MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsqrlem3 Structured version   Visualization version   GIF version

Theorem lgsqrlem3 26696
Description: Lemma for lgsqr 26699. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
lgsqr.y 𝑌 = (ℤ/nℤ‘𝑃)
lgsqr.s 𝑆 = (Poly1𝑌)
lgsqr.b 𝐵 = (Base‘𝑆)
lgsqr.d 𝐷 = ( deg1𝑌)
lgsqr.o 𝑂 = (eval1𝑌)
lgsqr.e = (.g‘(mulGrp‘𝑆))
lgsqr.x 𝑋 = (var1𝑌)
lgsqr.m = (-g𝑆)
lgsqr.u 1 = (1r𝑆)
lgsqr.t 𝑇 = ((((𝑃 − 1) / 2) 𝑋) 1 )
lgsqr.l 𝐿 = (ℤRHom‘𝑌)
lgsqr.1 (𝜑𝑃 ∈ (ℙ ∖ {2}))
lgsqr.g 𝐺 = (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑦↑2)))
lgsqr.3 (𝜑𝐴 ∈ ℤ)
lgsqr.4 (𝜑 → (𝐴 /L 𝑃) = 1)
Assertion
Ref Expression
lgsqrlem3 (𝜑 → (𝐿𝐴) ∈ ((𝑂𝑇) “ {(0g𝑌)}))
Distinct variable groups:   𝑦,𝑂   𝑦,𝑃   𝜑,𝑦   𝑦,𝑇   𝑦,𝐿   𝑦,𝑌
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)   𝐷(𝑦)   𝑆(𝑦)   1 (𝑦)   (𝑦)   𝐺(𝑦)   (𝑦)   𝑋(𝑦)

Proof of Theorem lgsqrlem3
StepHypRef Expression
1 lgsqr.1 . . . . . . . . . 10 (𝜑𝑃 ∈ (ℙ ∖ {2}))
21eldifad 3922 . . . . . . . . 9 (𝜑𝑃 ∈ ℙ)
3 lgsqr.y . . . . . . . . . 10 𝑌 = (ℤ/nℤ‘𝑃)
43znfld 20967 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑌 ∈ Field)
52, 4syl 17 . . . . . . . 8 (𝜑𝑌 ∈ Field)
6 fldidom 20775 . . . . . . . 8 (𝑌 ∈ Field → 𝑌 ∈ IDomn)
75, 6syl 17 . . . . . . 7 (𝜑𝑌 ∈ IDomn)
8 isidom 20774 . . . . . . . 8 (𝑌 ∈ IDomn ↔ (𝑌 ∈ CRing ∧ 𝑌 ∈ Domn))
98simplbi 498 . . . . . . 7 (𝑌 ∈ IDomn → 𝑌 ∈ CRing)
107, 9syl 17 . . . . . 6 (𝜑𝑌 ∈ CRing)
11 crngring 19976 . . . . . 6 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
1210, 11syl 17 . . . . 5 (𝜑𝑌 ∈ Ring)
13 lgsqr.l . . . . . 6 𝐿 = (ℤRHom‘𝑌)
1413zrhrhm 20912 . . . . 5 (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌))
1512, 14syl 17 . . . 4 (𝜑𝐿 ∈ (ℤring RingHom 𝑌))
16 zringbas 20875 . . . . 5 ℤ = (Base‘ℤring)
17 eqid 2736 . . . . 5 (Base‘𝑌) = (Base‘𝑌)
1816, 17rhmf 20158 . . . 4 (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿:ℤ⟶(Base‘𝑌))
1915, 18syl 17 . . 3 (𝜑𝐿:ℤ⟶(Base‘𝑌))
20 lgsqr.3 . . 3 (𝜑𝐴 ∈ ℤ)
2119, 20ffvelcdmd 7036 . 2 (𝜑 → (𝐿𝐴) ∈ (Base‘𝑌))
22 lgsqr.s . . 3 𝑆 = (Poly1𝑌)
23 lgsqr.b . . 3 𝐵 = (Base‘𝑆)
24 lgsqr.d . . 3 𝐷 = ( deg1𝑌)
25 lgsqr.o . . 3 𝑂 = (eval1𝑌)
26 lgsqr.e . . 3 = (.g‘(mulGrp‘𝑆))
27 lgsqr.x . . 3 𝑋 = (var1𝑌)
28 lgsqr.m . . 3 = (-g𝑆)
29 lgsqr.u . . 3 1 = (1r𝑆)
30 lgsqr.t . . 3 𝑇 = ((((𝑃 − 1) / 2) 𝑋) 1 )
31 lgsvalmod 26664 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃))
3220, 1, 31syl2anc 584 . . . 4 (𝜑 → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃))
33 lgsqr.4 . . . . 5 (𝜑 → (𝐴 /L 𝑃) = 1)
3433oveq1d 7372 . . . 4 (𝜑 → ((𝐴 /L 𝑃) mod 𝑃) = (1 mod 𝑃))
3532, 34eqtr3d 2778 . . 3 (𝜑 → ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃) = (1 mod 𝑃))
363, 22, 23, 24, 25, 26, 27, 28, 29, 30, 13, 1, 20, 35lgsqrlem1 26694 . 2 (𝜑 → ((𝑂𝑇)‘(𝐿𝐴)) = (0g𝑌))
37 eqid 2736 . . . . 5 (𝑌s (Base‘𝑌)) = (𝑌s (Base‘𝑌))
38 eqid 2736 . . . . 5 (Base‘(𝑌s (Base‘𝑌))) = (Base‘(𝑌s (Base‘𝑌)))
39 fvexd 6857 . . . . 5 (𝜑 → (Base‘𝑌) ∈ V)
4025, 22, 37, 17evl1rhm 21698 . . . . . . . 8 (𝑌 ∈ CRing → 𝑂 ∈ (𝑆 RingHom (𝑌s (Base‘𝑌))))
4110, 40syl 17 . . . . . . 7 (𝜑𝑂 ∈ (𝑆 RingHom (𝑌s (Base‘𝑌))))
4223, 38rhmf 20158 . . . . . . 7 (𝑂 ∈ (𝑆 RingHom (𝑌s (Base‘𝑌))) → 𝑂:𝐵⟶(Base‘(𝑌s (Base‘𝑌))))
4341, 42syl 17 . . . . . 6 (𝜑𝑂:𝐵⟶(Base‘(𝑌s (Base‘𝑌))))
4422ply1ring 21619 . . . . . . . . . 10 (𝑌 ∈ Ring → 𝑆 ∈ Ring)
4512, 44syl 17 . . . . . . . . 9 (𝜑𝑆 ∈ Ring)
46 ringgrp 19969 . . . . . . . . 9 (𝑆 ∈ Ring → 𝑆 ∈ Grp)
4745, 46syl 17 . . . . . . . 8 (𝜑𝑆 ∈ Grp)
48 eqid 2736 . . . . . . . . . 10 (mulGrp‘𝑆) = (mulGrp‘𝑆)
4948, 23mgpbas 19902 . . . . . . . . 9 𝐵 = (Base‘(mulGrp‘𝑆))
5048ringmgp 19970 . . . . . . . . . 10 (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd)
5145, 50syl 17 . . . . . . . . 9 (𝜑 → (mulGrp‘𝑆) ∈ Mnd)
52 oddprm 16682 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
531, 52syl 17 . . . . . . . . . 10 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ)
5453nnnn0d 12473 . . . . . . . . 9 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ0)
5527, 22, 23vr1cl 21588 . . . . . . . . . 10 (𝑌 ∈ Ring → 𝑋𝐵)
5612, 55syl 17 . . . . . . . . 9 (𝜑𝑋𝐵)
5749, 26, 51, 54, 56mulgnn0cld 18897 . . . . . . . 8 (𝜑 → (((𝑃 − 1) / 2) 𝑋) ∈ 𝐵)
5823, 29ringidcl 19989 . . . . . . . . 9 (𝑆 ∈ Ring → 1𝐵)
5945, 58syl 17 . . . . . . . 8 (𝜑1𝐵)
6023, 28grpsubcl 18827 . . . . . . . 8 ((𝑆 ∈ Grp ∧ (((𝑃 − 1) / 2) 𝑋) ∈ 𝐵1𝐵) → ((((𝑃 − 1) / 2) 𝑋) 1 ) ∈ 𝐵)
6147, 57, 59, 60syl3anc 1371 . . . . . . 7 (𝜑 → ((((𝑃 − 1) / 2) 𝑋) 1 ) ∈ 𝐵)
6230, 61eqeltrid 2842 . . . . . 6 (𝜑𝑇𝐵)
6343, 62ffvelcdmd 7036 . . . . 5 (𝜑 → (𝑂𝑇) ∈ (Base‘(𝑌s (Base‘𝑌))))
6437, 17, 38, 5, 39, 63pwselbas 17371 . . . 4 (𝜑 → (𝑂𝑇):(Base‘𝑌)⟶(Base‘𝑌))
6564ffnd 6669 . . 3 (𝜑 → (𝑂𝑇) Fn (Base‘𝑌))
66 fniniseg 7010 . . 3 ((𝑂𝑇) Fn (Base‘𝑌) → ((𝐿𝐴) ∈ ((𝑂𝑇) “ {(0g𝑌)}) ↔ ((𝐿𝐴) ∈ (Base‘𝑌) ∧ ((𝑂𝑇)‘(𝐿𝐴)) = (0g𝑌))))
6765, 66syl 17 . 2 (𝜑 → ((𝐿𝐴) ∈ ((𝑂𝑇) “ {(0g𝑌)}) ↔ ((𝐿𝐴) ∈ (Base‘𝑌) ∧ ((𝑂𝑇)‘(𝐿𝐴)) = (0g𝑌))))
6821, 36, 67mpbir2and 711 1 (𝜑 → (𝐿𝐴) ∈ ((𝑂𝑇) “ {(0g𝑌)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  Vcvv 3445  cdif 3907  {csn 4586  cmpt 5188  ccnv 5632  cima 5636   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  1c1 11052  cmin 11385   / cdiv 11812  cn 12153  2c2 12208  cz 12499  ...cfz 13424   mod cmo 13774  cexp 13967  cprime 16547  Basecbs 17083  0gc0g 17321  s cpws 17328  Mndcmnd 18556  Grpcgrp 18748  -gcsg 18750  .gcmg 18872  mulGrpcmgp 19896  1rcur 19913  Ringcrg 19964  CRingccrg 19965   RingHom crh 20143  Fieldcfield 20186  Domncdomn 20750  IDomncidom 20751  ringczring 20869  ℤRHomczrh 20900  ℤ/nczn 20903  var1cv1 21547  Poly1cpl1 21548  eval1ce1 21680   deg1 cdg1 25416   /L clgs 26642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-ofr 7618  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-ec 8650  df-qs 8654  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-xnn0 12486  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-dvds 16137  df-gcd 16375  df-prm 16548  df-phi 16638  df-pc 16709  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-0g 17323  df-gsum 17324  df-prds 17329  df-pws 17331  df-imas 17390  df-qus 17391  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-nsg 18926  df-eqg 18927  df-ghm 19006  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-srg 19918  df-ring 19966  df-cring 19967  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-dvr 20112  df-rnghom 20146  df-drng 20187  df-field 20188  df-subrg 20220  df-lmod 20324  df-lss 20393  df-lsp 20433  df-sra 20633  df-rgmod 20634  df-lidl 20635  df-rsp 20636  df-2idl 20702  df-nzr 20728  df-rlreg 20753  df-domn 20754  df-idom 20755  df-cnfld 20797  df-zring 20870  df-zrh 20904  df-zn 20907  df-assa 21259  df-asp 21260  df-ascl 21261  df-psr 21311  df-mvr 21312  df-mpl 21313  df-opsr 21315  df-evls 21482  df-evl 21483  df-psr1 21551  df-vr1 21552  df-ply1 21553  df-evl1 21682  df-lgs 26643
This theorem is referenced by:  lgsqrlem4  26697
  Copyright terms: Public domain W3C validator