Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idomodle Structured version   Visualization version   GIF version

Theorem idomodle 43162
Description: Limit on the number of 𝑁-th roots of unity in an integral domain. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
idomodle.g 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))
idomodle.b 𝐵 = (Base‘𝐺)
idomodle.o 𝑂 = (od‘𝐺)
Assertion
Ref Expression
idomodle ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → (♯‘{𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}) ≤ 𝑁)
Distinct variable groups:   𝑥,𝐵   𝑥,𝑁   𝑥,𝑅
Allowed substitution hints:   𝐺(𝑥)   𝑂(𝑥)

Proof of Theorem idomodle
StepHypRef Expression
1 idomodle.b . . . . 5 𝐵 = (Base‘𝐺)
21fvexi 6889 . . . 4 𝐵 ∈ V
32rabex 5309 . . 3 {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∈ V
4 hashxrcl 14373 . . 3 ({𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∈ V → (♯‘{𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}) ∈ ℝ*)
53, 4mp1i 13 . 2 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → (♯‘{𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}) ∈ ℝ*)
6 fvex 6888 . . . 4 (Base‘𝑅) ∈ V
76rabex 5309 . . 3 {𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)} ∈ V
8 hashxrcl 14373 . . 3 ({𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)} ∈ V → (♯‘{𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)}) ∈ ℝ*)
97, 8mp1i 13 . 2 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → (♯‘{𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)}) ∈ ℝ*)
10 nnre 12245 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
1110rexrd 11283 . . 3 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ*)
1211adantl 481 . 2 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ*)
13 isidom 20683 . . . . . . . . . . . 12 (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
1413simplbi 497 . . . . . . . . . . 11 (𝑅 ∈ IDomn → 𝑅 ∈ CRing)
1514adantr 480 . . . . . . . . . 10 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → 𝑅 ∈ CRing)
16 crngring 20203 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
1715, 16syl 17 . . . . . . . . 9 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → 𝑅 ∈ Ring)
1817adantr 480 . . . . . . . 8 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥𝐵) → 𝑅 ∈ Ring)
19 eqid 2735 . . . . . . . . 9 (Unit‘𝑅) = (Unit‘𝑅)
20 idomodle.g . . . . . . . . 9 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))
2119, 20unitgrp 20341 . . . . . . . 8 (𝑅 ∈ Ring → 𝐺 ∈ Grp)
2218, 21syl 17 . . . . . . 7 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥𝐵) → 𝐺 ∈ Grp)
23 simpr 484 . . . . . . 7 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥𝐵) → 𝑥𝐵)
24 nnz 12607 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
2524ad2antlr 727 . . . . . . 7 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥𝐵) → 𝑁 ∈ ℤ)
26 idomodle.o . . . . . . . 8 𝑂 = (od‘𝐺)
27 eqid 2735 . . . . . . . 8 (.g𝐺) = (.g𝐺)
28 eqid 2735 . . . . . . . 8 (0g𝐺) = (0g𝐺)
291, 26, 27, 28oddvds 19526 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑁 ∈ ℤ) → ((𝑂𝑥) ∥ 𝑁 ↔ (𝑁(.g𝐺)𝑥) = (0g𝐺)))
3022, 23, 25, 29syl3anc 1373 . . . . . 6 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥𝐵) → ((𝑂𝑥) ∥ 𝑁 ↔ (𝑁(.g𝐺)𝑥) = (0g𝐺)))
31 eqid 2735 . . . . . . . . . 10 (mulGrp‘𝑅) = (mulGrp‘𝑅)
3219, 31unitsubm 20344 . . . . . . . . 9 (𝑅 ∈ Ring → (Unit‘𝑅) ∈ (SubMnd‘(mulGrp‘𝑅)))
3318, 32syl 17 . . . . . . . 8 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥𝐵) → (Unit‘𝑅) ∈ (SubMnd‘(mulGrp‘𝑅)))
34 nnnn0 12506 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
3534ad2antlr 727 . . . . . . . 8 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥𝐵) → 𝑁 ∈ ℕ0)
3619, 20unitgrpbas 20340 . . . . . . . . . 10 (Unit‘𝑅) = (Base‘𝐺)
371, 36eqtr4i 2761 . . . . . . . . 9 𝐵 = (Unit‘𝑅)
3823, 37eleqtrdi 2844 . . . . . . . 8 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥𝐵) → 𝑥 ∈ (Unit‘𝑅))
39 eqid 2735 . . . . . . . . 9 (.g‘(mulGrp‘𝑅)) = (.g‘(mulGrp‘𝑅))
4039, 20, 27submmulg 19099 . . . . . . . 8 (((Unit‘𝑅) ∈ (SubMnd‘(mulGrp‘𝑅)) ∧ 𝑁 ∈ ℕ0𝑥 ∈ (Unit‘𝑅)) → (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (𝑁(.g𝐺)𝑥))
4133, 35, 38, 40syl3anc 1373 . . . . . . 7 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥𝐵) → (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (𝑁(.g𝐺)𝑥))
42 eqid 2735 . . . . . . . . 9 (1r𝑅) = (1r𝑅)
4319, 20, 42unitgrpid 20343 . . . . . . . 8 (𝑅 ∈ Ring → (1r𝑅) = (0g𝐺))
4418, 43syl 17 . . . . . . 7 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥𝐵) → (1r𝑅) = (0g𝐺))
4541, 44eqeq12d 2751 . . . . . 6 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥𝐵) → ((𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅) ↔ (𝑁(.g𝐺)𝑥) = (0g𝐺)))
4630, 45bitr4d 282 . . . . 5 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥𝐵) → ((𝑂𝑥) ∥ 𝑁 ↔ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)))
4746rabbidva 3422 . . . 4 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} = {𝑥𝐵 ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)})
4847fveq2d 6879 . . 3 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → (♯‘{𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}) = (♯‘{𝑥𝐵 ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)}))
49 eqid 2735 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
5049, 37unitss 20334 . . . . . 6 𝐵 ⊆ (Base‘𝑅)
51 rabss2 4053 . . . . . 6 (𝐵 ⊆ (Base‘𝑅) → {𝑥𝐵 ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)} ⊆ {𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)})
5250, 51mp1i 13 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → {𝑥𝐵 ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)} ⊆ {𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)})
53 ssdomg 9012 . . . . 5 ({𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)} ∈ V → ({𝑥𝐵 ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)} ⊆ {𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)} → {𝑥𝐵 ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)} ≼ {𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)}))
547, 52, 53mpsyl 68 . . . 4 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → {𝑥𝐵 ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)} ≼ {𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)})
55 hashdomi 14396 . . . 4 ({𝑥𝐵 ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)} ≼ {𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)} → (♯‘{𝑥𝐵 ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)}) ≤ (♯‘{𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)}))
5654, 55syl 17 . . 3 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → (♯‘{𝑥𝐵 ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)}) ≤ (♯‘{𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)}))
5748, 56eqbrtrd 5141 . 2 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → (♯‘{𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}) ≤ (♯‘{𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)}))
58 simpl 482 . . 3 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → 𝑅 ∈ IDomn)
5949, 42ringidcl 20223 . . . 4 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
6017, 59syl 17 . . 3 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → (1r𝑅) ∈ (Base‘𝑅))
61 simpr 484 . . 3 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
6249, 39idomrootle 26128 . . 3 ((𝑅 ∈ IDomn ∧ (1r𝑅) ∈ (Base‘𝑅) ∧ 𝑁 ∈ ℕ) → (♯‘{𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)}) ≤ 𝑁)
6358, 60, 61, 62syl3anc 1373 . 2 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → (♯‘{𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)}) ≤ 𝑁)
645, 9, 12, 57, 63xrletrd 13176 1 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → (♯‘{𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}) ≤ 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  {crab 3415  Vcvv 3459  wss 3926   class class class wbr 5119  cfv 6530  (class class class)co 7403  cdom 8955  *cxr 11266  cle 11268  cn 12238  0cn0 12499  cz 12586  chash 14346  cdvds 16270  Basecbs 17226  s cress 17249  0gc0g 17451  SubMndcsubmnd 18758  Grpcgrp 18914  .gcmg 19048  odcod 19503  mulGrpcmgp 20098  1rcur 20139  Ringcrg 20191  CRingccrg 20192  Unitcui 20313  Domncdomn 20650  IDomncidom 20651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-ofr 7670  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-tpos 8223  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-er 8717  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-sup 9452  df-inf 9453  df-oi 9522  df-dju 9913  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-xnn0 12573  df-z 12587  df-dec 12707  df-uz 12851  df-rp 13007  df-fz 13523  df-fzo 13670  df-fl 13807  df-mod 13885  df-seq 14018  df-exp 14078  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-dvds 16271  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-0g 17453  df-gsum 17454  df-prds 17459  df-pws 17461  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-mhm 18759  df-submnd 18760  df-grp 18917  df-minusg 18918  df-sbg 18919  df-mulg 19049  df-subg 19104  df-ghm 19194  df-cntz 19298  df-od 19507  df-cmn 19761  df-abl 19762  df-mgp 20099  df-rng 20111  df-ur 20140  df-srg 20145  df-ring 20193  df-cring 20194  df-oppr 20295  df-dvdsr 20315  df-unit 20316  df-invr 20346  df-rhm 20430  df-nzr 20471  df-subrng 20504  df-subrg 20528  df-rlreg 20652  df-domn 20653  df-idom 20654  df-lmod 20817  df-lss 20887  df-lsp 20927  df-cnfld 21314  df-assa 21811  df-asp 21812  df-ascl 21813  df-psr 21867  df-mvr 21868  df-mpl 21869  df-opsr 21871  df-evls 22030  df-evl 22031  df-psr1 22113  df-vr1 22114  df-ply1 22115  df-coe1 22116  df-evl1 22252  df-mdeg 26010  df-deg1 26011  df-mon1 26086  df-uc1p 26087  df-q1p 26088  df-r1p 26089
This theorem is referenced by:  idomsubgmo  43164
  Copyright terms: Public domain W3C validator