Step | Hyp | Ref
| Expression |
1 | | prmnn 16307 |
. . . . 5
⊢ (𝑁 ∈ ℙ → 𝑁 ∈
ℕ) |
2 | | nnnn0 12170 |
. . . . 5
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝑁 ∈ ℙ → 𝑁 ∈
ℕ0) |
4 | | zntos.y |
. . . . 5
⊢ 𝑌 =
(ℤ/nℤ‘𝑁) |
5 | 4 | zncrng 20664 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ 𝑌 ∈
CRing) |
6 | 3, 5 | syl 17 |
. . 3
⊢ (𝑁 ∈ ℙ → 𝑌 ∈ CRing) |
7 | | crngring 19710 |
. . . . . 6
⊢ (𝑌 ∈ CRing → 𝑌 ∈ Ring) |
8 | 1, 2, 5, 7 | 4syl 19 |
. . . . 5
⊢ (𝑁 ∈ ℙ → 𝑌 ∈ Ring) |
9 | | hash2 14048 |
. . . . . . 7
⊢
(♯‘2o) = 2 |
10 | | prmuz2 16329 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℙ → 𝑁 ∈
(ℤ≥‘2)) |
11 | | eluzle 12524 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘2) → 2 ≤ 𝑁) |
12 | 10, 11 | syl 17 |
. . . . . . . 8
⊢ (𝑁 ∈ ℙ → 2 ≤
𝑁) |
13 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Base‘𝑌) =
(Base‘𝑌) |
14 | 4, 13 | znhash 20678 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ →
(♯‘(Base‘𝑌)) = 𝑁) |
15 | 1, 14 | syl 17 |
. . . . . . . 8
⊢ (𝑁 ∈ ℙ →
(♯‘(Base‘𝑌)) = 𝑁) |
16 | 12, 15 | breqtrrd 5098 |
. . . . . . 7
⊢ (𝑁 ∈ ℙ → 2 ≤
(♯‘(Base‘𝑌))) |
17 | 9, 16 | eqbrtrid 5105 |
. . . . . 6
⊢ (𝑁 ∈ ℙ →
(♯‘2o) ≤ (♯‘(Base‘𝑌))) |
18 | | 2onn 8433 |
. . . . . . . 8
⊢
2o ∈ ω |
19 | | nnfi 8912 |
. . . . . . . 8
⊢
(2o ∈ ω → 2o ∈
Fin) |
20 | 18, 19 | ax-mp 5 |
. . . . . . 7
⊢
2o ∈ Fin |
21 | | fvex 6769 |
. . . . . . 7
⊢
(Base‘𝑌)
∈ V |
22 | | hashdom 14022 |
. . . . . . 7
⊢
((2o ∈ Fin ∧ (Base‘𝑌) ∈ V) →
((♯‘2o) ≤ (♯‘(Base‘𝑌)) ↔ 2o ≼
(Base‘𝑌))) |
23 | 20, 21, 22 | mp2an 688 |
. . . . . 6
⊢
((♯‘2o) ≤ (♯‘(Base‘𝑌)) ↔ 2o ≼
(Base‘𝑌)) |
24 | 17, 23 | sylib 217 |
. . . . 5
⊢ (𝑁 ∈ ℙ →
2o ≼ (Base‘𝑌)) |
25 | 13 | isnzr2 20447 |
. . . . 5
⊢ (𝑌 ∈ NzRing ↔ (𝑌 ∈ Ring ∧ 2o
≼ (Base‘𝑌))) |
26 | 8, 24, 25 | sylanbrc 582 |
. . . 4
⊢ (𝑁 ∈ ℙ → 𝑌 ∈ NzRing) |
27 | | eqid 2738 |
. . . . . . . . 9
⊢
(ℤRHom‘𝑌) = (ℤRHom‘𝑌) |
28 | 4, 13, 27 | znzrhfo 20667 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ (ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌)) |
29 | 3, 28 | syl 17 |
. . . . . . 7
⊢ (𝑁 ∈ ℙ →
(ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌)) |
30 | | foelrn 6964 |
. . . . . . . 8
⊢
(((ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌) ∧ 𝑥 ∈ (Base‘𝑌)) → ∃𝑧 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑧)) |
31 | | foelrn 6964 |
. . . . . . . 8
⊢
(((ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌)) → ∃𝑤 ∈ ℤ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) |
32 | 30, 31 | anim12dan 618 |
. . . . . . 7
⊢
(((ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌) ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌))) → (∃𝑧 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ ∃𝑤 ∈ ℤ 𝑦 = ((ℤRHom‘𝑌)‘𝑤))) |
33 | 29, 32 | sylan 579 |
. . . . . 6
⊢ ((𝑁 ∈ ℙ ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌))) → (∃𝑧 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ ∃𝑤 ∈ ℤ 𝑦 = ((ℤRHom‘𝑌)‘𝑤))) |
34 | | reeanv 3292 |
. . . . . . . 8
⊢
(∃𝑧 ∈
ℤ ∃𝑤 ∈
ℤ (𝑥 =
((ℤRHom‘𝑌)‘𝑧) ∧ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) ↔ (∃𝑧 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ ∃𝑤 ∈ ℤ 𝑦 = ((ℤRHom‘𝑌)‘𝑤))) |
35 | | euclemma 16346 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℙ ∧ 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ) → (𝑁 ∥ (𝑧 · 𝑤) ↔ (𝑁 ∥ 𝑧 ∨ 𝑁 ∥ 𝑤))) |
36 | 35 | 3expb 1118 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → (𝑁 ∥ (𝑧 · 𝑤) ↔ (𝑁 ∥ 𝑧 ∨ 𝑁 ∥ 𝑤))) |
37 | 8 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → 𝑌 ∈ Ring) |
38 | 27 | zrhrhm 20625 |
. . . . . . . . . . . . . . . 16
⊢ (𝑌 ∈ Ring →
(ℤRHom‘𝑌)
∈ (ℤring RingHom 𝑌)) |
39 | 37, 38 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) →
(ℤRHom‘𝑌)
∈ (ℤring RingHom 𝑌)) |
40 | | simprl 767 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → 𝑧 ∈
ℤ) |
41 | | simprr 769 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → 𝑤 ∈
ℤ) |
42 | | zringbas 20588 |
. . . . . . . . . . . . . . . 16
⊢ ℤ =
(Base‘ℤring) |
43 | | zringmulr 20591 |
. . . . . . . . . . . . . . . 16
⊢ ·
= (.r‘ℤring) |
44 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢
(.r‘𝑌) = (.r‘𝑌) |
45 | 42, 43, 44 | rhmmul 19886 |
. . . . . . . . . . . . . . 15
⊢
(((ℤRHom‘𝑌) ∈ (ℤring RingHom
𝑌) ∧ 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ) →
((ℤRHom‘𝑌)‘(𝑧 · 𝑤)) = (((ℤRHom‘𝑌)‘𝑧)(.r‘𝑌)((ℤRHom‘𝑌)‘𝑤))) |
46 | 39, 40, 41, 45 | syl3anc 1369 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) →
((ℤRHom‘𝑌)‘(𝑧 · 𝑤)) = (((ℤRHom‘𝑌)‘𝑧)(.r‘𝑌)((ℤRHom‘𝑌)‘𝑤))) |
47 | 46 | eqeq1d 2740 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) →
(((ℤRHom‘𝑌)‘(𝑧 · 𝑤)) = (0g‘𝑌) ↔ (((ℤRHom‘𝑌)‘𝑧)(.r‘𝑌)((ℤRHom‘𝑌)‘𝑤)) = (0g‘𝑌))) |
48 | | zmulcl 12299 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ) → (𝑧 · 𝑤) ∈ ℤ) |
49 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
(0g‘𝑌) = (0g‘𝑌) |
50 | 4, 27, 49 | zndvds0 20670 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ0
∧ (𝑧 · 𝑤) ∈ ℤ) →
(((ℤRHom‘𝑌)‘(𝑧 · 𝑤)) = (0g‘𝑌) ↔ 𝑁 ∥ (𝑧 · 𝑤))) |
51 | 3, 48, 50 | syl2an 595 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) →
(((ℤRHom‘𝑌)‘(𝑧 · 𝑤)) = (0g‘𝑌) ↔ 𝑁 ∥ (𝑧 · 𝑤))) |
52 | 47, 51 | bitr3d 280 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) →
((((ℤRHom‘𝑌)‘𝑧)(.r‘𝑌)((ℤRHom‘𝑌)‘𝑤)) = (0g‘𝑌) ↔ 𝑁 ∥ (𝑧 · 𝑤))) |
53 | 4, 27, 49 | zndvds0 20670 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ0
∧ 𝑧 ∈ ℤ)
→ (((ℤRHom‘𝑌)‘𝑧) = (0g‘𝑌) ↔ 𝑁 ∥ 𝑧)) |
54 | 3, 40, 53 | syl2an2r 681 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) →
(((ℤRHom‘𝑌)‘𝑧) = (0g‘𝑌) ↔ 𝑁 ∥ 𝑧)) |
55 | 4, 27, 49 | zndvds0 20670 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ0
∧ 𝑤 ∈ ℤ)
→ (((ℤRHom‘𝑌)‘𝑤) = (0g‘𝑌) ↔ 𝑁 ∥ 𝑤)) |
56 | 3, 41, 55 | syl2an2r 681 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) →
(((ℤRHom‘𝑌)‘𝑤) = (0g‘𝑌) ↔ 𝑁 ∥ 𝑤)) |
57 | 54, 56 | orbi12d 915 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) →
((((ℤRHom‘𝑌)‘𝑧) = (0g‘𝑌) ∨ ((ℤRHom‘𝑌)‘𝑤) = (0g‘𝑌)) ↔ (𝑁 ∥ 𝑧 ∨ 𝑁 ∥ 𝑤))) |
58 | 36, 52, 57 | 3bitr4d 310 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) →
((((ℤRHom‘𝑌)‘𝑧)(.r‘𝑌)((ℤRHom‘𝑌)‘𝑤)) = (0g‘𝑌) ↔ (((ℤRHom‘𝑌)‘𝑧) = (0g‘𝑌) ∨ ((ℤRHom‘𝑌)‘𝑤) = (0g‘𝑌)))) |
59 | 58 | biimpd 228 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) →
((((ℤRHom‘𝑌)‘𝑧)(.r‘𝑌)((ℤRHom‘𝑌)‘𝑤)) = (0g‘𝑌) → (((ℤRHom‘𝑌)‘𝑧) = (0g‘𝑌) ∨ ((ℤRHom‘𝑌)‘𝑤) = (0g‘𝑌)))) |
60 | | oveq12 7264 |
. . . . . . . . . . . 12
⊢ ((𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) → (𝑥(.r‘𝑌)𝑦) = (((ℤRHom‘𝑌)‘𝑧)(.r‘𝑌)((ℤRHom‘𝑌)‘𝑤))) |
61 | 60 | eqeq1d 2740 |
. . . . . . . . . . 11
⊢ ((𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) → ((𝑥(.r‘𝑌)𝑦) = (0g‘𝑌) ↔ (((ℤRHom‘𝑌)‘𝑧)(.r‘𝑌)((ℤRHom‘𝑌)‘𝑤)) = (0g‘𝑌))) |
62 | | eqeq1 2742 |
. . . . . . . . . . . . 13
⊢ (𝑥 = ((ℤRHom‘𝑌)‘𝑧) → (𝑥 = (0g‘𝑌) ↔ ((ℤRHom‘𝑌)‘𝑧) = (0g‘𝑌))) |
63 | 62 | orbi1d 913 |
. . . . . . . . . . . 12
⊢ (𝑥 = ((ℤRHom‘𝑌)‘𝑧) → ((𝑥 = (0g‘𝑌) ∨ 𝑦 = (0g‘𝑌)) ↔ (((ℤRHom‘𝑌)‘𝑧) = (0g‘𝑌) ∨ 𝑦 = (0g‘𝑌)))) |
64 | | eqeq1 2742 |
. . . . . . . . . . . . 13
⊢ (𝑦 = ((ℤRHom‘𝑌)‘𝑤) → (𝑦 = (0g‘𝑌) ↔ ((ℤRHom‘𝑌)‘𝑤) = (0g‘𝑌))) |
65 | 64 | orbi2d 912 |
. . . . . . . . . . . 12
⊢ (𝑦 = ((ℤRHom‘𝑌)‘𝑤) → ((((ℤRHom‘𝑌)‘𝑧) = (0g‘𝑌) ∨ 𝑦 = (0g‘𝑌)) ↔ (((ℤRHom‘𝑌)‘𝑧) = (0g‘𝑌) ∨ ((ℤRHom‘𝑌)‘𝑤) = (0g‘𝑌)))) |
66 | 63, 65 | sylan9bb 509 |
. . . . . . . . . . 11
⊢ ((𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) → ((𝑥 = (0g‘𝑌) ∨ 𝑦 = (0g‘𝑌)) ↔ (((ℤRHom‘𝑌)‘𝑧) = (0g‘𝑌) ∨ ((ℤRHom‘𝑌)‘𝑤) = (0g‘𝑌)))) |
67 | 61, 66 | imbi12d 344 |
. . . . . . . . . 10
⊢ ((𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) → (((𝑥(.r‘𝑌)𝑦) = (0g‘𝑌) → (𝑥 = (0g‘𝑌) ∨ 𝑦 = (0g‘𝑌))) ↔ ((((ℤRHom‘𝑌)‘𝑧)(.r‘𝑌)((ℤRHom‘𝑌)‘𝑤)) = (0g‘𝑌) → (((ℤRHom‘𝑌)‘𝑧) = (0g‘𝑌) ∨ ((ℤRHom‘𝑌)‘𝑤) = (0g‘𝑌))))) |
68 | 59, 67 | syl5ibrcom 246 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → ((𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) → ((𝑥(.r‘𝑌)𝑦) = (0g‘𝑌) → (𝑥 = (0g‘𝑌) ∨ 𝑦 = (0g‘𝑌))))) |
69 | 68 | rexlimdvva 3222 |
. . . . . . . 8
⊢ (𝑁 ∈ ℙ →
(∃𝑧 ∈ ℤ
∃𝑤 ∈ ℤ
(𝑥 =
((ℤRHom‘𝑌)‘𝑧) ∧ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) → ((𝑥(.r‘𝑌)𝑦) = (0g‘𝑌) → (𝑥 = (0g‘𝑌) ∨ 𝑦 = (0g‘𝑌))))) |
70 | 34, 69 | syl5bir 242 |
. . . . . . 7
⊢ (𝑁 ∈ ℙ →
((∃𝑧 ∈ ℤ
𝑥 =
((ℤRHom‘𝑌)‘𝑧) ∧ ∃𝑤 ∈ ℤ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) → ((𝑥(.r‘𝑌)𝑦) = (0g‘𝑌) → (𝑥 = (0g‘𝑌) ∨ 𝑦 = (0g‘𝑌))))) |
71 | 70 | imp 406 |
. . . . . 6
⊢ ((𝑁 ∈ ℙ ∧
(∃𝑧 ∈ ℤ
𝑥 =
((ℤRHom‘𝑌)‘𝑧) ∧ ∃𝑤 ∈ ℤ 𝑦 = ((ℤRHom‘𝑌)‘𝑤))) → ((𝑥(.r‘𝑌)𝑦) = (0g‘𝑌) → (𝑥 = (0g‘𝑌) ∨ 𝑦 = (0g‘𝑌)))) |
72 | 33, 71 | syldan 590 |
. . . . 5
⊢ ((𝑁 ∈ ℙ ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌))) → ((𝑥(.r‘𝑌)𝑦) = (0g‘𝑌) → (𝑥 = (0g‘𝑌) ∨ 𝑦 = (0g‘𝑌)))) |
73 | 72 | ralrimivva 3114 |
. . . 4
⊢ (𝑁 ∈ ℙ →
∀𝑥 ∈
(Base‘𝑌)∀𝑦 ∈ (Base‘𝑌)((𝑥(.r‘𝑌)𝑦) = (0g‘𝑌) → (𝑥 = (0g‘𝑌) ∨ 𝑦 = (0g‘𝑌)))) |
74 | 13, 44, 49 | isdomn 20478 |
. . . 4
⊢ (𝑌 ∈ Domn ↔ (𝑌 ∈ NzRing ∧
∀𝑥 ∈
(Base‘𝑌)∀𝑦 ∈ (Base‘𝑌)((𝑥(.r‘𝑌)𝑦) = (0g‘𝑌) → (𝑥 = (0g‘𝑌) ∨ 𝑦 = (0g‘𝑌))))) |
75 | 26, 73, 74 | sylanbrc 582 |
. . 3
⊢ (𝑁 ∈ ℙ → 𝑌 ∈ Domn) |
76 | | isidom 20488 |
. . 3
⊢ (𝑌 ∈ IDomn ↔ (𝑌 ∈ CRing ∧ 𝑌 ∈ Domn)) |
77 | 6, 75, 76 | sylanbrc 582 |
. 2
⊢ (𝑁 ∈ ℙ → 𝑌 ∈ IDomn) |
78 | 4, 13 | znfi 20679 |
. . . 4
⊢ (𝑁 ∈ ℕ →
(Base‘𝑌) ∈
Fin) |
79 | 1, 78 | syl 17 |
. . 3
⊢ (𝑁 ∈ ℙ →
(Base‘𝑌) ∈
Fin) |
80 | 13 | fiidomfld 20493 |
. . 3
⊢
((Base‘𝑌)
∈ Fin → (𝑌 ∈
IDomn ↔ 𝑌 ∈
Field)) |
81 | 79, 80 | syl 17 |
. 2
⊢ (𝑁 ∈ ℙ → (𝑌 ∈ IDomn ↔ 𝑌 ∈ Field)) |
82 | 77, 81 | mpbid 231 |
1
⊢ (𝑁 ∈ ℙ → 𝑌 ∈ Field) |