MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znfld Structured version   Visualization version   GIF version

Theorem znfld 20393
Description: The ℤ/n structure is a finite field when 𝑛 is prime. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypothesis
Ref Expression
zntos.y 𝑌 = (ℤ/nℤ‘𝑁)
Assertion
Ref Expression
znfld (𝑁 ∈ ℙ → 𝑌 ∈ Field)

Proof of Theorem znfld
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmnn 15851 . . . . 5 (𝑁 ∈ ℙ → 𝑁 ∈ ℕ)
2 nnnn0 11758 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
31, 2syl 17 . . . 4 (𝑁 ∈ ℙ → 𝑁 ∈ ℕ0)
4 zntos.y . . . . 5 𝑌 = (ℤ/nℤ‘𝑁)
54zncrng 20377 . . . 4 (𝑁 ∈ ℕ0𝑌 ∈ CRing)
63, 5syl 17 . . 3 (𝑁 ∈ ℙ → 𝑌 ∈ CRing)
7 crngring 19002 . . . . . 6 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
81, 2, 5, 74syl 19 . . . . 5 (𝑁 ∈ ℙ → 𝑌 ∈ Ring)
9 hash2 13618 . . . . . . 7 (♯‘2o) = 2
10 prmuz2 15873 . . . . . . . . 9 (𝑁 ∈ ℙ → 𝑁 ∈ (ℤ‘2))
11 eluzle 12110 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 2 ≤ 𝑁)
1210, 11syl 17 . . . . . . . 8 (𝑁 ∈ ℙ → 2 ≤ 𝑁)
13 eqid 2797 . . . . . . . . . 10 (Base‘𝑌) = (Base‘𝑌)
144, 13znhash 20391 . . . . . . . . 9 (𝑁 ∈ ℕ → (♯‘(Base‘𝑌)) = 𝑁)
151, 14syl 17 . . . . . . . 8 (𝑁 ∈ ℙ → (♯‘(Base‘𝑌)) = 𝑁)
1612, 15breqtrrd 4996 . . . . . . 7 (𝑁 ∈ ℙ → 2 ≤ (♯‘(Base‘𝑌)))
179, 16eqbrtrid 5003 . . . . . 6 (𝑁 ∈ ℙ → (♯‘2o) ≤ (♯‘(Base‘𝑌)))
18 2onn 8123 . . . . . . . 8 2o ∈ ω
19 nnfi 8564 . . . . . . . 8 (2o ∈ ω → 2o ∈ Fin)
2018, 19ax-mp 5 . . . . . . 7 2o ∈ Fin
21 fvex 6558 . . . . . . 7 (Base‘𝑌) ∈ V
22 hashdom 13592 . . . . . . 7 ((2o ∈ Fin ∧ (Base‘𝑌) ∈ V) → ((♯‘2o) ≤ (♯‘(Base‘𝑌)) ↔ 2o ≼ (Base‘𝑌)))
2320, 21, 22mp2an 688 . . . . . 6 ((♯‘2o) ≤ (♯‘(Base‘𝑌)) ↔ 2o ≼ (Base‘𝑌))
2417, 23sylib 219 . . . . 5 (𝑁 ∈ ℙ → 2o ≼ (Base‘𝑌))
2513isnzr2 19729 . . . . 5 (𝑌 ∈ NzRing ↔ (𝑌 ∈ Ring ∧ 2o ≼ (Base‘𝑌)))
268, 24, 25sylanbrc 583 . . . 4 (𝑁 ∈ ℙ → 𝑌 ∈ NzRing)
27 eqid 2797 . . . . . . . . 9 (ℤRHom‘𝑌) = (ℤRHom‘𝑌)
284, 13, 27znzrhfo 20380 . . . . . . . 8 (𝑁 ∈ ℕ0 → (ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌))
293, 28syl 17 . . . . . . 7 (𝑁 ∈ ℙ → (ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌))
30 foelrn 6742 . . . . . . . 8 (((ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌) ∧ 𝑥 ∈ (Base‘𝑌)) → ∃𝑧 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑧))
31 foelrn 6742 . . . . . . . 8 (((ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌)) → ∃𝑤 ∈ ℤ 𝑦 = ((ℤRHom‘𝑌)‘𝑤))
3230, 31anim12dan 618 . . . . . . 7 (((ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌) ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌))) → (∃𝑧 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ ∃𝑤 ∈ ℤ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)))
3329, 32sylan 580 . . . . . 6 ((𝑁 ∈ ℙ ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌))) → (∃𝑧 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ ∃𝑤 ∈ ℤ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)))
34 reeanv 3330 . . . . . . . 8 (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) ↔ (∃𝑧 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ ∃𝑤 ∈ ℤ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)))
35 euclemma 15890 . . . . . . . . . . . . 13 ((𝑁 ∈ ℙ ∧ 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ) → (𝑁 ∥ (𝑧 · 𝑤) ↔ (𝑁𝑧𝑁𝑤)))
36353expb 1113 . . . . . . . . . . . 12 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → (𝑁 ∥ (𝑧 · 𝑤) ↔ (𝑁𝑧𝑁𝑤)))
378adantr 481 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → 𝑌 ∈ Ring)
3827zrhrhm 20345 . . . . . . . . . . . . . . . 16 (𝑌 ∈ Ring → (ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌))
3937, 38syl 17 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → (ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌))
40 simprl 767 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → 𝑧 ∈ ℤ)
41 simprr 769 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → 𝑤 ∈ ℤ)
42 zringbas 20309 . . . . . . . . . . . . . . . 16 ℤ = (Base‘ℤring)
43 zringmulr 20312 . . . . . . . . . . . . . . . 16 · = (.r‘ℤring)
44 eqid 2797 . . . . . . . . . . . . . . . 16 (.r𝑌) = (.r𝑌)
4542, 43, 44rhmmul 19173 . . . . . . . . . . . . . . 15 (((ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌) ∧ 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ) → ((ℤRHom‘𝑌)‘(𝑧 · 𝑤)) = (((ℤRHom‘𝑌)‘𝑧)(.r𝑌)((ℤRHom‘𝑌)‘𝑤)))
4639, 40, 41, 45syl3anc 1364 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → ((ℤRHom‘𝑌)‘(𝑧 · 𝑤)) = (((ℤRHom‘𝑌)‘𝑧)(.r𝑌)((ℤRHom‘𝑌)‘𝑤)))
4746eqeq1d 2799 . . . . . . . . . . . . 13 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → (((ℤRHom‘𝑌)‘(𝑧 · 𝑤)) = (0g𝑌) ↔ (((ℤRHom‘𝑌)‘𝑧)(.r𝑌)((ℤRHom‘𝑌)‘𝑤)) = (0g𝑌)))
48 zmulcl 11885 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ) → (𝑧 · 𝑤) ∈ ℤ)
49 eqid 2797 . . . . . . . . . . . . . . 15 (0g𝑌) = (0g𝑌)
504, 27, 49zndvds0 20383 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0 ∧ (𝑧 · 𝑤) ∈ ℤ) → (((ℤRHom‘𝑌)‘(𝑧 · 𝑤)) = (0g𝑌) ↔ 𝑁 ∥ (𝑧 · 𝑤)))
513, 48, 50syl2an 595 . . . . . . . . . . . . 13 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → (((ℤRHom‘𝑌)‘(𝑧 · 𝑤)) = (0g𝑌) ↔ 𝑁 ∥ (𝑧 · 𝑤)))
5247, 51bitr3d 282 . . . . . . . . . . . 12 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → ((((ℤRHom‘𝑌)‘𝑧)(.r𝑌)((ℤRHom‘𝑌)‘𝑤)) = (0g𝑌) ↔ 𝑁 ∥ (𝑧 · 𝑤)))
534, 27, 49zndvds0 20383 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑧 ∈ ℤ) → (((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ↔ 𝑁𝑧))
543, 40, 53syl2an2r 681 . . . . . . . . . . . . 13 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → (((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ↔ 𝑁𝑧))
554, 27, 49zndvds0 20383 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑤 ∈ ℤ) → (((ℤRHom‘𝑌)‘𝑤) = (0g𝑌) ↔ 𝑁𝑤))
563, 41, 55syl2an2r 681 . . . . . . . . . . . . 13 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → (((ℤRHom‘𝑌)‘𝑤) = (0g𝑌) ↔ 𝑁𝑤))
5754, 56orbi12d 913 . . . . . . . . . . . 12 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → ((((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑤) = (0g𝑌)) ↔ (𝑁𝑧𝑁𝑤)))
5836, 52, 573bitr4d 312 . . . . . . . . . . 11 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → ((((ℤRHom‘𝑌)‘𝑧)(.r𝑌)((ℤRHom‘𝑌)‘𝑤)) = (0g𝑌) ↔ (((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑤) = (0g𝑌))))
5958biimpd 230 . . . . . . . . . 10 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → ((((ℤRHom‘𝑌)‘𝑧)(.r𝑌)((ℤRHom‘𝑌)‘𝑤)) = (0g𝑌) → (((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑤) = (0g𝑌))))
60 oveq12 7032 . . . . . . . . . . . 12 ((𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) → (𝑥(.r𝑌)𝑦) = (((ℤRHom‘𝑌)‘𝑧)(.r𝑌)((ℤRHom‘𝑌)‘𝑤)))
6160eqeq1d 2799 . . . . . . . . . . 11 ((𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) → ((𝑥(.r𝑌)𝑦) = (0g𝑌) ↔ (((ℤRHom‘𝑌)‘𝑧)(.r𝑌)((ℤRHom‘𝑌)‘𝑤)) = (0g𝑌)))
62 eqeq1 2801 . . . . . . . . . . . . 13 (𝑥 = ((ℤRHom‘𝑌)‘𝑧) → (𝑥 = (0g𝑌) ↔ ((ℤRHom‘𝑌)‘𝑧) = (0g𝑌)))
6362orbi1d 911 . . . . . . . . . . . 12 (𝑥 = ((ℤRHom‘𝑌)‘𝑧) → ((𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌)) ↔ (((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ∨ 𝑦 = (0g𝑌))))
64 eqeq1 2801 . . . . . . . . . . . . 13 (𝑦 = ((ℤRHom‘𝑌)‘𝑤) → (𝑦 = (0g𝑌) ↔ ((ℤRHom‘𝑌)‘𝑤) = (0g𝑌)))
6564orbi2d 910 . . . . . . . . . . . 12 (𝑦 = ((ℤRHom‘𝑌)‘𝑤) → ((((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ∨ 𝑦 = (0g𝑌)) ↔ (((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑤) = (0g𝑌))))
6663, 65sylan9bb 510 . . . . . . . . . . 11 ((𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) → ((𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌)) ↔ (((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑤) = (0g𝑌))))
6761, 66imbi12d 346 . . . . . . . . . 10 ((𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) → (((𝑥(.r𝑌)𝑦) = (0g𝑌) → (𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌))) ↔ ((((ℤRHom‘𝑌)‘𝑧)(.r𝑌)((ℤRHom‘𝑌)‘𝑤)) = (0g𝑌) → (((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑤) = (0g𝑌)))))
6859, 67syl5ibrcom 248 . . . . . . . . 9 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → ((𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) → ((𝑥(.r𝑌)𝑦) = (0g𝑌) → (𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌)))))
6968rexlimdvva 3259 . . . . . . . 8 (𝑁 ∈ ℙ → (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) → ((𝑥(.r𝑌)𝑦) = (0g𝑌) → (𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌)))))
7034, 69syl5bir 244 . . . . . . 7 (𝑁 ∈ ℙ → ((∃𝑧 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ ∃𝑤 ∈ ℤ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) → ((𝑥(.r𝑌)𝑦) = (0g𝑌) → (𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌)))))
7170imp 407 . . . . . 6 ((𝑁 ∈ ℙ ∧ (∃𝑧 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ ∃𝑤 ∈ ℤ 𝑦 = ((ℤRHom‘𝑌)‘𝑤))) → ((𝑥(.r𝑌)𝑦) = (0g𝑌) → (𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌))))
7233, 71syldan 591 . . . . 5 ((𝑁 ∈ ℙ ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌))) → ((𝑥(.r𝑌)𝑦) = (0g𝑌) → (𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌))))
7372ralrimivva 3160 . . . 4 (𝑁 ∈ ℙ → ∀𝑥 ∈ (Base‘𝑌)∀𝑦 ∈ (Base‘𝑌)((𝑥(.r𝑌)𝑦) = (0g𝑌) → (𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌))))
7413, 44, 49isdomn 19760 . . . 4 (𝑌 ∈ Domn ↔ (𝑌 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑌)∀𝑦 ∈ (Base‘𝑌)((𝑥(.r𝑌)𝑦) = (0g𝑌) → (𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌)))))
7526, 73, 74sylanbrc 583 . . 3 (𝑁 ∈ ℙ → 𝑌 ∈ Domn)
76 isidom 19770 . . 3 (𝑌 ∈ IDomn ↔ (𝑌 ∈ CRing ∧ 𝑌 ∈ Domn))
776, 75, 76sylanbrc 583 . 2 (𝑁 ∈ ℙ → 𝑌 ∈ IDomn)
784, 13znfi 20392 . . . 4 (𝑁 ∈ ℕ → (Base‘𝑌) ∈ Fin)
791, 78syl 17 . . 3 (𝑁 ∈ ℙ → (Base‘𝑌) ∈ Fin)
8013fiidomfld 19774 . . 3 ((Base‘𝑌) ∈ Fin → (𝑌 ∈ IDomn ↔ 𝑌 ∈ Field))
8179, 80syl 17 . 2 (𝑁 ∈ ℙ → (𝑌 ∈ IDomn ↔ 𝑌 ∈ Field))
8277, 81mpbid 233 1 (𝑁 ∈ ℙ → 𝑌 ∈ Field)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wo 842   = wceq 1525  wcel 2083  wral 3107  wrex 3108  Vcvv 3440   class class class wbr 4968  ontowfo 6230  cfv 6232  (class class class)co 7023  ωcom 7443  2oc2o 7954  cdom 8362  Fincfn 8364   · cmul 10395  cle 10529  cn 11492  2c2 11546  0cn0 11751  cz 11835  cuz 12097  chash 13544  cdvds 15444  cprime 15848  Basecbs 16316  .rcmulr 16399  0gc0g 16546  Ringcrg 18991  CRingccrg 18992   RingHom crh 19158  Fieldcfield 19197  NzRingcnzr 19723  Domncdomn 19746  IDomncidom 19747  ringzring 20303  ℤRHomczrh 20333  ℤ/nczn 20336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467  ax-pre-sup 10468  ax-addf 10469  ax-mulf 10470
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-1st 7552  df-2nd 7553  df-tpos 7750  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-1o 7960  df-2o 7961  df-oadd 7964  df-er 8146  df-ec 8148  df-qs 8152  df-map 8265  df-en 8365  df-dom 8366  df-sdom 8367  df-fin 8368  df-sup 8759  df-inf 8760  df-dju 9183  df-card 9221  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-div 11152  df-nn 11493  df-2 11554  df-3 11555  df-4 11556  df-5 11557  df-6 11558  df-7 11559  df-8 11560  df-9 11561  df-n0 11752  df-xnn0 11822  df-z 11836  df-dec 11953  df-uz 12098  df-rp 12244  df-fz 12747  df-fzo 12888  df-fl 13016  df-mod 13092  df-seq 13224  df-exp 13284  df-hash 13545  df-cj 14296  df-re 14297  df-im 14298  df-sqrt 14432  df-abs 14433  df-dvds 15445  df-gcd 15681  df-prm 15849  df-struct 16318  df-ndx 16319  df-slot 16320  df-base 16322  df-sets 16323  df-ress 16324  df-plusg 16411  df-mulr 16412  df-starv 16413  df-sca 16414  df-vsca 16415  df-ip 16416  df-tset 16417  df-ple 16418  df-ds 16420  df-unif 16421  df-0g 16548  df-imas 16614  df-qus 16615  df-mgm 17685  df-sgrp 17727  df-mnd 17738  df-mhm 17778  df-grp 17868  df-minusg 17869  df-sbg 17870  df-mulg 17986  df-subg 18034  df-nsg 18035  df-eqg 18036  df-ghm 18101  df-cmn 18639  df-abl 18640  df-mgp 18934  df-ur 18946  df-ring 18993  df-cring 18994  df-oppr 19067  df-dvdsr 19085  df-unit 19086  df-invr 19116  df-rnghom 19161  df-drng 19198  df-field 19199  df-subrg 19227  df-lmod 19330  df-lss 19398  df-lsp 19438  df-sra 19638  df-rgmod 19639  df-lidl 19640  df-rsp 19641  df-2idl 19698  df-nzr 19724  df-rlreg 19749  df-domn 19750  df-idom 19751  df-cnfld 20232  df-zring 20304  df-zrh 20337  df-zn 20340
This theorem is referenced by:  znidomb  20394  lgsqrlem1  25608  lgsqrlem2  25609  lgsqrlem3  25610  lgsqrlem4  25611  lgseisenlem3  25639  lgseisenlem4  25640
  Copyright terms: Public domain W3C validator