Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idomodle Structured version   Visualization version   GIF version

Theorem idomodle 43179
Description: Limit on the number of 𝑁-th roots of unity in an integral domain. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
idomodle.g 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))
idomodle.b 𝐵 = (Base‘𝐺)
idomodle.o 𝑂 = (od‘𝐺)
Assertion
Ref Expression
idomodle ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → (♯‘{𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}) ≤ 𝑁)
Distinct variable groups:   𝑥,𝐵   𝑥,𝑁   𝑥,𝑅
Allowed substitution hints:   𝐺(𝑥)   𝑂(𝑥)

Proof of Theorem idomodle
StepHypRef Expression
1 idomodle.b . . . . 5 𝐵 = (Base‘𝐺)
21fvexi 6920 . . . 4 𝐵 ∈ V
32rabex 5344 . . 3 {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∈ V
4 hashxrcl 14392 . . 3 ({𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∈ V → (♯‘{𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}) ∈ ℝ*)
53, 4mp1i 13 . 2 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → (♯‘{𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}) ∈ ℝ*)
6 fvex 6919 . . . 4 (Base‘𝑅) ∈ V
76rabex 5344 . . 3 {𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)} ∈ V
8 hashxrcl 14392 . . 3 ({𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)} ∈ V → (♯‘{𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)}) ∈ ℝ*)
97, 8mp1i 13 . 2 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → (♯‘{𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)}) ∈ ℝ*)
10 nnre 12270 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
1110rexrd 11308 . . 3 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ*)
1211adantl 481 . 2 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ*)
13 isidom 20741 . . . . . . . . . . . 12 (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
1413simplbi 497 . . . . . . . . . . 11 (𝑅 ∈ IDomn → 𝑅 ∈ CRing)
1514adantr 480 . . . . . . . . . 10 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → 𝑅 ∈ CRing)
16 crngring 20262 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
1715, 16syl 17 . . . . . . . . 9 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → 𝑅 ∈ Ring)
1817adantr 480 . . . . . . . 8 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥𝐵) → 𝑅 ∈ Ring)
19 eqid 2734 . . . . . . . . 9 (Unit‘𝑅) = (Unit‘𝑅)
20 idomodle.g . . . . . . . . 9 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))
2119, 20unitgrp 20399 . . . . . . . 8 (𝑅 ∈ Ring → 𝐺 ∈ Grp)
2218, 21syl 17 . . . . . . 7 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥𝐵) → 𝐺 ∈ Grp)
23 simpr 484 . . . . . . 7 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥𝐵) → 𝑥𝐵)
24 nnz 12631 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
2524ad2antlr 727 . . . . . . 7 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥𝐵) → 𝑁 ∈ ℤ)
26 idomodle.o . . . . . . . 8 𝑂 = (od‘𝐺)
27 eqid 2734 . . . . . . . 8 (.g𝐺) = (.g𝐺)
28 eqid 2734 . . . . . . . 8 (0g𝐺) = (0g𝐺)
291, 26, 27, 28oddvds 19579 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑁 ∈ ℤ) → ((𝑂𝑥) ∥ 𝑁 ↔ (𝑁(.g𝐺)𝑥) = (0g𝐺)))
3022, 23, 25, 29syl3anc 1370 . . . . . 6 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥𝐵) → ((𝑂𝑥) ∥ 𝑁 ↔ (𝑁(.g𝐺)𝑥) = (0g𝐺)))
31 eqid 2734 . . . . . . . . . 10 (mulGrp‘𝑅) = (mulGrp‘𝑅)
3219, 31unitsubm 20402 . . . . . . . . 9 (𝑅 ∈ Ring → (Unit‘𝑅) ∈ (SubMnd‘(mulGrp‘𝑅)))
3318, 32syl 17 . . . . . . . 8 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥𝐵) → (Unit‘𝑅) ∈ (SubMnd‘(mulGrp‘𝑅)))
34 nnnn0 12530 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
3534ad2antlr 727 . . . . . . . 8 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥𝐵) → 𝑁 ∈ ℕ0)
3619, 20unitgrpbas 20398 . . . . . . . . . 10 (Unit‘𝑅) = (Base‘𝐺)
371, 36eqtr4i 2765 . . . . . . . . 9 𝐵 = (Unit‘𝑅)
3823, 37eleqtrdi 2848 . . . . . . . 8 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥𝐵) → 𝑥 ∈ (Unit‘𝑅))
39 eqid 2734 . . . . . . . . 9 (.g‘(mulGrp‘𝑅)) = (.g‘(mulGrp‘𝑅))
4039, 20, 27submmulg 19148 . . . . . . . 8 (((Unit‘𝑅) ∈ (SubMnd‘(mulGrp‘𝑅)) ∧ 𝑁 ∈ ℕ0𝑥 ∈ (Unit‘𝑅)) → (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (𝑁(.g𝐺)𝑥))
4133, 35, 38, 40syl3anc 1370 . . . . . . 7 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥𝐵) → (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (𝑁(.g𝐺)𝑥))
42 eqid 2734 . . . . . . . . 9 (1r𝑅) = (1r𝑅)
4319, 20, 42unitgrpid 20401 . . . . . . . 8 (𝑅 ∈ Ring → (1r𝑅) = (0g𝐺))
4418, 43syl 17 . . . . . . 7 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥𝐵) → (1r𝑅) = (0g𝐺))
4541, 44eqeq12d 2750 . . . . . 6 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥𝐵) → ((𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅) ↔ (𝑁(.g𝐺)𝑥) = (0g𝐺)))
4630, 45bitr4d 282 . . . . 5 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥𝐵) → ((𝑂𝑥) ∥ 𝑁 ↔ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)))
4746rabbidva 3439 . . . 4 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} = {𝑥𝐵 ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)})
4847fveq2d 6910 . . 3 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → (♯‘{𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}) = (♯‘{𝑥𝐵 ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)}))
49 eqid 2734 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
5049, 37unitss 20392 . . . . . 6 𝐵 ⊆ (Base‘𝑅)
51 rabss2 4087 . . . . . 6 (𝐵 ⊆ (Base‘𝑅) → {𝑥𝐵 ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)} ⊆ {𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)})
5250, 51mp1i 13 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → {𝑥𝐵 ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)} ⊆ {𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)})
53 ssdomg 9038 . . . . 5 ({𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)} ∈ V → ({𝑥𝐵 ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)} ⊆ {𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)} → {𝑥𝐵 ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)} ≼ {𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)}))
547, 52, 53mpsyl 68 . . . 4 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → {𝑥𝐵 ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)} ≼ {𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)})
55 hashdomi 14415 . . . 4 ({𝑥𝐵 ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)} ≼ {𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)} → (♯‘{𝑥𝐵 ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)}) ≤ (♯‘{𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)}))
5654, 55syl 17 . . 3 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → (♯‘{𝑥𝐵 ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)}) ≤ (♯‘{𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)}))
5748, 56eqbrtrd 5169 . 2 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → (♯‘{𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}) ≤ (♯‘{𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)}))
58 simpl 482 . . 3 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → 𝑅 ∈ IDomn)
5949, 42ringidcl 20279 . . . 4 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
6017, 59syl 17 . . 3 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → (1r𝑅) ∈ (Base‘𝑅))
61 simpr 484 . . 3 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
6249, 39idomrootle 26226 . . 3 ((𝑅 ∈ IDomn ∧ (1r𝑅) ∈ (Base‘𝑅) ∧ 𝑁 ∈ ℕ) → (♯‘{𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)}) ≤ 𝑁)
6358, 60, 61, 62syl3anc 1370 . 2 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → (♯‘{𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)}) ≤ 𝑁)
645, 9, 12, 57, 63xrletrd 13200 1 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → (♯‘{𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}) ≤ 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  {crab 3432  Vcvv 3477  wss 3962   class class class wbr 5147  cfv 6562  (class class class)co 7430  cdom 8981  *cxr 11291  cle 11293  cn 12263  0cn0 12523  cz 12610  chash 14365  cdvds 16286  Basecbs 17244  s cress 17273  0gc0g 17485  SubMndcsubmnd 18807  Grpcgrp 18963  .gcmg 19097  odcod 19556  mulGrpcmgp 20151  1rcur 20198  Ringcrg 20250  CRingccrg 20251  Unitcui 20371  Domncdomn 20708  IDomncidom 20709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-ofr 7697  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-tpos 8249  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-sup 9479  df-inf 9480  df-oi 9547  df-dju 9938  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-xnn0 12597  df-z 12611  df-dec 12731  df-uz 12876  df-rp 13032  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-dvds 16287  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-0g 17487  df-gsum 17488  df-prds 17493  df-pws 17495  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-mhm 18808  df-submnd 18809  df-grp 18966  df-minusg 18967  df-sbg 18968  df-mulg 19098  df-subg 19153  df-ghm 19243  df-cntz 19347  df-od 19560  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-srg 20204  df-ring 20252  df-cring 20253  df-oppr 20350  df-dvdsr 20373  df-unit 20374  df-invr 20404  df-rhm 20488  df-nzr 20529  df-subrng 20562  df-subrg 20586  df-rlreg 20710  df-domn 20711  df-idom 20712  df-lmod 20876  df-lss 20947  df-lsp 20987  df-cnfld 21382  df-assa 21890  df-asp 21891  df-ascl 21892  df-psr 21946  df-mvr 21947  df-mpl 21948  df-opsr 21950  df-evls 22115  df-evl 22116  df-psr1 22196  df-vr1 22197  df-ply1 22198  df-coe1 22199  df-evl1 22335  df-mdeg 26108  df-deg1 26109  df-mon1 26184  df-uc1p 26185  df-q1p 26186  df-r1p 26187
This theorem is referenced by:  idomsubgmo  43181
  Copyright terms: Public domain W3C validator