MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fldidom Structured version   Visualization version   GIF version

Theorem fldidom 20771
Description: A field is an integral domain. (Contributed by Mario Carneiro, 29-Mar-2015.) (Proof shortened by SN, 11-Nov-2024.)
Assertion
Ref Expression
fldidom (𝑅 ∈ Field → 𝑅 ∈ IDomn)

Proof of Theorem fldidom
StepHypRef Expression
1 drngdomn 20749 . . 3 (𝑅 ∈ DivRing → 𝑅 ∈ Domn)
21anim1ci 616 . 2 ((𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing) → (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
3 isfld 20740 . 2 (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing))
4 isidom 20725 . 2 (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
52, 3, 43imtr4i 292 1 (𝑅 ∈ Field → 𝑅 ∈ IDomn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  CRingccrg 20231  Domncdomn 20692  IDomncidom 20693  DivRingcdr 20729  Fieldcfield 20730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-nzr 20513  df-rlreg 20694  df-domn 20695  df-idom 20696  df-drng 20731  df-field 20732
This theorem is referenced by:  znidomb  21580  recvsOLD  25180  ply1pid  26222  lgsqrlem1  27390  lgsqrlem2  27391  lgsqrlem3  27392  lgsqrlem4  27393  subrfld  33290  mxidlprmALT  33527  ply1dg3rt0irred  33607  m1pmeq  33608  fldextrspunlem1  33725  ply1annprmidl  33750  minplyirredlem  33753  minplyirred  33754  algextdeglem7  33764  algextdeglem8  33765  aks6d1c2lem4  42128  aks6d1c5lem2  42139  aks6d1c6lem1  42171  aks6d1c6lem3  42173  aks5lem7  42201
  Copyright terms: Public domain W3C validator