| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lgsqrlem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for lgsqr 27269. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| Ref | Expression |
|---|---|
| lgsqr.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑃) |
| lgsqr.s | ⊢ 𝑆 = (Poly1‘𝑌) |
| lgsqr.b | ⊢ 𝐵 = (Base‘𝑆) |
| lgsqr.d | ⊢ 𝐷 = (deg1‘𝑌) |
| lgsqr.o | ⊢ 𝑂 = (eval1‘𝑌) |
| lgsqr.e | ⊢ ↑ = (.g‘(mulGrp‘𝑆)) |
| lgsqr.x | ⊢ 𝑋 = (var1‘𝑌) |
| lgsqr.m | ⊢ − = (-g‘𝑆) |
| lgsqr.u | ⊢ 1 = (1r‘𝑆) |
| lgsqr.t | ⊢ 𝑇 = ((((𝑃 − 1) / 2) ↑ 𝑋) − 1 ) |
| lgsqr.l | ⊢ 𝐿 = (ℤRHom‘𝑌) |
| lgsqr.1 | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) |
| lgsqr.g | ⊢ 𝐺 = (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑦↑2))) |
| lgsqr.3 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| lgsqr.4 | ⊢ (𝜑 → (𝐴 /L 𝑃) = 1) |
| Ref | Expression |
|---|---|
| lgsqrlem3 | ⊢ (𝜑 → (𝐿‘𝐴) ∈ (◡(𝑂‘𝑇) “ {(0g‘𝑌)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lgsqr.1 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
| 2 | 1 | eldifad 3929 | . . . . . . . . 9 ⊢ (𝜑 → 𝑃 ∈ ℙ) |
| 3 | lgsqr.y | . . . . . . . . . 10 ⊢ 𝑌 = (ℤ/nℤ‘𝑃) | |
| 4 | 3 | znfld 21477 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℙ → 𝑌 ∈ Field) |
| 5 | 2, 4 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ Field) |
| 6 | fldidom 20687 | . . . . . . . 8 ⊢ (𝑌 ∈ Field → 𝑌 ∈ IDomn) | |
| 7 | 5, 6 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ IDomn) |
| 8 | isidom 20641 | . . . . . . . 8 ⊢ (𝑌 ∈ IDomn ↔ (𝑌 ∈ CRing ∧ 𝑌 ∈ Domn)) | |
| 9 | 8 | simplbi 497 | . . . . . . 7 ⊢ (𝑌 ∈ IDomn → 𝑌 ∈ CRing) |
| 10 | 7, 9 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ CRing) |
| 11 | crngring 20161 | . . . . . 6 ⊢ (𝑌 ∈ CRing → 𝑌 ∈ Ring) | |
| 12 | 10, 11 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ Ring) |
| 13 | lgsqr.l | . . . . . 6 ⊢ 𝐿 = (ℤRHom‘𝑌) | |
| 14 | 13 | zrhrhm 21428 | . . . . 5 ⊢ (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌)) |
| 15 | 12, 14 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ (ℤring RingHom 𝑌)) |
| 16 | zringbas 21370 | . . . . 5 ⊢ ℤ = (Base‘ℤring) | |
| 17 | eqid 2730 | . . . . 5 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
| 18 | 16, 17 | rhmf 20401 | . . . 4 ⊢ (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿:ℤ⟶(Base‘𝑌)) |
| 19 | 15, 18 | syl 17 | . . 3 ⊢ (𝜑 → 𝐿:ℤ⟶(Base‘𝑌)) |
| 20 | lgsqr.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
| 21 | 19, 20 | ffvelcdmd 7060 | . 2 ⊢ (𝜑 → (𝐿‘𝐴) ∈ (Base‘𝑌)) |
| 22 | lgsqr.s | . . 3 ⊢ 𝑆 = (Poly1‘𝑌) | |
| 23 | lgsqr.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
| 24 | lgsqr.d | . . 3 ⊢ 𝐷 = (deg1‘𝑌) | |
| 25 | lgsqr.o | . . 3 ⊢ 𝑂 = (eval1‘𝑌) | |
| 26 | lgsqr.e | . . 3 ⊢ ↑ = (.g‘(mulGrp‘𝑆)) | |
| 27 | lgsqr.x | . . 3 ⊢ 𝑋 = (var1‘𝑌) | |
| 28 | lgsqr.m | . . 3 ⊢ − = (-g‘𝑆) | |
| 29 | lgsqr.u | . . 3 ⊢ 1 = (1r‘𝑆) | |
| 30 | lgsqr.t | . . 3 ⊢ 𝑇 = ((((𝑃 − 1) / 2) ↑ 𝑋) − 1 ) | |
| 31 | lgsvalmod 27234 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃)) | |
| 32 | 20, 1, 31 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃)) |
| 33 | lgsqr.4 | . . . . 5 ⊢ (𝜑 → (𝐴 /L 𝑃) = 1) | |
| 34 | 33 | oveq1d 7405 | . . . 4 ⊢ (𝜑 → ((𝐴 /L 𝑃) mod 𝑃) = (1 mod 𝑃)) |
| 35 | 32, 34 | eqtr3d 2767 | . . 3 ⊢ (𝜑 → ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃) = (1 mod 𝑃)) |
| 36 | 3, 22, 23, 24, 25, 26, 27, 28, 29, 30, 13, 1, 20, 35 | lgsqrlem1 27264 | . 2 ⊢ (𝜑 → ((𝑂‘𝑇)‘(𝐿‘𝐴)) = (0g‘𝑌)) |
| 37 | eqid 2730 | . . . . 5 ⊢ (𝑌 ↑s (Base‘𝑌)) = (𝑌 ↑s (Base‘𝑌)) | |
| 38 | eqid 2730 | . . . . 5 ⊢ (Base‘(𝑌 ↑s (Base‘𝑌))) = (Base‘(𝑌 ↑s (Base‘𝑌))) | |
| 39 | fvexd 6876 | . . . . 5 ⊢ (𝜑 → (Base‘𝑌) ∈ V) | |
| 40 | 25, 22, 37, 17 | evl1rhm 22226 | . . . . . . . 8 ⊢ (𝑌 ∈ CRing → 𝑂 ∈ (𝑆 RingHom (𝑌 ↑s (Base‘𝑌)))) |
| 41 | 10, 40 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑂 ∈ (𝑆 RingHom (𝑌 ↑s (Base‘𝑌)))) |
| 42 | 23, 38 | rhmf 20401 | . . . . . . 7 ⊢ (𝑂 ∈ (𝑆 RingHom (𝑌 ↑s (Base‘𝑌))) → 𝑂:𝐵⟶(Base‘(𝑌 ↑s (Base‘𝑌)))) |
| 43 | 41, 42 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑂:𝐵⟶(Base‘(𝑌 ↑s (Base‘𝑌)))) |
| 44 | 22 | ply1ring 22139 | . . . . . . . . . 10 ⊢ (𝑌 ∈ Ring → 𝑆 ∈ Ring) |
| 45 | 12, 44 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑆 ∈ Ring) |
| 46 | ringgrp 20154 | . . . . . . . . 9 ⊢ (𝑆 ∈ Ring → 𝑆 ∈ Grp) | |
| 47 | 45, 46 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ Grp) |
| 48 | eqid 2730 | . . . . . . . . . 10 ⊢ (mulGrp‘𝑆) = (mulGrp‘𝑆) | |
| 49 | 48, 23 | mgpbas 20061 | . . . . . . . . 9 ⊢ 𝐵 = (Base‘(mulGrp‘𝑆)) |
| 50 | 48 | ringmgp 20155 | . . . . . . . . . 10 ⊢ (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd) |
| 51 | 45, 50 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (mulGrp‘𝑆) ∈ Mnd) |
| 52 | oddprm 16788 | . . . . . . . . . . 11 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ) | |
| 53 | 1, 52 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ) |
| 54 | 53 | nnnn0d 12510 | . . . . . . . . 9 ⊢ (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ0) |
| 55 | 27, 22, 23 | vr1cl 22109 | . . . . . . . . . 10 ⊢ (𝑌 ∈ Ring → 𝑋 ∈ 𝐵) |
| 56 | 12, 55 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 57 | 49, 26, 51, 54, 56 | mulgnn0cld 19034 | . . . . . . . 8 ⊢ (𝜑 → (((𝑃 − 1) / 2) ↑ 𝑋) ∈ 𝐵) |
| 58 | 23, 29 | ringidcl 20181 | . . . . . . . . 9 ⊢ (𝑆 ∈ Ring → 1 ∈ 𝐵) |
| 59 | 45, 58 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 1 ∈ 𝐵) |
| 60 | 23, 28 | grpsubcl 18959 | . . . . . . . 8 ⊢ ((𝑆 ∈ Grp ∧ (((𝑃 − 1) / 2) ↑ 𝑋) ∈ 𝐵 ∧ 1 ∈ 𝐵) → ((((𝑃 − 1) / 2) ↑ 𝑋) − 1 ) ∈ 𝐵) |
| 61 | 47, 57, 59, 60 | syl3anc 1373 | . . . . . . 7 ⊢ (𝜑 → ((((𝑃 − 1) / 2) ↑ 𝑋) − 1 ) ∈ 𝐵) |
| 62 | 30, 61 | eqeltrid 2833 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ 𝐵) |
| 63 | 43, 62 | ffvelcdmd 7060 | . . . . 5 ⊢ (𝜑 → (𝑂‘𝑇) ∈ (Base‘(𝑌 ↑s (Base‘𝑌)))) |
| 64 | 37, 17, 38, 5, 39, 63 | pwselbas 17459 | . . . 4 ⊢ (𝜑 → (𝑂‘𝑇):(Base‘𝑌)⟶(Base‘𝑌)) |
| 65 | 64 | ffnd 6692 | . . 3 ⊢ (𝜑 → (𝑂‘𝑇) Fn (Base‘𝑌)) |
| 66 | fniniseg 7035 | . . 3 ⊢ ((𝑂‘𝑇) Fn (Base‘𝑌) → ((𝐿‘𝐴) ∈ (◡(𝑂‘𝑇) “ {(0g‘𝑌)}) ↔ ((𝐿‘𝐴) ∈ (Base‘𝑌) ∧ ((𝑂‘𝑇)‘(𝐿‘𝐴)) = (0g‘𝑌)))) | |
| 67 | 65, 66 | syl 17 | . 2 ⊢ (𝜑 → ((𝐿‘𝐴) ∈ (◡(𝑂‘𝑇) “ {(0g‘𝑌)}) ↔ ((𝐿‘𝐴) ∈ (Base‘𝑌) ∧ ((𝑂‘𝑇)‘(𝐿‘𝐴)) = (0g‘𝑌)))) |
| 68 | 21, 36, 67 | mpbir2and 713 | 1 ⊢ (𝜑 → (𝐿‘𝐴) ∈ (◡(𝑂‘𝑇) “ {(0g‘𝑌)})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∖ cdif 3914 {csn 4592 ↦ cmpt 5191 ◡ccnv 5640 “ cima 5644 Fn wfn 6509 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 1c1 11076 − cmin 11412 / cdiv 11842 ℕcn 12193 2c2 12248 ℤcz 12536 ...cfz 13475 mod cmo 13838 ↑cexp 14033 ℙcprime 16648 Basecbs 17186 0gc0g 17409 ↑s cpws 17416 Mndcmnd 18668 Grpcgrp 18872 -gcsg 18874 .gcmg 19006 mulGrpcmgp 20056 1rcur 20097 Ringcrg 20149 CRingccrg 20150 RingHom crh 20385 Domncdomn 20608 IDomncidom 20609 Fieldcfield 20646 ℤringczring 21363 ℤRHomczrh 21416 ℤ/nℤczn 21419 var1cv1 22067 Poly1cpl1 22068 eval1ce1 22208 deg1cdg1 25966 /L clgs 27212 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 ax-mulf 11155 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-ofr 7657 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-oadd 8441 df-er 8674 df-ec 8676 df-qs 8680 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-sup 9400 df-inf 9401 df-oi 9470 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-xnn0 12523 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-fz 13476 df-fzo 13623 df-fl 13761 df-mod 13839 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-dvds 16230 df-gcd 16472 df-prm 16649 df-phi 16743 df-pc 16815 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-0g 17411 df-gsum 17412 df-prds 17417 df-pws 17419 df-imas 17478 df-qus 17479 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-mulg 19007 df-subg 19062 df-nsg 19063 df-eqg 19064 df-ghm 19152 df-cntz 19256 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-srg 20103 df-ring 20151 df-cring 20152 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-dvr 20317 df-rhm 20388 df-nzr 20429 df-subrng 20462 df-subrg 20486 df-rlreg 20610 df-domn 20611 df-idom 20612 df-drng 20647 df-field 20648 df-lmod 20775 df-lss 20845 df-lsp 20885 df-sra 21087 df-rgmod 21088 df-lidl 21125 df-rsp 21126 df-2idl 21167 df-cnfld 21272 df-zring 21364 df-zrh 21420 df-zn 21423 df-assa 21769 df-asp 21770 df-ascl 21771 df-psr 21825 df-mvr 21826 df-mpl 21827 df-opsr 21829 df-evls 21988 df-evl 21989 df-psr1 22071 df-vr1 22072 df-ply1 22073 df-evl1 22210 df-lgs 27213 |
| This theorem is referenced by: lgsqrlem4 27267 |
| Copyright terms: Public domain | W3C validator |