Step | Hyp | Ref
| Expression |
1 | | lgsqr.1 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑃 ∈ (ℙ ∖
{2})) |
2 | 1 | eldifad 3895 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑃 ∈ ℙ) |
3 | | lgsqr.y |
. . . . . . . . . . . . 13
⊢ 𝑌 =
(ℤ/nℤ‘𝑃) |
4 | 3 | znfld 20680 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈ ℙ → 𝑌 ∈ Field) |
5 | 2, 4 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑌 ∈ Field) |
6 | | fldidom 20489 |
. . . . . . . . . . 11
⊢ (𝑌 ∈ Field → 𝑌 ∈ IDomn) |
7 | 5, 6 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ∈ IDomn) |
8 | | isidom 20488 |
. . . . . . . . . . 11
⊢ (𝑌 ∈ IDomn ↔ (𝑌 ∈ CRing ∧ 𝑌 ∈ Domn)) |
9 | 8 | simplbi 497 |
. . . . . . . . . 10
⊢ (𝑌 ∈ IDomn → 𝑌 ∈ CRing) |
10 | 7, 9 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑌 ∈ CRing) |
11 | | crngring 19710 |
. . . . . . . . 9
⊢ (𝑌 ∈ CRing → 𝑌 ∈ Ring) |
12 | 10, 11 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ Ring) |
13 | | lgsqr.l |
. . . . . . . . 9
⊢ 𝐿 = (ℤRHom‘𝑌) |
14 | 13 | zrhrhm 20625 |
. . . . . . . 8
⊢ (𝑌 ∈ Ring → 𝐿 ∈ (ℤring
RingHom 𝑌)) |
15 | 12, 14 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐿 ∈ (ℤring RingHom
𝑌)) |
16 | | zringbas 20588 |
. . . . . . . 8
⊢ ℤ =
(Base‘ℤring) |
17 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘𝑌) =
(Base‘𝑌) |
18 | 16, 17 | rhmf 19885 |
. . . . . . 7
⊢ (𝐿 ∈ (ℤring
RingHom 𝑌) → 𝐿:ℤ⟶(Base‘𝑌)) |
19 | 15, 18 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐿:ℤ⟶(Base‘𝑌)) |
20 | 19 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝐿:ℤ⟶(Base‘𝑌)) |
21 | | elfzelz 13185 |
. . . . . . 7
⊢ (𝑦 ∈ (1...((𝑃 − 1) / 2)) → 𝑦 ∈ ℤ) |
22 | 21 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑦 ∈ ℤ) |
23 | | zsqcl 13776 |
. . . . . 6
⊢ (𝑦 ∈ ℤ → (𝑦↑2) ∈
ℤ) |
24 | 22, 23 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝑦↑2) ∈
ℤ) |
25 | 20, 24 | ffvelrnd 6944 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(𝑦↑2)) ∈ (Base‘𝑌)) |
26 | | lgsqr.s |
. . . . 5
⊢ 𝑆 = (Poly1‘𝑌) |
27 | | lgsqr.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑆) |
28 | | lgsqr.d |
. . . . 5
⊢ 𝐷 = ( deg1
‘𝑌) |
29 | | lgsqr.o |
. . . . 5
⊢ 𝑂 = (eval1‘𝑌) |
30 | | lgsqr.e |
. . . . 5
⊢ ↑ =
(.g‘(mulGrp‘𝑆)) |
31 | | lgsqr.x |
. . . . 5
⊢ 𝑋 = (var1‘𝑌) |
32 | | lgsqr.m |
. . . . 5
⊢ − =
(-g‘𝑆) |
33 | | lgsqr.u |
. . . . 5
⊢ 1 =
(1r‘𝑆) |
34 | | lgsqr.t |
. . . . 5
⊢ 𝑇 = ((((𝑃 − 1) / 2) ↑ 𝑋) − 1 ) |
35 | 1 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ (ℙ ∖
{2})) |
36 | | elfznn 13214 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (1...((𝑃 − 1) / 2)) → 𝑦 ∈ ℕ) |
37 | 36 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑦 ∈ ℕ) |
38 | 37 | nncnd 11919 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑦 ∈ ℂ) |
39 | | oddprm 16439 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ ((𝑃 − 1) / 2)
∈ ℕ) |
40 | 1, 39 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑃 − 1) / 2) ∈
ℕ) |
41 | 40 | nnnn0d 12223 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑃 − 1) / 2) ∈
ℕ0) |
42 | 41 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 − 1) / 2) ∈
ℕ0) |
43 | | 2nn0 12180 |
. . . . . . . . . 10
⊢ 2 ∈
ℕ0 |
44 | 43 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (1...((𝑃 − 1) / 2))) → 2 ∈
ℕ0) |
45 | 38, 42, 44 | expmuld 13795 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝑦↑(2 · ((𝑃 − 1) / 2))) = ((𝑦↑2)↑((𝑃 − 1) /
2))) |
46 | | prmnn 16307 |
. . . . . . . . . . . . . . . 16
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
47 | 2, 46 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑃 ∈ ℕ) |
48 | 47 | nnred 11918 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑃 ∈ ℝ) |
49 | | peano2rem 11218 |
. . . . . . . . . . . . . 14
⊢ (𝑃 ∈ ℝ → (𝑃 − 1) ∈
ℝ) |
50 | 48, 49 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑃 − 1) ∈ ℝ) |
51 | 50 | recnd 10934 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑃 − 1) ∈ ℂ) |
52 | | 2cnd 11981 |
. . . . . . . . . . . 12
⊢ (𝜑 → 2 ∈
ℂ) |
53 | | 2ne0 12007 |
. . . . . . . . . . . . 13
⊢ 2 ≠
0 |
54 | 53 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 2 ≠ 0) |
55 | 51, 52, 54 | divcan2d 11683 |
. . . . . . . . . . 11
⊢ (𝜑 → (2 · ((𝑃 − 1) / 2)) = (𝑃 − 1)) |
56 | | phiprm 16406 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈ ℙ →
(ϕ‘𝑃) = (𝑃 − 1)) |
57 | 2, 56 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (ϕ‘𝑃) = (𝑃 − 1)) |
58 | 55, 57 | eqtr4d 2781 |
. . . . . . . . . 10
⊢ (𝜑 → (2 · ((𝑃 − 1) / 2)) =
(ϕ‘𝑃)) |
59 | 58 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (1...((𝑃 − 1) / 2))) → (2 ·
((𝑃 − 1) / 2)) =
(ϕ‘𝑃)) |
60 | 59 | oveq2d 7271 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝑦↑(2 · ((𝑃 − 1) / 2))) = (𝑦↑(ϕ‘𝑃))) |
61 | 45, 60 | eqtr3d 2780 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (1...((𝑃 − 1) / 2))) → ((𝑦↑2)↑((𝑃 − 1) / 2)) = (𝑦↑(ϕ‘𝑃))) |
62 | 61 | oveq1d 7270 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (1...((𝑃 − 1) / 2))) → (((𝑦↑2)↑((𝑃 − 1) / 2)) mod 𝑃) = ((𝑦↑(ϕ‘𝑃)) mod 𝑃)) |
63 | 2 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℙ) |
64 | 63, 46 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℕ) |
65 | 47 | nnzd 12354 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∈ ℤ) |
66 | 65 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℤ) |
67 | 22, 66 | gcdcomd 16149 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝑦 gcd 𝑃) = (𝑃 gcd 𝑦)) |
68 | 37 | nnred 11918 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑦 ∈ ℝ) |
69 | 50 | rehalfcld 12150 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑃 − 1) / 2) ∈
ℝ) |
70 | 69 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 − 1) / 2) ∈
ℝ) |
71 | 48 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℝ) |
72 | | elfzle2 13189 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (1...((𝑃 − 1) / 2)) → 𝑦 ≤ ((𝑃 − 1) / 2)) |
73 | 72 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑦 ≤ ((𝑃 − 1) / 2)) |
74 | | prmuz2 16329 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
(ℤ≥‘2)) |
75 | 2, 74 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑃 ∈
(ℤ≥‘2)) |
76 | | uz2m1nn 12592 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑃 ∈
(ℤ≥‘2) → (𝑃 − 1) ∈ ℕ) |
77 | 75, 76 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑃 − 1) ∈ ℕ) |
78 | 77 | nnrpd 12699 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑃 − 1) ∈
ℝ+) |
79 | | rphalflt 12688 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃 − 1) ∈
ℝ+ → ((𝑃 − 1) / 2) < (𝑃 − 1)) |
80 | 78, 79 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑃 − 1) / 2) < (𝑃 − 1)) |
81 | 48 | ltm1d 11837 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑃 − 1) < 𝑃) |
82 | 69, 50, 48, 80, 81 | lttrd 11066 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑃 − 1) / 2) < 𝑃) |
83 | 82 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 − 1) / 2) < 𝑃) |
84 | 68, 70, 71, 73, 83 | lelttrd 11063 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (1...((𝑃 − 1) / 2))) → 𝑦 < 𝑃) |
85 | 68, 71 | ltnled 11052 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝑦 < 𝑃 ↔ ¬ 𝑃 ≤ 𝑦)) |
86 | 84, 85 | mpbid 231 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (1...((𝑃 − 1) / 2))) → ¬ 𝑃 ≤ 𝑦) |
87 | | dvdsle 15947 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑃 ∥ 𝑦 → 𝑃 ≤ 𝑦)) |
88 | 66, 37, 87 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 ∥ 𝑦 → 𝑃 ≤ 𝑦)) |
89 | 86, 88 | mtod 197 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (1...((𝑃 − 1) / 2))) → ¬ 𝑃 ∥ 𝑦) |
90 | | coprm 16344 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ 𝑦 ∈ ℤ) → (¬
𝑃 ∥ 𝑦 ↔ (𝑃 gcd 𝑦) = 1)) |
91 | 63, 22, 90 | syl2anc 583 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (1...((𝑃 − 1) / 2))) → (¬ 𝑃 ∥ 𝑦 ↔ (𝑃 gcd 𝑦) = 1)) |
92 | 89, 91 | mpbid 231 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 gcd 𝑦) = 1) |
93 | 67, 92 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝑦 gcd 𝑃) = 1) |
94 | | eulerth 16412 |
. . . . . . 7
⊢ ((𝑃 ∈ ℕ ∧ 𝑦 ∈ ℤ ∧ (𝑦 gcd 𝑃) = 1) → ((𝑦↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃)) |
95 | 64, 22, 93, 94 | syl3anc 1369 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (1...((𝑃 − 1) / 2))) → ((𝑦↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃)) |
96 | 62, 95 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (1...((𝑃 − 1) / 2))) → (((𝑦↑2)↑((𝑃 − 1) / 2)) mod 𝑃) = (1 mod 𝑃)) |
97 | 3, 26, 27, 28, 29, 30, 31, 32, 33, 34, 13, 35, 24, 96 | lgsqrlem1 26399 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (1...((𝑃 − 1) / 2))) → ((𝑂‘𝑇)‘(𝐿‘(𝑦↑2))) = (0g‘𝑌)) |
98 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑌 ↑s
(Base‘𝑌)) = (𝑌 ↑s
(Base‘𝑌)) |
99 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘(𝑌
↑s (Base‘𝑌))) = (Base‘(𝑌 ↑s (Base‘𝑌))) |
100 | | fvexd 6771 |
. . . . . . . 8
⊢ (𝜑 → (Base‘𝑌) ∈ V) |
101 | 29, 26, 98, 17 | evl1rhm 21408 |
. . . . . . . . . . 11
⊢ (𝑌 ∈ CRing → 𝑂 ∈ (𝑆 RingHom (𝑌 ↑s (Base‘𝑌)))) |
102 | 10, 101 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑂 ∈ (𝑆 RingHom (𝑌 ↑s (Base‘𝑌)))) |
103 | 27, 99 | rhmf 19885 |
. . . . . . . . . 10
⊢ (𝑂 ∈ (𝑆 RingHom (𝑌 ↑s (Base‘𝑌))) → 𝑂:𝐵⟶(Base‘(𝑌 ↑s (Base‘𝑌)))) |
104 | 102, 103 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑂:𝐵⟶(Base‘(𝑌 ↑s (Base‘𝑌)))) |
105 | 26 | ply1ring 21329 |
. . . . . . . . . . . . 13
⊢ (𝑌 ∈ Ring → 𝑆 ∈ Ring) |
106 | 12, 105 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑆 ∈ Ring) |
107 | | ringgrp 19703 |
. . . . . . . . . . . 12
⊢ (𝑆 ∈ Ring → 𝑆 ∈ Grp) |
108 | 106, 107 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆 ∈ Grp) |
109 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(mulGrp‘𝑆) =
(mulGrp‘𝑆) |
110 | 109 | ringmgp 19704 |
. . . . . . . . . . . . 13
⊢ (𝑆 ∈ Ring →
(mulGrp‘𝑆) ∈
Mnd) |
111 | 106, 110 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (mulGrp‘𝑆) ∈ Mnd) |
112 | 31, 26, 27 | vr1cl 21298 |
. . . . . . . . . . . . 13
⊢ (𝑌 ∈ Ring → 𝑋 ∈ 𝐵) |
113 | 12, 112 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
114 | 109, 27 | mgpbas 19641 |
. . . . . . . . . . . . 13
⊢ 𝐵 =
(Base‘(mulGrp‘𝑆)) |
115 | 114, 30 | mulgnn0cl 18635 |
. . . . . . . . . . . 12
⊢
(((mulGrp‘𝑆)
∈ Mnd ∧ ((𝑃
− 1) / 2) ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (((𝑃 − 1) / 2) ↑ 𝑋) ∈ 𝐵) |
116 | 111, 41, 113, 115 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝑃 − 1) / 2) ↑ 𝑋) ∈ 𝐵) |
117 | 27, 33 | ringidcl 19722 |
. . . . . . . . . . . 12
⊢ (𝑆 ∈ Ring → 1 ∈ 𝐵) |
118 | 106, 117 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 1 ∈ 𝐵) |
119 | 27, 32 | grpsubcl 18570 |
. . . . . . . . . . 11
⊢ ((𝑆 ∈ Grp ∧ (((𝑃 − 1) / 2) ↑ 𝑋) ∈ 𝐵 ∧ 1 ∈ 𝐵) → ((((𝑃 − 1) / 2) ↑ 𝑋) − 1 ) ∈ 𝐵) |
120 | 108, 116,
118, 119 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (𝜑 → ((((𝑃 − 1) / 2) ↑ 𝑋) − 1 ) ∈ 𝐵) |
121 | 34, 120 | eqeltrid 2843 |
. . . . . . . . 9
⊢ (𝜑 → 𝑇 ∈ 𝐵) |
122 | 104, 121 | ffvelrnd 6944 |
. . . . . . . 8
⊢ (𝜑 → (𝑂‘𝑇) ∈ (Base‘(𝑌 ↑s (Base‘𝑌)))) |
123 | 98, 17, 99, 5, 100, 122 | pwselbas 17117 |
. . . . . . 7
⊢ (𝜑 → (𝑂‘𝑇):(Base‘𝑌)⟶(Base‘𝑌)) |
124 | 123 | ffnd 6585 |
. . . . . 6
⊢ (𝜑 → (𝑂‘𝑇) Fn (Base‘𝑌)) |
125 | 124 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝑂‘𝑇) Fn (Base‘𝑌)) |
126 | | fniniseg 6919 |
. . . . 5
⊢ ((𝑂‘𝑇) Fn (Base‘𝑌) → ((𝐿‘(𝑦↑2)) ∈ (◡(𝑂‘𝑇) “ {(0g‘𝑌)}) ↔ ((𝐿‘(𝑦↑2)) ∈ (Base‘𝑌) ∧ ((𝑂‘𝑇)‘(𝐿‘(𝑦↑2))) = (0g‘𝑌)))) |
127 | 125, 126 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (1...((𝑃 − 1) / 2))) → ((𝐿‘(𝑦↑2)) ∈ (◡(𝑂‘𝑇) “ {(0g‘𝑌)}) ↔ ((𝐿‘(𝑦↑2)) ∈ (Base‘𝑌) ∧ ((𝑂‘𝑇)‘(𝐿‘(𝑦↑2))) = (0g‘𝑌)))) |
128 | 25, 97, 127 | mpbir2and 709 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(𝑦↑2)) ∈ (◡(𝑂‘𝑇) “ {(0g‘𝑌)})) |
129 | | lgsqr.g |
. . 3
⊢ 𝐺 = (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑦↑2))) |
130 | 128, 129 | fmptd 6970 |
. 2
⊢ (𝜑 → 𝐺:(1...((𝑃 − 1) / 2))⟶(◡(𝑂‘𝑇) “ {(0g‘𝑌)})) |
131 | | fvoveq1 7278 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (𝐿‘(𝑦↑2)) = (𝐿‘(𝑥↑2))) |
132 | | fvex 6769 |
. . . . . . . 8
⊢ (𝐿‘(𝑥↑2)) ∈ V |
133 | 131, 129,
132 | fvmpt 6857 |
. . . . . . 7
⊢ (𝑥 ∈ (1...((𝑃 − 1) / 2)) → (𝐺‘𝑥) = (𝐿‘(𝑥↑2))) |
134 | 133 | ad2antrl 724 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝐺‘𝑥) = (𝐿‘(𝑥↑2))) |
135 | | fvoveq1 7278 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → (𝐿‘(𝑦↑2)) = (𝐿‘(𝑧↑2))) |
136 | | fvex 6769 |
. . . . . . . 8
⊢ (𝐿‘(𝑧↑2)) ∈ V |
137 | 135, 129,
136 | fvmpt 6857 |
. . . . . . 7
⊢ (𝑧 ∈ (1...((𝑃 − 1) / 2)) → (𝐺‘𝑧) = (𝐿‘(𝑧↑2))) |
138 | 137 | ad2antll 725 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝐺‘𝑧) = (𝐿‘(𝑧↑2))) |
139 | 134, 138 | eqeq12d 2754 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝐺‘𝑥) = (𝐺‘𝑧) ↔ (𝐿‘(𝑥↑2)) = (𝐿‘(𝑧↑2)))) |
140 | 47 | nnnn0d 12223 |
. . . . . . 7
⊢ (𝜑 → 𝑃 ∈
ℕ0) |
141 | 140 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ∈
ℕ0) |
142 | | elfzelz 13185 |
. . . . . . . 8
⊢ (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ∈ ℤ) |
143 | 142 | ad2antrl 724 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑥 ∈
ℤ) |
144 | | zsqcl 13776 |
. . . . . . 7
⊢ (𝑥 ∈ ℤ → (𝑥↑2) ∈
ℤ) |
145 | 143, 144 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥↑2) ∈
ℤ) |
146 | | elfzelz 13185 |
. . . . . . . 8
⊢ (𝑧 ∈ (1...((𝑃 − 1) / 2)) → 𝑧 ∈ ℤ) |
147 | 146 | ad2antll 725 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑧 ∈
ℤ) |
148 | | zsqcl 13776 |
. . . . . . 7
⊢ (𝑧 ∈ ℤ → (𝑧↑2) ∈
ℤ) |
149 | 147, 148 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑧↑2) ∈
ℤ) |
150 | 3, 13 | zndvds 20669 |
. . . . . 6
⊢ ((𝑃 ∈ ℕ0
∧ (𝑥↑2) ∈
ℤ ∧ (𝑧↑2)
∈ ℤ) → ((𝐿‘(𝑥↑2)) = (𝐿‘(𝑧↑2)) ↔ 𝑃 ∥ ((𝑥↑2) − (𝑧↑2)))) |
151 | 141, 145,
149, 150 | syl3anc 1369 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝐿‘(𝑥↑2)) = (𝐿‘(𝑧↑2)) ↔ 𝑃 ∥ ((𝑥↑2) − (𝑧↑2)))) |
152 | | elfznn 13214 |
. . . . . . . . 9
⊢ (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ∈ ℕ) |
153 | 152 | ad2antrl 724 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑥 ∈
ℕ) |
154 | 153 | nncnd 11919 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑥 ∈
ℂ) |
155 | | elfznn 13214 |
. . . . . . . . 9
⊢ (𝑧 ∈ (1...((𝑃 − 1) / 2)) → 𝑧 ∈ ℕ) |
156 | 155 | ad2antll 725 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑧 ∈
ℕ) |
157 | 156 | nncnd 11919 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑧 ∈
ℂ) |
158 | | subsq 13854 |
. . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥↑2) − (𝑧↑2)) = ((𝑥 + 𝑧) · (𝑥 − 𝑧))) |
159 | 154, 157,
158 | syl2anc 583 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑥↑2) − (𝑧↑2)) = ((𝑥 + 𝑧) · (𝑥 − 𝑧))) |
160 | 159 | breq2d 5082 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ ((𝑥↑2) − (𝑧↑2)) ↔ 𝑃 ∥ ((𝑥 + 𝑧) · (𝑥 − 𝑧)))) |
161 | 139, 151,
160 | 3bitrd 304 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝐺‘𝑥) = (𝐺‘𝑧) ↔ 𝑃 ∥ ((𝑥 + 𝑧) · (𝑥 − 𝑧)))) |
162 | 2 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ∈ ℙ) |
163 | 143, 147 | zaddcld 12359 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥 + 𝑧) ∈ ℤ) |
164 | 143, 147 | zsubcld 12360 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥 − 𝑧) ∈ ℤ) |
165 | | euclemma 16346 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 + 𝑧) ∈ ℤ ∧ (𝑥 − 𝑧) ∈ ℤ) → (𝑃 ∥ ((𝑥 + 𝑧) · (𝑥 − 𝑧)) ↔ (𝑃 ∥ (𝑥 + 𝑧) ∨ 𝑃 ∥ (𝑥 − 𝑧)))) |
166 | 162, 163,
164, 165 | syl3anc 1369 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ ((𝑥 + 𝑧) · (𝑥 − 𝑧)) ↔ (𝑃 ∥ (𝑥 + 𝑧) ∨ 𝑃 ∥ (𝑥 − 𝑧)))) |
167 | 162, 46 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ∈ ℕ) |
168 | 167 | nnzd 12354 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ∈ ℤ) |
169 | 153, 156 | nnaddcld 11955 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥 + 𝑧) ∈ ℕ) |
170 | | dvdsle 15947 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℤ ∧ (𝑥 + 𝑧) ∈ ℕ) → (𝑃 ∥ (𝑥 + 𝑧) → 𝑃 ≤ (𝑥 + 𝑧))) |
171 | 168, 169,
170 | syl2anc 583 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ (𝑥 + 𝑧) → 𝑃 ≤ (𝑥 + 𝑧))) |
172 | 169 | nnred 11918 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥 + 𝑧) ∈ ℝ) |
173 | 167 | nnred 11918 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ∈ ℝ) |
174 | 173, 49 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 − 1) ∈
ℝ) |
175 | 153 | nnred 11918 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑥 ∈
ℝ) |
176 | 156 | nnred 11918 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑧 ∈
ℝ) |
177 | 69 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑃 − 1) / 2) ∈
ℝ) |
178 | | elfzle2 13189 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ≤ ((𝑃 − 1) / 2)) |
179 | 178 | ad2antrl 724 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑥 ≤ ((𝑃 − 1) / 2)) |
180 | | elfzle2 13189 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ (1...((𝑃 − 1) / 2)) → 𝑧 ≤ ((𝑃 − 1) / 2)) |
181 | 180 | ad2antll 725 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑧 ≤ ((𝑃 − 1) / 2)) |
182 | 175, 176,
177, 177, 179, 181 | le2addd 11524 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥 + 𝑧) ≤ (((𝑃 − 1) / 2) + ((𝑃 − 1) / 2))) |
183 | 51 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 − 1) ∈
ℂ) |
184 | 183 | 2halvesd 12149 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (((𝑃 − 1) / 2) + ((𝑃 − 1) / 2)) = (𝑃 − 1)) |
185 | 182, 184 | breqtrd 5096 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥 + 𝑧) ≤ (𝑃 − 1)) |
186 | 173 | ltm1d 11837 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 − 1) < 𝑃) |
187 | 172, 174,
173, 185, 186 | lelttrd 11063 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥 + 𝑧) < 𝑃) |
188 | 172, 173 | ltnled 11052 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑥 + 𝑧) < 𝑃 ↔ ¬ 𝑃 ≤ (𝑥 + 𝑧))) |
189 | 187, 188 | mpbid 231 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ¬ 𝑃 ≤ (𝑥 + 𝑧)) |
190 | 189 | pm2.21d 121 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ≤ (𝑥 + 𝑧) → 𝑥 = 𝑧)) |
191 | 171, 190 | syld 47 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ (𝑥 + 𝑧) → 𝑥 = 𝑧)) |
192 | | moddvds 15902 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℕ ∧ 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((𝑥 mod 𝑃) = (𝑧 mod 𝑃) ↔ 𝑃 ∥ (𝑥 − 𝑧))) |
193 | 167, 143,
147, 192 | syl3anc 1369 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑥 mod 𝑃) = (𝑧 mod 𝑃) ↔ 𝑃 ∥ (𝑥 − 𝑧))) |
194 | 167 | nnrpd 12699 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ∈
ℝ+) |
195 | 153 | nnnn0d 12223 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑥 ∈
ℕ0) |
196 | 195 | nn0ge0d 12226 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 0 ≤ 𝑥) |
197 | 82 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑃 − 1) / 2) < 𝑃) |
198 | 175, 177,
173, 179, 197 | lelttrd 11063 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑥 < 𝑃) |
199 | | modid 13544 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℝ ∧ 𝑃 ∈ ℝ+)
∧ (0 ≤ 𝑥 ∧ 𝑥 < 𝑃)) → (𝑥 mod 𝑃) = 𝑥) |
200 | 175, 194,
196, 198, 199 | syl22anc 835 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥 mod 𝑃) = 𝑥) |
201 | 156 | nnnn0d 12223 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑧 ∈
ℕ0) |
202 | 201 | nn0ge0d 12226 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 0 ≤ 𝑧) |
203 | 176, 177,
173, 181, 197 | lelttrd 11063 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → 𝑧 < 𝑃) |
204 | | modid 13544 |
. . . . . . . . . 10
⊢ (((𝑧 ∈ ℝ ∧ 𝑃 ∈ ℝ+)
∧ (0 ≤ 𝑧 ∧ 𝑧 < 𝑃)) → (𝑧 mod 𝑃) = 𝑧) |
205 | 176, 194,
202, 203, 204 | syl22anc 835 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑧 mod 𝑃) = 𝑧) |
206 | 200, 205 | eqeq12d 2754 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑥 mod 𝑃) = (𝑧 mod 𝑃) ↔ 𝑥 = 𝑧)) |
207 | 193, 206 | bitr3d 280 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ (𝑥 − 𝑧) ↔ 𝑥 = 𝑧)) |
208 | 207 | biimpd 228 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ (𝑥 − 𝑧) → 𝑥 = 𝑧)) |
209 | 191, 208 | jaod 855 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑃 ∥ (𝑥 + 𝑧) ∨ 𝑃 ∥ (𝑥 − 𝑧)) → 𝑥 = 𝑧)) |
210 | 166, 209 | sylbid 239 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ ((𝑥 + 𝑧) · (𝑥 − 𝑧)) → 𝑥 = 𝑧)) |
211 | 161, 210 | sylbid 239 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) → ((𝐺‘𝑥) = (𝐺‘𝑧) → 𝑥 = 𝑧)) |
212 | 211 | ralrimivva 3114 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ (1...((𝑃 − 1) / 2))∀𝑧 ∈ (1...((𝑃 − 1) / 2))((𝐺‘𝑥) = (𝐺‘𝑧) → 𝑥 = 𝑧)) |
213 | | dff13 7109 |
. 2
⊢ (𝐺:(1...((𝑃 − 1) / 2))–1-1→(◡(𝑂‘𝑇) “ {(0g‘𝑌)}) ↔ (𝐺:(1...((𝑃 − 1) / 2))⟶(◡(𝑂‘𝑇) “ {(0g‘𝑌)}) ∧ ∀𝑥 ∈ (1...((𝑃 − 1) / 2))∀𝑧 ∈ (1...((𝑃 − 1) / 2))((𝐺‘𝑥) = (𝐺‘𝑧) → 𝑥 = 𝑧))) |
214 | 130, 212,
213 | sylanbrc 582 |
1
⊢ (𝜑 → 𝐺:(1...((𝑃 − 1) / 2))–1-1→(◡(𝑂‘𝑇) “ {(0g‘𝑌)})) |