Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idomodle Structured version   Visualization version   GIF version

Theorem idomodle 40724
Description: Limit on the number of 𝑁-th roots of unity in an integral domain. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
idomodle.g 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))
idomodle.b 𝐵 = (Base‘𝐺)
idomodle.o 𝑂 = (od‘𝐺)
Assertion
Ref Expression
idomodle ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → (♯‘{𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}) ≤ 𝑁)
Distinct variable groups:   𝑥,𝐵   𝑥,𝑁   𝑥,𝑅
Allowed substitution hints:   𝐺(𝑥)   𝑂(𝑥)

Proof of Theorem idomodle
StepHypRef Expression
1 idomodle.b . . . . 5 𝐵 = (Base‘𝐺)
21fvexi 6731 . . . 4 𝐵 ∈ V
32rabex 5225 . . 3 {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∈ V
4 hashxrcl 13924 . . 3 ({𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∈ V → (♯‘{𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}) ∈ ℝ*)
53, 4mp1i 13 . 2 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → (♯‘{𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}) ∈ ℝ*)
6 fvex 6730 . . . 4 (Base‘𝑅) ∈ V
76rabex 5225 . . 3 {𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)} ∈ V
8 hashxrcl 13924 . . 3 ({𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)} ∈ V → (♯‘{𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)}) ∈ ℝ*)
97, 8mp1i 13 . 2 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → (♯‘{𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)}) ∈ ℝ*)
10 nnre 11837 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
1110rexrd 10883 . . 3 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ*)
1211adantl 485 . 2 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ*)
13 isidom 20342 . . . . . . . . . . . 12 (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
1413simplbi 501 . . . . . . . . . . 11 (𝑅 ∈ IDomn → 𝑅 ∈ CRing)
1514adantr 484 . . . . . . . . . 10 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → 𝑅 ∈ CRing)
16 crngring 19574 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
1715, 16syl 17 . . . . . . . . 9 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → 𝑅 ∈ Ring)
1817adantr 484 . . . . . . . 8 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥𝐵) → 𝑅 ∈ Ring)
19 eqid 2737 . . . . . . . . 9 (Unit‘𝑅) = (Unit‘𝑅)
20 idomodle.g . . . . . . . . 9 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))
2119, 20unitgrp 19685 . . . . . . . 8 (𝑅 ∈ Ring → 𝐺 ∈ Grp)
2218, 21syl 17 . . . . . . 7 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥𝐵) → 𝐺 ∈ Grp)
23 simpr 488 . . . . . . 7 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥𝐵) → 𝑥𝐵)
24 nnz 12199 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
2524ad2antlr 727 . . . . . . 7 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥𝐵) → 𝑁 ∈ ℤ)
26 idomodle.o . . . . . . . 8 𝑂 = (od‘𝐺)
27 eqid 2737 . . . . . . . 8 (.g𝐺) = (.g𝐺)
28 eqid 2737 . . . . . . . 8 (0g𝐺) = (0g𝐺)
291, 26, 27, 28oddvds 18939 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑁 ∈ ℤ) → ((𝑂𝑥) ∥ 𝑁 ↔ (𝑁(.g𝐺)𝑥) = (0g𝐺)))
3022, 23, 25, 29syl3anc 1373 . . . . . 6 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥𝐵) → ((𝑂𝑥) ∥ 𝑁 ↔ (𝑁(.g𝐺)𝑥) = (0g𝐺)))
31 eqid 2737 . . . . . . . . . 10 (mulGrp‘𝑅) = (mulGrp‘𝑅)
3219, 31unitsubm 19688 . . . . . . . . 9 (𝑅 ∈ Ring → (Unit‘𝑅) ∈ (SubMnd‘(mulGrp‘𝑅)))
3318, 32syl 17 . . . . . . . 8 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥𝐵) → (Unit‘𝑅) ∈ (SubMnd‘(mulGrp‘𝑅)))
34 nnnn0 12097 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
3534ad2antlr 727 . . . . . . . 8 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥𝐵) → 𝑁 ∈ ℕ0)
3619, 20unitgrpbas 19684 . . . . . . . . . 10 (Unit‘𝑅) = (Base‘𝐺)
371, 36eqtr4i 2768 . . . . . . . . 9 𝐵 = (Unit‘𝑅)
3823, 37eleqtrdi 2848 . . . . . . . 8 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥𝐵) → 𝑥 ∈ (Unit‘𝑅))
39 eqid 2737 . . . . . . . . 9 (.g‘(mulGrp‘𝑅)) = (.g‘(mulGrp‘𝑅))
4039, 20, 27submmulg 18535 . . . . . . . 8 (((Unit‘𝑅) ∈ (SubMnd‘(mulGrp‘𝑅)) ∧ 𝑁 ∈ ℕ0𝑥 ∈ (Unit‘𝑅)) → (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (𝑁(.g𝐺)𝑥))
4133, 35, 38, 40syl3anc 1373 . . . . . . 7 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥𝐵) → (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (𝑁(.g𝐺)𝑥))
42 eqid 2737 . . . . . . . . 9 (1r𝑅) = (1r𝑅)
4319, 20, 42unitgrpid 19687 . . . . . . . 8 (𝑅 ∈ Ring → (1r𝑅) = (0g𝐺))
4418, 43syl 17 . . . . . . 7 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥𝐵) → (1r𝑅) = (0g𝐺))
4541, 44eqeq12d 2753 . . . . . 6 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥𝐵) → ((𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅) ↔ (𝑁(.g𝐺)𝑥) = (0g𝐺)))
4630, 45bitr4d 285 . . . . 5 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ 𝑥𝐵) → ((𝑂𝑥) ∥ 𝑁 ↔ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)))
4746rabbidva 3388 . . . 4 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} = {𝑥𝐵 ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)})
4847fveq2d 6721 . . 3 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → (♯‘{𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}) = (♯‘{𝑥𝐵 ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)}))
49 eqid 2737 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
5049, 37unitss 19678 . . . . . 6 𝐵 ⊆ (Base‘𝑅)
51 rabss2 3991 . . . . . 6 (𝐵 ⊆ (Base‘𝑅) → {𝑥𝐵 ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)} ⊆ {𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)})
5250, 51mp1i 13 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → {𝑥𝐵 ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)} ⊆ {𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)})
53 ssdomg 8674 . . . . 5 ({𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)} ∈ V → ({𝑥𝐵 ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)} ⊆ {𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)} → {𝑥𝐵 ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)} ≼ {𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)}))
547, 52, 53mpsyl 68 . . . 4 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → {𝑥𝐵 ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)} ≼ {𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)})
55 hashdomi 13947 . . . 4 ({𝑥𝐵 ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)} ≼ {𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)} → (♯‘{𝑥𝐵 ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)}) ≤ (♯‘{𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)}))
5654, 55syl 17 . . 3 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → (♯‘{𝑥𝐵 ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)}) ≤ (♯‘{𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)}))
5748, 56eqbrtrd 5075 . 2 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → (♯‘{𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}) ≤ (♯‘{𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)}))
58 simpl 486 . . 3 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → 𝑅 ∈ IDomn)
5949, 42ringidcl 19586 . . . 4 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
6017, 59syl 17 . . 3 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → (1r𝑅) ∈ (Base‘𝑅))
61 simpr 488 . . 3 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
6249, 39idomrootle 40723 . . 3 ((𝑅 ∈ IDomn ∧ (1r𝑅) ∈ (Base‘𝑅) ∧ 𝑁 ∈ ℕ) → (♯‘{𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)}) ≤ 𝑁)
6358, 60, 61, 62syl3anc 1373 . 2 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → (♯‘{𝑥 ∈ (Base‘𝑅) ∣ (𝑁(.g‘(mulGrp‘𝑅))𝑥) = (1r𝑅)}) ≤ 𝑁)
645, 9, 12, 57, 63xrletrd 12752 1 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → (♯‘{𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}) ≤ 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  {crab 3065  Vcvv 3408  wss 3866   class class class wbr 5053  cfv 6380  (class class class)co 7213  cdom 8624  *cxr 10866  cle 10868  cn 11830  0cn0 12090  cz 12176  chash 13896  cdvds 15815  Basecbs 16760  s cress 16784  0gc0g 16944  SubMndcsubmnd 18217  Grpcgrp 18365  .gcmg 18488  odcod 18916  mulGrpcmgp 19504  1rcur 19516  Ringcrg 19562  CRingccrg 19563  Unitcui 19657  Domncdomn 20318  IDomncidom 20319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-addf 10808  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-ofr 7470  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-tpos 7968  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-oadd 8206  df-er 8391  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-sup 9058  df-inf 9059  df-oi 9126  df-dju 9517  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-xnn0 12163  df-z 12177  df-dec 12294  df-uz 12439  df-rp 12587  df-fz 13096  df-fzo 13239  df-fl 13367  df-mod 13443  df-seq 13575  df-exp 13636  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-dvds 15816  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-hom 16826  df-cco 16827  df-0g 16946  df-gsum 16947  df-prds 16952  df-pws 16954  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-mhm 18218  df-submnd 18219  df-grp 18368  df-minusg 18369  df-sbg 18370  df-mulg 18489  df-subg 18540  df-ghm 18620  df-cntz 18711  df-od 18920  df-cmn 19172  df-abl 19173  df-mgp 19505  df-ur 19517  df-srg 19521  df-ring 19564  df-cring 19565  df-oppr 19641  df-dvdsr 19659  df-unit 19660  df-invr 19690  df-rnghom 19735  df-subrg 19798  df-lmod 19901  df-lss 19969  df-lsp 20009  df-nzr 20296  df-rlreg 20321  df-domn 20322  df-idom 20323  df-cnfld 20364  df-assa 20815  df-asp 20816  df-ascl 20817  df-psr 20868  df-mvr 20869  df-mpl 20870  df-opsr 20872  df-evls 21032  df-evl 21033  df-psr1 21101  df-vr1 21102  df-ply1 21103  df-coe1 21104  df-evl1 21232  df-mdeg 24950  df-deg1 24951  df-mon1 25028  df-uc1p 25029  df-q1p 25030  df-r1p 25031
This theorem is referenced by:  idomsubgmo  40726
  Copyright terms: Public domain W3C validator