MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsqrlem2 Structured version   Visualization version   GIF version

Theorem lgsqrlem2 26506
Description: Lemma for lgsqr 26510. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
lgsqr.y 𝑌 = (ℤ/nℤ‘𝑃)
lgsqr.s 𝑆 = (Poly1𝑌)
lgsqr.b 𝐵 = (Base‘𝑆)
lgsqr.d 𝐷 = ( deg1𝑌)
lgsqr.o 𝑂 = (eval1𝑌)
lgsqr.e = (.g‘(mulGrp‘𝑆))
lgsqr.x 𝑋 = (var1𝑌)
lgsqr.m = (-g𝑆)
lgsqr.u 1 = (1r𝑆)
lgsqr.t 𝑇 = ((((𝑃 − 1) / 2) 𝑋) 1 )
lgsqr.l 𝐿 = (ℤRHom‘𝑌)
lgsqr.1 (𝜑𝑃 ∈ (ℙ ∖ {2}))
lgsqr.g 𝐺 = (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑦↑2)))
Assertion
Ref Expression
lgsqrlem2 (𝜑𝐺:(1...((𝑃 − 1) / 2))–1-1→((𝑂𝑇) “ {(0g𝑌)}))
Distinct variable groups:   𝑦,𝑂   𝑦,𝑃   𝜑,𝑦   𝑦,𝑇   𝑦,𝐿   𝑦,𝑌
Allowed substitution hints:   𝐵(𝑦)   𝐷(𝑦)   𝑆(𝑦)   1 (𝑦)   (𝑦)   𝐺(𝑦)   (𝑦)   𝑋(𝑦)

Proof of Theorem lgsqrlem2
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lgsqr.1 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ (ℙ ∖ {2}))
21eldifad 3904 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℙ)
3 lgsqr.y . . . . . . . . . . . . 13 𝑌 = (ℤ/nℤ‘𝑃)
43znfld 20779 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 𝑌 ∈ Field)
52, 4syl 17 . . . . . . . . . . 11 (𝜑𝑌 ∈ Field)
6 fldidom 20587 . . . . . . . . . . 11 (𝑌 ∈ Field → 𝑌 ∈ IDomn)
75, 6syl 17 . . . . . . . . . 10 (𝜑𝑌 ∈ IDomn)
8 isidom 20586 . . . . . . . . . . 11 (𝑌 ∈ IDomn ↔ (𝑌 ∈ CRing ∧ 𝑌 ∈ Domn))
98simplbi 498 . . . . . . . . . 10 (𝑌 ∈ IDomn → 𝑌 ∈ CRing)
107, 9syl 17 . . . . . . . . 9 (𝜑𝑌 ∈ CRing)
11 crngring 19806 . . . . . . . . 9 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
1210, 11syl 17 . . . . . . . 8 (𝜑𝑌 ∈ Ring)
13 lgsqr.l . . . . . . . . 9 𝐿 = (ℤRHom‘𝑌)
1413zrhrhm 20724 . . . . . . . 8 (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌))
1512, 14syl 17 . . . . . . 7 (𝜑𝐿 ∈ (ℤring RingHom 𝑌))
16 zringbas 20687 . . . . . . . 8 ℤ = (Base‘ℤring)
17 eqid 2740 . . . . . . . 8 (Base‘𝑌) = (Base‘𝑌)
1816, 17rhmf 19981 . . . . . . 7 (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿:ℤ⟶(Base‘𝑌))
1915, 18syl 17 . . . . . 6 (𝜑𝐿:ℤ⟶(Base‘𝑌))
2019adantr 481 . . . . 5 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝐿:ℤ⟶(Base‘𝑌))
21 elfzelz 13267 . . . . . . 7 (𝑦 ∈ (1...((𝑃 − 1) / 2)) → 𝑦 ∈ ℤ)
2221adantl 482 . . . . . 6 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑦 ∈ ℤ)
23 zsqcl 13859 . . . . . 6 (𝑦 ∈ ℤ → (𝑦↑2) ∈ ℤ)
2422, 23syl 17 . . . . 5 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝑦↑2) ∈ ℤ)
2520, 24ffvelrnd 6959 . . . 4 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(𝑦↑2)) ∈ (Base‘𝑌))
26 lgsqr.s . . . . 5 𝑆 = (Poly1𝑌)
27 lgsqr.b . . . . 5 𝐵 = (Base‘𝑆)
28 lgsqr.d . . . . 5 𝐷 = ( deg1𝑌)
29 lgsqr.o . . . . 5 𝑂 = (eval1𝑌)
30 lgsqr.e . . . . 5 = (.g‘(mulGrp‘𝑆))
31 lgsqr.x . . . . 5 𝑋 = (var1𝑌)
32 lgsqr.m . . . . 5 = (-g𝑆)
33 lgsqr.u . . . . 5 1 = (1r𝑆)
34 lgsqr.t . . . . 5 𝑇 = ((((𝑃 − 1) / 2) 𝑋) 1 )
351adantr 481 . . . . 5 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ (ℙ ∖ {2}))
36 elfznn 13296 . . . . . . . . . . 11 (𝑦 ∈ (1...((𝑃 − 1) / 2)) → 𝑦 ∈ ℕ)
3736adantl 482 . . . . . . . . . 10 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑦 ∈ ℕ)
3837nncnd 12000 . . . . . . . . 9 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑦 ∈ ℂ)
39 oddprm 16522 . . . . . . . . . . . 12 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
401, 39syl 17 . . . . . . . . . . 11 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ)
4140nnnn0d 12304 . . . . . . . . . 10 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ0)
4241adantr 481 . . . . . . . . 9 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 − 1) / 2) ∈ ℕ0)
43 2nn0 12261 . . . . . . . . . 10 2 ∈ ℕ0
4443a1i 11 . . . . . . . . 9 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 2 ∈ ℕ0)
4538, 42, 44expmuld 13878 . . . . . . . 8 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝑦↑(2 · ((𝑃 − 1) / 2))) = ((𝑦↑2)↑((𝑃 − 1) / 2)))
46 prmnn 16390 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
472, 46syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ ℕ)
4847nnred 11999 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℝ)
49 peano2rem 11299 . . . . . . . . . . . . . 14 (𝑃 ∈ ℝ → (𝑃 − 1) ∈ ℝ)
5048, 49syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑃 − 1) ∈ ℝ)
5150recnd 11014 . . . . . . . . . . . 12 (𝜑 → (𝑃 − 1) ∈ ℂ)
52 2cnd 12062 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℂ)
53 2ne0 12088 . . . . . . . . . . . . 13 2 ≠ 0
5453a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ≠ 0)
5551, 52, 54divcan2d 11764 . . . . . . . . . . 11 (𝜑 → (2 · ((𝑃 − 1) / 2)) = (𝑃 − 1))
56 phiprm 16489 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → (ϕ‘𝑃) = (𝑃 − 1))
572, 56syl 17 . . . . . . . . . . 11 (𝜑 → (ϕ‘𝑃) = (𝑃 − 1))
5855, 57eqtr4d 2783 . . . . . . . . . 10 (𝜑 → (2 · ((𝑃 − 1) / 2)) = (ϕ‘𝑃))
5958adantr 481 . . . . . . . . 9 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (2 · ((𝑃 − 1) / 2)) = (ϕ‘𝑃))
6059oveq2d 7288 . . . . . . . 8 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝑦↑(2 · ((𝑃 − 1) / 2))) = (𝑦↑(ϕ‘𝑃)))
6145, 60eqtr3d 2782 . . . . . . 7 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → ((𝑦↑2)↑((𝑃 − 1) / 2)) = (𝑦↑(ϕ‘𝑃)))
6261oveq1d 7287 . . . . . 6 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (((𝑦↑2)↑((𝑃 − 1) / 2)) mod 𝑃) = ((𝑦↑(ϕ‘𝑃)) mod 𝑃))
632adantr 481 . . . . . . . 8 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℙ)
6463, 46syl 17 . . . . . . 7 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℕ)
6547nnzd 12436 . . . . . . . . . 10 (𝜑𝑃 ∈ ℤ)
6665adantr 481 . . . . . . . . 9 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℤ)
6722, 66gcdcomd 16232 . . . . . . . 8 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝑦 gcd 𝑃) = (𝑃 gcd 𝑦))
6837nnred 11999 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑦 ∈ ℝ)
6950rehalfcld 12231 . . . . . . . . . . . . 13 (𝜑 → ((𝑃 − 1) / 2) ∈ ℝ)
7069adantr 481 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 − 1) / 2) ∈ ℝ)
7148adantr 481 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℝ)
72 elfzle2 13271 . . . . . . . . . . . . 13 (𝑦 ∈ (1...((𝑃 − 1) / 2)) → 𝑦 ≤ ((𝑃 − 1) / 2))
7372adantl 482 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑦 ≤ ((𝑃 − 1) / 2))
74 prmuz2 16412 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
752, 74syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ (ℤ‘2))
76 uz2m1nn 12674 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℤ‘2) → (𝑃 − 1) ∈ ℕ)
7775, 76syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑃 − 1) ∈ ℕ)
7877nnrpd 12781 . . . . . . . . . . . . . . 15 (𝜑 → (𝑃 − 1) ∈ ℝ+)
79 rphalflt 12770 . . . . . . . . . . . . . . 15 ((𝑃 − 1) ∈ ℝ+ → ((𝑃 − 1) / 2) < (𝑃 − 1))
8078, 79syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((𝑃 − 1) / 2) < (𝑃 − 1))
8148ltm1d 11918 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 − 1) < 𝑃)
8269, 50, 48, 80, 81lttrd 11147 . . . . . . . . . . . . 13 (𝜑 → ((𝑃 − 1) / 2) < 𝑃)
8382adantr 481 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 − 1) / 2) < 𝑃)
8468, 70, 71, 73, 83lelttrd 11144 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑦 < 𝑃)
8568, 71ltnled 11133 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝑦 < 𝑃 ↔ ¬ 𝑃𝑦))
8684, 85mpbid 231 . . . . . . . . . 10 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → ¬ 𝑃𝑦)
87 dvdsle 16030 . . . . . . . . . . 11 ((𝑃 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑃𝑦𝑃𝑦))
8866, 37, 87syl2anc 584 . . . . . . . . . 10 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝑃𝑦𝑃𝑦))
8986, 88mtod 197 . . . . . . . . 9 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → ¬ 𝑃𝑦)
90 coprm 16427 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ ℤ) → (¬ 𝑃𝑦 ↔ (𝑃 gcd 𝑦) = 1))
9163, 22, 90syl2anc 584 . . . . . . . . 9 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (¬ 𝑃𝑦 ↔ (𝑃 gcd 𝑦) = 1))
9289, 91mpbid 231 . . . . . . . 8 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 gcd 𝑦) = 1)
9367, 92eqtrd 2780 . . . . . . 7 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝑦 gcd 𝑃) = 1)
94 eulerth 16495 . . . . . . 7 ((𝑃 ∈ ℕ ∧ 𝑦 ∈ ℤ ∧ (𝑦 gcd 𝑃) = 1) → ((𝑦↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃))
9564, 22, 93, 94syl3anc 1370 . . . . . 6 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → ((𝑦↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃))
9662, 95eqtrd 2780 . . . . 5 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (((𝑦↑2)↑((𝑃 − 1) / 2)) mod 𝑃) = (1 mod 𝑃))
973, 26, 27, 28, 29, 30, 31, 32, 33, 34, 13, 35, 24, 96lgsqrlem1 26505 . . . 4 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → ((𝑂𝑇)‘(𝐿‘(𝑦↑2))) = (0g𝑌))
98 eqid 2740 . . . . . . . 8 (𝑌s (Base‘𝑌)) = (𝑌s (Base‘𝑌))
99 eqid 2740 . . . . . . . 8 (Base‘(𝑌s (Base‘𝑌))) = (Base‘(𝑌s (Base‘𝑌)))
100 fvexd 6786 . . . . . . . 8 (𝜑 → (Base‘𝑌) ∈ V)
10129, 26, 98, 17evl1rhm 21509 . . . . . . . . . . 11 (𝑌 ∈ CRing → 𝑂 ∈ (𝑆 RingHom (𝑌s (Base‘𝑌))))
10210, 101syl 17 . . . . . . . . . 10 (𝜑𝑂 ∈ (𝑆 RingHom (𝑌s (Base‘𝑌))))
10327, 99rhmf 19981 . . . . . . . . . 10 (𝑂 ∈ (𝑆 RingHom (𝑌s (Base‘𝑌))) → 𝑂:𝐵⟶(Base‘(𝑌s (Base‘𝑌))))
104102, 103syl 17 . . . . . . . . 9 (𝜑𝑂:𝐵⟶(Base‘(𝑌s (Base‘𝑌))))
10526ply1ring 21430 . . . . . . . . . . . . 13 (𝑌 ∈ Ring → 𝑆 ∈ Ring)
10612, 105syl 17 . . . . . . . . . . . 12 (𝜑𝑆 ∈ Ring)
107 ringgrp 19799 . . . . . . . . . . . 12 (𝑆 ∈ Ring → 𝑆 ∈ Grp)
108106, 107syl 17 . . . . . . . . . . 11 (𝜑𝑆 ∈ Grp)
109 eqid 2740 . . . . . . . . . . . . . 14 (mulGrp‘𝑆) = (mulGrp‘𝑆)
110109ringmgp 19800 . . . . . . . . . . . . 13 (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd)
111106, 110syl 17 . . . . . . . . . . . 12 (𝜑 → (mulGrp‘𝑆) ∈ Mnd)
11231, 26, 27vr1cl 21399 . . . . . . . . . . . . 13 (𝑌 ∈ Ring → 𝑋𝐵)
11312, 112syl 17 . . . . . . . . . . . 12 (𝜑𝑋𝐵)
114109, 27mgpbas 19737 . . . . . . . . . . . . 13 𝐵 = (Base‘(mulGrp‘𝑆))
115114, 30mulgnn0cl 18731 . . . . . . . . . . . 12 (((mulGrp‘𝑆) ∈ Mnd ∧ ((𝑃 − 1) / 2) ∈ ℕ0𝑋𝐵) → (((𝑃 − 1) / 2) 𝑋) ∈ 𝐵)
116111, 41, 113, 115syl3anc 1370 . . . . . . . . . . 11 (𝜑 → (((𝑃 − 1) / 2) 𝑋) ∈ 𝐵)
11727, 33ringidcl 19818 . . . . . . . . . . . 12 (𝑆 ∈ Ring → 1𝐵)
118106, 117syl 17 . . . . . . . . . . 11 (𝜑1𝐵)
11927, 32grpsubcl 18666 . . . . . . . . . . 11 ((𝑆 ∈ Grp ∧ (((𝑃 − 1) / 2) 𝑋) ∈ 𝐵1𝐵) → ((((𝑃 − 1) / 2) 𝑋) 1 ) ∈ 𝐵)
120108, 116, 118, 119syl3anc 1370 . . . . . . . . . 10 (𝜑 → ((((𝑃 − 1) / 2) 𝑋) 1 ) ∈ 𝐵)
12134, 120eqeltrid 2845 . . . . . . . . 9 (𝜑𝑇𝐵)
122104, 121ffvelrnd 6959 . . . . . . . 8 (𝜑 → (𝑂𝑇) ∈ (Base‘(𝑌s (Base‘𝑌))))
12398, 17, 99, 5, 100, 122pwselbas 17211 . . . . . . 7 (𝜑 → (𝑂𝑇):(Base‘𝑌)⟶(Base‘𝑌))
124123ffnd 6599 . . . . . 6 (𝜑 → (𝑂𝑇) Fn (Base‘𝑌))
125124adantr 481 . . . . 5 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝑂𝑇) Fn (Base‘𝑌))
126 fniniseg 6934 . . . . 5 ((𝑂𝑇) Fn (Base‘𝑌) → ((𝐿‘(𝑦↑2)) ∈ ((𝑂𝑇) “ {(0g𝑌)}) ↔ ((𝐿‘(𝑦↑2)) ∈ (Base‘𝑌) ∧ ((𝑂𝑇)‘(𝐿‘(𝑦↑2))) = (0g𝑌))))
127125, 126syl 17 . . . 4 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → ((𝐿‘(𝑦↑2)) ∈ ((𝑂𝑇) “ {(0g𝑌)}) ↔ ((𝐿‘(𝑦↑2)) ∈ (Base‘𝑌) ∧ ((𝑂𝑇)‘(𝐿‘(𝑦↑2))) = (0g𝑌))))
12825, 97, 127mpbir2and 710 . . 3 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(𝑦↑2)) ∈ ((𝑂𝑇) “ {(0g𝑌)}))
129 lgsqr.g . . 3 𝐺 = (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑦↑2)))
130128, 129fmptd 6985 . 2 (𝜑𝐺:(1...((𝑃 − 1) / 2))⟶((𝑂𝑇) “ {(0g𝑌)}))
131 fvoveq1 7295 . . . . . . . 8 (𝑦 = 𝑥 → (𝐿‘(𝑦↑2)) = (𝐿‘(𝑥↑2)))
132 fvex 6784 . . . . . . . 8 (𝐿‘(𝑥↑2)) ∈ V
133131, 129, 132fvmpt 6872 . . . . . . 7 (𝑥 ∈ (1...((𝑃 − 1) / 2)) → (𝐺𝑥) = (𝐿‘(𝑥↑2)))
134133ad2antrl 725 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝐺𝑥) = (𝐿‘(𝑥↑2)))
135 fvoveq1 7295 . . . . . . . 8 (𝑦 = 𝑧 → (𝐿‘(𝑦↑2)) = (𝐿‘(𝑧↑2)))
136 fvex 6784 . . . . . . . 8 (𝐿‘(𝑧↑2)) ∈ V
137135, 129, 136fvmpt 6872 . . . . . . 7 (𝑧 ∈ (1...((𝑃 − 1) / 2)) → (𝐺𝑧) = (𝐿‘(𝑧↑2)))
138137ad2antll 726 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝐺𝑧) = (𝐿‘(𝑧↑2)))
139134, 138eqeq12d 2756 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝐺𝑥) = (𝐺𝑧) ↔ (𝐿‘(𝑥↑2)) = (𝐿‘(𝑧↑2))))
14047nnnn0d 12304 . . . . . . 7 (𝜑𝑃 ∈ ℕ0)
141140adantr 481 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ∈ ℕ0)
142 elfzelz 13267 . . . . . . . 8 (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ∈ ℤ)
143142ad2antrl 725 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑥 ∈ ℤ)
144 zsqcl 13859 . . . . . . 7 (𝑥 ∈ ℤ → (𝑥↑2) ∈ ℤ)
145143, 144syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥↑2) ∈ ℤ)
146 elfzelz 13267 . . . . . . . 8 (𝑧 ∈ (1...((𝑃 − 1) / 2)) → 𝑧 ∈ ℤ)
147146ad2antll 726 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑧 ∈ ℤ)
148 zsqcl 13859 . . . . . . 7 (𝑧 ∈ ℤ → (𝑧↑2) ∈ ℤ)
149147, 148syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑧↑2) ∈ ℤ)
1503, 13zndvds 20768 . . . . . 6 ((𝑃 ∈ ℕ0 ∧ (𝑥↑2) ∈ ℤ ∧ (𝑧↑2) ∈ ℤ) → ((𝐿‘(𝑥↑2)) = (𝐿‘(𝑧↑2)) ↔ 𝑃 ∥ ((𝑥↑2) − (𝑧↑2))))
151141, 145, 149, 150syl3anc 1370 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝐿‘(𝑥↑2)) = (𝐿‘(𝑧↑2)) ↔ 𝑃 ∥ ((𝑥↑2) − (𝑧↑2))))
152 elfznn 13296 . . . . . . . . 9 (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ∈ ℕ)
153152ad2antrl 725 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑥 ∈ ℕ)
154153nncnd 12000 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑥 ∈ ℂ)
155 elfznn 13296 . . . . . . . . 9 (𝑧 ∈ (1...((𝑃 − 1) / 2)) → 𝑧 ∈ ℕ)
156155ad2antll 726 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑧 ∈ ℕ)
157156nncnd 12000 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑧 ∈ ℂ)
158 subsq 13937 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥↑2) − (𝑧↑2)) = ((𝑥 + 𝑧) · (𝑥𝑧)))
159154, 157, 158syl2anc 584 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑥↑2) − (𝑧↑2)) = ((𝑥 + 𝑧) · (𝑥𝑧)))
160159breq2d 5091 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ ((𝑥↑2) − (𝑧↑2)) ↔ 𝑃 ∥ ((𝑥 + 𝑧) · (𝑥𝑧))))
161139, 151, 1603bitrd 305 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝐺𝑥) = (𝐺𝑧) ↔ 𝑃 ∥ ((𝑥 + 𝑧) · (𝑥𝑧))))
1622adantr 481 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ∈ ℙ)
163143, 147zaddcld 12441 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥 + 𝑧) ∈ ℤ)
164143, 147zsubcld 12442 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥𝑧) ∈ ℤ)
165 euclemma 16429 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑥 + 𝑧) ∈ ℤ ∧ (𝑥𝑧) ∈ ℤ) → (𝑃 ∥ ((𝑥 + 𝑧) · (𝑥𝑧)) ↔ (𝑃 ∥ (𝑥 + 𝑧) ∨ 𝑃 ∥ (𝑥𝑧))))
166162, 163, 164, 165syl3anc 1370 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ ((𝑥 + 𝑧) · (𝑥𝑧)) ↔ (𝑃 ∥ (𝑥 + 𝑧) ∨ 𝑃 ∥ (𝑥𝑧))))
167162, 46syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ∈ ℕ)
168167nnzd 12436 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ∈ ℤ)
169153, 156nnaddcld 12036 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥 + 𝑧) ∈ ℕ)
170 dvdsle 16030 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ (𝑥 + 𝑧) ∈ ℕ) → (𝑃 ∥ (𝑥 + 𝑧) → 𝑃 ≤ (𝑥 + 𝑧)))
171168, 169, 170syl2anc 584 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ (𝑥 + 𝑧) → 𝑃 ≤ (𝑥 + 𝑧)))
172169nnred 11999 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥 + 𝑧) ∈ ℝ)
173167nnred 11999 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ∈ ℝ)
174173, 49syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 − 1) ∈ ℝ)
175153nnred 11999 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑥 ∈ ℝ)
176156nnred 11999 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑧 ∈ ℝ)
17769adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑃 − 1) / 2) ∈ ℝ)
178 elfzle2 13271 . . . . . . . . . . . . 13 (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ≤ ((𝑃 − 1) / 2))
179178ad2antrl 725 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑥 ≤ ((𝑃 − 1) / 2))
180 elfzle2 13271 . . . . . . . . . . . . 13 (𝑧 ∈ (1...((𝑃 − 1) / 2)) → 𝑧 ≤ ((𝑃 − 1) / 2))
181180ad2antll 726 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑧 ≤ ((𝑃 − 1) / 2))
182175, 176, 177, 177, 179, 181le2addd 11605 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥 + 𝑧) ≤ (((𝑃 − 1) / 2) + ((𝑃 − 1) / 2)))
18351adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 − 1) ∈ ℂ)
1841832halvesd 12230 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (((𝑃 − 1) / 2) + ((𝑃 − 1) / 2)) = (𝑃 − 1))
185182, 184breqtrd 5105 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥 + 𝑧) ≤ (𝑃 − 1))
186173ltm1d 11918 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 − 1) < 𝑃)
187172, 174, 173, 185, 186lelttrd 11144 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥 + 𝑧) < 𝑃)
188172, 173ltnled 11133 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑥 + 𝑧) < 𝑃 ↔ ¬ 𝑃 ≤ (𝑥 + 𝑧)))
189187, 188mpbid 231 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ¬ 𝑃 ≤ (𝑥 + 𝑧))
190189pm2.21d 121 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ≤ (𝑥 + 𝑧) → 𝑥 = 𝑧))
191171, 190syld 47 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ (𝑥 + 𝑧) → 𝑥 = 𝑧))
192 moddvds 15985 . . . . . . . . 9 ((𝑃 ∈ ℕ ∧ 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((𝑥 mod 𝑃) = (𝑧 mod 𝑃) ↔ 𝑃 ∥ (𝑥𝑧)))
193167, 143, 147, 192syl3anc 1370 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑥 mod 𝑃) = (𝑧 mod 𝑃) ↔ 𝑃 ∥ (𝑥𝑧)))
194167nnrpd 12781 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ∈ ℝ+)
195153nnnn0d 12304 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑥 ∈ ℕ0)
196195nn0ge0d 12307 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 0 ≤ 𝑥)
19782adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑃 − 1) / 2) < 𝑃)
198175, 177, 173, 179, 197lelttrd 11144 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑥 < 𝑃)
199 modid 13627 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥 < 𝑃)) → (𝑥 mod 𝑃) = 𝑥)
200175, 194, 196, 198, 199syl22anc 836 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥 mod 𝑃) = 𝑥)
201156nnnn0d 12304 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑧 ∈ ℕ0)
202201nn0ge0d 12307 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 0 ≤ 𝑧)
203176, 177, 173, 181, 197lelttrd 11144 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑧 < 𝑃)
204 modid 13627 . . . . . . . . . 10 (((𝑧 ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ (0 ≤ 𝑧𝑧 < 𝑃)) → (𝑧 mod 𝑃) = 𝑧)
205176, 194, 202, 203, 204syl22anc 836 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑧 mod 𝑃) = 𝑧)
206200, 205eqeq12d 2756 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑥 mod 𝑃) = (𝑧 mod 𝑃) ↔ 𝑥 = 𝑧))
207193, 206bitr3d 280 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ (𝑥𝑧) ↔ 𝑥 = 𝑧))
208207biimpd 228 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ (𝑥𝑧) → 𝑥 = 𝑧))
209191, 208jaod 856 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑃 ∥ (𝑥 + 𝑧) ∨ 𝑃 ∥ (𝑥𝑧)) → 𝑥 = 𝑧))
210166, 209sylbid 239 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ ((𝑥 + 𝑧) · (𝑥𝑧)) → 𝑥 = 𝑧))
211161, 210sylbid 239 . . 3 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝐺𝑥) = (𝐺𝑧) → 𝑥 = 𝑧))
212211ralrimivva 3117 . 2 (𝜑 → ∀𝑥 ∈ (1...((𝑃 − 1) / 2))∀𝑧 ∈ (1...((𝑃 − 1) / 2))((𝐺𝑥) = (𝐺𝑧) → 𝑥 = 𝑧))
213 dff13 7125 . 2 (𝐺:(1...((𝑃 − 1) / 2))–1-1→((𝑂𝑇) “ {(0g𝑌)}) ↔ (𝐺:(1...((𝑃 − 1) / 2))⟶((𝑂𝑇) “ {(0g𝑌)}) ∧ ∀𝑥 ∈ (1...((𝑃 − 1) / 2))∀𝑧 ∈ (1...((𝑃 − 1) / 2))((𝐺𝑥) = (𝐺𝑧) → 𝑥 = 𝑧)))
214130, 212, 213sylanbrc 583 1 (𝜑𝐺:(1...((𝑃 − 1) / 2))–1-1→((𝑂𝑇) “ {(0g𝑌)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1542  wcel 2110  wne 2945  wral 3066  Vcvv 3431  cdif 3889  {csn 4567   class class class wbr 5079  cmpt 5162  ccnv 5589  cima 5593   Fn wfn 6427  wf 6428  1-1wf1 6429  cfv 6432  (class class class)co 7272  cc 10880  cr 10881  0cc0 10882  1c1 10883   + caddc 10885   · cmul 10887   < clt 11020  cle 11021  cmin 11216   / cdiv 11643  cn 11984  2c2 12039  0cn0 12244  cz 12330  cuz 12593  +crp 12741  ...cfz 13250   mod cmo 13600  cexp 13793  cdvds 15974   gcd cgcd 16212  cprime 16387  ϕcphi 16476  Basecbs 16923  0gc0g 17161  s cpws 17168  Mndcmnd 18396  Grpcgrp 18588  -gcsg 18590  .gcmg 18711  mulGrpcmgp 19731  1rcur 19748  Ringcrg 19794  CRingccrg 19795   RingHom crh 19967  Fieldcfield 20003  Domncdomn 20562  IDomncidom 20563  ringczring 20681  ℤRHomczrh 20712  ℤ/nczn 20715  var1cv1 21358  Poly1cpl1 21359  eval1ce1 21491   deg1 cdg1 25227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-cnex 10938  ax-resscn 10939  ax-1cn 10940  ax-icn 10941  ax-addcl 10942  ax-addrcl 10943  ax-mulcl 10944  ax-mulrcl 10945  ax-mulcom 10946  ax-addass 10947  ax-mulass 10948  ax-distr 10949  ax-i2m1 10950  ax-1ne0 10951  ax-1rid 10952  ax-rnegex 10953  ax-rrecex 10954  ax-cnre 10955  ax-pre-lttri 10956  ax-pre-lttrn 10957  ax-pre-ltadd 10958  ax-pre-mulgt0 10959  ax-pre-sup 10960  ax-addf 10961  ax-mulf 10962
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7229  df-ov 7275  df-oprab 7276  df-mpo 7277  df-of 7528  df-ofr 7529  df-om 7708  df-1st 7825  df-2nd 7826  df-supp 7970  df-tpos 8034  df-frecs 8089  df-wrecs 8120  df-recs 8194  df-rdg 8233  df-1o 8289  df-2o 8290  df-oadd 8293  df-er 8490  df-ec 8492  df-qs 8496  df-map 8609  df-pm 8610  df-ixp 8678  df-en 8726  df-dom 8727  df-sdom 8728  df-fin 8729  df-fsupp 9117  df-sup 9189  df-inf 9190  df-oi 9257  df-dju 9670  df-card 9708  df-pnf 11022  df-mnf 11023  df-xr 11024  df-ltxr 11025  df-le 11026  df-sub 11218  df-neg 11219  df-div 11644  df-nn 11985  df-2 12047  df-3 12048  df-4 12049  df-5 12050  df-6 12051  df-7 12052  df-8 12053  df-9 12054  df-n0 12245  df-xnn0 12317  df-z 12331  df-dec 12449  df-uz 12594  df-rp 12742  df-fz 13251  df-fzo 13394  df-fl 13523  df-mod 13601  df-seq 13733  df-exp 13794  df-hash 14056  df-cj 14821  df-re 14822  df-im 14823  df-sqrt 14957  df-abs 14958  df-dvds 15975  df-gcd 16213  df-prm 16388  df-phi 16478  df-struct 16859  df-sets 16876  df-slot 16894  df-ndx 16906  df-base 16924  df-ress 16953  df-plusg 16986  df-mulr 16987  df-starv 16988  df-sca 16989  df-vsca 16990  df-ip 16991  df-tset 16992  df-ple 16993  df-ds 16995  df-unif 16996  df-hom 16997  df-cco 16998  df-0g 17163  df-gsum 17164  df-prds 17169  df-pws 17171  df-imas 17230  df-qus 17231  df-mre 17306  df-mrc 17307  df-acs 17309  df-mgm 18337  df-sgrp 18386  df-mnd 18397  df-mhm 18441  df-submnd 18442  df-grp 18591  df-minusg 18592  df-sbg 18593  df-mulg 18712  df-subg 18763  df-nsg 18764  df-eqg 18765  df-ghm 18843  df-cntz 18934  df-cmn 19399  df-abl 19400  df-mgp 19732  df-ur 19749  df-srg 19753  df-ring 19796  df-cring 19797  df-oppr 19873  df-dvdsr 19894  df-unit 19895  df-invr 19925  df-dvr 19936  df-rnghom 19970  df-drng 20004  df-field 20005  df-subrg 20033  df-lmod 20136  df-lss 20205  df-lsp 20245  df-sra 20445  df-rgmod 20446  df-lidl 20447  df-rsp 20448  df-2idl 20514  df-nzr 20540  df-rlreg 20565  df-domn 20566  df-idom 20567  df-cnfld 20609  df-zring 20682  df-zrh 20716  df-zn 20719  df-assa 21071  df-asp 21072  df-ascl 21073  df-psr 21123  df-mvr 21124  df-mpl 21125  df-opsr 21127  df-evls 21293  df-evl 21294  df-psr1 21362  df-vr1 21363  df-ply1 21364  df-evl1 21493
This theorem is referenced by:  lgsqrlem4  26508
  Copyright terms: Public domain W3C validator