MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsqrlem1 Structured version   Visualization version   GIF version

Theorem lgsqrlem1 27390
Description: Lemma for lgsqr 27395. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
lgsqr.y 𝑌 = (ℤ/nℤ‘𝑃)
lgsqr.s 𝑆 = (Poly1𝑌)
lgsqr.b 𝐵 = (Base‘𝑆)
lgsqr.d 𝐷 = (deg1𝑌)
lgsqr.o 𝑂 = (eval1𝑌)
lgsqr.e = (.g‘(mulGrp‘𝑆))
lgsqr.x 𝑋 = (var1𝑌)
lgsqr.m = (-g𝑆)
lgsqr.u 1 = (1r𝑆)
lgsqr.t 𝑇 = ((((𝑃 − 1) / 2) 𝑋) 1 )
lgsqr.l 𝐿 = (ℤRHom‘𝑌)
lgsqr.1 (𝜑𝑃 ∈ (ℙ ∖ {2}))
lgsqrlem1.3 (𝜑𝐴 ∈ ℤ)
lgsqrlem1.4 (𝜑 → ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃) = (1 mod 𝑃))
Assertion
Ref Expression
lgsqrlem1 (𝜑 → ((𝑂𝑇)‘(𝐿𝐴)) = (0g𝑌))

Proof of Theorem lgsqrlem1
StepHypRef Expression
1 lgsqr.t . . . . 5 𝑇 = ((((𝑃 − 1) / 2) 𝑋) 1 )
21fveq2i 6909 . . . 4 (𝑂𝑇) = (𝑂‘((((𝑃 − 1) / 2) 𝑋) 1 ))
32fveq1i 6907 . . 3 ((𝑂𝑇)‘(𝐿𝐴)) = ((𝑂‘((((𝑃 − 1) / 2) 𝑋) 1 ))‘(𝐿𝐴))
4 lgsqr.o . . . . 5 𝑂 = (eval1𝑌)
5 lgsqr.s . . . . 5 𝑆 = (Poly1𝑌)
6 eqid 2737 . . . . 5 (Base‘𝑌) = (Base‘𝑌)
7 lgsqr.b . . . . 5 𝐵 = (Base‘𝑆)
8 lgsqr.1 . . . . . . . . 9 (𝜑𝑃 ∈ (ℙ ∖ {2}))
98eldifad 3963 . . . . . . . 8 (𝜑𝑃 ∈ ℙ)
10 lgsqr.y . . . . . . . . 9 𝑌 = (ℤ/nℤ‘𝑃)
1110znfld 21579 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑌 ∈ Field)
129, 11syl 17 . . . . . . 7 (𝜑𝑌 ∈ Field)
13 fldidom 20771 . . . . . . 7 (𝑌 ∈ Field → 𝑌 ∈ IDomn)
1412, 13syl 17 . . . . . 6 (𝜑𝑌 ∈ IDomn)
15 isidom 20725 . . . . . . 7 (𝑌 ∈ IDomn ↔ (𝑌 ∈ CRing ∧ 𝑌 ∈ Domn))
1615simplbi 497 . . . . . 6 (𝑌 ∈ IDomn → 𝑌 ∈ CRing)
1714, 16syl 17 . . . . 5 (𝜑𝑌 ∈ CRing)
18 crngring 20242 . . . . . . . . 9 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
1917, 18syl 17 . . . . . . . 8 (𝜑𝑌 ∈ Ring)
20 lgsqr.l . . . . . . . . 9 𝐿 = (ℤRHom‘𝑌)
2120zrhrhm 21522 . . . . . . . 8 (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌))
2219, 21syl 17 . . . . . . 7 (𝜑𝐿 ∈ (ℤring RingHom 𝑌))
23 zringbas 21464 . . . . . . . 8 ℤ = (Base‘ℤring)
2423, 6rhmf 20485 . . . . . . 7 (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿:ℤ⟶(Base‘𝑌))
2522, 24syl 17 . . . . . 6 (𝜑𝐿:ℤ⟶(Base‘𝑌))
26 lgsqrlem1.3 . . . . . 6 (𝜑𝐴 ∈ ℤ)
2725, 26ffvelcdmd 7105 . . . . 5 (𝜑 → (𝐿𝐴) ∈ (Base‘𝑌))
28 lgsqr.x . . . . . . . 8 𝑋 = (var1𝑌)
294, 28, 6, 5, 7, 17, 27evl1vard 22341 . . . . . . 7 (𝜑 → (𝑋𝐵 ∧ ((𝑂𝑋)‘(𝐿𝐴)) = (𝐿𝐴)))
30 lgsqr.e . . . . . . 7 = (.g‘(mulGrp‘𝑆))
31 eqid 2737 . . . . . . 7 (.g‘(mulGrp‘𝑌)) = (.g‘(mulGrp‘𝑌))
32 oddprm 16848 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
338, 32syl 17 . . . . . . . 8 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ)
3433nnnn0d 12587 . . . . . . 7 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ0)
354, 5, 6, 7, 17, 27, 29, 30, 31, 34evl1expd 22349 . . . . . 6 (𝜑 → ((((𝑃 − 1) / 2) 𝑋) ∈ 𝐵 ∧ ((𝑂‘(((𝑃 − 1) / 2) 𝑋))‘(𝐿𝐴)) = (((𝑃 − 1) / 2)(.g‘(mulGrp‘𝑌))(𝐿𝐴))))
36 zringmpg 21482 . . . . . . . . . . . 12 ((mulGrp‘ℂfld) ↾s ℤ) = (mulGrp‘ℤring)
37 eqid 2737 . . . . . . . . . . . 12 (mulGrp‘𝑌) = (mulGrp‘𝑌)
3836, 37rhmmhm 20479 . . . . . . . . . . 11 (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿 ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom (mulGrp‘𝑌)))
3922, 38syl 17 . . . . . . . . . 10 (𝜑𝐿 ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom (mulGrp‘𝑌)))
4036, 23mgpbas 20142 . . . . . . . . . . 11 ℤ = (Base‘((mulGrp‘ℂfld) ↾s ℤ))
41 eqid 2737 . . . . . . . . . . 11 (.g‘((mulGrp‘ℂfld) ↾s ℤ)) = (.g‘((mulGrp‘ℂfld) ↾s ℤ))
4240, 41, 31mhmmulg 19133 . . . . . . . . . 10 ((𝐿 ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom (mulGrp‘𝑌)) ∧ ((𝑃 − 1) / 2) ∈ ℕ0𝐴 ∈ ℤ) → (𝐿‘(((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐴)) = (((𝑃 − 1) / 2)(.g‘(mulGrp‘𝑌))(𝐿𝐴)))
4339, 34, 26, 42syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝐿‘(((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐴)) = (((𝑃 − 1) / 2)(.g‘(mulGrp‘𝑌))(𝐿𝐴)))
44 zsubrg 21438 . . . . . . . . . . . . . 14 ℤ ∈ (SubRing‘ℂfld)
45 eqid 2737 . . . . . . . . . . . . . . 15 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
4645subrgsubm 20585 . . . . . . . . . . . . . 14 (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)))
4744, 46mp1i 13 . . . . . . . . . . . . 13 (𝜑 → ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)))
48 eqid 2737 . . . . . . . . . . . . . 14 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
49 eqid 2737 . . . . . . . . . . . . . 14 ((mulGrp‘ℂfld) ↾s ℤ) = ((mulGrp‘ℂfld) ↾s ℤ)
5048, 49, 41submmulg 19136 . . . . . . . . . . . . 13 ((ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ ((𝑃 − 1) / 2) ∈ ℕ0𝐴 ∈ ℤ) → (((𝑃 − 1) / 2)(.g‘(mulGrp‘ℂfld))𝐴) = (((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐴))
5147, 34, 26, 50syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (((𝑃 − 1) / 2)(.g‘(mulGrp‘ℂfld))𝐴) = (((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐴))
5226zcnd 12723 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℂ)
53 cnfldexp 21417 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (((𝑃 − 1) / 2)(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑((𝑃 − 1) / 2)))
5452, 34, 53syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (((𝑃 − 1) / 2)(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑((𝑃 − 1) / 2)))
5551, 54eqtr3d 2779 . . . . . . . . . . 11 (𝜑 → (((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐴) = (𝐴↑((𝑃 − 1) / 2)))
5655fveq2d 6910 . . . . . . . . . 10 (𝜑 → (𝐿‘(((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐴)) = (𝐿‘(𝐴↑((𝑃 − 1) / 2))))
57 lgsqrlem1.4 . . . . . . . . . . . 12 (𝜑 → ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃) = (1 mod 𝑃))
58 prmnn 16711 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
599, 58syl 17 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℕ)
60 zexpcl 14117 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ)
6126, 34, 60syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ)
62 1zzd 12648 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℤ)
63 moddvds 16301 . . . . . . . . . . . . 13 ((𝑃 ∈ ℕ ∧ (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ ∧ 1 ∈ ℤ) → (((𝐴↑((𝑃 − 1) / 2)) mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1)))
6459, 61, 62, 63syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (((𝐴↑((𝑃 − 1) / 2)) mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1)))
6557, 64mpbid 232 . . . . . . . . . . 11 (𝜑𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1))
6659nnnn0d 12587 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℕ0)
6710, 20zndvds 21568 . . . . . . . . . . . 12 ((𝑃 ∈ ℕ0 ∧ (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ ∧ 1 ∈ ℤ) → ((𝐿‘(𝐴↑((𝑃 − 1) / 2))) = (𝐿‘1) ↔ 𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1)))
6866, 61, 62, 67syl3anc 1373 . . . . . . . . . . 11 (𝜑 → ((𝐿‘(𝐴↑((𝑃 − 1) / 2))) = (𝐿‘1) ↔ 𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1)))
6965, 68mpbird 257 . . . . . . . . . 10 (𝜑 → (𝐿‘(𝐴↑((𝑃 − 1) / 2))) = (𝐿‘1))
70 zring1 21470 . . . . . . . . . . . 12 1 = (1r‘ℤring)
71 eqid 2737 . . . . . . . . . . . 12 (1r𝑌) = (1r𝑌)
7270, 71rhm1 20489 . . . . . . . . . . 11 (𝐿 ∈ (ℤring RingHom 𝑌) → (𝐿‘1) = (1r𝑌))
7322, 72syl 17 . . . . . . . . . 10 (𝜑 → (𝐿‘1) = (1r𝑌))
7456, 69, 733eqtrd 2781 . . . . . . . . 9 (𝜑 → (𝐿‘(((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐴)) = (1r𝑌))
7543, 74eqtr3d 2779 . . . . . . . 8 (𝜑 → (((𝑃 − 1) / 2)(.g‘(mulGrp‘𝑌))(𝐿𝐴)) = (1r𝑌))
7675eqeq2d 2748 . . . . . . 7 (𝜑 → (((𝑂‘(((𝑃 − 1) / 2) 𝑋))‘(𝐿𝐴)) = (((𝑃 − 1) / 2)(.g‘(mulGrp‘𝑌))(𝐿𝐴)) ↔ ((𝑂‘(((𝑃 − 1) / 2) 𝑋))‘(𝐿𝐴)) = (1r𝑌)))
7776anbi2d 630 . . . . . 6 (𝜑 → (((((𝑃 − 1) / 2) 𝑋) ∈ 𝐵 ∧ ((𝑂‘(((𝑃 − 1) / 2) 𝑋))‘(𝐿𝐴)) = (((𝑃 − 1) / 2)(.g‘(mulGrp‘𝑌))(𝐿𝐴))) ↔ ((((𝑃 − 1) / 2) 𝑋) ∈ 𝐵 ∧ ((𝑂‘(((𝑃 − 1) / 2) 𝑋))‘(𝐿𝐴)) = (1r𝑌))))
7835, 77mpbid 232 . . . . 5 (𝜑 → ((((𝑃 − 1) / 2) 𝑋) ∈ 𝐵 ∧ ((𝑂‘(((𝑃 − 1) / 2) 𝑋))‘(𝐿𝐴)) = (1r𝑌)))
79 eqid 2737 . . . . . . 7 (algSc‘𝑆) = (algSc‘𝑆)
806, 71ringidcl 20262 . . . . . . . 8 (𝑌 ∈ Ring → (1r𝑌) ∈ (Base‘𝑌))
8119, 80syl 17 . . . . . . 7 (𝜑 → (1r𝑌) ∈ (Base‘𝑌))
824, 5, 6, 79, 7, 17, 81, 27evl1scad 22339 . . . . . 6 (𝜑 → (((algSc‘𝑆)‘(1r𝑌)) ∈ 𝐵 ∧ ((𝑂‘((algSc‘𝑆)‘(1r𝑌)))‘(𝐿𝐴)) = (1r𝑌)))
83 lgsqr.u . . . . . . . . . 10 1 = (1r𝑆)
845, 79, 71, 83ply1scl1 22296 . . . . . . . . 9 (𝑌 ∈ Ring → ((algSc‘𝑆)‘(1r𝑌)) = 1 )
8519, 84syl 17 . . . . . . . 8 (𝜑 → ((algSc‘𝑆)‘(1r𝑌)) = 1 )
8685eleq1d 2826 . . . . . . 7 (𝜑 → (((algSc‘𝑆)‘(1r𝑌)) ∈ 𝐵1𝐵))
8785fveq2d 6910 . . . . . . . . 9 (𝜑 → (𝑂‘((algSc‘𝑆)‘(1r𝑌))) = (𝑂1 ))
8887fveq1d 6908 . . . . . . . 8 (𝜑 → ((𝑂‘((algSc‘𝑆)‘(1r𝑌)))‘(𝐿𝐴)) = ((𝑂1 )‘(𝐿𝐴)))
8988eqeq1d 2739 . . . . . . 7 (𝜑 → (((𝑂‘((algSc‘𝑆)‘(1r𝑌)))‘(𝐿𝐴)) = (1r𝑌) ↔ ((𝑂1 )‘(𝐿𝐴)) = (1r𝑌)))
9086, 89anbi12d 632 . . . . . 6 (𝜑 → ((((algSc‘𝑆)‘(1r𝑌)) ∈ 𝐵 ∧ ((𝑂‘((algSc‘𝑆)‘(1r𝑌)))‘(𝐿𝐴)) = (1r𝑌)) ↔ ( 1𝐵 ∧ ((𝑂1 )‘(𝐿𝐴)) = (1r𝑌))))
9182, 90mpbid 232 . . . . 5 (𝜑 → ( 1𝐵 ∧ ((𝑂1 )‘(𝐿𝐴)) = (1r𝑌)))
92 lgsqr.m . . . . 5 = (-g𝑆)
93 eqid 2737 . . . . 5 (-g𝑌) = (-g𝑌)
944, 5, 6, 7, 17, 27, 78, 91, 92, 93evl1subd 22346 . . . 4 (𝜑 → (((((𝑃 − 1) / 2) 𝑋) 1 ) ∈ 𝐵 ∧ ((𝑂‘((((𝑃 − 1) / 2) 𝑋) 1 ))‘(𝐿𝐴)) = ((1r𝑌)(-g𝑌)(1r𝑌))))
9594simprd 495 . . 3 (𝜑 → ((𝑂‘((((𝑃 − 1) / 2) 𝑋) 1 ))‘(𝐿𝐴)) = ((1r𝑌)(-g𝑌)(1r𝑌)))
963, 95eqtrid 2789 . 2 (𝜑 → ((𝑂𝑇)‘(𝐿𝐴)) = ((1r𝑌)(-g𝑌)(1r𝑌)))
97 ringgrp 20235 . . . 4 (𝑌 ∈ Ring → 𝑌 ∈ Grp)
9819, 97syl 17 . . 3 (𝜑𝑌 ∈ Grp)
99 eqid 2737 . . . 4 (0g𝑌) = (0g𝑌)
1006, 99, 93grpsubid 19042 . . 3 ((𝑌 ∈ Grp ∧ (1r𝑌) ∈ (Base‘𝑌)) → ((1r𝑌)(-g𝑌)(1r𝑌)) = (0g𝑌))
10198, 81, 100syl2anc 584 . 2 (𝜑 → ((1r𝑌)(-g𝑌)(1r𝑌)) = (0g𝑌))
10296, 101eqtrd 2777 1 (𝜑 → ((𝑂𝑇)‘(𝐿𝐴)) = (0g𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  cdif 3948  {csn 4626   class class class wbr 5143  wf 6557  cfv 6561  (class class class)co 7431  cc 11153  1c1 11156  cmin 11492   / cdiv 11920  cn 12266  2c2 12321  0cn0 12526  cz 12613   mod cmo 13909  cexp 14102  cdvds 16290  cprime 16708  Basecbs 17247  s cress 17274  0gc0g 17484   MndHom cmhm 18794  SubMndcsubmnd 18795  Grpcgrp 18951  -gcsg 18953  .gcmg 19085  mulGrpcmgp 20137  1rcur 20178  Ringcrg 20230  CRingccrg 20231   RingHom crh 20469  SubRingcsubrg 20569  Domncdomn 20692  IDomncidom 20693  Fieldcfield 20730  fldccnfld 21364  ringczring 21457  ℤRHomczrh 21510  ℤ/nczn 21513  algSccascl 21872  var1cv1 22177  Poly1cpl1 22178  eval1ce1 22318  deg1cdg1 26093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-ec 8747  df-qs 8751  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-xnn0 12600  df-z 12614  df-dec 12734  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-gcd 16532  df-prm 16709  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-imas 17553  df-qus 17554  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-nsg 19142  df-eqg 19143  df-ghm 19231  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-srg 20184  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-dvr 20401  df-rhm 20472  df-nzr 20513  df-subrng 20546  df-subrg 20570  df-rlreg 20694  df-domn 20695  df-idom 20696  df-drng 20731  df-field 20732  df-lmod 20860  df-lss 20930  df-lsp 20970  df-sra 21172  df-rgmod 21173  df-lidl 21218  df-rsp 21219  df-2idl 21260  df-cnfld 21365  df-zring 21458  df-zrh 21514  df-zn 21517  df-assa 21873  df-asp 21874  df-ascl 21875  df-psr 21929  df-mvr 21930  df-mpl 21931  df-opsr 21933  df-evls 22098  df-evl 22099  df-psr1 22181  df-vr1 22182  df-ply1 22183  df-evl1 22320
This theorem is referenced by:  lgsqrlem2  27391  lgsqrlem3  27392
  Copyright terms: Public domain W3C validator