MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsqrlem2 Structured version   Visualization version   GIF version

Theorem lgsqrlem2 26400
Description: Lemma for lgsqr 26404. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
lgsqr.y 𝑌 = (ℤ/nℤ‘𝑃)
lgsqr.s 𝑆 = (Poly1𝑌)
lgsqr.b 𝐵 = (Base‘𝑆)
lgsqr.d 𝐷 = ( deg1𝑌)
lgsqr.o 𝑂 = (eval1𝑌)
lgsqr.e = (.g‘(mulGrp‘𝑆))
lgsqr.x 𝑋 = (var1𝑌)
lgsqr.m = (-g𝑆)
lgsqr.u 1 = (1r𝑆)
lgsqr.t 𝑇 = ((((𝑃 − 1) / 2) 𝑋) 1 )
lgsqr.l 𝐿 = (ℤRHom‘𝑌)
lgsqr.1 (𝜑𝑃 ∈ (ℙ ∖ {2}))
lgsqr.g 𝐺 = (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑦↑2)))
Assertion
Ref Expression
lgsqrlem2 (𝜑𝐺:(1...((𝑃 − 1) / 2))–1-1→((𝑂𝑇) “ {(0g𝑌)}))
Distinct variable groups:   𝑦,𝑂   𝑦,𝑃   𝜑,𝑦   𝑦,𝑇   𝑦,𝐿   𝑦,𝑌
Allowed substitution hints:   𝐵(𝑦)   𝐷(𝑦)   𝑆(𝑦)   1 (𝑦)   (𝑦)   𝐺(𝑦)   (𝑦)   𝑋(𝑦)

Proof of Theorem lgsqrlem2
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lgsqr.1 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ (ℙ ∖ {2}))
21eldifad 3895 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℙ)
3 lgsqr.y . . . . . . . . . . . . 13 𝑌 = (ℤ/nℤ‘𝑃)
43znfld 20680 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 𝑌 ∈ Field)
52, 4syl 17 . . . . . . . . . . 11 (𝜑𝑌 ∈ Field)
6 fldidom 20489 . . . . . . . . . . 11 (𝑌 ∈ Field → 𝑌 ∈ IDomn)
75, 6syl 17 . . . . . . . . . 10 (𝜑𝑌 ∈ IDomn)
8 isidom 20488 . . . . . . . . . . 11 (𝑌 ∈ IDomn ↔ (𝑌 ∈ CRing ∧ 𝑌 ∈ Domn))
98simplbi 497 . . . . . . . . . 10 (𝑌 ∈ IDomn → 𝑌 ∈ CRing)
107, 9syl 17 . . . . . . . . 9 (𝜑𝑌 ∈ CRing)
11 crngring 19710 . . . . . . . . 9 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
1210, 11syl 17 . . . . . . . 8 (𝜑𝑌 ∈ Ring)
13 lgsqr.l . . . . . . . . 9 𝐿 = (ℤRHom‘𝑌)
1413zrhrhm 20625 . . . . . . . 8 (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌))
1512, 14syl 17 . . . . . . 7 (𝜑𝐿 ∈ (ℤring RingHom 𝑌))
16 zringbas 20588 . . . . . . . 8 ℤ = (Base‘ℤring)
17 eqid 2738 . . . . . . . 8 (Base‘𝑌) = (Base‘𝑌)
1816, 17rhmf 19885 . . . . . . 7 (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿:ℤ⟶(Base‘𝑌))
1915, 18syl 17 . . . . . 6 (𝜑𝐿:ℤ⟶(Base‘𝑌))
2019adantr 480 . . . . 5 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝐿:ℤ⟶(Base‘𝑌))
21 elfzelz 13185 . . . . . . 7 (𝑦 ∈ (1...((𝑃 − 1) / 2)) → 𝑦 ∈ ℤ)
2221adantl 481 . . . . . 6 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑦 ∈ ℤ)
23 zsqcl 13776 . . . . . 6 (𝑦 ∈ ℤ → (𝑦↑2) ∈ ℤ)
2422, 23syl 17 . . . . 5 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝑦↑2) ∈ ℤ)
2520, 24ffvelrnd 6944 . . . 4 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(𝑦↑2)) ∈ (Base‘𝑌))
26 lgsqr.s . . . . 5 𝑆 = (Poly1𝑌)
27 lgsqr.b . . . . 5 𝐵 = (Base‘𝑆)
28 lgsqr.d . . . . 5 𝐷 = ( deg1𝑌)
29 lgsqr.o . . . . 5 𝑂 = (eval1𝑌)
30 lgsqr.e . . . . 5 = (.g‘(mulGrp‘𝑆))
31 lgsqr.x . . . . 5 𝑋 = (var1𝑌)
32 lgsqr.m . . . . 5 = (-g𝑆)
33 lgsqr.u . . . . 5 1 = (1r𝑆)
34 lgsqr.t . . . . 5 𝑇 = ((((𝑃 − 1) / 2) 𝑋) 1 )
351adantr 480 . . . . 5 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ (ℙ ∖ {2}))
36 elfznn 13214 . . . . . . . . . . 11 (𝑦 ∈ (1...((𝑃 − 1) / 2)) → 𝑦 ∈ ℕ)
3736adantl 481 . . . . . . . . . 10 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑦 ∈ ℕ)
3837nncnd 11919 . . . . . . . . 9 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑦 ∈ ℂ)
39 oddprm 16439 . . . . . . . . . . . 12 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
401, 39syl 17 . . . . . . . . . . 11 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ)
4140nnnn0d 12223 . . . . . . . . . 10 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ0)
4241adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 − 1) / 2) ∈ ℕ0)
43 2nn0 12180 . . . . . . . . . 10 2 ∈ ℕ0
4443a1i 11 . . . . . . . . 9 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 2 ∈ ℕ0)
4538, 42, 44expmuld 13795 . . . . . . . 8 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝑦↑(2 · ((𝑃 − 1) / 2))) = ((𝑦↑2)↑((𝑃 − 1) / 2)))
46 prmnn 16307 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
472, 46syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ ℕ)
4847nnred 11918 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℝ)
49 peano2rem 11218 . . . . . . . . . . . . . 14 (𝑃 ∈ ℝ → (𝑃 − 1) ∈ ℝ)
5048, 49syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑃 − 1) ∈ ℝ)
5150recnd 10934 . . . . . . . . . . . 12 (𝜑 → (𝑃 − 1) ∈ ℂ)
52 2cnd 11981 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℂ)
53 2ne0 12007 . . . . . . . . . . . . 13 2 ≠ 0
5453a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ≠ 0)
5551, 52, 54divcan2d 11683 . . . . . . . . . . 11 (𝜑 → (2 · ((𝑃 − 1) / 2)) = (𝑃 − 1))
56 phiprm 16406 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → (ϕ‘𝑃) = (𝑃 − 1))
572, 56syl 17 . . . . . . . . . . 11 (𝜑 → (ϕ‘𝑃) = (𝑃 − 1))
5855, 57eqtr4d 2781 . . . . . . . . . 10 (𝜑 → (2 · ((𝑃 − 1) / 2)) = (ϕ‘𝑃))
5958adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (2 · ((𝑃 − 1) / 2)) = (ϕ‘𝑃))
6059oveq2d 7271 . . . . . . . 8 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝑦↑(2 · ((𝑃 − 1) / 2))) = (𝑦↑(ϕ‘𝑃)))
6145, 60eqtr3d 2780 . . . . . . 7 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → ((𝑦↑2)↑((𝑃 − 1) / 2)) = (𝑦↑(ϕ‘𝑃)))
6261oveq1d 7270 . . . . . 6 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (((𝑦↑2)↑((𝑃 − 1) / 2)) mod 𝑃) = ((𝑦↑(ϕ‘𝑃)) mod 𝑃))
632adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℙ)
6463, 46syl 17 . . . . . . 7 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℕ)
6547nnzd 12354 . . . . . . . . . 10 (𝜑𝑃 ∈ ℤ)
6665adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℤ)
6722, 66gcdcomd 16149 . . . . . . . 8 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝑦 gcd 𝑃) = (𝑃 gcd 𝑦))
6837nnred 11918 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑦 ∈ ℝ)
6950rehalfcld 12150 . . . . . . . . . . . . 13 (𝜑 → ((𝑃 − 1) / 2) ∈ ℝ)
7069adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 − 1) / 2) ∈ ℝ)
7148adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℝ)
72 elfzle2 13189 . . . . . . . . . . . . 13 (𝑦 ∈ (1...((𝑃 − 1) / 2)) → 𝑦 ≤ ((𝑃 − 1) / 2))
7372adantl 481 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑦 ≤ ((𝑃 − 1) / 2))
74 prmuz2 16329 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
752, 74syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ (ℤ‘2))
76 uz2m1nn 12592 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℤ‘2) → (𝑃 − 1) ∈ ℕ)
7775, 76syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑃 − 1) ∈ ℕ)
7877nnrpd 12699 . . . . . . . . . . . . . . 15 (𝜑 → (𝑃 − 1) ∈ ℝ+)
79 rphalflt 12688 . . . . . . . . . . . . . . 15 ((𝑃 − 1) ∈ ℝ+ → ((𝑃 − 1) / 2) < (𝑃 − 1))
8078, 79syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((𝑃 − 1) / 2) < (𝑃 − 1))
8148ltm1d 11837 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 − 1) < 𝑃)
8269, 50, 48, 80, 81lttrd 11066 . . . . . . . . . . . . 13 (𝜑 → ((𝑃 − 1) / 2) < 𝑃)
8382adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 − 1) / 2) < 𝑃)
8468, 70, 71, 73, 83lelttrd 11063 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑦 < 𝑃)
8568, 71ltnled 11052 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝑦 < 𝑃 ↔ ¬ 𝑃𝑦))
8684, 85mpbid 231 . . . . . . . . . 10 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → ¬ 𝑃𝑦)
87 dvdsle 15947 . . . . . . . . . . 11 ((𝑃 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑃𝑦𝑃𝑦))
8866, 37, 87syl2anc 583 . . . . . . . . . 10 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝑃𝑦𝑃𝑦))
8986, 88mtod 197 . . . . . . . . 9 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → ¬ 𝑃𝑦)
90 coprm 16344 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ ℤ) → (¬ 𝑃𝑦 ↔ (𝑃 gcd 𝑦) = 1))
9163, 22, 90syl2anc 583 . . . . . . . . 9 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (¬ 𝑃𝑦 ↔ (𝑃 gcd 𝑦) = 1))
9289, 91mpbid 231 . . . . . . . 8 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 gcd 𝑦) = 1)
9367, 92eqtrd 2778 . . . . . . 7 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝑦 gcd 𝑃) = 1)
94 eulerth 16412 . . . . . . 7 ((𝑃 ∈ ℕ ∧ 𝑦 ∈ ℤ ∧ (𝑦 gcd 𝑃) = 1) → ((𝑦↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃))
9564, 22, 93, 94syl3anc 1369 . . . . . 6 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → ((𝑦↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃))
9662, 95eqtrd 2778 . . . . 5 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (((𝑦↑2)↑((𝑃 − 1) / 2)) mod 𝑃) = (1 mod 𝑃))
973, 26, 27, 28, 29, 30, 31, 32, 33, 34, 13, 35, 24, 96lgsqrlem1 26399 . . . 4 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → ((𝑂𝑇)‘(𝐿‘(𝑦↑2))) = (0g𝑌))
98 eqid 2738 . . . . . . . 8 (𝑌s (Base‘𝑌)) = (𝑌s (Base‘𝑌))
99 eqid 2738 . . . . . . . 8 (Base‘(𝑌s (Base‘𝑌))) = (Base‘(𝑌s (Base‘𝑌)))
100 fvexd 6771 . . . . . . . 8 (𝜑 → (Base‘𝑌) ∈ V)
10129, 26, 98, 17evl1rhm 21408 . . . . . . . . . . 11 (𝑌 ∈ CRing → 𝑂 ∈ (𝑆 RingHom (𝑌s (Base‘𝑌))))
10210, 101syl 17 . . . . . . . . . 10 (𝜑𝑂 ∈ (𝑆 RingHom (𝑌s (Base‘𝑌))))
10327, 99rhmf 19885 . . . . . . . . . 10 (𝑂 ∈ (𝑆 RingHom (𝑌s (Base‘𝑌))) → 𝑂:𝐵⟶(Base‘(𝑌s (Base‘𝑌))))
104102, 103syl 17 . . . . . . . . 9 (𝜑𝑂:𝐵⟶(Base‘(𝑌s (Base‘𝑌))))
10526ply1ring 21329 . . . . . . . . . . . . 13 (𝑌 ∈ Ring → 𝑆 ∈ Ring)
10612, 105syl 17 . . . . . . . . . . . 12 (𝜑𝑆 ∈ Ring)
107 ringgrp 19703 . . . . . . . . . . . 12 (𝑆 ∈ Ring → 𝑆 ∈ Grp)
108106, 107syl 17 . . . . . . . . . . 11 (𝜑𝑆 ∈ Grp)
109 eqid 2738 . . . . . . . . . . . . . 14 (mulGrp‘𝑆) = (mulGrp‘𝑆)
110109ringmgp 19704 . . . . . . . . . . . . 13 (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd)
111106, 110syl 17 . . . . . . . . . . . 12 (𝜑 → (mulGrp‘𝑆) ∈ Mnd)
11231, 26, 27vr1cl 21298 . . . . . . . . . . . . 13 (𝑌 ∈ Ring → 𝑋𝐵)
11312, 112syl 17 . . . . . . . . . . . 12 (𝜑𝑋𝐵)
114109, 27mgpbas 19641 . . . . . . . . . . . . 13 𝐵 = (Base‘(mulGrp‘𝑆))
115114, 30mulgnn0cl 18635 . . . . . . . . . . . 12 (((mulGrp‘𝑆) ∈ Mnd ∧ ((𝑃 − 1) / 2) ∈ ℕ0𝑋𝐵) → (((𝑃 − 1) / 2) 𝑋) ∈ 𝐵)
116111, 41, 113, 115syl3anc 1369 . . . . . . . . . . 11 (𝜑 → (((𝑃 − 1) / 2) 𝑋) ∈ 𝐵)
11727, 33ringidcl 19722 . . . . . . . . . . . 12 (𝑆 ∈ Ring → 1𝐵)
118106, 117syl 17 . . . . . . . . . . 11 (𝜑1𝐵)
11927, 32grpsubcl 18570 . . . . . . . . . . 11 ((𝑆 ∈ Grp ∧ (((𝑃 − 1) / 2) 𝑋) ∈ 𝐵1𝐵) → ((((𝑃 − 1) / 2) 𝑋) 1 ) ∈ 𝐵)
120108, 116, 118, 119syl3anc 1369 . . . . . . . . . 10 (𝜑 → ((((𝑃 − 1) / 2) 𝑋) 1 ) ∈ 𝐵)
12134, 120eqeltrid 2843 . . . . . . . . 9 (𝜑𝑇𝐵)
122104, 121ffvelrnd 6944 . . . . . . . 8 (𝜑 → (𝑂𝑇) ∈ (Base‘(𝑌s (Base‘𝑌))))
12398, 17, 99, 5, 100, 122pwselbas 17117 . . . . . . 7 (𝜑 → (𝑂𝑇):(Base‘𝑌)⟶(Base‘𝑌))
124123ffnd 6585 . . . . . 6 (𝜑 → (𝑂𝑇) Fn (Base‘𝑌))
125124adantr 480 . . . . 5 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝑂𝑇) Fn (Base‘𝑌))
126 fniniseg 6919 . . . . 5 ((𝑂𝑇) Fn (Base‘𝑌) → ((𝐿‘(𝑦↑2)) ∈ ((𝑂𝑇) “ {(0g𝑌)}) ↔ ((𝐿‘(𝑦↑2)) ∈ (Base‘𝑌) ∧ ((𝑂𝑇)‘(𝐿‘(𝑦↑2))) = (0g𝑌))))
127125, 126syl 17 . . . 4 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → ((𝐿‘(𝑦↑2)) ∈ ((𝑂𝑇) “ {(0g𝑌)}) ↔ ((𝐿‘(𝑦↑2)) ∈ (Base‘𝑌) ∧ ((𝑂𝑇)‘(𝐿‘(𝑦↑2))) = (0g𝑌))))
12825, 97, 127mpbir2and 709 . . 3 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(𝑦↑2)) ∈ ((𝑂𝑇) “ {(0g𝑌)}))
129 lgsqr.g . . 3 𝐺 = (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑦↑2)))
130128, 129fmptd 6970 . 2 (𝜑𝐺:(1...((𝑃 − 1) / 2))⟶((𝑂𝑇) “ {(0g𝑌)}))
131 fvoveq1 7278 . . . . . . . 8 (𝑦 = 𝑥 → (𝐿‘(𝑦↑2)) = (𝐿‘(𝑥↑2)))
132 fvex 6769 . . . . . . . 8 (𝐿‘(𝑥↑2)) ∈ V
133131, 129, 132fvmpt 6857 . . . . . . 7 (𝑥 ∈ (1...((𝑃 − 1) / 2)) → (𝐺𝑥) = (𝐿‘(𝑥↑2)))
134133ad2antrl 724 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝐺𝑥) = (𝐿‘(𝑥↑2)))
135 fvoveq1 7278 . . . . . . . 8 (𝑦 = 𝑧 → (𝐿‘(𝑦↑2)) = (𝐿‘(𝑧↑2)))
136 fvex 6769 . . . . . . . 8 (𝐿‘(𝑧↑2)) ∈ V
137135, 129, 136fvmpt 6857 . . . . . . 7 (𝑧 ∈ (1...((𝑃 − 1) / 2)) → (𝐺𝑧) = (𝐿‘(𝑧↑2)))
138137ad2antll 725 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝐺𝑧) = (𝐿‘(𝑧↑2)))
139134, 138eqeq12d 2754 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝐺𝑥) = (𝐺𝑧) ↔ (𝐿‘(𝑥↑2)) = (𝐿‘(𝑧↑2))))
14047nnnn0d 12223 . . . . . . 7 (𝜑𝑃 ∈ ℕ0)
141140adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ∈ ℕ0)
142 elfzelz 13185 . . . . . . . 8 (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ∈ ℤ)
143142ad2antrl 724 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑥 ∈ ℤ)
144 zsqcl 13776 . . . . . . 7 (𝑥 ∈ ℤ → (𝑥↑2) ∈ ℤ)
145143, 144syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥↑2) ∈ ℤ)
146 elfzelz 13185 . . . . . . . 8 (𝑧 ∈ (1...((𝑃 − 1) / 2)) → 𝑧 ∈ ℤ)
147146ad2antll 725 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑧 ∈ ℤ)
148 zsqcl 13776 . . . . . . 7 (𝑧 ∈ ℤ → (𝑧↑2) ∈ ℤ)
149147, 148syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑧↑2) ∈ ℤ)
1503, 13zndvds 20669 . . . . . 6 ((𝑃 ∈ ℕ0 ∧ (𝑥↑2) ∈ ℤ ∧ (𝑧↑2) ∈ ℤ) → ((𝐿‘(𝑥↑2)) = (𝐿‘(𝑧↑2)) ↔ 𝑃 ∥ ((𝑥↑2) − (𝑧↑2))))
151141, 145, 149, 150syl3anc 1369 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝐿‘(𝑥↑2)) = (𝐿‘(𝑧↑2)) ↔ 𝑃 ∥ ((𝑥↑2) − (𝑧↑2))))
152 elfznn 13214 . . . . . . . . 9 (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ∈ ℕ)
153152ad2antrl 724 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑥 ∈ ℕ)
154153nncnd 11919 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑥 ∈ ℂ)
155 elfznn 13214 . . . . . . . . 9 (𝑧 ∈ (1...((𝑃 − 1) / 2)) → 𝑧 ∈ ℕ)
156155ad2antll 725 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑧 ∈ ℕ)
157156nncnd 11919 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑧 ∈ ℂ)
158 subsq 13854 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥↑2) − (𝑧↑2)) = ((𝑥 + 𝑧) · (𝑥𝑧)))
159154, 157, 158syl2anc 583 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑥↑2) − (𝑧↑2)) = ((𝑥 + 𝑧) · (𝑥𝑧)))
160159breq2d 5082 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ ((𝑥↑2) − (𝑧↑2)) ↔ 𝑃 ∥ ((𝑥 + 𝑧) · (𝑥𝑧))))
161139, 151, 1603bitrd 304 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝐺𝑥) = (𝐺𝑧) ↔ 𝑃 ∥ ((𝑥 + 𝑧) · (𝑥𝑧))))
1622adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ∈ ℙ)
163143, 147zaddcld 12359 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥 + 𝑧) ∈ ℤ)
164143, 147zsubcld 12360 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥𝑧) ∈ ℤ)
165 euclemma 16346 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑥 + 𝑧) ∈ ℤ ∧ (𝑥𝑧) ∈ ℤ) → (𝑃 ∥ ((𝑥 + 𝑧) · (𝑥𝑧)) ↔ (𝑃 ∥ (𝑥 + 𝑧) ∨ 𝑃 ∥ (𝑥𝑧))))
166162, 163, 164, 165syl3anc 1369 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ ((𝑥 + 𝑧) · (𝑥𝑧)) ↔ (𝑃 ∥ (𝑥 + 𝑧) ∨ 𝑃 ∥ (𝑥𝑧))))
167162, 46syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ∈ ℕ)
168167nnzd 12354 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ∈ ℤ)
169153, 156nnaddcld 11955 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥 + 𝑧) ∈ ℕ)
170 dvdsle 15947 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ (𝑥 + 𝑧) ∈ ℕ) → (𝑃 ∥ (𝑥 + 𝑧) → 𝑃 ≤ (𝑥 + 𝑧)))
171168, 169, 170syl2anc 583 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ (𝑥 + 𝑧) → 𝑃 ≤ (𝑥 + 𝑧)))
172169nnred 11918 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥 + 𝑧) ∈ ℝ)
173167nnred 11918 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ∈ ℝ)
174173, 49syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 − 1) ∈ ℝ)
175153nnred 11918 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑥 ∈ ℝ)
176156nnred 11918 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑧 ∈ ℝ)
17769adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑃 − 1) / 2) ∈ ℝ)
178 elfzle2 13189 . . . . . . . . . . . . 13 (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ≤ ((𝑃 − 1) / 2))
179178ad2antrl 724 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑥 ≤ ((𝑃 − 1) / 2))
180 elfzle2 13189 . . . . . . . . . . . . 13 (𝑧 ∈ (1...((𝑃 − 1) / 2)) → 𝑧 ≤ ((𝑃 − 1) / 2))
181180ad2antll 725 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑧 ≤ ((𝑃 − 1) / 2))
182175, 176, 177, 177, 179, 181le2addd 11524 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥 + 𝑧) ≤ (((𝑃 − 1) / 2) + ((𝑃 − 1) / 2)))
18351adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 − 1) ∈ ℂ)
1841832halvesd 12149 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (((𝑃 − 1) / 2) + ((𝑃 − 1) / 2)) = (𝑃 − 1))
185182, 184breqtrd 5096 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥 + 𝑧) ≤ (𝑃 − 1))
186173ltm1d 11837 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 − 1) < 𝑃)
187172, 174, 173, 185, 186lelttrd 11063 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥 + 𝑧) < 𝑃)
188172, 173ltnled 11052 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑥 + 𝑧) < 𝑃 ↔ ¬ 𝑃 ≤ (𝑥 + 𝑧)))
189187, 188mpbid 231 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ¬ 𝑃 ≤ (𝑥 + 𝑧))
190189pm2.21d 121 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ≤ (𝑥 + 𝑧) → 𝑥 = 𝑧))
191171, 190syld 47 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ (𝑥 + 𝑧) → 𝑥 = 𝑧))
192 moddvds 15902 . . . . . . . . 9 ((𝑃 ∈ ℕ ∧ 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((𝑥 mod 𝑃) = (𝑧 mod 𝑃) ↔ 𝑃 ∥ (𝑥𝑧)))
193167, 143, 147, 192syl3anc 1369 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑥 mod 𝑃) = (𝑧 mod 𝑃) ↔ 𝑃 ∥ (𝑥𝑧)))
194167nnrpd 12699 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ∈ ℝ+)
195153nnnn0d 12223 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑥 ∈ ℕ0)
196195nn0ge0d 12226 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 0 ≤ 𝑥)
19782adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑃 − 1) / 2) < 𝑃)
198175, 177, 173, 179, 197lelttrd 11063 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑥 < 𝑃)
199 modid 13544 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥 < 𝑃)) → (𝑥 mod 𝑃) = 𝑥)
200175, 194, 196, 198, 199syl22anc 835 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥 mod 𝑃) = 𝑥)
201156nnnn0d 12223 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑧 ∈ ℕ0)
202201nn0ge0d 12226 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 0 ≤ 𝑧)
203176, 177, 173, 181, 197lelttrd 11063 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑧 < 𝑃)
204 modid 13544 . . . . . . . . . 10 (((𝑧 ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ (0 ≤ 𝑧𝑧 < 𝑃)) → (𝑧 mod 𝑃) = 𝑧)
205176, 194, 202, 203, 204syl22anc 835 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑧 mod 𝑃) = 𝑧)
206200, 205eqeq12d 2754 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑥 mod 𝑃) = (𝑧 mod 𝑃) ↔ 𝑥 = 𝑧))
207193, 206bitr3d 280 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ (𝑥𝑧) ↔ 𝑥 = 𝑧))
208207biimpd 228 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ (𝑥𝑧) → 𝑥 = 𝑧))
209191, 208jaod 855 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑃 ∥ (𝑥 + 𝑧) ∨ 𝑃 ∥ (𝑥𝑧)) → 𝑥 = 𝑧))
210166, 209sylbid 239 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ ((𝑥 + 𝑧) · (𝑥𝑧)) → 𝑥 = 𝑧))
211161, 210sylbid 239 . . 3 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝐺𝑥) = (𝐺𝑧) → 𝑥 = 𝑧))
212211ralrimivva 3114 . 2 (𝜑 → ∀𝑥 ∈ (1...((𝑃 − 1) / 2))∀𝑧 ∈ (1...((𝑃 − 1) / 2))((𝐺𝑥) = (𝐺𝑧) → 𝑥 = 𝑧))
213 dff13 7109 . 2 (𝐺:(1...((𝑃 − 1) / 2))–1-1→((𝑂𝑇) “ {(0g𝑌)}) ↔ (𝐺:(1...((𝑃 − 1) / 2))⟶((𝑂𝑇) “ {(0g𝑌)}) ∧ ∀𝑥 ∈ (1...((𝑃 − 1) / 2))∀𝑧 ∈ (1...((𝑃 − 1) / 2))((𝐺𝑥) = (𝐺𝑧) → 𝑥 = 𝑧)))
214130, 212, 213sylanbrc 582 1 (𝜑𝐺:(1...((𝑃 − 1) / 2))–1-1→((𝑂𝑇) “ {(0g𝑌)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  wral 3063  Vcvv 3422  cdif 3880  {csn 4558   class class class wbr 5070  cmpt 5153  ccnv 5579  cima 5583   Fn wfn 6413  wf 6414  1-1wf1 6415  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  2c2 11958  0cn0 12163  cz 12249  cuz 12511  +crp 12659  ...cfz 13168   mod cmo 13517  cexp 13710  cdvds 15891   gcd cgcd 16129  cprime 16304  ϕcphi 16393  Basecbs 16840  0gc0g 17067  s cpws 17074  Mndcmnd 18300  Grpcgrp 18492  -gcsg 18494  .gcmg 18615  mulGrpcmgp 19635  1rcur 19652  Ringcrg 19698  CRingccrg 19699   RingHom crh 19871  Fieldcfield 19907  Domncdomn 20464  IDomncidom 20465  ringzring 20582  ℤRHomczrh 20613  ℤ/nczn 20616  var1cv1 21257  Poly1cpl1 21258  eval1ce1 21390   deg1 cdg1 25121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-ec 8458  df-qs 8462  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-dec 12367  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-gcd 16130  df-prm 16305  df-phi 16395  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-0g 17069  df-gsum 17070  df-prds 17075  df-pws 17077  df-imas 17136  df-qus 17137  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-nsg 18668  df-eqg 18669  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-srg 19657  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-rnghom 19874  df-drng 19908  df-field 19909  df-subrg 19937  df-lmod 20040  df-lss 20109  df-lsp 20149  df-sra 20349  df-rgmod 20350  df-lidl 20351  df-rsp 20352  df-2idl 20416  df-nzr 20442  df-rlreg 20467  df-domn 20468  df-idom 20469  df-cnfld 20511  df-zring 20583  df-zrh 20617  df-zn 20620  df-assa 20970  df-asp 20971  df-ascl 20972  df-psr 21022  df-mvr 21023  df-mpl 21024  df-opsr 21026  df-evls 21192  df-evl 21193  df-psr1 21261  df-vr1 21262  df-ply1 21263  df-evl1 21392
This theorem is referenced by:  lgsqrlem4  26402
  Copyright terms: Public domain W3C validator