Proof of Theorem idomodle
Step | Hyp | Ref
| Expression |
1 | | idomodle.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐺) |
2 | 1 | fvexi 6788 |
. . . 4
⊢ 𝐵 ∈ V |
3 | 2 | rabex 5256 |
. . 3
⊢ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ∈ V |
4 | | hashxrcl 14072 |
. . 3
⊢ ({𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ∈ V → (♯‘{𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁}) ∈
ℝ*) |
5 | 3, 4 | mp1i 13 |
. 2
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) →
(♯‘{𝑥 ∈
𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁}) ∈
ℝ*) |
6 | | fvex 6787 |
. . . 4
⊢
(Base‘𝑅)
∈ V |
7 | 6 | rabex 5256 |
. . 3
⊢ {𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r‘𝑅)} ∈ V |
8 | | hashxrcl 14072 |
. . 3
⊢ ({𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r‘𝑅)} ∈ V → (♯‘{𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r‘𝑅)}) ∈
ℝ*) |
9 | 7, 8 | mp1i 13 |
. 2
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) →
(♯‘{𝑥 ∈
(Base‘𝑅) ∣
(𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r‘𝑅)}) ∈
ℝ*) |
10 | | nnre 11980 |
. . . 4
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℝ) |
11 | 10 | rexrd 11025 |
. . 3
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℝ*) |
12 | 11 | adantl 482 |
. 2
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → 𝑁 ∈
ℝ*) |
13 | | isidom 20575 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) |
14 | 13 | simplbi 498 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ IDomn → 𝑅 ∈ CRing) |
15 | 14 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → 𝑅 ∈ CRing) |
16 | | crngring 19795 |
. . . . . . . . . 10
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
17 | 15, 16 | syl 17 |
. . . . . . . . 9
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → 𝑅 ∈ Ring) |
18 | 17 | adantr 481 |
. . . . . . . 8
⊢ (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝐵) → 𝑅 ∈ Ring) |
19 | | eqid 2738 |
. . . . . . . . 9
⊢
(Unit‘𝑅) =
(Unit‘𝑅) |
20 | | idomodle.g |
. . . . . . . . 9
⊢ 𝐺 = ((mulGrp‘𝑅) ↾s
(Unit‘𝑅)) |
21 | 19, 20 | unitgrp 19909 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝐺 ∈ Grp) |
22 | 18, 21 | syl 17 |
. . . . . . 7
⊢ (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝐵) → 𝐺 ∈ Grp) |
23 | | simpr 485 |
. . . . . . 7
⊢ (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
24 | | nnz 12342 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) |
25 | 24 | ad2antlr 724 |
. . . . . . 7
⊢ (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝐵) → 𝑁 ∈ ℤ) |
26 | | idomodle.o |
. . . . . . . 8
⊢ 𝑂 = (od‘𝐺) |
27 | | eqid 2738 |
. . . . . . . 8
⊢
(.g‘𝐺) = (.g‘𝐺) |
28 | | eqid 2738 |
. . . . . . . 8
⊢
(0g‘𝐺) = (0g‘𝐺) |
29 | 1, 26, 27, 28 | oddvds 19155 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑁 ∈ ℤ) → ((𝑂‘𝑥) ∥ 𝑁 ↔ (𝑁(.g‘𝐺)𝑥) = (0g‘𝐺))) |
30 | 22, 23, 25, 29 | syl3anc 1370 |
. . . . . 6
⊢ (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝐵) → ((𝑂‘𝑥) ∥ 𝑁 ↔ (𝑁(.g‘𝐺)𝑥) = (0g‘𝐺))) |
31 | | eqid 2738 |
. . . . . . . . . 10
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
32 | 19, 31 | unitsubm 19912 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring →
(Unit‘𝑅) ∈
(SubMnd‘(mulGrp‘𝑅))) |
33 | 18, 32 | syl 17 |
. . . . . . . 8
⊢ (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝐵) → (Unit‘𝑅) ∈ (SubMnd‘(mulGrp‘𝑅))) |
34 | | nnnn0 12240 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
35 | 34 | ad2antlr 724 |
. . . . . . . 8
⊢ (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝐵) → 𝑁 ∈
ℕ0) |
36 | 19, 20 | unitgrpbas 19908 |
. . . . . . . . . 10
⊢
(Unit‘𝑅) =
(Base‘𝐺) |
37 | 1, 36 | eqtr4i 2769 |
. . . . . . . . 9
⊢ 𝐵 = (Unit‘𝑅) |
38 | 23, 37 | eleqtrdi 2849 |
. . . . . . . 8
⊢ (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (Unit‘𝑅)) |
39 | | eqid 2738 |
. . . . . . . . 9
⊢
(.g‘(mulGrp‘𝑅)) =
(.g‘(mulGrp‘𝑅)) |
40 | 39, 20, 27 | submmulg 18747 |
. . . . . . . 8
⊢
(((Unit‘𝑅)
∈ (SubMnd‘(mulGrp‘𝑅)) ∧ 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (Unit‘𝑅)) → (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (𝑁(.g‘𝐺)𝑥)) |
41 | 33, 35, 38, 40 | syl3anc 1370 |
. . . . . . 7
⊢ (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝐵) → (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (𝑁(.g‘𝐺)𝑥)) |
42 | | eqid 2738 |
. . . . . . . . 9
⊢
(1r‘𝑅) = (1r‘𝑅) |
43 | 19, 20, 42 | unitgrpid 19911 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring →
(1r‘𝑅) =
(0g‘𝐺)) |
44 | 18, 43 | syl 17 |
. . . . . . 7
⊢ (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝐵) → (1r‘𝑅) = (0g‘𝐺)) |
45 | 41, 44 | eqeq12d 2754 |
. . . . . 6
⊢ (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝐵) → ((𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r‘𝑅) ↔ (𝑁(.g‘𝐺)𝑥) = (0g‘𝐺))) |
46 | 30, 45 | bitr4d 281 |
. . . . 5
⊢ (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝐵) → ((𝑂‘𝑥) ∥ 𝑁 ↔ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r‘𝑅))) |
47 | 46 | rabbidva 3413 |
. . . 4
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} = {𝑥 ∈ 𝐵 ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r‘𝑅)}) |
48 | 47 | fveq2d 6778 |
. . 3
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) →
(♯‘{𝑥 ∈
𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁}) = (♯‘{𝑥 ∈ 𝐵 ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r‘𝑅)})) |
49 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝑅) =
(Base‘𝑅) |
50 | 49, 37 | unitss 19902 |
. . . . . 6
⊢ 𝐵 ⊆ (Base‘𝑅) |
51 | | rabss2 4011 |
. . . . . 6
⊢ (𝐵 ⊆ (Base‘𝑅) → {𝑥 ∈ 𝐵 ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r‘𝑅)} ⊆ {𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r‘𝑅)}) |
52 | 50, 51 | mp1i 13 |
. . . . 5
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → {𝑥 ∈ 𝐵 ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r‘𝑅)} ⊆ {𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r‘𝑅)}) |
53 | | ssdomg 8786 |
. . . . 5
⊢ ({𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r‘𝑅)} ∈ V → ({𝑥 ∈ 𝐵 ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r‘𝑅)} ⊆ {𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r‘𝑅)} → {𝑥 ∈ 𝐵 ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r‘𝑅)} ≼ {𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r‘𝑅)})) |
54 | 7, 52, 53 | mpsyl 68 |
. . . 4
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → {𝑥 ∈ 𝐵 ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r‘𝑅)} ≼ {𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r‘𝑅)}) |
55 | | hashdomi 14095 |
. . . 4
⊢ ({𝑥 ∈ 𝐵 ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r‘𝑅)} ≼ {𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r‘𝑅)} → (♯‘{𝑥 ∈ 𝐵 ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r‘𝑅)}) ≤ (♯‘{𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r‘𝑅)})) |
56 | 54, 55 | syl 17 |
. . 3
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) →
(♯‘{𝑥 ∈
𝐵 ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r‘𝑅)}) ≤ (♯‘{𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r‘𝑅)})) |
57 | 48, 56 | eqbrtrd 5096 |
. 2
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) →
(♯‘{𝑥 ∈
𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁}) ≤ (♯‘{𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r‘𝑅)})) |
58 | | simpl 483 |
. . 3
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → 𝑅 ∈ IDomn) |
59 | 49, 42 | ringidcl 19807 |
. . . 4
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ (Base‘𝑅)) |
60 | 17, 59 | syl 17 |
. . 3
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) →
(1r‘𝑅)
∈ (Base‘𝑅)) |
61 | | simpr 485 |
. . 3
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → 𝑁 ∈
ℕ) |
62 | 49, 39 | idomrootle 41020 |
. . 3
⊢ ((𝑅 ∈ IDomn ∧
(1r‘𝑅)
∈ (Base‘𝑅) ∧
𝑁 ∈ ℕ) →
(♯‘{𝑥 ∈
(Base‘𝑅) ∣
(𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r‘𝑅)}) ≤ 𝑁) |
63 | 58, 60, 61, 62 | syl3anc 1370 |
. 2
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) →
(♯‘{𝑥 ∈
(Base‘𝑅) ∣
(𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r‘𝑅)}) ≤ 𝑁) |
64 | 5, 9, 12, 57, 63 | xrletrd 12896 |
1
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) →
(♯‘{𝑥 ∈
𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁}) ≤ 𝑁) |