MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsqrlem1 Structured version   Visualization version   GIF version

Theorem lgsqrlem1 25292
Description: Lemma for lgsqr 25297. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
lgsqr.y 𝑌 = (ℤ/nℤ‘𝑃)
lgsqr.s 𝑆 = (Poly1𝑌)
lgsqr.b 𝐵 = (Base‘𝑆)
lgsqr.d 𝐷 = ( deg1𝑌)
lgsqr.o 𝑂 = (eval1𝑌)
lgsqr.e = (.g‘(mulGrp‘𝑆))
lgsqr.x 𝑋 = (var1𝑌)
lgsqr.m = (-g𝑆)
lgsqr.u 1 = (1r𝑆)
lgsqr.t 𝑇 = ((((𝑃 − 1) / 2) 𝑋) 1 )
lgsqr.l 𝐿 = (ℤRHom‘𝑌)
lgsqr.1 (𝜑𝑃 ∈ (ℙ ∖ {2}))
lgsqrlem1.3 (𝜑𝐴 ∈ ℤ)
lgsqrlem1.4 (𝜑 → ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃) = (1 mod 𝑃))
Assertion
Ref Expression
lgsqrlem1 (𝜑 → ((𝑂𝑇)‘(𝐿𝐴)) = (0g𝑌))

Proof of Theorem lgsqrlem1
StepHypRef Expression
1 lgsqr.t . . . . 5 𝑇 = ((((𝑃 − 1) / 2) 𝑋) 1 )
21fveq2i 6335 . . . 4 (𝑂𝑇) = (𝑂‘((((𝑃 − 1) / 2) 𝑋) 1 ))
32fveq1i 6333 . . 3 ((𝑂𝑇)‘(𝐿𝐴)) = ((𝑂‘((((𝑃 − 1) / 2) 𝑋) 1 ))‘(𝐿𝐴))
4 lgsqr.o . . . . 5 𝑂 = (eval1𝑌)
5 lgsqr.s . . . . 5 𝑆 = (Poly1𝑌)
6 eqid 2771 . . . . 5 (Base‘𝑌) = (Base‘𝑌)
7 lgsqr.b . . . . 5 𝐵 = (Base‘𝑆)
8 lgsqr.1 . . . . . . . . 9 (𝜑𝑃 ∈ (ℙ ∖ {2}))
98eldifad 3735 . . . . . . . 8 (𝜑𝑃 ∈ ℙ)
10 lgsqr.y . . . . . . . . 9 𝑌 = (ℤ/nℤ‘𝑃)
1110znfld 20124 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑌 ∈ Field)
129, 11syl 17 . . . . . . 7 (𝜑𝑌 ∈ Field)
13 fldidom 19520 . . . . . . 7 (𝑌 ∈ Field → 𝑌 ∈ IDomn)
1412, 13syl 17 . . . . . 6 (𝜑𝑌 ∈ IDomn)
15 isidom 19519 . . . . . . 7 (𝑌 ∈ IDomn ↔ (𝑌 ∈ CRing ∧ 𝑌 ∈ Domn))
1615simplbi 485 . . . . . 6 (𝑌 ∈ IDomn → 𝑌 ∈ CRing)
1714, 16syl 17 . . . . 5 (𝜑𝑌 ∈ CRing)
18 crngring 18766 . . . . . . . . 9 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
1917, 18syl 17 . . . . . . . 8 (𝜑𝑌 ∈ Ring)
20 lgsqr.l . . . . . . . . 9 𝐿 = (ℤRHom‘𝑌)
2120zrhrhm 20075 . . . . . . . 8 (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌))
2219, 21syl 17 . . . . . . 7 (𝜑𝐿 ∈ (ℤring RingHom 𝑌))
23 zringbas 20039 . . . . . . . 8 ℤ = (Base‘ℤring)
2423, 6rhmf 18936 . . . . . . 7 (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿:ℤ⟶(Base‘𝑌))
2522, 24syl 17 . . . . . 6 (𝜑𝐿:ℤ⟶(Base‘𝑌))
26 lgsqrlem1.3 . . . . . 6 (𝜑𝐴 ∈ ℤ)
2725, 26ffvelrnd 6503 . . . . 5 (𝜑 → (𝐿𝐴) ∈ (Base‘𝑌))
28 lgsqr.x . . . . . . . 8 𝑋 = (var1𝑌)
294, 28, 6, 5, 7, 17, 27evl1vard 19916 . . . . . . 7 (𝜑 → (𝑋𝐵 ∧ ((𝑂𝑋)‘(𝐿𝐴)) = (𝐿𝐴)))
30 lgsqr.e . . . . . . 7 = (.g‘(mulGrp‘𝑆))
31 eqid 2771 . . . . . . 7 (.g‘(mulGrp‘𝑌)) = (.g‘(mulGrp‘𝑌))
32 oddprm 15722 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
338, 32syl 17 . . . . . . . 8 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ)
3433nnnn0d 11553 . . . . . . 7 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ0)
354, 5, 6, 7, 17, 27, 29, 30, 31, 34evl1expd 19924 . . . . . 6 (𝜑 → ((((𝑃 − 1) / 2) 𝑋) ∈ 𝐵 ∧ ((𝑂‘(((𝑃 − 1) / 2) 𝑋))‘(𝐿𝐴)) = (((𝑃 − 1) / 2)(.g‘(mulGrp‘𝑌))(𝐿𝐴))))
36 zringmpg 20055 . . . . . . . . . . . 12 ((mulGrp‘ℂfld) ↾s ℤ) = (mulGrp‘ℤring)
37 eqid 2771 . . . . . . . . . . . 12 (mulGrp‘𝑌) = (mulGrp‘𝑌)
3836, 37rhmmhm 18932 . . . . . . . . . . 11 (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿 ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom (mulGrp‘𝑌)))
3922, 38syl 17 . . . . . . . . . 10 (𝜑𝐿 ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom (mulGrp‘𝑌)))
4036, 23mgpbas 18703 . . . . . . . . . . 11 ℤ = (Base‘((mulGrp‘ℂfld) ↾s ℤ))
41 eqid 2771 . . . . . . . . . . 11 (.g‘((mulGrp‘ℂfld) ↾s ℤ)) = (.g‘((mulGrp‘ℂfld) ↾s ℤ))
4240, 41, 31mhmmulg 17791 . . . . . . . . . 10 ((𝐿 ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom (mulGrp‘𝑌)) ∧ ((𝑃 − 1) / 2) ∈ ℕ0𝐴 ∈ ℤ) → (𝐿‘(((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐴)) = (((𝑃 − 1) / 2)(.g‘(mulGrp‘𝑌))(𝐿𝐴)))
4339, 34, 26, 42syl3anc 1476 . . . . . . . . 9 (𝜑 → (𝐿‘(((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐴)) = (((𝑃 − 1) / 2)(.g‘(mulGrp‘𝑌))(𝐿𝐴)))
44 zsubrg 20014 . . . . . . . . . . . . . 14 ℤ ∈ (SubRing‘ℂfld)
45 eqid 2771 . . . . . . . . . . . . . . 15 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
4645subrgsubm 19003 . . . . . . . . . . . . . 14 (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)))
4744, 46mp1i 13 . . . . . . . . . . . . 13 (𝜑 → ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)))
48 eqid 2771 . . . . . . . . . . . . . 14 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
49 eqid 2771 . . . . . . . . . . . . . 14 ((mulGrp‘ℂfld) ↾s ℤ) = ((mulGrp‘ℂfld) ↾s ℤ)
5048, 49, 41submmulg 17794 . . . . . . . . . . . . 13 ((ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ ((𝑃 − 1) / 2) ∈ ℕ0𝐴 ∈ ℤ) → (((𝑃 − 1) / 2)(.g‘(mulGrp‘ℂfld))𝐴) = (((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐴))
5147, 34, 26, 50syl3anc 1476 . . . . . . . . . . . 12 (𝜑 → (((𝑃 − 1) / 2)(.g‘(mulGrp‘ℂfld))𝐴) = (((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐴))
5226zcnd 11685 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℂ)
53 cnfldexp 19994 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (((𝑃 − 1) / 2)(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑((𝑃 − 1) / 2)))
5452, 34, 53syl2anc 573 . . . . . . . . . . . 12 (𝜑 → (((𝑃 − 1) / 2)(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑((𝑃 − 1) / 2)))
5551, 54eqtr3d 2807 . . . . . . . . . . 11 (𝜑 → (((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐴) = (𝐴↑((𝑃 − 1) / 2)))
5655fveq2d 6336 . . . . . . . . . 10 (𝜑 → (𝐿‘(((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐴)) = (𝐿‘(𝐴↑((𝑃 − 1) / 2))))
57 lgsqrlem1.4 . . . . . . . . . . . 12 (𝜑 → ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃) = (1 mod 𝑃))
58 prmnn 15595 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
599, 58syl 17 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℕ)
60 zexpcl 13082 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ)
6126, 34, 60syl2anc 573 . . . . . . . . . . . . 13 (𝜑 → (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ)
62 1zzd 11610 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℤ)
63 moddvds 15200 . . . . . . . . . . . . 13 ((𝑃 ∈ ℕ ∧ (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ ∧ 1 ∈ ℤ) → (((𝐴↑((𝑃 − 1) / 2)) mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1)))
6459, 61, 62, 63syl3anc 1476 . . . . . . . . . . . 12 (𝜑 → (((𝐴↑((𝑃 − 1) / 2)) mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1)))
6557, 64mpbid 222 . . . . . . . . . . 11 (𝜑𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1))
6659nnnn0d 11553 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℕ0)
6710, 20zndvds 20113 . . . . . . . . . . . 12 ((𝑃 ∈ ℕ0 ∧ (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ ∧ 1 ∈ ℤ) → ((𝐿‘(𝐴↑((𝑃 − 1) / 2))) = (𝐿‘1) ↔ 𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1)))
6866, 61, 62, 67syl3anc 1476 . . . . . . . . . . 11 (𝜑 → ((𝐿‘(𝐴↑((𝑃 − 1) / 2))) = (𝐿‘1) ↔ 𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1)))
6965, 68mpbird 247 . . . . . . . . . 10 (𝜑 → (𝐿‘(𝐴↑((𝑃 − 1) / 2))) = (𝐿‘1))
70 zring1 20044 . . . . . . . . . . . 12 1 = (1r‘ℤring)
71 eqid 2771 . . . . . . . . . . . 12 (1r𝑌) = (1r𝑌)
7270, 71rhm1 18940 . . . . . . . . . . 11 (𝐿 ∈ (ℤring RingHom 𝑌) → (𝐿‘1) = (1r𝑌))
7322, 72syl 17 . . . . . . . . . 10 (𝜑 → (𝐿‘1) = (1r𝑌))
7456, 69, 733eqtrd 2809 . . . . . . . . 9 (𝜑 → (𝐿‘(((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐴)) = (1r𝑌))
7543, 74eqtr3d 2807 . . . . . . . 8 (𝜑 → (((𝑃 − 1) / 2)(.g‘(mulGrp‘𝑌))(𝐿𝐴)) = (1r𝑌))
7675eqeq2d 2781 . . . . . . 7 (𝜑 → (((𝑂‘(((𝑃 − 1) / 2) 𝑋))‘(𝐿𝐴)) = (((𝑃 − 1) / 2)(.g‘(mulGrp‘𝑌))(𝐿𝐴)) ↔ ((𝑂‘(((𝑃 − 1) / 2) 𝑋))‘(𝐿𝐴)) = (1r𝑌)))
7776anbi2d 614 . . . . . 6 (𝜑 → (((((𝑃 − 1) / 2) 𝑋) ∈ 𝐵 ∧ ((𝑂‘(((𝑃 − 1) / 2) 𝑋))‘(𝐿𝐴)) = (((𝑃 − 1) / 2)(.g‘(mulGrp‘𝑌))(𝐿𝐴))) ↔ ((((𝑃 − 1) / 2) 𝑋) ∈ 𝐵 ∧ ((𝑂‘(((𝑃 − 1) / 2) 𝑋))‘(𝐿𝐴)) = (1r𝑌))))
7835, 77mpbid 222 . . . . 5 (𝜑 → ((((𝑃 − 1) / 2) 𝑋) ∈ 𝐵 ∧ ((𝑂‘(((𝑃 − 1) / 2) 𝑋))‘(𝐿𝐴)) = (1r𝑌)))
79 eqid 2771 . . . . . . 7 (algSc‘𝑆) = (algSc‘𝑆)
806, 71ringidcl 18776 . . . . . . . 8 (𝑌 ∈ Ring → (1r𝑌) ∈ (Base‘𝑌))
8119, 80syl 17 . . . . . . 7 (𝜑 → (1r𝑌) ∈ (Base‘𝑌))
824, 5, 6, 79, 7, 17, 81, 27evl1scad 19914 . . . . . 6 (𝜑 → (((algSc‘𝑆)‘(1r𝑌)) ∈ 𝐵 ∧ ((𝑂‘((algSc‘𝑆)‘(1r𝑌)))‘(𝐿𝐴)) = (1r𝑌)))
83 lgsqr.u . . . . . . . . . 10 1 = (1r𝑆)
845, 79, 71, 83ply1scl1 19877 . . . . . . . . 9 (𝑌 ∈ Ring → ((algSc‘𝑆)‘(1r𝑌)) = 1 )
8519, 84syl 17 . . . . . . . 8 (𝜑 → ((algSc‘𝑆)‘(1r𝑌)) = 1 )
8685eleq1d 2835 . . . . . . 7 (𝜑 → (((algSc‘𝑆)‘(1r𝑌)) ∈ 𝐵1𝐵))
8785fveq2d 6336 . . . . . . . . 9 (𝜑 → (𝑂‘((algSc‘𝑆)‘(1r𝑌))) = (𝑂1 ))
8887fveq1d 6334 . . . . . . . 8 (𝜑 → ((𝑂‘((algSc‘𝑆)‘(1r𝑌)))‘(𝐿𝐴)) = ((𝑂1 )‘(𝐿𝐴)))
8988eqeq1d 2773 . . . . . . 7 (𝜑 → (((𝑂‘((algSc‘𝑆)‘(1r𝑌)))‘(𝐿𝐴)) = (1r𝑌) ↔ ((𝑂1 )‘(𝐿𝐴)) = (1r𝑌)))
9086, 89anbi12d 616 . . . . . 6 (𝜑 → ((((algSc‘𝑆)‘(1r𝑌)) ∈ 𝐵 ∧ ((𝑂‘((algSc‘𝑆)‘(1r𝑌)))‘(𝐿𝐴)) = (1r𝑌)) ↔ ( 1𝐵 ∧ ((𝑂1 )‘(𝐿𝐴)) = (1r𝑌))))
9182, 90mpbid 222 . . . . 5 (𝜑 → ( 1𝐵 ∧ ((𝑂1 )‘(𝐿𝐴)) = (1r𝑌)))
92 lgsqr.m . . . . 5 = (-g𝑆)
93 eqid 2771 . . . . 5 (-g𝑌) = (-g𝑌)
944, 5, 6, 7, 17, 27, 78, 91, 92, 93evl1subd 19921 . . . 4 (𝜑 → (((((𝑃 − 1) / 2) 𝑋) 1 ) ∈ 𝐵 ∧ ((𝑂‘((((𝑃 − 1) / 2) 𝑋) 1 ))‘(𝐿𝐴)) = ((1r𝑌)(-g𝑌)(1r𝑌))))
9594simprd 483 . . 3 (𝜑 → ((𝑂‘((((𝑃 − 1) / 2) 𝑋) 1 ))‘(𝐿𝐴)) = ((1r𝑌)(-g𝑌)(1r𝑌)))
963, 95syl5eq 2817 . 2 (𝜑 → ((𝑂𝑇)‘(𝐿𝐴)) = ((1r𝑌)(-g𝑌)(1r𝑌)))
97 ringgrp 18760 . . . 4 (𝑌 ∈ Ring → 𝑌 ∈ Grp)
9819, 97syl 17 . . 3 (𝜑𝑌 ∈ Grp)
99 eqid 2771 . . . 4 (0g𝑌) = (0g𝑌)
1006, 99, 93grpsubid 17707 . . 3 ((𝑌 ∈ Grp ∧ (1r𝑌) ∈ (Base‘𝑌)) → ((1r𝑌)(-g𝑌)(1r𝑌)) = (0g𝑌))
10198, 81, 100syl2anc 573 . 2 (𝜑 → ((1r𝑌)(-g𝑌)(1r𝑌)) = (0g𝑌))
10296, 101eqtrd 2805 1 (𝜑 → ((𝑂𝑇)‘(𝐿𝐴)) = (0g𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  cdif 3720  {csn 4316   class class class wbr 4786  wf 6027  cfv 6031  (class class class)co 6793  cc 10136  1c1 10139  cmin 10468   / cdiv 10886  cn 11222  2c2 11272  0cn0 11494  cz 11579   mod cmo 12876  cexp 13067  cdvds 15189  cprime 15592  Basecbs 16064  s cress 16065  0gc0g 16308   MndHom cmhm 17541  SubMndcsubmnd 17542  Grpcgrp 17630  -gcsg 17632  .gcmg 17748  mulGrpcmgp 18697  1rcur 18709  Ringcrg 18755  CRingccrg 18756   RingHom crh 18922  Fieldcfield 18958  SubRingcsubrg 18986  Domncdomn 19495  IDomncidom 19496  algSccascl 19526  var1cv1 19761  Poly1cpl1 19762  eval1ce1 19894  fldccnfld 19961  ringzring 20033  ℤRHomczrh 20063  ℤ/nczn 20066   deg1 cdg1 24034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-addf 10217  ax-mulf 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-ofr 7045  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-tpos 7504  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-ec 7898  df-qs 7902  df-map 8011  df-pm 8012  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-sup 8504  df-inf 8505  df-oi 8571  df-card 8965  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-xnn0 11566  df-z 11580  df-dec 11696  df-uz 11889  df-rp 12036  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-dvds 15190  df-gcd 15425  df-prm 15593  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-0g 16310  df-gsum 16311  df-prds 16316  df-pws 16318  df-imas 16376  df-qus 16377  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-mhm 17543  df-submnd 17544  df-grp 17633  df-minusg 17634  df-sbg 17635  df-mulg 17749  df-subg 17799  df-nsg 17800  df-eqg 17801  df-ghm 17866  df-cntz 17957  df-cmn 18402  df-abl 18403  df-mgp 18698  df-ur 18710  df-srg 18714  df-ring 18757  df-cring 18758  df-oppr 18831  df-dvdsr 18849  df-unit 18850  df-invr 18880  df-dvr 18891  df-rnghom 18925  df-drng 18959  df-field 18960  df-subrg 18988  df-lmod 19075  df-lss 19143  df-lsp 19185  df-sra 19387  df-rgmod 19388  df-lidl 19389  df-rsp 19390  df-2idl 19447  df-nzr 19473  df-rlreg 19498  df-domn 19499  df-idom 19500  df-assa 19527  df-asp 19528  df-ascl 19529  df-psr 19571  df-mvr 19572  df-mpl 19573  df-opsr 19575  df-evls 19721  df-evl 19722  df-psr1 19765  df-vr1 19766  df-ply1 19767  df-evl1 19896  df-cnfld 19962  df-zring 20034  df-zrh 20067  df-zn 20070
This theorem is referenced by:  lgsqrlem2  25293  lgsqrlem3  25294
  Copyright terms: Public domain W3C validator