MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsqrlem3 Structured version   Visualization version   GIF version

Theorem lgsqrlem3 27266
Description: Lemma for lgsqr 27269. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
lgsqr.y 𝑌 = (ℤ/nℤ‘𝑃)
lgsqr.s 𝑆 = (Poly1𝑌)
lgsqr.b 𝐵 = (Base‘𝑆)
lgsqr.d 𝐷 = (deg1𝑌)
lgsqr.o 𝑂 = (eval1𝑌)
lgsqr.e = (.g‘(mulGrp‘𝑆))
lgsqr.x 𝑋 = (var1𝑌)
lgsqr.m = (-g𝑆)
lgsqr.u 1 = (1r𝑆)
lgsqr.t 𝑇 = ((((𝑃 − 1) / 2) 𝑋) 1 )
lgsqr.l 𝐿 = (ℤRHom‘𝑌)
lgsqr.1 (𝜑𝑃 ∈ (ℙ ∖ {2}))
lgsqr.g 𝐺 = (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑦↑2)))
lgsqr.3 (𝜑𝐴 ∈ ℤ)
lgsqr.4 (𝜑 → (𝐴 /L 𝑃) = 1)
Assertion
Ref Expression
lgsqrlem3 (𝜑 → (𝐿𝐴) ∈ ((𝑂𝑇) “ {(0g𝑌)}))
Distinct variable groups:   𝑦,𝑂   𝑦,𝑃   𝜑,𝑦   𝑦,𝑇   𝑦,𝐿   𝑦,𝑌
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)   𝐷(𝑦)   𝑆(𝑦)   1 (𝑦)   (𝑦)   𝐺(𝑦)   (𝑦)   𝑋(𝑦)

Proof of Theorem lgsqrlem3
StepHypRef Expression
1 lgsqr.1 . . . . . . . . . 10 (𝜑𝑃 ∈ (ℙ ∖ {2}))
21eldifad 3929 . . . . . . . . 9 (𝜑𝑃 ∈ ℙ)
3 lgsqr.y . . . . . . . . . 10 𝑌 = (ℤ/nℤ‘𝑃)
43znfld 21477 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑌 ∈ Field)
52, 4syl 17 . . . . . . . 8 (𝜑𝑌 ∈ Field)
6 fldidom 20687 . . . . . . . 8 (𝑌 ∈ Field → 𝑌 ∈ IDomn)
75, 6syl 17 . . . . . . 7 (𝜑𝑌 ∈ IDomn)
8 isidom 20641 . . . . . . . 8 (𝑌 ∈ IDomn ↔ (𝑌 ∈ CRing ∧ 𝑌 ∈ Domn))
98simplbi 497 . . . . . . 7 (𝑌 ∈ IDomn → 𝑌 ∈ CRing)
107, 9syl 17 . . . . . 6 (𝜑𝑌 ∈ CRing)
11 crngring 20161 . . . . . 6 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
1210, 11syl 17 . . . . 5 (𝜑𝑌 ∈ Ring)
13 lgsqr.l . . . . . 6 𝐿 = (ℤRHom‘𝑌)
1413zrhrhm 21428 . . . . 5 (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌))
1512, 14syl 17 . . . 4 (𝜑𝐿 ∈ (ℤring RingHom 𝑌))
16 zringbas 21370 . . . . 5 ℤ = (Base‘ℤring)
17 eqid 2730 . . . . 5 (Base‘𝑌) = (Base‘𝑌)
1816, 17rhmf 20401 . . . 4 (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿:ℤ⟶(Base‘𝑌))
1915, 18syl 17 . . 3 (𝜑𝐿:ℤ⟶(Base‘𝑌))
20 lgsqr.3 . . 3 (𝜑𝐴 ∈ ℤ)
2119, 20ffvelcdmd 7060 . 2 (𝜑 → (𝐿𝐴) ∈ (Base‘𝑌))
22 lgsqr.s . . 3 𝑆 = (Poly1𝑌)
23 lgsqr.b . . 3 𝐵 = (Base‘𝑆)
24 lgsqr.d . . 3 𝐷 = (deg1𝑌)
25 lgsqr.o . . 3 𝑂 = (eval1𝑌)
26 lgsqr.e . . 3 = (.g‘(mulGrp‘𝑆))
27 lgsqr.x . . 3 𝑋 = (var1𝑌)
28 lgsqr.m . . 3 = (-g𝑆)
29 lgsqr.u . . 3 1 = (1r𝑆)
30 lgsqr.t . . 3 𝑇 = ((((𝑃 − 1) / 2) 𝑋) 1 )
31 lgsvalmod 27234 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃))
3220, 1, 31syl2anc 584 . . . 4 (𝜑 → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃))
33 lgsqr.4 . . . . 5 (𝜑 → (𝐴 /L 𝑃) = 1)
3433oveq1d 7405 . . . 4 (𝜑 → ((𝐴 /L 𝑃) mod 𝑃) = (1 mod 𝑃))
3532, 34eqtr3d 2767 . . 3 (𝜑 → ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃) = (1 mod 𝑃))
363, 22, 23, 24, 25, 26, 27, 28, 29, 30, 13, 1, 20, 35lgsqrlem1 27264 . 2 (𝜑 → ((𝑂𝑇)‘(𝐿𝐴)) = (0g𝑌))
37 eqid 2730 . . . . 5 (𝑌s (Base‘𝑌)) = (𝑌s (Base‘𝑌))
38 eqid 2730 . . . . 5 (Base‘(𝑌s (Base‘𝑌))) = (Base‘(𝑌s (Base‘𝑌)))
39 fvexd 6876 . . . . 5 (𝜑 → (Base‘𝑌) ∈ V)
4025, 22, 37, 17evl1rhm 22226 . . . . . . . 8 (𝑌 ∈ CRing → 𝑂 ∈ (𝑆 RingHom (𝑌s (Base‘𝑌))))
4110, 40syl 17 . . . . . . 7 (𝜑𝑂 ∈ (𝑆 RingHom (𝑌s (Base‘𝑌))))
4223, 38rhmf 20401 . . . . . . 7 (𝑂 ∈ (𝑆 RingHom (𝑌s (Base‘𝑌))) → 𝑂:𝐵⟶(Base‘(𝑌s (Base‘𝑌))))
4341, 42syl 17 . . . . . 6 (𝜑𝑂:𝐵⟶(Base‘(𝑌s (Base‘𝑌))))
4422ply1ring 22139 . . . . . . . . . 10 (𝑌 ∈ Ring → 𝑆 ∈ Ring)
4512, 44syl 17 . . . . . . . . 9 (𝜑𝑆 ∈ Ring)
46 ringgrp 20154 . . . . . . . . 9 (𝑆 ∈ Ring → 𝑆 ∈ Grp)
4745, 46syl 17 . . . . . . . 8 (𝜑𝑆 ∈ Grp)
48 eqid 2730 . . . . . . . . . 10 (mulGrp‘𝑆) = (mulGrp‘𝑆)
4948, 23mgpbas 20061 . . . . . . . . 9 𝐵 = (Base‘(mulGrp‘𝑆))
5048ringmgp 20155 . . . . . . . . . 10 (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd)
5145, 50syl 17 . . . . . . . . 9 (𝜑 → (mulGrp‘𝑆) ∈ Mnd)
52 oddprm 16788 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
531, 52syl 17 . . . . . . . . . 10 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ)
5453nnnn0d 12510 . . . . . . . . 9 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ0)
5527, 22, 23vr1cl 22109 . . . . . . . . . 10 (𝑌 ∈ Ring → 𝑋𝐵)
5612, 55syl 17 . . . . . . . . 9 (𝜑𝑋𝐵)
5749, 26, 51, 54, 56mulgnn0cld 19034 . . . . . . . 8 (𝜑 → (((𝑃 − 1) / 2) 𝑋) ∈ 𝐵)
5823, 29ringidcl 20181 . . . . . . . . 9 (𝑆 ∈ Ring → 1𝐵)
5945, 58syl 17 . . . . . . . 8 (𝜑1𝐵)
6023, 28grpsubcl 18959 . . . . . . . 8 ((𝑆 ∈ Grp ∧ (((𝑃 − 1) / 2) 𝑋) ∈ 𝐵1𝐵) → ((((𝑃 − 1) / 2) 𝑋) 1 ) ∈ 𝐵)
6147, 57, 59, 60syl3anc 1373 . . . . . . 7 (𝜑 → ((((𝑃 − 1) / 2) 𝑋) 1 ) ∈ 𝐵)
6230, 61eqeltrid 2833 . . . . . 6 (𝜑𝑇𝐵)
6343, 62ffvelcdmd 7060 . . . . 5 (𝜑 → (𝑂𝑇) ∈ (Base‘(𝑌s (Base‘𝑌))))
6437, 17, 38, 5, 39, 63pwselbas 17459 . . . 4 (𝜑 → (𝑂𝑇):(Base‘𝑌)⟶(Base‘𝑌))
6564ffnd 6692 . . 3 (𝜑 → (𝑂𝑇) Fn (Base‘𝑌))
66 fniniseg 7035 . . 3 ((𝑂𝑇) Fn (Base‘𝑌) → ((𝐿𝐴) ∈ ((𝑂𝑇) “ {(0g𝑌)}) ↔ ((𝐿𝐴) ∈ (Base‘𝑌) ∧ ((𝑂𝑇)‘(𝐿𝐴)) = (0g𝑌))))
6765, 66syl 17 . 2 (𝜑 → ((𝐿𝐴) ∈ ((𝑂𝑇) “ {(0g𝑌)}) ↔ ((𝐿𝐴) ∈ (Base‘𝑌) ∧ ((𝑂𝑇)‘(𝐿𝐴)) = (0g𝑌))))
6821, 36, 67mpbir2and 713 1 (𝜑 → (𝐿𝐴) ∈ ((𝑂𝑇) “ {(0g𝑌)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cdif 3914  {csn 4592  cmpt 5191  ccnv 5640  cima 5644   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  1c1 11076  cmin 11412   / cdiv 11842  cn 12193  2c2 12248  cz 12536  ...cfz 13475   mod cmo 13838  cexp 14033  cprime 16648  Basecbs 17186  0gc0g 17409  s cpws 17416  Mndcmnd 18668  Grpcgrp 18872  -gcsg 18874  .gcmg 19006  mulGrpcmgp 20056  1rcur 20097  Ringcrg 20149  CRingccrg 20150   RingHom crh 20385  Domncdomn 20608  IDomncidom 20609  Fieldcfield 20646  ringczring 21363  ℤRHomczrh 21416  ℤ/nczn 21419  var1cv1 22067  Poly1cpl1 22068  eval1ce1 22208  deg1cdg1 25966   /L clgs 27212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-ec 8676  df-qs 8680  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-gcd 16472  df-prm 16649  df-phi 16743  df-pc 16815  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-imas 17478  df-qus 17479  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-nsg 19063  df-eqg 19064  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-srg 20103  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-rhm 20388  df-nzr 20429  df-subrng 20462  df-subrg 20486  df-rlreg 20610  df-domn 20611  df-idom 20612  df-drng 20647  df-field 20648  df-lmod 20775  df-lss 20845  df-lsp 20885  df-sra 21087  df-rgmod 21088  df-lidl 21125  df-rsp 21126  df-2idl 21167  df-cnfld 21272  df-zring 21364  df-zrh 21420  df-zn 21423  df-assa 21769  df-asp 21770  df-ascl 21771  df-psr 21825  df-mvr 21826  df-mpl 21827  df-opsr 21829  df-evls 21988  df-evl 21989  df-psr1 22071  df-vr1 22072  df-ply1 22073  df-evl1 22210  df-lgs 27213
This theorem is referenced by:  lgsqrlem4  27267
  Copyright terms: Public domain W3C validator