MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsqrlem2 Structured version   Visualization version   GIF version

Theorem lgsqrlem2 27291
Description: Lemma for lgsqr 27295. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
lgsqr.y 𝑌 = (ℤ/nℤ‘𝑃)
lgsqr.s 𝑆 = (Poly1𝑌)
lgsqr.b 𝐵 = (Base‘𝑆)
lgsqr.d 𝐷 = (deg1𝑌)
lgsqr.o 𝑂 = (eval1𝑌)
lgsqr.e = (.g‘(mulGrp‘𝑆))
lgsqr.x 𝑋 = (var1𝑌)
lgsqr.m = (-g𝑆)
lgsqr.u 1 = (1r𝑆)
lgsqr.t 𝑇 = ((((𝑃 − 1) / 2) 𝑋) 1 )
lgsqr.l 𝐿 = (ℤRHom‘𝑌)
lgsqr.1 (𝜑𝑃 ∈ (ℙ ∖ {2}))
lgsqr.g 𝐺 = (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑦↑2)))
Assertion
Ref Expression
lgsqrlem2 (𝜑𝐺:(1...((𝑃 − 1) / 2))–1-1→((𝑂𝑇) “ {(0g𝑌)}))
Distinct variable groups:   𝑦,𝑂   𝑦,𝑃   𝜑,𝑦   𝑦,𝑇   𝑦,𝐿   𝑦,𝑌
Allowed substitution hints:   𝐵(𝑦)   𝐷(𝑦)   𝑆(𝑦)   1 (𝑦)   (𝑦)   𝐺(𝑦)   (𝑦)   𝑋(𝑦)

Proof of Theorem lgsqrlem2
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lgsqr.1 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ (ℙ ∖ {2}))
21eldifad 3923 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℙ)
3 lgsqr.y . . . . . . . . . . . . 13 𝑌 = (ℤ/nℤ‘𝑃)
43znfld 21502 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 𝑌 ∈ Field)
52, 4syl 17 . . . . . . . . . . 11 (𝜑𝑌 ∈ Field)
6 fldidom 20691 . . . . . . . . . . 11 (𝑌 ∈ Field → 𝑌 ∈ IDomn)
75, 6syl 17 . . . . . . . . . 10 (𝜑𝑌 ∈ IDomn)
8 isidom 20645 . . . . . . . . . . 11 (𝑌 ∈ IDomn ↔ (𝑌 ∈ CRing ∧ 𝑌 ∈ Domn))
98simplbi 497 . . . . . . . . . 10 (𝑌 ∈ IDomn → 𝑌 ∈ CRing)
107, 9syl 17 . . . . . . . . 9 (𝜑𝑌 ∈ CRing)
11 crngring 20165 . . . . . . . . 9 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
1210, 11syl 17 . . . . . . . 8 (𝜑𝑌 ∈ Ring)
13 lgsqr.l . . . . . . . . 9 𝐿 = (ℤRHom‘𝑌)
1413zrhrhm 21453 . . . . . . . 8 (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌))
1512, 14syl 17 . . . . . . 7 (𝜑𝐿 ∈ (ℤring RingHom 𝑌))
16 zringbas 21395 . . . . . . . 8 ℤ = (Base‘ℤring)
17 eqid 2729 . . . . . . . 8 (Base‘𝑌) = (Base‘𝑌)
1816, 17rhmf 20405 . . . . . . 7 (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿:ℤ⟶(Base‘𝑌))
1915, 18syl 17 . . . . . 6 (𝜑𝐿:ℤ⟶(Base‘𝑌))
2019adantr 480 . . . . 5 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝐿:ℤ⟶(Base‘𝑌))
21 elfzelz 13461 . . . . . . 7 (𝑦 ∈ (1...((𝑃 − 1) / 2)) → 𝑦 ∈ ℤ)
2221adantl 481 . . . . . 6 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑦 ∈ ℤ)
23 zsqcl 14070 . . . . . 6 (𝑦 ∈ ℤ → (𝑦↑2) ∈ ℤ)
2422, 23syl 17 . . . . 5 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝑦↑2) ∈ ℤ)
2520, 24ffvelcdmd 7039 . . . 4 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(𝑦↑2)) ∈ (Base‘𝑌))
26 lgsqr.s . . . . 5 𝑆 = (Poly1𝑌)
27 lgsqr.b . . . . 5 𝐵 = (Base‘𝑆)
28 lgsqr.d . . . . 5 𝐷 = (deg1𝑌)
29 lgsqr.o . . . . 5 𝑂 = (eval1𝑌)
30 lgsqr.e . . . . 5 = (.g‘(mulGrp‘𝑆))
31 lgsqr.x . . . . 5 𝑋 = (var1𝑌)
32 lgsqr.m . . . . 5 = (-g𝑆)
33 lgsqr.u . . . . 5 1 = (1r𝑆)
34 lgsqr.t . . . . 5 𝑇 = ((((𝑃 − 1) / 2) 𝑋) 1 )
351adantr 480 . . . . 5 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ (ℙ ∖ {2}))
36 elfznn 13490 . . . . . . . . . . 11 (𝑦 ∈ (1...((𝑃 − 1) / 2)) → 𝑦 ∈ ℕ)
3736adantl 481 . . . . . . . . . 10 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑦 ∈ ℕ)
3837nncnd 12178 . . . . . . . . 9 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑦 ∈ ℂ)
39 oddprm 16757 . . . . . . . . . . . 12 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
401, 39syl 17 . . . . . . . . . . 11 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ)
4140nnnn0d 12479 . . . . . . . . . 10 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ0)
4241adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 − 1) / 2) ∈ ℕ0)
43 2nn0 12435 . . . . . . . . . 10 2 ∈ ℕ0
4443a1i 11 . . . . . . . . 9 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 2 ∈ ℕ0)
4538, 42, 44expmuld 14090 . . . . . . . 8 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝑦↑(2 · ((𝑃 − 1) / 2))) = ((𝑦↑2)↑((𝑃 − 1) / 2)))
46 prmnn 16620 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
472, 46syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ ℕ)
4847nnred 12177 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℝ)
49 peano2rem 11465 . . . . . . . . . . . . . 14 (𝑃 ∈ ℝ → (𝑃 − 1) ∈ ℝ)
5048, 49syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑃 − 1) ∈ ℝ)
5150recnd 11178 . . . . . . . . . . . 12 (𝜑 → (𝑃 − 1) ∈ ℂ)
52 2cnd 12240 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℂ)
53 2ne0 12266 . . . . . . . . . . . . 13 2 ≠ 0
5453a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ≠ 0)
5551, 52, 54divcan2d 11936 . . . . . . . . . . 11 (𝜑 → (2 · ((𝑃 − 1) / 2)) = (𝑃 − 1))
56 phiprm 16723 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → (ϕ‘𝑃) = (𝑃 − 1))
572, 56syl 17 . . . . . . . . . . 11 (𝜑 → (ϕ‘𝑃) = (𝑃 − 1))
5855, 57eqtr4d 2767 . . . . . . . . . 10 (𝜑 → (2 · ((𝑃 − 1) / 2)) = (ϕ‘𝑃))
5958adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (2 · ((𝑃 − 1) / 2)) = (ϕ‘𝑃))
6059oveq2d 7385 . . . . . . . 8 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝑦↑(2 · ((𝑃 − 1) / 2))) = (𝑦↑(ϕ‘𝑃)))
6145, 60eqtr3d 2766 . . . . . . 7 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → ((𝑦↑2)↑((𝑃 − 1) / 2)) = (𝑦↑(ϕ‘𝑃)))
6261oveq1d 7384 . . . . . 6 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (((𝑦↑2)↑((𝑃 − 1) / 2)) mod 𝑃) = ((𝑦↑(ϕ‘𝑃)) mod 𝑃))
632adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℙ)
6463, 46syl 17 . . . . . . 7 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℕ)
6547nnzd 12532 . . . . . . . . . 10 (𝜑𝑃 ∈ ℤ)
6665adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℤ)
6722, 66gcdcomd 16460 . . . . . . . 8 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝑦 gcd 𝑃) = (𝑃 gcd 𝑦))
6837nnred 12177 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑦 ∈ ℝ)
6950rehalfcld 12405 . . . . . . . . . . . . 13 (𝜑 → ((𝑃 − 1) / 2) ∈ ℝ)
7069adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 − 1) / 2) ∈ ℝ)
7148adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℝ)
72 elfzle2 13465 . . . . . . . . . . . . 13 (𝑦 ∈ (1...((𝑃 − 1) / 2)) → 𝑦 ≤ ((𝑃 − 1) / 2))
7372adantl 481 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑦 ≤ ((𝑃 − 1) / 2))
74 prmuz2 16642 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
752, 74syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ (ℤ‘2))
76 uz2m1nn 12858 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℤ‘2) → (𝑃 − 1) ∈ ℕ)
7775, 76syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑃 − 1) ∈ ℕ)
7877nnrpd 12969 . . . . . . . . . . . . . . 15 (𝜑 → (𝑃 − 1) ∈ ℝ+)
79 rphalflt 12958 . . . . . . . . . . . . . . 15 ((𝑃 − 1) ∈ ℝ+ → ((𝑃 − 1) / 2) < (𝑃 − 1))
8078, 79syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((𝑃 − 1) / 2) < (𝑃 − 1))
8148ltm1d 12091 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 − 1) < 𝑃)
8269, 50, 48, 80, 81lttrd 11311 . . . . . . . . . . . . 13 (𝜑 → ((𝑃 − 1) / 2) < 𝑃)
8382adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 − 1) / 2) < 𝑃)
8468, 70, 71, 73, 83lelttrd 11308 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑦 < 𝑃)
8568, 71ltnled 11297 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝑦 < 𝑃 ↔ ¬ 𝑃𝑦))
8684, 85mpbid 232 . . . . . . . . . 10 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → ¬ 𝑃𝑦)
87 dvdsle 16256 . . . . . . . . . . 11 ((𝑃 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑃𝑦𝑃𝑦))
8866, 37, 87syl2anc 584 . . . . . . . . . 10 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝑃𝑦𝑃𝑦))
8986, 88mtod 198 . . . . . . . . 9 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → ¬ 𝑃𝑦)
90 coprm 16657 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ ℤ) → (¬ 𝑃𝑦 ↔ (𝑃 gcd 𝑦) = 1))
9163, 22, 90syl2anc 584 . . . . . . . . 9 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (¬ 𝑃𝑦 ↔ (𝑃 gcd 𝑦) = 1))
9289, 91mpbid 232 . . . . . . . 8 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 gcd 𝑦) = 1)
9367, 92eqtrd 2764 . . . . . . 7 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝑦 gcd 𝑃) = 1)
94 eulerth 16729 . . . . . . 7 ((𝑃 ∈ ℕ ∧ 𝑦 ∈ ℤ ∧ (𝑦 gcd 𝑃) = 1) → ((𝑦↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃))
9564, 22, 93, 94syl3anc 1373 . . . . . 6 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → ((𝑦↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃))
9662, 95eqtrd 2764 . . . . 5 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (((𝑦↑2)↑((𝑃 − 1) / 2)) mod 𝑃) = (1 mod 𝑃))
973, 26, 27, 28, 29, 30, 31, 32, 33, 34, 13, 35, 24, 96lgsqrlem1 27290 . . . 4 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → ((𝑂𝑇)‘(𝐿‘(𝑦↑2))) = (0g𝑌))
98 eqid 2729 . . . . . . . 8 (𝑌s (Base‘𝑌)) = (𝑌s (Base‘𝑌))
99 eqid 2729 . . . . . . . 8 (Base‘(𝑌s (Base‘𝑌))) = (Base‘(𝑌s (Base‘𝑌)))
100 fvexd 6855 . . . . . . . 8 (𝜑 → (Base‘𝑌) ∈ V)
10129, 26, 98, 17evl1rhm 22252 . . . . . . . . . . 11 (𝑌 ∈ CRing → 𝑂 ∈ (𝑆 RingHom (𝑌s (Base‘𝑌))))
10210, 101syl 17 . . . . . . . . . 10 (𝜑𝑂 ∈ (𝑆 RingHom (𝑌s (Base‘𝑌))))
10327, 99rhmf 20405 . . . . . . . . . 10 (𝑂 ∈ (𝑆 RingHom (𝑌s (Base‘𝑌))) → 𝑂:𝐵⟶(Base‘(𝑌s (Base‘𝑌))))
104102, 103syl 17 . . . . . . . . 9 (𝜑𝑂:𝐵⟶(Base‘(𝑌s (Base‘𝑌))))
10526ply1ring 22165 . . . . . . . . . . . . 13 (𝑌 ∈ Ring → 𝑆 ∈ Ring)
10612, 105syl 17 . . . . . . . . . . . 12 (𝜑𝑆 ∈ Ring)
107 ringgrp 20158 . . . . . . . . . . . 12 (𝑆 ∈ Ring → 𝑆 ∈ Grp)
108106, 107syl 17 . . . . . . . . . . 11 (𝜑𝑆 ∈ Grp)
109 eqid 2729 . . . . . . . . . . . . 13 (mulGrp‘𝑆) = (mulGrp‘𝑆)
110109, 27mgpbas 20065 . . . . . . . . . . . 12 𝐵 = (Base‘(mulGrp‘𝑆))
111109ringmgp 20159 . . . . . . . . . . . . 13 (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd)
112106, 111syl 17 . . . . . . . . . . . 12 (𝜑 → (mulGrp‘𝑆) ∈ Mnd)
11331, 26, 27vr1cl 22135 . . . . . . . . . . . . 13 (𝑌 ∈ Ring → 𝑋𝐵)
11412, 113syl 17 . . . . . . . . . . . 12 (𝜑𝑋𝐵)
115110, 30, 112, 41, 114mulgnn0cld 19009 . . . . . . . . . . 11 (𝜑 → (((𝑃 − 1) / 2) 𝑋) ∈ 𝐵)
11627, 33ringidcl 20185 . . . . . . . . . . . 12 (𝑆 ∈ Ring → 1𝐵)
117106, 116syl 17 . . . . . . . . . . 11 (𝜑1𝐵)
11827, 32grpsubcl 18934 . . . . . . . . . . 11 ((𝑆 ∈ Grp ∧ (((𝑃 − 1) / 2) 𝑋) ∈ 𝐵1𝐵) → ((((𝑃 − 1) / 2) 𝑋) 1 ) ∈ 𝐵)
119108, 115, 117, 118syl3anc 1373 . . . . . . . . . 10 (𝜑 → ((((𝑃 − 1) / 2) 𝑋) 1 ) ∈ 𝐵)
12034, 119eqeltrid 2832 . . . . . . . . 9 (𝜑𝑇𝐵)
121104, 120ffvelcdmd 7039 . . . . . . . 8 (𝜑 → (𝑂𝑇) ∈ (Base‘(𝑌s (Base‘𝑌))))
12298, 17, 99, 5, 100, 121pwselbas 17428 . . . . . . 7 (𝜑 → (𝑂𝑇):(Base‘𝑌)⟶(Base‘𝑌))
123122ffnd 6671 . . . . . 6 (𝜑 → (𝑂𝑇) Fn (Base‘𝑌))
124123adantr 480 . . . . 5 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝑂𝑇) Fn (Base‘𝑌))
125 fniniseg 7014 . . . . 5 ((𝑂𝑇) Fn (Base‘𝑌) → ((𝐿‘(𝑦↑2)) ∈ ((𝑂𝑇) “ {(0g𝑌)}) ↔ ((𝐿‘(𝑦↑2)) ∈ (Base‘𝑌) ∧ ((𝑂𝑇)‘(𝐿‘(𝑦↑2))) = (0g𝑌))))
126124, 125syl 17 . . . 4 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → ((𝐿‘(𝑦↑2)) ∈ ((𝑂𝑇) “ {(0g𝑌)}) ↔ ((𝐿‘(𝑦↑2)) ∈ (Base‘𝑌) ∧ ((𝑂𝑇)‘(𝐿‘(𝑦↑2))) = (0g𝑌))))
12725, 97, 126mpbir2and 713 . . 3 ((𝜑𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(𝑦↑2)) ∈ ((𝑂𝑇) “ {(0g𝑌)}))
128 lgsqr.g . . 3 𝐺 = (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑦↑2)))
129127, 128fmptd 7068 . 2 (𝜑𝐺:(1...((𝑃 − 1) / 2))⟶((𝑂𝑇) “ {(0g𝑌)}))
130 fvoveq1 7392 . . . . . . . 8 (𝑦 = 𝑥 → (𝐿‘(𝑦↑2)) = (𝐿‘(𝑥↑2)))
131 fvex 6853 . . . . . . . 8 (𝐿‘(𝑥↑2)) ∈ V
132130, 128, 131fvmpt 6950 . . . . . . 7 (𝑥 ∈ (1...((𝑃 − 1) / 2)) → (𝐺𝑥) = (𝐿‘(𝑥↑2)))
133132ad2antrl 728 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝐺𝑥) = (𝐿‘(𝑥↑2)))
134 fvoveq1 7392 . . . . . . . 8 (𝑦 = 𝑧 → (𝐿‘(𝑦↑2)) = (𝐿‘(𝑧↑2)))
135 fvex 6853 . . . . . . . 8 (𝐿‘(𝑧↑2)) ∈ V
136134, 128, 135fvmpt 6950 . . . . . . 7 (𝑧 ∈ (1...((𝑃 − 1) / 2)) → (𝐺𝑧) = (𝐿‘(𝑧↑2)))
137136ad2antll 729 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝐺𝑧) = (𝐿‘(𝑧↑2)))
138133, 137eqeq12d 2745 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝐺𝑥) = (𝐺𝑧) ↔ (𝐿‘(𝑥↑2)) = (𝐿‘(𝑧↑2))))
13947nnnn0d 12479 . . . . . . 7 (𝜑𝑃 ∈ ℕ0)
140139adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ∈ ℕ0)
141 elfzelz 13461 . . . . . . . 8 (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ∈ ℤ)
142141ad2antrl 728 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑥 ∈ ℤ)
143 zsqcl 14070 . . . . . . 7 (𝑥 ∈ ℤ → (𝑥↑2) ∈ ℤ)
144142, 143syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥↑2) ∈ ℤ)
145 elfzelz 13461 . . . . . . . 8 (𝑧 ∈ (1...((𝑃 − 1) / 2)) → 𝑧 ∈ ℤ)
146145ad2antll 729 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑧 ∈ ℤ)
147 zsqcl 14070 . . . . . . 7 (𝑧 ∈ ℤ → (𝑧↑2) ∈ ℤ)
148146, 147syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑧↑2) ∈ ℤ)
1493, 13zndvds 21491 . . . . . 6 ((𝑃 ∈ ℕ0 ∧ (𝑥↑2) ∈ ℤ ∧ (𝑧↑2) ∈ ℤ) → ((𝐿‘(𝑥↑2)) = (𝐿‘(𝑧↑2)) ↔ 𝑃 ∥ ((𝑥↑2) − (𝑧↑2))))
150140, 144, 148, 149syl3anc 1373 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝐿‘(𝑥↑2)) = (𝐿‘(𝑧↑2)) ↔ 𝑃 ∥ ((𝑥↑2) − (𝑧↑2))))
151 elfznn 13490 . . . . . . . . 9 (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ∈ ℕ)
152151ad2antrl 728 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑥 ∈ ℕ)
153152nncnd 12178 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑥 ∈ ℂ)
154 elfznn 13490 . . . . . . . . 9 (𝑧 ∈ (1...((𝑃 − 1) / 2)) → 𝑧 ∈ ℕ)
155154ad2antll 729 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑧 ∈ ℕ)
156155nncnd 12178 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑧 ∈ ℂ)
157 subsq 14151 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥↑2) − (𝑧↑2)) = ((𝑥 + 𝑧) · (𝑥𝑧)))
158153, 156, 157syl2anc 584 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑥↑2) − (𝑧↑2)) = ((𝑥 + 𝑧) · (𝑥𝑧)))
159158breq2d 5114 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ ((𝑥↑2) − (𝑧↑2)) ↔ 𝑃 ∥ ((𝑥 + 𝑧) · (𝑥𝑧))))
160138, 150, 1593bitrd 305 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝐺𝑥) = (𝐺𝑧) ↔ 𝑃 ∥ ((𝑥 + 𝑧) · (𝑥𝑧))))
1612adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ∈ ℙ)
162142, 146zaddcld 12618 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥 + 𝑧) ∈ ℤ)
163142, 146zsubcld 12619 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥𝑧) ∈ ℤ)
164 euclemma 16659 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑥 + 𝑧) ∈ ℤ ∧ (𝑥𝑧) ∈ ℤ) → (𝑃 ∥ ((𝑥 + 𝑧) · (𝑥𝑧)) ↔ (𝑃 ∥ (𝑥 + 𝑧) ∨ 𝑃 ∥ (𝑥𝑧))))
165161, 162, 163, 164syl3anc 1373 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ ((𝑥 + 𝑧) · (𝑥𝑧)) ↔ (𝑃 ∥ (𝑥 + 𝑧) ∨ 𝑃 ∥ (𝑥𝑧))))
166161, 46syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ∈ ℕ)
167166nnzd 12532 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ∈ ℤ)
168152, 155nnaddcld 12214 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥 + 𝑧) ∈ ℕ)
169 dvdsle 16256 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ (𝑥 + 𝑧) ∈ ℕ) → (𝑃 ∥ (𝑥 + 𝑧) → 𝑃 ≤ (𝑥 + 𝑧)))
170167, 168, 169syl2anc 584 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ (𝑥 + 𝑧) → 𝑃 ≤ (𝑥 + 𝑧)))
171168nnred 12177 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥 + 𝑧) ∈ ℝ)
172166nnred 12177 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ∈ ℝ)
173172, 49syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 − 1) ∈ ℝ)
174152nnred 12177 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑥 ∈ ℝ)
175155nnred 12177 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑧 ∈ ℝ)
17669adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑃 − 1) / 2) ∈ ℝ)
177 elfzle2 13465 . . . . . . . . . . . . 13 (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ≤ ((𝑃 − 1) / 2))
178177ad2antrl 728 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑥 ≤ ((𝑃 − 1) / 2))
179 elfzle2 13465 . . . . . . . . . . . . 13 (𝑧 ∈ (1...((𝑃 − 1) / 2)) → 𝑧 ≤ ((𝑃 − 1) / 2))
180179ad2antll 729 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑧 ≤ ((𝑃 − 1) / 2))
181174, 175, 176, 176, 178, 180le2addd 11773 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥 + 𝑧) ≤ (((𝑃 − 1) / 2) + ((𝑃 − 1) / 2)))
18251adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 − 1) ∈ ℂ)
1831822halvesd 12404 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (((𝑃 − 1) / 2) + ((𝑃 − 1) / 2)) = (𝑃 − 1))
184181, 183breqtrd 5128 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥 + 𝑧) ≤ (𝑃 − 1))
185172ltm1d 12091 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 − 1) < 𝑃)
186171, 173, 172, 184, 185lelttrd 11308 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥 + 𝑧) < 𝑃)
187171, 172ltnled 11297 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑥 + 𝑧) < 𝑃 ↔ ¬ 𝑃 ≤ (𝑥 + 𝑧)))
188186, 187mpbid 232 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ¬ 𝑃 ≤ (𝑥 + 𝑧))
189188pm2.21d 121 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ≤ (𝑥 + 𝑧) → 𝑥 = 𝑧))
190170, 189syld 47 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ (𝑥 + 𝑧) → 𝑥 = 𝑧))
191 moddvds 16209 . . . . . . . . 9 ((𝑃 ∈ ℕ ∧ 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((𝑥 mod 𝑃) = (𝑧 mod 𝑃) ↔ 𝑃 ∥ (𝑥𝑧)))
192166, 142, 146, 191syl3anc 1373 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑥 mod 𝑃) = (𝑧 mod 𝑃) ↔ 𝑃 ∥ (𝑥𝑧)))
193166nnrpd 12969 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ∈ ℝ+)
194152nnnn0d 12479 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑥 ∈ ℕ0)
195194nn0ge0d 12482 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 0 ≤ 𝑥)
19682adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑃 − 1) / 2) < 𝑃)
197174, 176, 172, 178, 196lelttrd 11308 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑥 < 𝑃)
198 modid 13834 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥 < 𝑃)) → (𝑥 mod 𝑃) = 𝑥)
199174, 193, 195, 197, 198syl22anc 838 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥 mod 𝑃) = 𝑥)
200155nnnn0d 12479 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑧 ∈ ℕ0)
201200nn0ge0d 12482 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 0 ≤ 𝑧)
202175, 176, 172, 180, 196lelttrd 11308 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑧 < 𝑃)
203 modid 13834 . . . . . . . . . 10 (((𝑧 ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ (0 ≤ 𝑧𝑧 < 𝑃)) → (𝑧 mod 𝑃) = 𝑧)
204175, 193, 201, 202, 203syl22anc 838 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑧 mod 𝑃) = 𝑧)
205199, 204eqeq12d 2745 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑥 mod 𝑃) = (𝑧 mod 𝑃) ↔ 𝑥 = 𝑧))
206192, 205bitr3d 281 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ (𝑥𝑧) ↔ 𝑥 = 𝑧))
207206biimpd 229 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ (𝑥𝑧) → 𝑥 = 𝑧))
208190, 207jaod 859 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑃 ∥ (𝑥 + 𝑧) ∨ 𝑃 ∥ (𝑥𝑧)) → 𝑥 = 𝑧))
209165, 208sylbid 240 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ ((𝑥 + 𝑧) · (𝑥𝑧)) → 𝑥 = 𝑧))
210160, 209sylbid 240 . . 3 ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝐺𝑥) = (𝐺𝑧) → 𝑥 = 𝑧))
211210ralrimivva 3178 . 2 (𝜑 → ∀𝑥 ∈ (1...((𝑃 − 1) / 2))∀𝑧 ∈ (1...((𝑃 − 1) / 2))((𝐺𝑥) = (𝐺𝑧) → 𝑥 = 𝑧))
212 dff13 7211 . 2 (𝐺:(1...((𝑃 − 1) / 2))–1-1→((𝑂𝑇) “ {(0g𝑌)}) ↔ (𝐺:(1...((𝑃 − 1) / 2))⟶((𝑂𝑇) “ {(0g𝑌)}) ∧ ∀𝑥 ∈ (1...((𝑃 − 1) / 2))∀𝑧 ∈ (1...((𝑃 − 1) / 2))((𝐺𝑥) = (𝐺𝑧) → 𝑥 = 𝑧)))
213129, 211, 212sylanbrc 583 1 (𝜑𝐺:(1...((𝑃 − 1) / 2))–1-1→((𝑂𝑇) “ {(0g𝑌)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3444  cdif 3908  {csn 4585   class class class wbr 5102  cmpt 5183  ccnv 5630  cima 5634   Fn wfn 6494  wf 6495  1-1wf1 6496  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cle 11185  cmin 11381   / cdiv 11811  cn 12162  2c2 12217  0cn0 12418  cz 12505  cuz 12769  +crp 12927  ...cfz 13444   mod cmo 13807  cexp 14002  cdvds 16198   gcd cgcd 16440  cprime 16617  ϕcphi 16710  Basecbs 17155  0gc0g 17378  s cpws 17385  Mndcmnd 18643  Grpcgrp 18847  -gcsg 18849  .gcmg 18981  mulGrpcmgp 20060  1rcur 20101  Ringcrg 20153  CRingccrg 20154   RingHom crh 20389  Domncdomn 20612  IDomncidom 20613  Fieldcfield 20650  ringczring 21388  ℤRHomczrh 21441  ℤ/nczn 21444  var1cv1 22093  Poly1cpl1 22094  eval1ce1 22234  deg1cdg1 25992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-ec 8650  df-qs 8654  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-dvds 16199  df-gcd 16441  df-prm 16618  df-phi 16712  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-imas 17447  df-qus 17448  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-subg 19037  df-nsg 19038  df-eqg 19039  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-srg 20107  df-ring 20155  df-cring 20156  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-dvr 20321  df-rhm 20392  df-nzr 20433  df-subrng 20466  df-subrg 20490  df-rlreg 20614  df-domn 20615  df-idom 20616  df-drng 20651  df-field 20652  df-lmod 20800  df-lss 20870  df-lsp 20910  df-sra 21112  df-rgmod 21113  df-lidl 21150  df-rsp 21151  df-2idl 21192  df-cnfld 21297  df-zring 21389  df-zrh 21445  df-zn 21448  df-assa 21795  df-asp 21796  df-ascl 21797  df-psr 21851  df-mvr 21852  df-mpl 21853  df-opsr 21855  df-evls 22014  df-evl 22015  df-psr1 22097  df-vr1 22098  df-ply1 22099  df-evl1 22236
This theorem is referenced by:  lgsqrlem4  27293
  Copyright terms: Public domain W3C validator