MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsqrlem3 Structured version   Visualization version   GIF version

Theorem lgsqrlem3 27286
Description: Lemma for lgsqr 27289. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
lgsqr.y 𝑌 = (ℤ/nℤ‘𝑃)
lgsqr.s 𝑆 = (Poly1𝑌)
lgsqr.b 𝐵 = (Base‘𝑆)
lgsqr.d 𝐷 = (deg1𝑌)
lgsqr.o 𝑂 = (eval1𝑌)
lgsqr.e = (.g‘(mulGrp‘𝑆))
lgsqr.x 𝑋 = (var1𝑌)
lgsqr.m = (-g𝑆)
lgsqr.u 1 = (1r𝑆)
lgsqr.t 𝑇 = ((((𝑃 − 1) / 2) 𝑋) 1 )
lgsqr.l 𝐿 = (ℤRHom‘𝑌)
lgsqr.1 (𝜑𝑃 ∈ (ℙ ∖ {2}))
lgsqr.g 𝐺 = (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑦↑2)))
lgsqr.3 (𝜑𝐴 ∈ ℤ)
lgsqr.4 (𝜑 → (𝐴 /L 𝑃) = 1)
Assertion
Ref Expression
lgsqrlem3 (𝜑 → (𝐿𝐴) ∈ ((𝑂𝑇) “ {(0g𝑌)}))
Distinct variable groups:   𝑦,𝑂   𝑦,𝑃   𝜑,𝑦   𝑦,𝑇   𝑦,𝐿   𝑦,𝑌
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)   𝐷(𝑦)   𝑆(𝑦)   1 (𝑦)   (𝑦)   𝐺(𝑦)   (𝑦)   𝑋(𝑦)

Proof of Theorem lgsqrlem3
StepHypRef Expression
1 lgsqr.1 . . . . . . . . . 10 (𝜑𝑃 ∈ (ℙ ∖ {2}))
21eldifad 3909 . . . . . . . . 9 (𝜑𝑃 ∈ ℙ)
3 lgsqr.y . . . . . . . . . 10 𝑌 = (ℤ/nℤ‘𝑃)
43znfld 21497 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑌 ∈ Field)
52, 4syl 17 . . . . . . . 8 (𝜑𝑌 ∈ Field)
6 fldidom 20686 . . . . . . . 8 (𝑌 ∈ Field → 𝑌 ∈ IDomn)
75, 6syl 17 . . . . . . 7 (𝜑𝑌 ∈ IDomn)
8 isidom 20640 . . . . . . . 8 (𝑌 ∈ IDomn ↔ (𝑌 ∈ CRing ∧ 𝑌 ∈ Domn))
98simplbi 497 . . . . . . 7 (𝑌 ∈ IDomn → 𝑌 ∈ CRing)
107, 9syl 17 . . . . . 6 (𝜑𝑌 ∈ CRing)
11 crngring 20163 . . . . . 6 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
1210, 11syl 17 . . . . 5 (𝜑𝑌 ∈ Ring)
13 lgsqr.l . . . . . 6 𝐿 = (ℤRHom‘𝑌)
1413zrhrhm 21448 . . . . 5 (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌))
1512, 14syl 17 . . . 4 (𝜑𝐿 ∈ (ℤring RingHom 𝑌))
16 zringbas 21390 . . . . 5 ℤ = (Base‘ℤring)
17 eqid 2731 . . . . 5 (Base‘𝑌) = (Base‘𝑌)
1816, 17rhmf 20402 . . . 4 (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿:ℤ⟶(Base‘𝑌))
1915, 18syl 17 . . 3 (𝜑𝐿:ℤ⟶(Base‘𝑌))
20 lgsqr.3 . . 3 (𝜑𝐴 ∈ ℤ)
2119, 20ffvelcdmd 7018 . 2 (𝜑 → (𝐿𝐴) ∈ (Base‘𝑌))
22 lgsqr.s . . 3 𝑆 = (Poly1𝑌)
23 lgsqr.b . . 3 𝐵 = (Base‘𝑆)
24 lgsqr.d . . 3 𝐷 = (deg1𝑌)
25 lgsqr.o . . 3 𝑂 = (eval1𝑌)
26 lgsqr.e . . 3 = (.g‘(mulGrp‘𝑆))
27 lgsqr.x . . 3 𝑋 = (var1𝑌)
28 lgsqr.m . . 3 = (-g𝑆)
29 lgsqr.u . . 3 1 = (1r𝑆)
30 lgsqr.t . . 3 𝑇 = ((((𝑃 − 1) / 2) 𝑋) 1 )
31 lgsvalmod 27254 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃))
3220, 1, 31syl2anc 584 . . . 4 (𝜑 → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃))
33 lgsqr.4 . . . . 5 (𝜑 → (𝐴 /L 𝑃) = 1)
3433oveq1d 7361 . . . 4 (𝜑 → ((𝐴 /L 𝑃) mod 𝑃) = (1 mod 𝑃))
3532, 34eqtr3d 2768 . . 3 (𝜑 → ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃) = (1 mod 𝑃))
363, 22, 23, 24, 25, 26, 27, 28, 29, 30, 13, 1, 20, 35lgsqrlem1 27284 . 2 (𝜑 → ((𝑂𝑇)‘(𝐿𝐴)) = (0g𝑌))
37 eqid 2731 . . . . 5 (𝑌s (Base‘𝑌)) = (𝑌s (Base‘𝑌))
38 eqid 2731 . . . . 5 (Base‘(𝑌s (Base‘𝑌))) = (Base‘(𝑌s (Base‘𝑌)))
39 fvexd 6837 . . . . 5 (𝜑 → (Base‘𝑌) ∈ V)
4025, 22, 37, 17evl1rhm 22247 . . . . . . . 8 (𝑌 ∈ CRing → 𝑂 ∈ (𝑆 RingHom (𝑌s (Base‘𝑌))))
4110, 40syl 17 . . . . . . 7 (𝜑𝑂 ∈ (𝑆 RingHom (𝑌s (Base‘𝑌))))
4223, 38rhmf 20402 . . . . . . 7 (𝑂 ∈ (𝑆 RingHom (𝑌s (Base‘𝑌))) → 𝑂:𝐵⟶(Base‘(𝑌s (Base‘𝑌))))
4341, 42syl 17 . . . . . 6 (𝜑𝑂:𝐵⟶(Base‘(𝑌s (Base‘𝑌))))
4422ply1ring 22160 . . . . . . . . . 10 (𝑌 ∈ Ring → 𝑆 ∈ Ring)
4512, 44syl 17 . . . . . . . . 9 (𝜑𝑆 ∈ Ring)
46 ringgrp 20156 . . . . . . . . 9 (𝑆 ∈ Ring → 𝑆 ∈ Grp)
4745, 46syl 17 . . . . . . . 8 (𝜑𝑆 ∈ Grp)
48 eqid 2731 . . . . . . . . . 10 (mulGrp‘𝑆) = (mulGrp‘𝑆)
4948, 23mgpbas 20063 . . . . . . . . 9 𝐵 = (Base‘(mulGrp‘𝑆))
5048ringmgp 20157 . . . . . . . . . 10 (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd)
5145, 50syl 17 . . . . . . . . 9 (𝜑 → (mulGrp‘𝑆) ∈ Mnd)
52 oddprm 16722 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
531, 52syl 17 . . . . . . . . . 10 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ)
5453nnnn0d 12442 . . . . . . . . 9 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ0)
5527, 22, 23vr1cl 22130 . . . . . . . . . 10 (𝑌 ∈ Ring → 𝑋𝐵)
5612, 55syl 17 . . . . . . . . 9 (𝜑𝑋𝐵)
5749, 26, 51, 54, 56mulgnn0cld 19008 . . . . . . . 8 (𝜑 → (((𝑃 − 1) / 2) 𝑋) ∈ 𝐵)
5823, 29ringidcl 20183 . . . . . . . . 9 (𝑆 ∈ Ring → 1𝐵)
5945, 58syl 17 . . . . . . . 8 (𝜑1𝐵)
6023, 28grpsubcl 18933 . . . . . . . 8 ((𝑆 ∈ Grp ∧ (((𝑃 − 1) / 2) 𝑋) ∈ 𝐵1𝐵) → ((((𝑃 − 1) / 2) 𝑋) 1 ) ∈ 𝐵)
6147, 57, 59, 60syl3anc 1373 . . . . . . 7 (𝜑 → ((((𝑃 − 1) / 2) 𝑋) 1 ) ∈ 𝐵)
6230, 61eqeltrid 2835 . . . . . 6 (𝜑𝑇𝐵)
6343, 62ffvelcdmd 7018 . . . . 5 (𝜑 → (𝑂𝑇) ∈ (Base‘(𝑌s (Base‘𝑌))))
6437, 17, 38, 5, 39, 63pwselbas 17393 . . . 4 (𝜑 → (𝑂𝑇):(Base‘𝑌)⟶(Base‘𝑌))
6564ffnd 6652 . . 3 (𝜑 → (𝑂𝑇) Fn (Base‘𝑌))
66 fniniseg 6993 . . 3 ((𝑂𝑇) Fn (Base‘𝑌) → ((𝐿𝐴) ∈ ((𝑂𝑇) “ {(0g𝑌)}) ↔ ((𝐿𝐴) ∈ (Base‘𝑌) ∧ ((𝑂𝑇)‘(𝐿𝐴)) = (0g𝑌))))
6765, 66syl 17 . 2 (𝜑 → ((𝐿𝐴) ∈ ((𝑂𝑇) “ {(0g𝑌)}) ↔ ((𝐿𝐴) ∈ (Base‘𝑌) ∧ ((𝑂𝑇)‘(𝐿𝐴)) = (0g𝑌))))
6821, 36, 67mpbir2and 713 1 (𝜑 → (𝐿𝐴) ∈ ((𝑂𝑇) “ {(0g𝑌)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cdif 3894  {csn 4573  cmpt 5170  ccnv 5613  cima 5617   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  1c1 11007  cmin 11344   / cdiv 11774  cn 12125  2c2 12180  cz 12468  ...cfz 13407   mod cmo 13773  cexp 13968  cprime 16582  Basecbs 17120  0gc0g 17343  s cpws 17350  Mndcmnd 18642  Grpcgrp 18846  -gcsg 18848  .gcmg 18980  mulGrpcmgp 20058  1rcur 20099  Ringcrg 20151  CRingccrg 20152   RingHom crh 20387  Domncdomn 20607  IDomncidom 20608  Fieldcfield 20645  ringczring 21383  ℤRHomczrh 21436  ℤ/nczn 21439  var1cv1 22088  Poly1cpl1 22089  eval1ce1 22229  deg1cdg1 25986   /L clgs 27232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-ec 8624  df-qs 8628  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-xnn0 12455  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406  df-prm 16583  df-phi 16677  df-pc 16749  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-imas 17412  df-qus 17413  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-nsg 19037  df-eqg 19038  df-ghm 19125  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-srg 20105  df-ring 20153  df-cring 20154  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-invr 20306  df-dvr 20319  df-rhm 20390  df-nzr 20428  df-subrng 20461  df-subrg 20485  df-rlreg 20609  df-domn 20610  df-idom 20611  df-drng 20646  df-field 20647  df-lmod 20795  df-lss 20865  df-lsp 20905  df-sra 21107  df-rgmod 21108  df-lidl 21145  df-rsp 21146  df-2idl 21187  df-cnfld 21292  df-zring 21384  df-zrh 21440  df-zn 21443  df-assa 21790  df-asp 21791  df-ascl 21792  df-psr 21846  df-mvr 21847  df-mpl 21848  df-opsr 21850  df-evls 22009  df-evl 22010  df-psr1 22092  df-vr1 22093  df-ply1 22094  df-evl1 22231  df-lgs 27233
This theorem is referenced by:  lgsqrlem4  27287
  Copyright terms: Public domain W3C validator