MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsqrlem1 Structured version   Visualization version   GIF version

Theorem lgsqrlem1 27257
Description: Lemma for lgsqr 27262. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
lgsqr.y 𝑌 = (ℤ/nℤ‘𝑃)
lgsqr.s 𝑆 = (Poly1𝑌)
lgsqr.b 𝐵 = (Base‘𝑆)
lgsqr.d 𝐷 = (deg1𝑌)
lgsqr.o 𝑂 = (eval1𝑌)
lgsqr.e = (.g‘(mulGrp‘𝑆))
lgsqr.x 𝑋 = (var1𝑌)
lgsqr.m = (-g𝑆)
lgsqr.u 1 = (1r𝑆)
lgsqr.t 𝑇 = ((((𝑃 − 1) / 2) 𝑋) 1 )
lgsqr.l 𝐿 = (ℤRHom‘𝑌)
lgsqr.1 (𝜑𝑃 ∈ (ℙ ∖ {2}))
lgsqrlem1.3 (𝜑𝐴 ∈ ℤ)
lgsqrlem1.4 (𝜑 → ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃) = (1 mod 𝑃))
Assertion
Ref Expression
lgsqrlem1 (𝜑 → ((𝑂𝑇)‘(𝐿𝐴)) = (0g𝑌))

Proof of Theorem lgsqrlem1
StepHypRef Expression
1 lgsqr.t . . . . 5 𝑇 = ((((𝑃 − 1) / 2) 𝑋) 1 )
21fveq2i 6861 . . . 4 (𝑂𝑇) = (𝑂‘((((𝑃 − 1) / 2) 𝑋) 1 ))
32fveq1i 6859 . . 3 ((𝑂𝑇)‘(𝐿𝐴)) = ((𝑂‘((((𝑃 − 1) / 2) 𝑋) 1 ))‘(𝐿𝐴))
4 lgsqr.o . . . . 5 𝑂 = (eval1𝑌)
5 lgsqr.s . . . . 5 𝑆 = (Poly1𝑌)
6 eqid 2729 . . . . 5 (Base‘𝑌) = (Base‘𝑌)
7 lgsqr.b . . . . 5 𝐵 = (Base‘𝑆)
8 lgsqr.1 . . . . . . . . 9 (𝜑𝑃 ∈ (ℙ ∖ {2}))
98eldifad 3926 . . . . . . . 8 (𝜑𝑃 ∈ ℙ)
10 lgsqr.y . . . . . . . . 9 𝑌 = (ℤ/nℤ‘𝑃)
1110znfld 21470 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑌 ∈ Field)
129, 11syl 17 . . . . . . 7 (𝜑𝑌 ∈ Field)
13 fldidom 20680 . . . . . . 7 (𝑌 ∈ Field → 𝑌 ∈ IDomn)
1412, 13syl 17 . . . . . 6 (𝜑𝑌 ∈ IDomn)
15 isidom 20634 . . . . . . 7 (𝑌 ∈ IDomn ↔ (𝑌 ∈ CRing ∧ 𝑌 ∈ Domn))
1615simplbi 497 . . . . . 6 (𝑌 ∈ IDomn → 𝑌 ∈ CRing)
1714, 16syl 17 . . . . 5 (𝜑𝑌 ∈ CRing)
18 crngring 20154 . . . . . . . . 9 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
1917, 18syl 17 . . . . . . . 8 (𝜑𝑌 ∈ Ring)
20 lgsqr.l . . . . . . . . 9 𝐿 = (ℤRHom‘𝑌)
2120zrhrhm 21421 . . . . . . . 8 (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌))
2219, 21syl 17 . . . . . . 7 (𝜑𝐿 ∈ (ℤring RingHom 𝑌))
23 zringbas 21363 . . . . . . . 8 ℤ = (Base‘ℤring)
2423, 6rhmf 20394 . . . . . . 7 (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿:ℤ⟶(Base‘𝑌))
2522, 24syl 17 . . . . . 6 (𝜑𝐿:ℤ⟶(Base‘𝑌))
26 lgsqrlem1.3 . . . . . 6 (𝜑𝐴 ∈ ℤ)
2725, 26ffvelcdmd 7057 . . . . 5 (𝜑 → (𝐿𝐴) ∈ (Base‘𝑌))
28 lgsqr.x . . . . . . . 8 𝑋 = (var1𝑌)
294, 28, 6, 5, 7, 17, 27evl1vard 22224 . . . . . . 7 (𝜑 → (𝑋𝐵 ∧ ((𝑂𝑋)‘(𝐿𝐴)) = (𝐿𝐴)))
30 lgsqr.e . . . . . . 7 = (.g‘(mulGrp‘𝑆))
31 eqid 2729 . . . . . . 7 (.g‘(mulGrp‘𝑌)) = (.g‘(mulGrp‘𝑌))
32 oddprm 16781 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
338, 32syl 17 . . . . . . . 8 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ)
3433nnnn0d 12503 . . . . . . 7 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ0)
354, 5, 6, 7, 17, 27, 29, 30, 31, 34evl1expd 22232 . . . . . 6 (𝜑 → ((((𝑃 − 1) / 2) 𝑋) ∈ 𝐵 ∧ ((𝑂‘(((𝑃 − 1) / 2) 𝑋))‘(𝐿𝐴)) = (((𝑃 − 1) / 2)(.g‘(mulGrp‘𝑌))(𝐿𝐴))))
36 zringmpg 21381 . . . . . . . . . . . 12 ((mulGrp‘ℂfld) ↾s ℤ) = (mulGrp‘ℤring)
37 eqid 2729 . . . . . . . . . . . 12 (mulGrp‘𝑌) = (mulGrp‘𝑌)
3836, 37rhmmhm 20388 . . . . . . . . . . 11 (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿 ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom (mulGrp‘𝑌)))
3922, 38syl 17 . . . . . . . . . 10 (𝜑𝐿 ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom (mulGrp‘𝑌)))
4036, 23mgpbas 20054 . . . . . . . . . . 11 ℤ = (Base‘((mulGrp‘ℂfld) ↾s ℤ))
41 eqid 2729 . . . . . . . . . . 11 (.g‘((mulGrp‘ℂfld) ↾s ℤ)) = (.g‘((mulGrp‘ℂfld) ↾s ℤ))
4240, 41, 31mhmmulg 19047 . . . . . . . . . 10 ((𝐿 ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom (mulGrp‘𝑌)) ∧ ((𝑃 − 1) / 2) ∈ ℕ0𝐴 ∈ ℤ) → (𝐿‘(((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐴)) = (((𝑃 − 1) / 2)(.g‘(mulGrp‘𝑌))(𝐿𝐴)))
4339, 34, 26, 42syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝐿‘(((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐴)) = (((𝑃 − 1) / 2)(.g‘(mulGrp‘𝑌))(𝐿𝐴)))
44 zsubrg 21337 . . . . . . . . . . . . . 14 ℤ ∈ (SubRing‘ℂfld)
45 eqid 2729 . . . . . . . . . . . . . . 15 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
4645subrgsubm 20494 . . . . . . . . . . . . . 14 (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)))
4744, 46mp1i 13 . . . . . . . . . . . . 13 (𝜑 → ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)))
48 eqid 2729 . . . . . . . . . . . . . 14 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
49 eqid 2729 . . . . . . . . . . . . . 14 ((mulGrp‘ℂfld) ↾s ℤ) = ((mulGrp‘ℂfld) ↾s ℤ)
5048, 49, 41submmulg 19050 . . . . . . . . . . . . 13 ((ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ ((𝑃 − 1) / 2) ∈ ℕ0𝐴 ∈ ℤ) → (((𝑃 − 1) / 2)(.g‘(mulGrp‘ℂfld))𝐴) = (((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐴))
5147, 34, 26, 50syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (((𝑃 − 1) / 2)(.g‘(mulGrp‘ℂfld))𝐴) = (((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐴))
5226zcnd 12639 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℂ)
53 cnfldexp 21316 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (((𝑃 − 1) / 2)(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑((𝑃 − 1) / 2)))
5452, 34, 53syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (((𝑃 − 1) / 2)(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑((𝑃 − 1) / 2)))
5551, 54eqtr3d 2766 . . . . . . . . . . 11 (𝜑 → (((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐴) = (𝐴↑((𝑃 − 1) / 2)))
5655fveq2d 6862 . . . . . . . . . 10 (𝜑 → (𝐿‘(((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐴)) = (𝐿‘(𝐴↑((𝑃 − 1) / 2))))
57 lgsqrlem1.4 . . . . . . . . . . . 12 (𝜑 → ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃) = (1 mod 𝑃))
58 prmnn 16644 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
599, 58syl 17 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℕ)
60 zexpcl 14041 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ)
6126, 34, 60syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ)
62 1zzd 12564 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℤ)
63 moddvds 16233 . . . . . . . . . . . . 13 ((𝑃 ∈ ℕ ∧ (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ ∧ 1 ∈ ℤ) → (((𝐴↑((𝑃 − 1) / 2)) mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1)))
6459, 61, 62, 63syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (((𝐴↑((𝑃 − 1) / 2)) mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1)))
6557, 64mpbid 232 . . . . . . . . . . 11 (𝜑𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1))
6659nnnn0d 12503 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℕ0)
6710, 20zndvds 21459 . . . . . . . . . . . 12 ((𝑃 ∈ ℕ0 ∧ (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ ∧ 1 ∈ ℤ) → ((𝐿‘(𝐴↑((𝑃 − 1) / 2))) = (𝐿‘1) ↔ 𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1)))
6866, 61, 62, 67syl3anc 1373 . . . . . . . . . . 11 (𝜑 → ((𝐿‘(𝐴↑((𝑃 − 1) / 2))) = (𝐿‘1) ↔ 𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1)))
6965, 68mpbird 257 . . . . . . . . . 10 (𝜑 → (𝐿‘(𝐴↑((𝑃 − 1) / 2))) = (𝐿‘1))
70 zring1 21369 . . . . . . . . . . . 12 1 = (1r‘ℤring)
71 eqid 2729 . . . . . . . . . . . 12 (1r𝑌) = (1r𝑌)
7270, 71rhm1 20398 . . . . . . . . . . 11 (𝐿 ∈ (ℤring RingHom 𝑌) → (𝐿‘1) = (1r𝑌))
7322, 72syl 17 . . . . . . . . . 10 (𝜑 → (𝐿‘1) = (1r𝑌))
7456, 69, 733eqtrd 2768 . . . . . . . . 9 (𝜑 → (𝐿‘(((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐴)) = (1r𝑌))
7543, 74eqtr3d 2766 . . . . . . . 8 (𝜑 → (((𝑃 − 1) / 2)(.g‘(mulGrp‘𝑌))(𝐿𝐴)) = (1r𝑌))
7675eqeq2d 2740 . . . . . . 7 (𝜑 → (((𝑂‘(((𝑃 − 1) / 2) 𝑋))‘(𝐿𝐴)) = (((𝑃 − 1) / 2)(.g‘(mulGrp‘𝑌))(𝐿𝐴)) ↔ ((𝑂‘(((𝑃 − 1) / 2) 𝑋))‘(𝐿𝐴)) = (1r𝑌)))
7776anbi2d 630 . . . . . 6 (𝜑 → (((((𝑃 − 1) / 2) 𝑋) ∈ 𝐵 ∧ ((𝑂‘(((𝑃 − 1) / 2) 𝑋))‘(𝐿𝐴)) = (((𝑃 − 1) / 2)(.g‘(mulGrp‘𝑌))(𝐿𝐴))) ↔ ((((𝑃 − 1) / 2) 𝑋) ∈ 𝐵 ∧ ((𝑂‘(((𝑃 − 1) / 2) 𝑋))‘(𝐿𝐴)) = (1r𝑌))))
7835, 77mpbid 232 . . . . 5 (𝜑 → ((((𝑃 − 1) / 2) 𝑋) ∈ 𝐵 ∧ ((𝑂‘(((𝑃 − 1) / 2) 𝑋))‘(𝐿𝐴)) = (1r𝑌)))
79 eqid 2729 . . . . . . 7 (algSc‘𝑆) = (algSc‘𝑆)
806, 71ringidcl 20174 . . . . . . . 8 (𝑌 ∈ Ring → (1r𝑌) ∈ (Base‘𝑌))
8119, 80syl 17 . . . . . . 7 (𝜑 → (1r𝑌) ∈ (Base‘𝑌))
824, 5, 6, 79, 7, 17, 81, 27evl1scad 22222 . . . . . 6 (𝜑 → (((algSc‘𝑆)‘(1r𝑌)) ∈ 𝐵 ∧ ((𝑂‘((algSc‘𝑆)‘(1r𝑌)))‘(𝐿𝐴)) = (1r𝑌)))
83 lgsqr.u . . . . . . . . . 10 1 = (1r𝑆)
845, 79, 71, 83ply1scl1 22179 . . . . . . . . 9 (𝑌 ∈ Ring → ((algSc‘𝑆)‘(1r𝑌)) = 1 )
8519, 84syl 17 . . . . . . . 8 (𝜑 → ((algSc‘𝑆)‘(1r𝑌)) = 1 )
8685eleq1d 2813 . . . . . . 7 (𝜑 → (((algSc‘𝑆)‘(1r𝑌)) ∈ 𝐵1𝐵))
8785fveq2d 6862 . . . . . . . . 9 (𝜑 → (𝑂‘((algSc‘𝑆)‘(1r𝑌))) = (𝑂1 ))
8887fveq1d 6860 . . . . . . . 8 (𝜑 → ((𝑂‘((algSc‘𝑆)‘(1r𝑌)))‘(𝐿𝐴)) = ((𝑂1 )‘(𝐿𝐴)))
8988eqeq1d 2731 . . . . . . 7 (𝜑 → (((𝑂‘((algSc‘𝑆)‘(1r𝑌)))‘(𝐿𝐴)) = (1r𝑌) ↔ ((𝑂1 )‘(𝐿𝐴)) = (1r𝑌)))
9086, 89anbi12d 632 . . . . . 6 (𝜑 → ((((algSc‘𝑆)‘(1r𝑌)) ∈ 𝐵 ∧ ((𝑂‘((algSc‘𝑆)‘(1r𝑌)))‘(𝐿𝐴)) = (1r𝑌)) ↔ ( 1𝐵 ∧ ((𝑂1 )‘(𝐿𝐴)) = (1r𝑌))))
9182, 90mpbid 232 . . . . 5 (𝜑 → ( 1𝐵 ∧ ((𝑂1 )‘(𝐿𝐴)) = (1r𝑌)))
92 lgsqr.m . . . . 5 = (-g𝑆)
93 eqid 2729 . . . . 5 (-g𝑌) = (-g𝑌)
944, 5, 6, 7, 17, 27, 78, 91, 92, 93evl1subd 22229 . . . 4 (𝜑 → (((((𝑃 − 1) / 2) 𝑋) 1 ) ∈ 𝐵 ∧ ((𝑂‘((((𝑃 − 1) / 2) 𝑋) 1 ))‘(𝐿𝐴)) = ((1r𝑌)(-g𝑌)(1r𝑌))))
9594simprd 495 . . 3 (𝜑 → ((𝑂‘((((𝑃 − 1) / 2) 𝑋) 1 ))‘(𝐿𝐴)) = ((1r𝑌)(-g𝑌)(1r𝑌)))
963, 95eqtrid 2776 . 2 (𝜑 → ((𝑂𝑇)‘(𝐿𝐴)) = ((1r𝑌)(-g𝑌)(1r𝑌)))
97 ringgrp 20147 . . . 4 (𝑌 ∈ Ring → 𝑌 ∈ Grp)
9819, 97syl 17 . . 3 (𝜑𝑌 ∈ Grp)
99 eqid 2729 . . . 4 (0g𝑌) = (0g𝑌)
1006, 99, 93grpsubid 18956 . . 3 ((𝑌 ∈ Grp ∧ (1r𝑌) ∈ (Base‘𝑌)) → ((1r𝑌)(-g𝑌)(1r𝑌)) = (0g𝑌))
10198, 81, 100syl2anc 584 . 2 (𝜑 → ((1r𝑌)(-g𝑌)(1r𝑌)) = (0g𝑌))
10296, 101eqtrd 2764 1 (𝜑 → ((𝑂𝑇)‘(𝐿𝐴)) = (0g𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cdif 3911  {csn 4589   class class class wbr 5107  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  1c1 11069  cmin 11405   / cdiv 11835  cn 12186  2c2 12241  0cn0 12442  cz 12529   mod cmo 13831  cexp 14026  cdvds 16222  cprime 16641  Basecbs 17179  s cress 17200  0gc0g 17402   MndHom cmhm 18708  SubMndcsubmnd 18709  Grpcgrp 18865  -gcsg 18867  .gcmg 18999  mulGrpcmgp 20049  1rcur 20090  Ringcrg 20142  CRingccrg 20143   RingHom crh 20378  SubRingcsubrg 20478  Domncdomn 20601  IDomncidom 20602  Fieldcfield 20639  fldccnfld 21264  ringczring 21356  ℤRHomczrh 21409  ℤ/nczn 21412  algSccascl 21761  var1cv1 22060  Poly1cpl1 22061  eval1ce1 22201  deg1cdg1 25959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-ec 8673  df-qs 8677  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-gcd 16465  df-prm 16642  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-imas 17471  df-qus 17472  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-nsg 19056  df-eqg 19057  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-srg 20096  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-dvr 20310  df-rhm 20381  df-nzr 20422  df-subrng 20455  df-subrg 20479  df-rlreg 20603  df-domn 20604  df-idom 20605  df-drng 20640  df-field 20641  df-lmod 20768  df-lss 20838  df-lsp 20878  df-sra 21080  df-rgmod 21081  df-lidl 21118  df-rsp 21119  df-2idl 21160  df-cnfld 21265  df-zring 21357  df-zrh 21413  df-zn 21416  df-assa 21762  df-asp 21763  df-ascl 21764  df-psr 21818  df-mvr 21819  df-mpl 21820  df-opsr 21822  df-evls 21981  df-evl 21982  df-psr1 22064  df-vr1 22065  df-ply1 22066  df-evl1 22203
This theorem is referenced by:  lgsqrlem2  27258  lgsqrlem3  27259
  Copyright terms: Public domain W3C validator