MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znfld Structured version   Visualization version   GIF version

Theorem znfld 20479
Description: The ℤ/n structure is a finite field when 𝑛 is prime. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypothesis
Ref Expression
zntos.y 𝑌 = (ℤ/nℤ‘𝑁)
Assertion
Ref Expression
znfld (𝑁 ∈ ℙ → 𝑌 ∈ Field)

Proof of Theorem znfld
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmnn 16194 . . . . 5 (𝑁 ∈ ℙ → 𝑁 ∈ ℕ)
2 nnnn0 12062 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
31, 2syl 17 . . . 4 (𝑁 ∈ ℙ → 𝑁 ∈ ℕ0)
4 zntos.y . . . . 5 𝑌 = (ℤ/nℤ‘𝑁)
54zncrng 20463 . . . 4 (𝑁 ∈ ℕ0𝑌 ∈ CRing)
63, 5syl 17 . . 3 (𝑁 ∈ ℙ → 𝑌 ∈ CRing)
7 crngring 19528 . . . . . 6 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
81, 2, 5, 74syl 19 . . . . 5 (𝑁 ∈ ℙ → 𝑌 ∈ Ring)
9 hash2 13937 . . . . . . 7 (♯‘2o) = 2
10 prmuz2 16216 . . . . . . . . 9 (𝑁 ∈ ℙ → 𝑁 ∈ (ℤ‘2))
11 eluzle 12416 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 2 ≤ 𝑁)
1210, 11syl 17 . . . . . . . 8 (𝑁 ∈ ℙ → 2 ≤ 𝑁)
13 eqid 2736 . . . . . . . . . 10 (Base‘𝑌) = (Base‘𝑌)
144, 13znhash 20477 . . . . . . . . 9 (𝑁 ∈ ℕ → (♯‘(Base‘𝑌)) = 𝑁)
151, 14syl 17 . . . . . . . 8 (𝑁 ∈ ℙ → (♯‘(Base‘𝑌)) = 𝑁)
1612, 15breqtrrd 5067 . . . . . . 7 (𝑁 ∈ ℙ → 2 ≤ (♯‘(Base‘𝑌)))
179, 16eqbrtrid 5074 . . . . . 6 (𝑁 ∈ ℙ → (♯‘2o) ≤ (♯‘(Base‘𝑌)))
18 2onn 8346 . . . . . . . 8 2o ∈ ω
19 nnfi 8823 . . . . . . . 8 (2o ∈ ω → 2o ∈ Fin)
2018, 19ax-mp 5 . . . . . . 7 2o ∈ Fin
21 fvex 6708 . . . . . . 7 (Base‘𝑌) ∈ V
22 hashdom 13911 . . . . . . 7 ((2o ∈ Fin ∧ (Base‘𝑌) ∈ V) → ((♯‘2o) ≤ (♯‘(Base‘𝑌)) ↔ 2o ≼ (Base‘𝑌)))
2320, 21, 22mp2an 692 . . . . . 6 ((♯‘2o) ≤ (♯‘(Base‘𝑌)) ↔ 2o ≼ (Base‘𝑌))
2417, 23sylib 221 . . . . 5 (𝑁 ∈ ℙ → 2o ≼ (Base‘𝑌))
2513isnzr2 20255 . . . . 5 (𝑌 ∈ NzRing ↔ (𝑌 ∈ Ring ∧ 2o ≼ (Base‘𝑌)))
268, 24, 25sylanbrc 586 . . . 4 (𝑁 ∈ ℙ → 𝑌 ∈ NzRing)
27 eqid 2736 . . . . . . . . 9 (ℤRHom‘𝑌) = (ℤRHom‘𝑌)
284, 13, 27znzrhfo 20466 . . . . . . . 8 (𝑁 ∈ ℕ0 → (ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌))
293, 28syl 17 . . . . . . 7 (𝑁 ∈ ℙ → (ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌))
30 foelrn 6903 . . . . . . . 8 (((ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌) ∧ 𝑥 ∈ (Base‘𝑌)) → ∃𝑧 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑧))
31 foelrn 6903 . . . . . . . 8 (((ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌)) → ∃𝑤 ∈ ℤ 𝑦 = ((ℤRHom‘𝑌)‘𝑤))
3230, 31anim12dan 622 . . . . . . 7 (((ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌) ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌))) → (∃𝑧 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ ∃𝑤 ∈ ℤ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)))
3329, 32sylan 583 . . . . . 6 ((𝑁 ∈ ℙ ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌))) → (∃𝑧 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ ∃𝑤 ∈ ℤ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)))
34 reeanv 3269 . . . . . . . 8 (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) ↔ (∃𝑧 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ ∃𝑤 ∈ ℤ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)))
35 euclemma 16233 . . . . . . . . . . . . 13 ((𝑁 ∈ ℙ ∧ 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ) → (𝑁 ∥ (𝑧 · 𝑤) ↔ (𝑁𝑧𝑁𝑤)))
36353expb 1122 . . . . . . . . . . . 12 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → (𝑁 ∥ (𝑧 · 𝑤) ↔ (𝑁𝑧𝑁𝑤)))
378adantr 484 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → 𝑌 ∈ Ring)
3827zrhrhm 20432 . . . . . . . . . . . . . . . 16 (𝑌 ∈ Ring → (ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌))
3937, 38syl 17 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → (ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌))
40 simprl 771 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → 𝑧 ∈ ℤ)
41 simprr 773 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → 𝑤 ∈ ℤ)
42 zringbas 20395 . . . . . . . . . . . . . . . 16 ℤ = (Base‘ℤring)
43 zringmulr 20398 . . . . . . . . . . . . . . . 16 · = (.r‘ℤring)
44 eqid 2736 . . . . . . . . . . . . . . . 16 (.r𝑌) = (.r𝑌)
4542, 43, 44rhmmul 19701 . . . . . . . . . . . . . . 15 (((ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌) ∧ 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ) → ((ℤRHom‘𝑌)‘(𝑧 · 𝑤)) = (((ℤRHom‘𝑌)‘𝑧)(.r𝑌)((ℤRHom‘𝑌)‘𝑤)))
4639, 40, 41, 45syl3anc 1373 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → ((ℤRHom‘𝑌)‘(𝑧 · 𝑤)) = (((ℤRHom‘𝑌)‘𝑧)(.r𝑌)((ℤRHom‘𝑌)‘𝑤)))
4746eqeq1d 2738 . . . . . . . . . . . . 13 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → (((ℤRHom‘𝑌)‘(𝑧 · 𝑤)) = (0g𝑌) ↔ (((ℤRHom‘𝑌)‘𝑧)(.r𝑌)((ℤRHom‘𝑌)‘𝑤)) = (0g𝑌)))
48 zmulcl 12191 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ) → (𝑧 · 𝑤) ∈ ℤ)
49 eqid 2736 . . . . . . . . . . . . . . 15 (0g𝑌) = (0g𝑌)
504, 27, 49zndvds0 20469 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0 ∧ (𝑧 · 𝑤) ∈ ℤ) → (((ℤRHom‘𝑌)‘(𝑧 · 𝑤)) = (0g𝑌) ↔ 𝑁 ∥ (𝑧 · 𝑤)))
513, 48, 50syl2an 599 . . . . . . . . . . . . 13 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → (((ℤRHom‘𝑌)‘(𝑧 · 𝑤)) = (0g𝑌) ↔ 𝑁 ∥ (𝑧 · 𝑤)))
5247, 51bitr3d 284 . . . . . . . . . . . 12 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → ((((ℤRHom‘𝑌)‘𝑧)(.r𝑌)((ℤRHom‘𝑌)‘𝑤)) = (0g𝑌) ↔ 𝑁 ∥ (𝑧 · 𝑤)))
534, 27, 49zndvds0 20469 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑧 ∈ ℤ) → (((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ↔ 𝑁𝑧))
543, 40, 53syl2an2r 685 . . . . . . . . . . . . 13 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → (((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ↔ 𝑁𝑧))
554, 27, 49zndvds0 20469 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑤 ∈ ℤ) → (((ℤRHom‘𝑌)‘𝑤) = (0g𝑌) ↔ 𝑁𝑤))
563, 41, 55syl2an2r 685 . . . . . . . . . . . . 13 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → (((ℤRHom‘𝑌)‘𝑤) = (0g𝑌) ↔ 𝑁𝑤))
5754, 56orbi12d 919 . . . . . . . . . . . 12 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → ((((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑤) = (0g𝑌)) ↔ (𝑁𝑧𝑁𝑤)))
5836, 52, 573bitr4d 314 . . . . . . . . . . 11 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → ((((ℤRHom‘𝑌)‘𝑧)(.r𝑌)((ℤRHom‘𝑌)‘𝑤)) = (0g𝑌) ↔ (((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑤) = (0g𝑌))))
5958biimpd 232 . . . . . . . . . 10 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → ((((ℤRHom‘𝑌)‘𝑧)(.r𝑌)((ℤRHom‘𝑌)‘𝑤)) = (0g𝑌) → (((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑤) = (0g𝑌))))
60 oveq12 7200 . . . . . . . . . . . 12 ((𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) → (𝑥(.r𝑌)𝑦) = (((ℤRHom‘𝑌)‘𝑧)(.r𝑌)((ℤRHom‘𝑌)‘𝑤)))
6160eqeq1d 2738 . . . . . . . . . . 11 ((𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) → ((𝑥(.r𝑌)𝑦) = (0g𝑌) ↔ (((ℤRHom‘𝑌)‘𝑧)(.r𝑌)((ℤRHom‘𝑌)‘𝑤)) = (0g𝑌)))
62 eqeq1 2740 . . . . . . . . . . . . 13 (𝑥 = ((ℤRHom‘𝑌)‘𝑧) → (𝑥 = (0g𝑌) ↔ ((ℤRHom‘𝑌)‘𝑧) = (0g𝑌)))
6362orbi1d 917 . . . . . . . . . . . 12 (𝑥 = ((ℤRHom‘𝑌)‘𝑧) → ((𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌)) ↔ (((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ∨ 𝑦 = (0g𝑌))))
64 eqeq1 2740 . . . . . . . . . . . . 13 (𝑦 = ((ℤRHom‘𝑌)‘𝑤) → (𝑦 = (0g𝑌) ↔ ((ℤRHom‘𝑌)‘𝑤) = (0g𝑌)))
6564orbi2d 916 . . . . . . . . . . . 12 (𝑦 = ((ℤRHom‘𝑌)‘𝑤) → ((((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ∨ 𝑦 = (0g𝑌)) ↔ (((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑤) = (0g𝑌))))
6663, 65sylan9bb 513 . . . . . . . . . . 11 ((𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) → ((𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌)) ↔ (((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑤) = (0g𝑌))))
6761, 66imbi12d 348 . . . . . . . . . 10 ((𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) → (((𝑥(.r𝑌)𝑦) = (0g𝑌) → (𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌))) ↔ ((((ℤRHom‘𝑌)‘𝑧)(.r𝑌)((ℤRHom‘𝑌)‘𝑤)) = (0g𝑌) → (((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑤) = (0g𝑌)))))
6859, 67syl5ibrcom 250 . . . . . . . . 9 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → ((𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) → ((𝑥(.r𝑌)𝑦) = (0g𝑌) → (𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌)))))
6968rexlimdvva 3203 . . . . . . . 8 (𝑁 ∈ ℙ → (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) → ((𝑥(.r𝑌)𝑦) = (0g𝑌) → (𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌)))))
7034, 69syl5bir 246 . . . . . . 7 (𝑁 ∈ ℙ → ((∃𝑧 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ ∃𝑤 ∈ ℤ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) → ((𝑥(.r𝑌)𝑦) = (0g𝑌) → (𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌)))))
7170imp 410 . . . . . 6 ((𝑁 ∈ ℙ ∧ (∃𝑧 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ ∃𝑤 ∈ ℤ 𝑦 = ((ℤRHom‘𝑌)‘𝑤))) → ((𝑥(.r𝑌)𝑦) = (0g𝑌) → (𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌))))
7233, 71syldan 594 . . . . 5 ((𝑁 ∈ ℙ ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌))) → ((𝑥(.r𝑌)𝑦) = (0g𝑌) → (𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌))))
7372ralrimivva 3102 . . . 4 (𝑁 ∈ ℙ → ∀𝑥 ∈ (Base‘𝑌)∀𝑦 ∈ (Base‘𝑌)((𝑥(.r𝑌)𝑦) = (0g𝑌) → (𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌))))
7413, 44, 49isdomn 20286 . . . 4 (𝑌 ∈ Domn ↔ (𝑌 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑌)∀𝑦 ∈ (Base‘𝑌)((𝑥(.r𝑌)𝑦) = (0g𝑌) → (𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌)))))
7526, 73, 74sylanbrc 586 . . 3 (𝑁 ∈ ℙ → 𝑌 ∈ Domn)
76 isidom 20296 . . 3 (𝑌 ∈ IDomn ↔ (𝑌 ∈ CRing ∧ 𝑌 ∈ Domn))
776, 75, 76sylanbrc 586 . 2 (𝑁 ∈ ℙ → 𝑌 ∈ IDomn)
784, 13znfi 20478 . . . 4 (𝑁 ∈ ℕ → (Base‘𝑌) ∈ Fin)
791, 78syl 17 . . 3 (𝑁 ∈ ℙ → (Base‘𝑌) ∈ Fin)
8013fiidomfld 20300 . . 3 ((Base‘𝑌) ∈ Fin → (𝑌 ∈ IDomn ↔ 𝑌 ∈ Field))
8179, 80syl 17 . 2 (𝑁 ∈ ℙ → (𝑌 ∈ IDomn ↔ 𝑌 ∈ Field))
8277, 81mpbid 235 1 (𝑁 ∈ ℙ → 𝑌 ∈ Field)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 847   = wceq 1543  wcel 2112  wral 3051  wrex 3052  Vcvv 3398   class class class wbr 5039  ontowfo 6356  cfv 6358  (class class class)co 7191  ωcom 7622  2oc2o 8174  cdom 8602  Fincfn 8604   · cmul 10699  cle 10833  cn 11795  2c2 11850  0cn0 12055  cz 12141  cuz 12403  chash 13861  cdvds 15778  cprime 16191  Basecbs 16666  .rcmulr 16750  0gc0g 16898  Ringcrg 19516  CRingccrg 19517   RingHom crh 19686  Fieldcfield 19722  NzRingcnzr 20249  Domncdomn 20272  IDomncidom 20273  ringzring 20389  ℤRHomczrh 20420  ℤ/nczn 20423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772  ax-addf 10773  ax-mulf 10774
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-tpos 7946  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-2o 8181  df-oadd 8184  df-er 8369  df-ec 8371  df-qs 8375  df-map 8488  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-sup 9036  df-inf 9037  df-dju 9482  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-xnn0 12128  df-z 12142  df-dec 12259  df-uz 12404  df-rp 12552  df-fz 13061  df-fzo 13204  df-fl 13332  df-mod 13408  df-seq 13540  df-exp 13601  df-hash 13862  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-dvds 15779  df-gcd 16017  df-prm 16192  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-mulr 16763  df-starv 16764  df-sca 16765  df-vsca 16766  df-ip 16767  df-tset 16768  df-ple 16769  df-ds 16771  df-unif 16772  df-0g 16900  df-imas 16967  df-qus 16968  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-mhm 18172  df-grp 18322  df-minusg 18323  df-sbg 18324  df-mulg 18443  df-subg 18494  df-nsg 18495  df-eqg 18496  df-ghm 18574  df-cmn 19126  df-abl 19127  df-mgp 19459  df-ur 19471  df-ring 19518  df-cring 19519  df-oppr 19595  df-dvdsr 19613  df-unit 19614  df-invr 19644  df-rnghom 19689  df-drng 19723  df-field 19724  df-subrg 19752  df-lmod 19855  df-lss 19923  df-lsp 19963  df-sra 20163  df-rgmod 20164  df-lidl 20165  df-rsp 20166  df-2idl 20224  df-nzr 20250  df-rlreg 20275  df-domn 20276  df-idom 20277  df-cnfld 20318  df-zring 20390  df-zrh 20424  df-zn 20427
This theorem is referenced by:  znidomb  20480  lgsqrlem1  26181  lgsqrlem2  26182  lgsqrlem3  26183  lgsqrlem4  26184  lgseisenlem3  26212  lgseisenlem4  26213
  Copyright terms: Public domain W3C validator