MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsqrlem1 Structured version   Visualization version   GIF version

Theorem lgsqrlem1 25930
Description: Lemma for lgsqr 25935. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
lgsqr.y 𝑌 = (ℤ/nℤ‘𝑃)
lgsqr.s 𝑆 = (Poly1𝑌)
lgsqr.b 𝐵 = (Base‘𝑆)
lgsqr.d 𝐷 = ( deg1𝑌)
lgsqr.o 𝑂 = (eval1𝑌)
lgsqr.e = (.g‘(mulGrp‘𝑆))
lgsqr.x 𝑋 = (var1𝑌)
lgsqr.m = (-g𝑆)
lgsqr.u 1 = (1r𝑆)
lgsqr.t 𝑇 = ((((𝑃 − 1) / 2) 𝑋) 1 )
lgsqr.l 𝐿 = (ℤRHom‘𝑌)
lgsqr.1 (𝜑𝑃 ∈ (ℙ ∖ {2}))
lgsqrlem1.3 (𝜑𝐴 ∈ ℤ)
lgsqrlem1.4 (𝜑 → ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃) = (1 mod 𝑃))
Assertion
Ref Expression
lgsqrlem1 (𝜑 → ((𝑂𝑇)‘(𝐿𝐴)) = (0g𝑌))

Proof of Theorem lgsqrlem1
StepHypRef Expression
1 lgsqr.t . . . . 5 𝑇 = ((((𝑃 − 1) / 2) 𝑋) 1 )
21fveq2i 6648 . . . 4 (𝑂𝑇) = (𝑂‘((((𝑃 − 1) / 2) 𝑋) 1 ))
32fveq1i 6646 . . 3 ((𝑂𝑇)‘(𝐿𝐴)) = ((𝑂‘((((𝑃 − 1) / 2) 𝑋) 1 ))‘(𝐿𝐴))
4 lgsqr.o . . . . 5 𝑂 = (eval1𝑌)
5 lgsqr.s . . . . 5 𝑆 = (Poly1𝑌)
6 eqid 2798 . . . . 5 (Base‘𝑌) = (Base‘𝑌)
7 lgsqr.b . . . . 5 𝐵 = (Base‘𝑆)
8 lgsqr.1 . . . . . . . . 9 (𝜑𝑃 ∈ (ℙ ∖ {2}))
98eldifad 3893 . . . . . . . 8 (𝜑𝑃 ∈ ℙ)
10 lgsqr.y . . . . . . . . 9 𝑌 = (ℤ/nℤ‘𝑃)
1110znfld 20252 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑌 ∈ Field)
129, 11syl 17 . . . . . . 7 (𝜑𝑌 ∈ Field)
13 fldidom 20071 . . . . . . 7 (𝑌 ∈ Field → 𝑌 ∈ IDomn)
1412, 13syl 17 . . . . . 6 (𝜑𝑌 ∈ IDomn)
15 isidom 20070 . . . . . . 7 (𝑌 ∈ IDomn ↔ (𝑌 ∈ CRing ∧ 𝑌 ∈ Domn))
1615simplbi 501 . . . . . 6 (𝑌 ∈ IDomn → 𝑌 ∈ CRing)
1714, 16syl 17 . . . . 5 (𝜑𝑌 ∈ CRing)
18 crngring 19302 . . . . . . . . 9 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
1917, 18syl 17 . . . . . . . 8 (𝜑𝑌 ∈ Ring)
20 lgsqr.l . . . . . . . . 9 𝐿 = (ℤRHom‘𝑌)
2120zrhrhm 20205 . . . . . . . 8 (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌))
2219, 21syl 17 . . . . . . 7 (𝜑𝐿 ∈ (ℤring RingHom 𝑌))
23 zringbas 20169 . . . . . . . 8 ℤ = (Base‘ℤring)
2423, 6rhmf 19474 . . . . . . 7 (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿:ℤ⟶(Base‘𝑌))
2522, 24syl 17 . . . . . 6 (𝜑𝐿:ℤ⟶(Base‘𝑌))
26 lgsqrlem1.3 . . . . . 6 (𝜑𝐴 ∈ ℤ)
2725, 26ffvelrnd 6829 . . . . 5 (𝜑 → (𝐿𝐴) ∈ (Base‘𝑌))
28 lgsqr.x . . . . . . . 8 𝑋 = (var1𝑌)
294, 28, 6, 5, 7, 17, 27evl1vard 20961 . . . . . . 7 (𝜑 → (𝑋𝐵 ∧ ((𝑂𝑋)‘(𝐿𝐴)) = (𝐿𝐴)))
30 lgsqr.e . . . . . . 7 = (.g‘(mulGrp‘𝑆))
31 eqid 2798 . . . . . . 7 (.g‘(mulGrp‘𝑌)) = (.g‘(mulGrp‘𝑌))
32 oddprm 16137 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
338, 32syl 17 . . . . . . . 8 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ)
3433nnnn0d 11943 . . . . . . 7 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ0)
354, 5, 6, 7, 17, 27, 29, 30, 31, 34evl1expd 20969 . . . . . 6 (𝜑 → ((((𝑃 − 1) / 2) 𝑋) ∈ 𝐵 ∧ ((𝑂‘(((𝑃 − 1) / 2) 𝑋))‘(𝐿𝐴)) = (((𝑃 − 1) / 2)(.g‘(mulGrp‘𝑌))(𝐿𝐴))))
36 zringmpg 20185 . . . . . . . . . . . 12 ((mulGrp‘ℂfld) ↾s ℤ) = (mulGrp‘ℤring)
37 eqid 2798 . . . . . . . . . . . 12 (mulGrp‘𝑌) = (mulGrp‘𝑌)
3836, 37rhmmhm 19470 . . . . . . . . . . 11 (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿 ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom (mulGrp‘𝑌)))
3922, 38syl 17 . . . . . . . . . 10 (𝜑𝐿 ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom (mulGrp‘𝑌)))
4036, 23mgpbas 19238 . . . . . . . . . . 11 ℤ = (Base‘((mulGrp‘ℂfld) ↾s ℤ))
41 eqid 2798 . . . . . . . . . . 11 (.g‘((mulGrp‘ℂfld) ↾s ℤ)) = (.g‘((mulGrp‘ℂfld) ↾s ℤ))
4240, 41, 31mhmmulg 18260 . . . . . . . . . 10 ((𝐿 ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom (mulGrp‘𝑌)) ∧ ((𝑃 − 1) / 2) ∈ ℕ0𝐴 ∈ ℤ) → (𝐿‘(((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐴)) = (((𝑃 − 1) / 2)(.g‘(mulGrp‘𝑌))(𝐿𝐴)))
4339, 34, 26, 42syl3anc 1368 . . . . . . . . 9 (𝜑 → (𝐿‘(((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐴)) = (((𝑃 − 1) / 2)(.g‘(mulGrp‘𝑌))(𝐿𝐴)))
44 zsubrg 20144 . . . . . . . . . . . . . 14 ℤ ∈ (SubRing‘ℂfld)
45 eqid 2798 . . . . . . . . . . . . . . 15 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
4645subrgsubm 19541 . . . . . . . . . . . . . 14 (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)))
4744, 46mp1i 13 . . . . . . . . . . . . 13 (𝜑 → ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)))
48 eqid 2798 . . . . . . . . . . . . . 14 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
49 eqid 2798 . . . . . . . . . . . . . 14 ((mulGrp‘ℂfld) ↾s ℤ) = ((mulGrp‘ℂfld) ↾s ℤ)
5048, 49, 41submmulg 18263 . . . . . . . . . . . . 13 ((ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ ((𝑃 − 1) / 2) ∈ ℕ0𝐴 ∈ ℤ) → (((𝑃 − 1) / 2)(.g‘(mulGrp‘ℂfld))𝐴) = (((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐴))
5147, 34, 26, 50syl3anc 1368 . . . . . . . . . . . 12 (𝜑 → (((𝑃 − 1) / 2)(.g‘(mulGrp‘ℂfld))𝐴) = (((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐴))
5226zcnd 12076 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℂ)
53 cnfldexp 20124 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (((𝑃 − 1) / 2)(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑((𝑃 − 1) / 2)))
5452, 34, 53syl2anc 587 . . . . . . . . . . . 12 (𝜑 → (((𝑃 − 1) / 2)(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑((𝑃 − 1) / 2)))
5551, 54eqtr3d 2835 . . . . . . . . . . 11 (𝜑 → (((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐴) = (𝐴↑((𝑃 − 1) / 2)))
5655fveq2d 6649 . . . . . . . . . 10 (𝜑 → (𝐿‘(((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐴)) = (𝐿‘(𝐴↑((𝑃 − 1) / 2))))
57 lgsqrlem1.4 . . . . . . . . . . . 12 (𝜑 → ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃) = (1 mod 𝑃))
58 prmnn 16008 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
599, 58syl 17 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℕ)
60 zexpcl 13440 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ)
6126, 34, 60syl2anc 587 . . . . . . . . . . . . 13 (𝜑 → (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ)
62 1zzd 12001 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℤ)
63 moddvds 15610 . . . . . . . . . . . . 13 ((𝑃 ∈ ℕ ∧ (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ ∧ 1 ∈ ℤ) → (((𝐴↑((𝑃 − 1) / 2)) mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1)))
6459, 61, 62, 63syl3anc 1368 . . . . . . . . . . . 12 (𝜑 → (((𝐴↑((𝑃 − 1) / 2)) mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1)))
6557, 64mpbid 235 . . . . . . . . . . 11 (𝜑𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1))
6659nnnn0d 11943 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℕ0)
6710, 20zndvds 20241 . . . . . . . . . . . 12 ((𝑃 ∈ ℕ0 ∧ (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ ∧ 1 ∈ ℤ) → ((𝐿‘(𝐴↑((𝑃 − 1) / 2))) = (𝐿‘1) ↔ 𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1)))
6866, 61, 62, 67syl3anc 1368 . . . . . . . . . . 11 (𝜑 → ((𝐿‘(𝐴↑((𝑃 − 1) / 2))) = (𝐿‘1) ↔ 𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1)))
6965, 68mpbird 260 . . . . . . . . . 10 (𝜑 → (𝐿‘(𝐴↑((𝑃 − 1) / 2))) = (𝐿‘1))
70 zring1 20174 . . . . . . . . . . . 12 1 = (1r‘ℤring)
71 eqid 2798 . . . . . . . . . . . 12 (1r𝑌) = (1r𝑌)
7270, 71rhm1 19478 . . . . . . . . . . 11 (𝐿 ∈ (ℤring RingHom 𝑌) → (𝐿‘1) = (1r𝑌))
7322, 72syl 17 . . . . . . . . . 10 (𝜑 → (𝐿‘1) = (1r𝑌))
7456, 69, 733eqtrd 2837 . . . . . . . . 9 (𝜑 → (𝐿‘(((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐴)) = (1r𝑌))
7543, 74eqtr3d 2835 . . . . . . . 8 (𝜑 → (((𝑃 − 1) / 2)(.g‘(mulGrp‘𝑌))(𝐿𝐴)) = (1r𝑌))
7675eqeq2d 2809 . . . . . . 7 (𝜑 → (((𝑂‘(((𝑃 − 1) / 2) 𝑋))‘(𝐿𝐴)) = (((𝑃 − 1) / 2)(.g‘(mulGrp‘𝑌))(𝐿𝐴)) ↔ ((𝑂‘(((𝑃 − 1) / 2) 𝑋))‘(𝐿𝐴)) = (1r𝑌)))
7776anbi2d 631 . . . . . 6 (𝜑 → (((((𝑃 − 1) / 2) 𝑋) ∈ 𝐵 ∧ ((𝑂‘(((𝑃 − 1) / 2) 𝑋))‘(𝐿𝐴)) = (((𝑃 − 1) / 2)(.g‘(mulGrp‘𝑌))(𝐿𝐴))) ↔ ((((𝑃 − 1) / 2) 𝑋) ∈ 𝐵 ∧ ((𝑂‘(((𝑃 − 1) / 2) 𝑋))‘(𝐿𝐴)) = (1r𝑌))))
7835, 77mpbid 235 . . . . 5 (𝜑 → ((((𝑃 − 1) / 2) 𝑋) ∈ 𝐵 ∧ ((𝑂‘(((𝑃 − 1) / 2) 𝑋))‘(𝐿𝐴)) = (1r𝑌)))
79 eqid 2798 . . . . . . 7 (algSc‘𝑆) = (algSc‘𝑆)
806, 71ringidcl 19314 . . . . . . . 8 (𝑌 ∈ Ring → (1r𝑌) ∈ (Base‘𝑌))
8119, 80syl 17 . . . . . . 7 (𝜑 → (1r𝑌) ∈ (Base‘𝑌))
824, 5, 6, 79, 7, 17, 81, 27evl1scad 20959 . . . . . 6 (𝜑 → (((algSc‘𝑆)‘(1r𝑌)) ∈ 𝐵 ∧ ((𝑂‘((algSc‘𝑆)‘(1r𝑌)))‘(𝐿𝐴)) = (1r𝑌)))
83 lgsqr.u . . . . . . . . . 10 1 = (1r𝑆)
845, 79, 71, 83ply1scl1 20921 . . . . . . . . 9 (𝑌 ∈ Ring → ((algSc‘𝑆)‘(1r𝑌)) = 1 )
8519, 84syl 17 . . . . . . . 8 (𝜑 → ((algSc‘𝑆)‘(1r𝑌)) = 1 )
8685eleq1d 2874 . . . . . . 7 (𝜑 → (((algSc‘𝑆)‘(1r𝑌)) ∈ 𝐵1𝐵))
8785fveq2d 6649 . . . . . . . . 9 (𝜑 → (𝑂‘((algSc‘𝑆)‘(1r𝑌))) = (𝑂1 ))
8887fveq1d 6647 . . . . . . . 8 (𝜑 → ((𝑂‘((algSc‘𝑆)‘(1r𝑌)))‘(𝐿𝐴)) = ((𝑂1 )‘(𝐿𝐴)))
8988eqeq1d 2800 . . . . . . 7 (𝜑 → (((𝑂‘((algSc‘𝑆)‘(1r𝑌)))‘(𝐿𝐴)) = (1r𝑌) ↔ ((𝑂1 )‘(𝐿𝐴)) = (1r𝑌)))
9086, 89anbi12d 633 . . . . . 6 (𝜑 → ((((algSc‘𝑆)‘(1r𝑌)) ∈ 𝐵 ∧ ((𝑂‘((algSc‘𝑆)‘(1r𝑌)))‘(𝐿𝐴)) = (1r𝑌)) ↔ ( 1𝐵 ∧ ((𝑂1 )‘(𝐿𝐴)) = (1r𝑌))))
9182, 90mpbid 235 . . . . 5 (𝜑 → ( 1𝐵 ∧ ((𝑂1 )‘(𝐿𝐴)) = (1r𝑌)))
92 lgsqr.m . . . . 5 = (-g𝑆)
93 eqid 2798 . . . . 5 (-g𝑌) = (-g𝑌)
944, 5, 6, 7, 17, 27, 78, 91, 92, 93evl1subd 20966 . . . 4 (𝜑 → (((((𝑃 − 1) / 2) 𝑋) 1 ) ∈ 𝐵 ∧ ((𝑂‘((((𝑃 − 1) / 2) 𝑋) 1 ))‘(𝐿𝐴)) = ((1r𝑌)(-g𝑌)(1r𝑌))))
9594simprd 499 . . 3 (𝜑 → ((𝑂‘((((𝑃 − 1) / 2) 𝑋) 1 ))‘(𝐿𝐴)) = ((1r𝑌)(-g𝑌)(1r𝑌)))
963, 95syl5eq 2845 . 2 (𝜑 → ((𝑂𝑇)‘(𝐿𝐴)) = ((1r𝑌)(-g𝑌)(1r𝑌)))
97 ringgrp 19295 . . . 4 (𝑌 ∈ Ring → 𝑌 ∈ Grp)
9819, 97syl 17 . . 3 (𝜑𝑌 ∈ Grp)
99 eqid 2798 . . . 4 (0g𝑌) = (0g𝑌)
1006, 99, 93grpsubid 18175 . . 3 ((𝑌 ∈ Grp ∧ (1r𝑌) ∈ (Base‘𝑌)) → ((1r𝑌)(-g𝑌)(1r𝑌)) = (0g𝑌))
10198, 81, 100syl2anc 587 . 2 (𝜑 → ((1r𝑌)(-g𝑌)(1r𝑌)) = (0g𝑌))
10296, 101eqtrd 2833 1 (𝜑 → ((𝑂𝑇)‘(𝐿𝐴)) = (0g𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  cdif 3878  {csn 4525   class class class wbr 5030  wf 6320  cfv 6324  (class class class)co 7135  cc 10524  1c1 10527  cmin 10859   / cdiv 11286  cn 11625  2c2 11680  0cn0 11885  cz 11969   mod cmo 13232  cexp 13425  cdvds 15599  cprime 16005  Basecbs 16475  s cress 16476  0gc0g 16705   MndHom cmhm 17946  SubMndcsubmnd 17947  Grpcgrp 18095  -gcsg 18097  .gcmg 18216  mulGrpcmgp 19232  1rcur 19244  Ringcrg 19290  CRingccrg 19291   RingHom crh 19460  Fieldcfield 19496  SubRingcsubrg 19524  Domncdomn 20046  IDomncidom 20047  fldccnfld 20091  ringzring 20163  ℤRHomczrh 20193  ℤ/nczn 20196  algSccascl 20541  var1cv1 20805  Poly1cpl1 20806  eval1ce1 20938   deg1 cdg1 24655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-ofr 7390  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-ec 8274  df-qs 8278  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-gcd 15834  df-prm 16006  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-0g 16707  df-gsum 16708  df-prds 16713  df-pws 16715  df-imas 16773  df-qus 16774  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-nsg 18269  df-eqg 18270  df-ghm 18348  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-srg 19249  df-ring 19292  df-cring 19293  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-rnghom 19463  df-drng 19497  df-field 19498  df-subrg 19526  df-lmod 19629  df-lss 19697  df-lsp 19737  df-sra 19937  df-rgmod 19938  df-lidl 19939  df-rsp 19940  df-2idl 19998  df-nzr 20024  df-rlreg 20049  df-domn 20050  df-idom 20051  df-cnfld 20092  df-zring 20164  df-zrh 20197  df-zn 20200  df-assa 20542  df-asp 20543  df-ascl 20544  df-psr 20594  df-mvr 20595  df-mpl 20596  df-opsr 20598  df-evls 20745  df-evl 20746  df-psr1 20809  df-vr1 20810  df-ply1 20811  df-evl1 20940
This theorem is referenced by:  lgsqrlem2  25931  lgsqrlem3  25932
  Copyright terms: Public domain W3C validator