MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znfld Structured version   Visualization version   GIF version

Theorem znfld 20766
Description: The ℤ/n structure is a finite field when 𝑛 is prime. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypothesis
Ref Expression
zntos.y 𝑌 = (ℤ/nℤ‘𝑁)
Assertion
Ref Expression
znfld (𝑁 ∈ ℙ → 𝑌 ∈ Field)

Proof of Theorem znfld
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmnn 16377 . . . . 5 (𝑁 ∈ ℙ → 𝑁 ∈ ℕ)
2 nnnn0 12240 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
31, 2syl 17 . . . 4 (𝑁 ∈ ℙ → 𝑁 ∈ ℕ0)
4 zntos.y . . . . 5 𝑌 = (ℤ/nℤ‘𝑁)
54zncrng 20750 . . . 4 (𝑁 ∈ ℕ0𝑌 ∈ CRing)
63, 5syl 17 . . 3 (𝑁 ∈ ℙ → 𝑌 ∈ CRing)
7 crngring 19793 . . . . . 6 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
81, 2, 5, 74syl 19 . . . . 5 (𝑁 ∈ ℙ → 𝑌 ∈ Ring)
9 hash2 14118 . . . . . . 7 (♯‘2o) = 2
10 prmuz2 16399 . . . . . . . . 9 (𝑁 ∈ ℙ → 𝑁 ∈ (ℤ‘2))
11 eluzle 12594 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 2 ≤ 𝑁)
1210, 11syl 17 . . . . . . . 8 (𝑁 ∈ ℙ → 2 ≤ 𝑁)
13 eqid 2740 . . . . . . . . . 10 (Base‘𝑌) = (Base‘𝑌)
144, 13znhash 20764 . . . . . . . . 9 (𝑁 ∈ ℕ → (♯‘(Base‘𝑌)) = 𝑁)
151, 14syl 17 . . . . . . . 8 (𝑁 ∈ ℙ → (♯‘(Base‘𝑌)) = 𝑁)
1612, 15breqtrrd 5107 . . . . . . 7 (𝑁 ∈ ℙ → 2 ≤ (♯‘(Base‘𝑌)))
179, 16eqbrtrid 5114 . . . . . 6 (𝑁 ∈ ℙ → (♯‘2o) ≤ (♯‘(Base‘𝑌)))
18 2onn 8456 . . . . . . . 8 2o ∈ ω
19 nnfi 8932 . . . . . . . 8 (2o ∈ ω → 2o ∈ Fin)
2018, 19ax-mp 5 . . . . . . 7 2o ∈ Fin
21 fvex 6784 . . . . . . 7 (Base‘𝑌) ∈ V
22 hashdom 14092 . . . . . . 7 ((2o ∈ Fin ∧ (Base‘𝑌) ∈ V) → ((♯‘2o) ≤ (♯‘(Base‘𝑌)) ↔ 2o ≼ (Base‘𝑌)))
2320, 21, 22mp2an 689 . . . . . 6 ((♯‘2o) ≤ (♯‘(Base‘𝑌)) ↔ 2o ≼ (Base‘𝑌))
2417, 23sylib 217 . . . . 5 (𝑁 ∈ ℙ → 2o ≼ (Base‘𝑌))
2513isnzr2 20532 . . . . 5 (𝑌 ∈ NzRing ↔ (𝑌 ∈ Ring ∧ 2o ≼ (Base‘𝑌)))
268, 24, 25sylanbrc 583 . . . 4 (𝑁 ∈ ℙ → 𝑌 ∈ NzRing)
27 eqid 2740 . . . . . . . . 9 (ℤRHom‘𝑌) = (ℤRHom‘𝑌)
284, 13, 27znzrhfo 20753 . . . . . . . 8 (𝑁 ∈ ℕ0 → (ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌))
293, 28syl 17 . . . . . . 7 (𝑁 ∈ ℙ → (ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌))
30 foelrn 6979 . . . . . . . 8 (((ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌) ∧ 𝑥 ∈ (Base‘𝑌)) → ∃𝑧 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑧))
31 foelrn 6979 . . . . . . . 8 (((ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌)) → ∃𝑤 ∈ ℤ 𝑦 = ((ℤRHom‘𝑌)‘𝑤))
3230, 31anim12dan 619 . . . . . . 7 (((ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌) ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌))) → (∃𝑧 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ ∃𝑤 ∈ ℤ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)))
3329, 32sylan 580 . . . . . 6 ((𝑁 ∈ ℙ ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌))) → (∃𝑧 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ ∃𝑤 ∈ ℤ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)))
34 reeanv 3295 . . . . . . . 8 (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) ↔ (∃𝑧 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ ∃𝑤 ∈ ℤ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)))
35 euclemma 16416 . . . . . . . . . . . . 13 ((𝑁 ∈ ℙ ∧ 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ) → (𝑁 ∥ (𝑧 · 𝑤) ↔ (𝑁𝑧𝑁𝑤)))
36353expb 1119 . . . . . . . . . . . 12 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → (𝑁 ∥ (𝑧 · 𝑤) ↔ (𝑁𝑧𝑁𝑤)))
378adantr 481 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → 𝑌 ∈ Ring)
3827zrhrhm 20711 . . . . . . . . . . . . . . . 16 (𝑌 ∈ Ring → (ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌))
3937, 38syl 17 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → (ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌))
40 simprl 768 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → 𝑧 ∈ ℤ)
41 simprr 770 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → 𝑤 ∈ ℤ)
42 zringbas 20674 . . . . . . . . . . . . . . . 16 ℤ = (Base‘ℤring)
43 zringmulr 20677 . . . . . . . . . . . . . . . 16 · = (.r‘ℤring)
44 eqid 2740 . . . . . . . . . . . . . . . 16 (.r𝑌) = (.r𝑌)
4542, 43, 44rhmmul 19969 . . . . . . . . . . . . . . 15 (((ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌) ∧ 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ) → ((ℤRHom‘𝑌)‘(𝑧 · 𝑤)) = (((ℤRHom‘𝑌)‘𝑧)(.r𝑌)((ℤRHom‘𝑌)‘𝑤)))
4639, 40, 41, 45syl3anc 1370 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → ((ℤRHom‘𝑌)‘(𝑧 · 𝑤)) = (((ℤRHom‘𝑌)‘𝑧)(.r𝑌)((ℤRHom‘𝑌)‘𝑤)))
4746eqeq1d 2742 . . . . . . . . . . . . 13 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → (((ℤRHom‘𝑌)‘(𝑧 · 𝑤)) = (0g𝑌) ↔ (((ℤRHom‘𝑌)‘𝑧)(.r𝑌)((ℤRHom‘𝑌)‘𝑤)) = (0g𝑌)))
48 zmulcl 12369 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ) → (𝑧 · 𝑤) ∈ ℤ)
49 eqid 2740 . . . . . . . . . . . . . . 15 (0g𝑌) = (0g𝑌)
504, 27, 49zndvds0 20756 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0 ∧ (𝑧 · 𝑤) ∈ ℤ) → (((ℤRHom‘𝑌)‘(𝑧 · 𝑤)) = (0g𝑌) ↔ 𝑁 ∥ (𝑧 · 𝑤)))
513, 48, 50syl2an 596 . . . . . . . . . . . . 13 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → (((ℤRHom‘𝑌)‘(𝑧 · 𝑤)) = (0g𝑌) ↔ 𝑁 ∥ (𝑧 · 𝑤)))
5247, 51bitr3d 280 . . . . . . . . . . . 12 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → ((((ℤRHom‘𝑌)‘𝑧)(.r𝑌)((ℤRHom‘𝑌)‘𝑤)) = (0g𝑌) ↔ 𝑁 ∥ (𝑧 · 𝑤)))
534, 27, 49zndvds0 20756 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑧 ∈ ℤ) → (((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ↔ 𝑁𝑧))
543, 40, 53syl2an2r 682 . . . . . . . . . . . . 13 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → (((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ↔ 𝑁𝑧))
554, 27, 49zndvds0 20756 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑤 ∈ ℤ) → (((ℤRHom‘𝑌)‘𝑤) = (0g𝑌) ↔ 𝑁𝑤))
563, 41, 55syl2an2r 682 . . . . . . . . . . . . 13 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → (((ℤRHom‘𝑌)‘𝑤) = (0g𝑌) ↔ 𝑁𝑤))
5754, 56orbi12d 916 . . . . . . . . . . . 12 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → ((((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑤) = (0g𝑌)) ↔ (𝑁𝑧𝑁𝑤)))
5836, 52, 573bitr4d 311 . . . . . . . . . . 11 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → ((((ℤRHom‘𝑌)‘𝑧)(.r𝑌)((ℤRHom‘𝑌)‘𝑤)) = (0g𝑌) ↔ (((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑤) = (0g𝑌))))
5958biimpd 228 . . . . . . . . . 10 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → ((((ℤRHom‘𝑌)‘𝑧)(.r𝑌)((ℤRHom‘𝑌)‘𝑤)) = (0g𝑌) → (((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑤) = (0g𝑌))))
60 oveq12 7280 . . . . . . . . . . . 12 ((𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) → (𝑥(.r𝑌)𝑦) = (((ℤRHom‘𝑌)‘𝑧)(.r𝑌)((ℤRHom‘𝑌)‘𝑤)))
6160eqeq1d 2742 . . . . . . . . . . 11 ((𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) → ((𝑥(.r𝑌)𝑦) = (0g𝑌) ↔ (((ℤRHom‘𝑌)‘𝑧)(.r𝑌)((ℤRHom‘𝑌)‘𝑤)) = (0g𝑌)))
62 eqeq1 2744 . . . . . . . . . . . . 13 (𝑥 = ((ℤRHom‘𝑌)‘𝑧) → (𝑥 = (0g𝑌) ↔ ((ℤRHom‘𝑌)‘𝑧) = (0g𝑌)))
6362orbi1d 914 . . . . . . . . . . . 12 (𝑥 = ((ℤRHom‘𝑌)‘𝑧) → ((𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌)) ↔ (((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ∨ 𝑦 = (0g𝑌))))
64 eqeq1 2744 . . . . . . . . . . . . 13 (𝑦 = ((ℤRHom‘𝑌)‘𝑤) → (𝑦 = (0g𝑌) ↔ ((ℤRHom‘𝑌)‘𝑤) = (0g𝑌)))
6564orbi2d 913 . . . . . . . . . . . 12 (𝑦 = ((ℤRHom‘𝑌)‘𝑤) → ((((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ∨ 𝑦 = (0g𝑌)) ↔ (((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑤) = (0g𝑌))))
6663, 65sylan9bb 510 . . . . . . . . . . 11 ((𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) → ((𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌)) ↔ (((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑤) = (0g𝑌))))
6761, 66imbi12d 345 . . . . . . . . . 10 ((𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) → (((𝑥(.r𝑌)𝑦) = (0g𝑌) → (𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌))) ↔ ((((ℤRHom‘𝑌)‘𝑧)(.r𝑌)((ℤRHom‘𝑌)‘𝑤)) = (0g𝑌) → (((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑤) = (0g𝑌)))))
6859, 67syl5ibrcom 246 . . . . . . . . 9 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → ((𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) → ((𝑥(.r𝑌)𝑦) = (0g𝑌) → (𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌)))))
6968rexlimdvva 3225 . . . . . . . 8 (𝑁 ∈ ℙ → (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) → ((𝑥(.r𝑌)𝑦) = (0g𝑌) → (𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌)))))
7034, 69syl5bir 242 . . . . . . 7 (𝑁 ∈ ℙ → ((∃𝑧 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ ∃𝑤 ∈ ℤ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) → ((𝑥(.r𝑌)𝑦) = (0g𝑌) → (𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌)))))
7170imp 407 . . . . . 6 ((𝑁 ∈ ℙ ∧ (∃𝑧 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ ∃𝑤 ∈ ℤ 𝑦 = ((ℤRHom‘𝑌)‘𝑤))) → ((𝑥(.r𝑌)𝑦) = (0g𝑌) → (𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌))))
7233, 71syldan 591 . . . . 5 ((𝑁 ∈ ℙ ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌))) → ((𝑥(.r𝑌)𝑦) = (0g𝑌) → (𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌))))
7372ralrimivva 3117 . . . 4 (𝑁 ∈ ℙ → ∀𝑥 ∈ (Base‘𝑌)∀𝑦 ∈ (Base‘𝑌)((𝑥(.r𝑌)𝑦) = (0g𝑌) → (𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌))))
7413, 44, 49isdomn 20563 . . . 4 (𝑌 ∈ Domn ↔ (𝑌 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑌)∀𝑦 ∈ (Base‘𝑌)((𝑥(.r𝑌)𝑦) = (0g𝑌) → (𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌)))))
7526, 73, 74sylanbrc 583 . . 3 (𝑁 ∈ ℙ → 𝑌 ∈ Domn)
76 isidom 20573 . . 3 (𝑌 ∈ IDomn ↔ (𝑌 ∈ CRing ∧ 𝑌 ∈ Domn))
776, 75, 76sylanbrc 583 . 2 (𝑁 ∈ ℙ → 𝑌 ∈ IDomn)
784, 13znfi 20765 . . . 4 (𝑁 ∈ ℕ → (Base‘𝑌) ∈ Fin)
791, 78syl 17 . . 3 (𝑁 ∈ ℙ → (Base‘𝑌) ∈ Fin)
8013fiidomfld 20578 . . 3 ((Base‘𝑌) ∈ Fin → (𝑌 ∈ IDomn ↔ 𝑌 ∈ Field))
8179, 80syl 17 . 2 (𝑁 ∈ ℙ → (𝑌 ∈ IDomn ↔ 𝑌 ∈ Field))
8277, 81mpbid 231 1 (𝑁 ∈ ℙ → 𝑌 ∈ Field)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844   = wceq 1542  wcel 2110  wral 3066  wrex 3067  Vcvv 3431   class class class wbr 5079  ontowfo 6430  cfv 6432  (class class class)co 7271  ωcom 7706  2oc2o 8282  cdom 8714  Fincfn 8716   · cmul 10877  cle 11011  cn 11973  2c2 12028  0cn0 12233  cz 12319  cuz 12581  chash 14042  cdvds 15961  cprime 16374  Basecbs 16910  .rcmulr 16961  0gc0g 17148  Ringcrg 19781  CRingccrg 19782   RingHom crh 19954  Fieldcfield 19990  NzRingcnzr 20526  Domncdomn 20549  IDomncidom 20550  ringczring 20668  ℤRHomczrh 20699  ℤ/nczn 20702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950  ax-addf 10951  ax-mulf 10952
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-tpos 8033  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-2o 8289  df-oadd 8292  df-er 8481  df-ec 8483  df-qs 8487  df-map 8600  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-sup 9179  df-inf 9180  df-dju 9660  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12437  df-uz 12582  df-rp 12730  df-fz 13239  df-fzo 13382  df-fl 13510  df-mod 13588  df-seq 13720  df-exp 13781  df-hash 14043  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-dvds 15962  df-gcd 16200  df-prm 16375  df-struct 16846  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-mulr 16974  df-starv 16975  df-sca 16976  df-vsca 16977  df-ip 16978  df-tset 16979  df-ple 16980  df-ds 16982  df-unif 16983  df-0g 17150  df-imas 17217  df-qus 17218  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-mhm 18428  df-grp 18578  df-minusg 18579  df-sbg 18580  df-mulg 18699  df-subg 18750  df-nsg 18751  df-eqg 18752  df-ghm 18830  df-cmn 19386  df-abl 19387  df-mgp 19719  df-ur 19736  df-ring 19783  df-cring 19784  df-oppr 19860  df-dvdsr 19881  df-unit 19882  df-invr 19912  df-rnghom 19957  df-drng 19991  df-field 19992  df-subrg 20020  df-lmod 20123  df-lss 20192  df-lsp 20232  df-sra 20432  df-rgmod 20433  df-lidl 20434  df-rsp 20435  df-2idl 20501  df-nzr 20527  df-rlreg 20552  df-domn 20553  df-idom 20554  df-cnfld 20596  df-zring 20669  df-zrh 20703  df-zn 20706
This theorem is referenced by:  znidomb  20767  lgsqrlem1  26492  lgsqrlem2  26493  lgsqrlem3  26494  lgsqrlem4  26495  lgseisenlem3  26523  lgseisenlem4  26524
  Copyright terms: Public domain W3C validator