| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lgsqrlem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for lgsqr 27295. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| Ref | Expression |
|---|---|
| lgsqr.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑃) |
| lgsqr.s | ⊢ 𝑆 = (Poly1‘𝑌) |
| lgsqr.b | ⊢ 𝐵 = (Base‘𝑆) |
| lgsqr.d | ⊢ 𝐷 = (deg1‘𝑌) |
| lgsqr.o | ⊢ 𝑂 = (eval1‘𝑌) |
| lgsqr.e | ⊢ ↑ = (.g‘(mulGrp‘𝑆)) |
| lgsqr.x | ⊢ 𝑋 = (var1‘𝑌) |
| lgsqr.m | ⊢ − = (-g‘𝑆) |
| lgsqr.u | ⊢ 1 = (1r‘𝑆) |
| lgsqr.t | ⊢ 𝑇 = ((((𝑃 − 1) / 2) ↑ 𝑋) − 1 ) |
| lgsqr.l | ⊢ 𝐿 = (ℤRHom‘𝑌) |
| lgsqr.1 | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) |
| lgsqr.g | ⊢ 𝐺 = (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑦↑2))) |
| lgsqr.3 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| lgsqr.4 | ⊢ (𝜑 → (𝐴 /L 𝑃) = 1) |
| Ref | Expression |
|---|---|
| lgsqrlem3 | ⊢ (𝜑 → (𝐿‘𝐴) ∈ (◡(𝑂‘𝑇) “ {(0g‘𝑌)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lgsqr.1 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
| 2 | 1 | eldifad 3923 | . . . . . . . . 9 ⊢ (𝜑 → 𝑃 ∈ ℙ) |
| 3 | lgsqr.y | . . . . . . . . . 10 ⊢ 𝑌 = (ℤ/nℤ‘𝑃) | |
| 4 | 3 | znfld 21502 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℙ → 𝑌 ∈ Field) |
| 5 | 2, 4 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ Field) |
| 6 | fldidom 20691 | . . . . . . . 8 ⊢ (𝑌 ∈ Field → 𝑌 ∈ IDomn) | |
| 7 | 5, 6 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ IDomn) |
| 8 | isidom 20645 | . . . . . . . 8 ⊢ (𝑌 ∈ IDomn ↔ (𝑌 ∈ CRing ∧ 𝑌 ∈ Domn)) | |
| 9 | 8 | simplbi 497 | . . . . . . 7 ⊢ (𝑌 ∈ IDomn → 𝑌 ∈ CRing) |
| 10 | 7, 9 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ CRing) |
| 11 | crngring 20165 | . . . . . 6 ⊢ (𝑌 ∈ CRing → 𝑌 ∈ Ring) | |
| 12 | 10, 11 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ Ring) |
| 13 | lgsqr.l | . . . . . 6 ⊢ 𝐿 = (ℤRHom‘𝑌) | |
| 14 | 13 | zrhrhm 21453 | . . . . 5 ⊢ (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌)) |
| 15 | 12, 14 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ (ℤring RingHom 𝑌)) |
| 16 | zringbas 21395 | . . . . 5 ⊢ ℤ = (Base‘ℤring) | |
| 17 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
| 18 | 16, 17 | rhmf 20405 | . . . 4 ⊢ (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿:ℤ⟶(Base‘𝑌)) |
| 19 | 15, 18 | syl 17 | . . 3 ⊢ (𝜑 → 𝐿:ℤ⟶(Base‘𝑌)) |
| 20 | lgsqr.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
| 21 | 19, 20 | ffvelcdmd 7039 | . 2 ⊢ (𝜑 → (𝐿‘𝐴) ∈ (Base‘𝑌)) |
| 22 | lgsqr.s | . . 3 ⊢ 𝑆 = (Poly1‘𝑌) | |
| 23 | lgsqr.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
| 24 | lgsqr.d | . . 3 ⊢ 𝐷 = (deg1‘𝑌) | |
| 25 | lgsqr.o | . . 3 ⊢ 𝑂 = (eval1‘𝑌) | |
| 26 | lgsqr.e | . . 3 ⊢ ↑ = (.g‘(mulGrp‘𝑆)) | |
| 27 | lgsqr.x | . . 3 ⊢ 𝑋 = (var1‘𝑌) | |
| 28 | lgsqr.m | . . 3 ⊢ − = (-g‘𝑆) | |
| 29 | lgsqr.u | . . 3 ⊢ 1 = (1r‘𝑆) | |
| 30 | lgsqr.t | . . 3 ⊢ 𝑇 = ((((𝑃 − 1) / 2) ↑ 𝑋) − 1 ) | |
| 31 | lgsvalmod 27260 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃)) | |
| 32 | 20, 1, 31 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃)) |
| 33 | lgsqr.4 | . . . . 5 ⊢ (𝜑 → (𝐴 /L 𝑃) = 1) | |
| 34 | 33 | oveq1d 7384 | . . . 4 ⊢ (𝜑 → ((𝐴 /L 𝑃) mod 𝑃) = (1 mod 𝑃)) |
| 35 | 32, 34 | eqtr3d 2766 | . . 3 ⊢ (𝜑 → ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃) = (1 mod 𝑃)) |
| 36 | 3, 22, 23, 24, 25, 26, 27, 28, 29, 30, 13, 1, 20, 35 | lgsqrlem1 27290 | . 2 ⊢ (𝜑 → ((𝑂‘𝑇)‘(𝐿‘𝐴)) = (0g‘𝑌)) |
| 37 | eqid 2729 | . . . . 5 ⊢ (𝑌 ↑s (Base‘𝑌)) = (𝑌 ↑s (Base‘𝑌)) | |
| 38 | eqid 2729 | . . . . 5 ⊢ (Base‘(𝑌 ↑s (Base‘𝑌))) = (Base‘(𝑌 ↑s (Base‘𝑌))) | |
| 39 | fvexd 6855 | . . . . 5 ⊢ (𝜑 → (Base‘𝑌) ∈ V) | |
| 40 | 25, 22, 37, 17 | evl1rhm 22252 | . . . . . . . 8 ⊢ (𝑌 ∈ CRing → 𝑂 ∈ (𝑆 RingHom (𝑌 ↑s (Base‘𝑌)))) |
| 41 | 10, 40 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑂 ∈ (𝑆 RingHom (𝑌 ↑s (Base‘𝑌)))) |
| 42 | 23, 38 | rhmf 20405 | . . . . . . 7 ⊢ (𝑂 ∈ (𝑆 RingHom (𝑌 ↑s (Base‘𝑌))) → 𝑂:𝐵⟶(Base‘(𝑌 ↑s (Base‘𝑌)))) |
| 43 | 41, 42 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑂:𝐵⟶(Base‘(𝑌 ↑s (Base‘𝑌)))) |
| 44 | 22 | ply1ring 22165 | . . . . . . . . . 10 ⊢ (𝑌 ∈ Ring → 𝑆 ∈ Ring) |
| 45 | 12, 44 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑆 ∈ Ring) |
| 46 | ringgrp 20158 | . . . . . . . . 9 ⊢ (𝑆 ∈ Ring → 𝑆 ∈ Grp) | |
| 47 | 45, 46 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ Grp) |
| 48 | eqid 2729 | . . . . . . . . . 10 ⊢ (mulGrp‘𝑆) = (mulGrp‘𝑆) | |
| 49 | 48, 23 | mgpbas 20065 | . . . . . . . . 9 ⊢ 𝐵 = (Base‘(mulGrp‘𝑆)) |
| 50 | 48 | ringmgp 20159 | . . . . . . . . . 10 ⊢ (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd) |
| 51 | 45, 50 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (mulGrp‘𝑆) ∈ Mnd) |
| 52 | oddprm 16757 | . . . . . . . . . . 11 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ) | |
| 53 | 1, 52 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ) |
| 54 | 53 | nnnn0d 12479 | . . . . . . . . 9 ⊢ (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ0) |
| 55 | 27, 22, 23 | vr1cl 22135 | . . . . . . . . . 10 ⊢ (𝑌 ∈ Ring → 𝑋 ∈ 𝐵) |
| 56 | 12, 55 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 57 | 49, 26, 51, 54, 56 | mulgnn0cld 19009 | . . . . . . . 8 ⊢ (𝜑 → (((𝑃 − 1) / 2) ↑ 𝑋) ∈ 𝐵) |
| 58 | 23, 29 | ringidcl 20185 | . . . . . . . . 9 ⊢ (𝑆 ∈ Ring → 1 ∈ 𝐵) |
| 59 | 45, 58 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 1 ∈ 𝐵) |
| 60 | 23, 28 | grpsubcl 18934 | . . . . . . . 8 ⊢ ((𝑆 ∈ Grp ∧ (((𝑃 − 1) / 2) ↑ 𝑋) ∈ 𝐵 ∧ 1 ∈ 𝐵) → ((((𝑃 − 1) / 2) ↑ 𝑋) − 1 ) ∈ 𝐵) |
| 61 | 47, 57, 59, 60 | syl3anc 1373 | . . . . . . 7 ⊢ (𝜑 → ((((𝑃 − 1) / 2) ↑ 𝑋) − 1 ) ∈ 𝐵) |
| 62 | 30, 61 | eqeltrid 2832 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ 𝐵) |
| 63 | 43, 62 | ffvelcdmd 7039 | . . . . 5 ⊢ (𝜑 → (𝑂‘𝑇) ∈ (Base‘(𝑌 ↑s (Base‘𝑌)))) |
| 64 | 37, 17, 38, 5, 39, 63 | pwselbas 17428 | . . . 4 ⊢ (𝜑 → (𝑂‘𝑇):(Base‘𝑌)⟶(Base‘𝑌)) |
| 65 | 64 | ffnd 6671 | . . 3 ⊢ (𝜑 → (𝑂‘𝑇) Fn (Base‘𝑌)) |
| 66 | fniniseg 7014 | . . 3 ⊢ ((𝑂‘𝑇) Fn (Base‘𝑌) → ((𝐿‘𝐴) ∈ (◡(𝑂‘𝑇) “ {(0g‘𝑌)}) ↔ ((𝐿‘𝐴) ∈ (Base‘𝑌) ∧ ((𝑂‘𝑇)‘(𝐿‘𝐴)) = (0g‘𝑌)))) | |
| 67 | 65, 66 | syl 17 | . 2 ⊢ (𝜑 → ((𝐿‘𝐴) ∈ (◡(𝑂‘𝑇) “ {(0g‘𝑌)}) ↔ ((𝐿‘𝐴) ∈ (Base‘𝑌) ∧ ((𝑂‘𝑇)‘(𝐿‘𝐴)) = (0g‘𝑌)))) |
| 68 | 21, 36, 67 | mpbir2and 713 | 1 ⊢ (𝜑 → (𝐿‘𝐴) ∈ (◡(𝑂‘𝑇) “ {(0g‘𝑌)})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∖ cdif 3908 {csn 4585 ↦ cmpt 5183 ◡ccnv 5630 “ cima 5634 Fn wfn 6494 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 1c1 11045 − cmin 11381 / cdiv 11811 ℕcn 12162 2c2 12217 ℤcz 12505 ...cfz 13444 mod cmo 13807 ↑cexp 14002 ℙcprime 16617 Basecbs 17155 0gc0g 17378 ↑s cpws 17385 Mndcmnd 18643 Grpcgrp 18847 -gcsg 18849 .gcmg 18981 mulGrpcmgp 20060 1rcur 20101 Ringcrg 20153 CRingccrg 20154 RingHom crh 20389 Domncdomn 20612 IDomncidom 20613 Fieldcfield 20650 ℤringczring 21388 ℤRHomczrh 21441 ℤ/nℤczn 21444 var1cv1 22093 Poly1cpl1 22094 eval1ce1 22234 deg1cdg1 25992 /L clgs 27238 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 ax-mulf 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-ofr 7634 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-er 8648 df-ec 8650 df-qs 8654 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-inf 9370 df-oi 9439 df-dju 9830 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-xnn0 12492 df-z 12506 df-dec 12626 df-uz 12770 df-q 12884 df-rp 12928 df-fz 13445 df-fzo 13592 df-fl 13730 df-mod 13808 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-dvds 16199 df-gcd 16441 df-prm 16618 df-phi 16712 df-pc 16784 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-0g 17380 df-gsum 17381 df-prds 17386 df-pws 17388 df-imas 17447 df-qus 17448 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-mhm 18692 df-submnd 18693 df-grp 18850 df-minusg 18851 df-sbg 18852 df-mulg 18982 df-subg 19037 df-nsg 19038 df-eqg 19039 df-ghm 19127 df-cntz 19231 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-srg 20107 df-ring 20155 df-cring 20156 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-invr 20308 df-dvr 20321 df-rhm 20392 df-nzr 20433 df-subrng 20466 df-subrg 20490 df-rlreg 20614 df-domn 20615 df-idom 20616 df-drng 20651 df-field 20652 df-lmod 20800 df-lss 20870 df-lsp 20910 df-sra 21112 df-rgmod 21113 df-lidl 21150 df-rsp 21151 df-2idl 21192 df-cnfld 21297 df-zring 21389 df-zrh 21445 df-zn 21448 df-assa 21795 df-asp 21796 df-ascl 21797 df-psr 21851 df-mvr 21852 df-mpl 21853 df-opsr 21855 df-evls 22014 df-evl 22015 df-psr1 22097 df-vr1 22098 df-ply1 22099 df-evl1 22236 df-lgs 27239 |
| This theorem is referenced by: lgsqrlem4 27293 |
| Copyright terms: Public domain | W3C validator |