulGrpcmgp 18974 1rcur 18986 Ringcrg 19032 CRingccrg 19033 RingHom crh 19199 Fieldcfield 19238 Domncdomn 19786 IDomncidom 19787 var1cv1 20062 Poly1cpl1 20063 eval1ce1 20195 ℤringzring 20334 ℤRHomczrh 20364 ℤ/nℤczn 20367 deg1 cdg1 24366 /L clgs 25587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2752 ax-rep 5053 ax-sep 5064 ax-nul 5071 ax-pow 5123 ax-pr 5190 ax-un 7285 ax-cnex 10397 ax-resscn 10398 ax-1cn 10399 ax-icn 10400 ax-addcl 10401 ax-addrcl 10402 ax-mulcl 10403 ax-mulrcl 10404 ax-mulcom 10405 ax-addass 10406 ax-mulass 10407 ax-distr 10408 ax-i2m1 10409 ax-1ne0 10410 ax-1rid 10411 ax-rnegex 10412 ax-rrecex 10413 ax-cnre 10414 ax-pre-lttri 10415 ax-pre-lttrn 10416 ax-pre-ltadd 10417 ax-pre-mulgt0 10418 ax-pre-sup 10419 ax-addf 10420 ax-mulf 10421 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2551 df-eu 2589 df-clab 2761 df-cleq 2773 df-clel 2848 df-nfc 2920 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3419 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-pss 3847 df-nul 4182 df-if 4354 df-pw 4427 df-sn 4445 df-pr 4447 df-tp 4449 df-op 4451 df-uni 4718 df-int 4755 df-iun 4799 df-iin 4800 df-br 4935 df-opab 4997 df-mpt 5014 df-tr 5036 df-id 5316 df-eprel 5321 df-po 5330 df-so 5331 df-fr 5370 df-se 5371 df-we 5372 df-xp 5417 df-rel 5418 df-cnv 5419 df-co 5420 df-dm 5421 df-rn 5422 df-res 5423 df-ima 5424 df-pred 5991 df-ord 6037 df-on 6038 df-lim 6039 df-suc 6040 df-iota 6157 df-fun 6195 df-fn 6196 df-f 6197 df-f1 6198 df-fo 6199 df-f1o 6200 df-fv 6201 df-isom 6202 df-riota 6943 df-ov 6985 df-oprab 6986 df-mpo 6987 df-of 7233 df-ofr 7234 df-om 7403 df-1st 7507 df-2nd 7508 df-supp 7640 df-tpos 7701 df-wrecs 7756 df-recs 7818 df-rdg 7856 df-1o 7911 df-2o 7912 df-oadd 7915 df-er 8095 df-ec 8097 df-qs 8101 df-map 8214 df-pm 8215 df-ixp 8266 df-en 8313 df-dom 8314 df-sdom 8315 df-fin 8316 df-fsupp 8635 df-sup 8707 df-inf 8708 df-oi 8775 df-dju 9130 df-card 9168 df-pnf 10482 df-mnf 10483 df-xr 10484 df-ltxr 10485 df-le 10486 df-sub 10678 df-neg 10679 df-div 11105 df-nn 11446 df-2 11509 df-3 11510 df-4 11511 df-5 11512 df-6 11513 df-7 11514 df-8 11515 df-9 11516 df-n0 11714 df-xnn0 11786 df-z 11800 df-dec 11918 df-uz 12065 df-q 12169 df-rp 12211 df-fz 12715 df-fzo 12856 df-fl 12983 df-mod 13059 df-seq 13191 df-exp 13251 df-hash 13512 df-cj 14325 df-re 14326 df-im 14327 df-sqrt 14461 df-abs 14462 df-dvds 15474 df-gcd 15710 df-prm 15878 df-phi 15965 df-pc 16036 df-struct 16347 df-ndx 16348 df-slot 16349 df-base 16351 df-sets 16352 df-ress 16353 df-plusg 16440 df-mulr 16441 df-starv 16442 df-sca 16443 df-vsca 16444 df-ip 16445 df-tset 16446 df-ple 16447 df-ds 16449 df-unif 16450 df-hom 16451 df-cco 16452 df-0g 16577 df-gsum 16578 df-prds 16583 df-pws 16585 df-imas 16643 df-qus 16644 df-mre 16727 df-mrc 16728 df-acs 16730 df-mgm 17722 df-sgrp 17764 df-mnd 17775 df-mhm 17815 df-submnd 17816 df-grp 17906 df-minusg 17907 df-sbg 17908 df-mulg 18024 df-subg 18072 df-nsg 18073 df-eqg 18074 df-ghm 18139 df-cntz 18230 df-cmn 18680 df-abl 18681 df-mgp 18975 df-ur 18987 df-srg 18991 df-ring 19034 df-cring 19035 df-oppr 19108 df-dvdsr 19126 df-unit 19127 df-invr 19157 df-dvr 19168 df-rnghom 19202 df-drng 19239 df-field 19240 df-subrg 19268 df-lmod 19370 df-lss 19438 df-lsp 19478 df-sra 19678 df-rgmod 19679 df-lidl 19680 df-rsp 19681 df-2idl 19738 df-nzr 19764 df-rlreg 19789 df-domn 19790 df-idom 19791 df-assa 19818 df-asp 19819 df-ascl 19820 df-psr 19862 df-mvr 19863 df-mpl 19864 df-opsr 19866 df-evls 20011 df-evl 20012 df-psr1 20066 df-vr1 20067 df-ply1 20068 df-evl1 20197 df-cnfld 20263 df-zring 20335 df-zrh 20368 df-zn 20371 df-lgs 25588 |
This theorem is referenced by: lgsqrlem4 25642 |
Copyright terms: Public domain | W3C validator |