MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsqrlem1 Structured version   Visualization version   GIF version

Theorem lgsqrlem1 27408
Description: Lemma for lgsqr 27413. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
lgsqr.y 𝑌 = (ℤ/nℤ‘𝑃)
lgsqr.s 𝑆 = (Poly1𝑌)
lgsqr.b 𝐵 = (Base‘𝑆)
lgsqr.d 𝐷 = (deg1𝑌)
lgsqr.o 𝑂 = (eval1𝑌)
lgsqr.e = (.g‘(mulGrp‘𝑆))
lgsqr.x 𝑋 = (var1𝑌)
lgsqr.m = (-g𝑆)
lgsqr.u 1 = (1r𝑆)
lgsqr.t 𝑇 = ((((𝑃 − 1) / 2) 𝑋) 1 )
lgsqr.l 𝐿 = (ℤRHom‘𝑌)
lgsqr.1 (𝜑𝑃 ∈ (ℙ ∖ {2}))
lgsqrlem1.3 (𝜑𝐴 ∈ ℤ)
lgsqrlem1.4 (𝜑 → ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃) = (1 mod 𝑃))
Assertion
Ref Expression
lgsqrlem1 (𝜑 → ((𝑂𝑇)‘(𝐿𝐴)) = (0g𝑌))

Proof of Theorem lgsqrlem1
StepHypRef Expression
1 lgsqr.t . . . . 5 𝑇 = ((((𝑃 − 1) / 2) 𝑋) 1 )
21fveq2i 6923 . . . 4 (𝑂𝑇) = (𝑂‘((((𝑃 − 1) / 2) 𝑋) 1 ))
32fveq1i 6921 . . 3 ((𝑂𝑇)‘(𝐿𝐴)) = ((𝑂‘((((𝑃 − 1) / 2) 𝑋) 1 ))‘(𝐿𝐴))
4 lgsqr.o . . . . 5 𝑂 = (eval1𝑌)
5 lgsqr.s . . . . 5 𝑆 = (Poly1𝑌)
6 eqid 2740 . . . . 5 (Base‘𝑌) = (Base‘𝑌)
7 lgsqr.b . . . . 5 𝐵 = (Base‘𝑆)
8 lgsqr.1 . . . . . . . . 9 (𝜑𝑃 ∈ (ℙ ∖ {2}))
98eldifad 3988 . . . . . . . 8 (𝜑𝑃 ∈ ℙ)
10 lgsqr.y . . . . . . . . 9 𝑌 = (ℤ/nℤ‘𝑃)
1110znfld 21602 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑌 ∈ Field)
129, 11syl 17 . . . . . . 7 (𝜑𝑌 ∈ Field)
13 fldidom 20793 . . . . . . 7 (𝑌 ∈ Field → 𝑌 ∈ IDomn)
1412, 13syl 17 . . . . . 6 (𝜑𝑌 ∈ IDomn)
15 isidom 20747 . . . . . . 7 (𝑌 ∈ IDomn ↔ (𝑌 ∈ CRing ∧ 𝑌 ∈ Domn))
1615simplbi 497 . . . . . 6 (𝑌 ∈ IDomn → 𝑌 ∈ CRing)
1714, 16syl 17 . . . . 5 (𝜑𝑌 ∈ CRing)
18 crngring 20272 . . . . . . . . 9 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
1917, 18syl 17 . . . . . . . 8 (𝜑𝑌 ∈ Ring)
20 lgsqr.l . . . . . . . . 9 𝐿 = (ℤRHom‘𝑌)
2120zrhrhm 21545 . . . . . . . 8 (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌))
2219, 21syl 17 . . . . . . 7 (𝜑𝐿 ∈ (ℤring RingHom 𝑌))
23 zringbas 21487 . . . . . . . 8 ℤ = (Base‘ℤring)
2423, 6rhmf 20511 . . . . . . 7 (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿:ℤ⟶(Base‘𝑌))
2522, 24syl 17 . . . . . 6 (𝜑𝐿:ℤ⟶(Base‘𝑌))
26 lgsqrlem1.3 . . . . . 6 (𝜑𝐴 ∈ ℤ)
2725, 26ffvelcdmd 7119 . . . . 5 (𝜑 → (𝐿𝐴) ∈ (Base‘𝑌))
28 lgsqr.x . . . . . . . 8 𝑋 = (var1𝑌)
294, 28, 6, 5, 7, 17, 27evl1vard 22362 . . . . . . 7 (𝜑 → (𝑋𝐵 ∧ ((𝑂𝑋)‘(𝐿𝐴)) = (𝐿𝐴)))
30 lgsqr.e . . . . . . 7 = (.g‘(mulGrp‘𝑆))
31 eqid 2740 . . . . . . 7 (.g‘(mulGrp‘𝑌)) = (.g‘(mulGrp‘𝑌))
32 oddprm 16857 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
338, 32syl 17 . . . . . . . 8 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ)
3433nnnn0d 12613 . . . . . . 7 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ0)
354, 5, 6, 7, 17, 27, 29, 30, 31, 34evl1expd 22370 . . . . . 6 (𝜑 → ((((𝑃 − 1) / 2) 𝑋) ∈ 𝐵 ∧ ((𝑂‘(((𝑃 − 1) / 2) 𝑋))‘(𝐿𝐴)) = (((𝑃 − 1) / 2)(.g‘(mulGrp‘𝑌))(𝐿𝐴))))
36 zringmpg 21505 . . . . . . . . . . . 12 ((mulGrp‘ℂfld) ↾s ℤ) = (mulGrp‘ℤring)
37 eqid 2740 . . . . . . . . . . . 12 (mulGrp‘𝑌) = (mulGrp‘𝑌)
3836, 37rhmmhm 20505 . . . . . . . . . . 11 (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿 ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom (mulGrp‘𝑌)))
3922, 38syl 17 . . . . . . . . . 10 (𝜑𝐿 ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom (mulGrp‘𝑌)))
4036, 23mgpbas 20167 . . . . . . . . . . 11 ℤ = (Base‘((mulGrp‘ℂfld) ↾s ℤ))
41 eqid 2740 . . . . . . . . . . 11 (.g‘((mulGrp‘ℂfld) ↾s ℤ)) = (.g‘((mulGrp‘ℂfld) ↾s ℤ))
4240, 41, 31mhmmulg 19155 . . . . . . . . . 10 ((𝐿 ∈ (((mulGrp‘ℂfld) ↾s ℤ) MndHom (mulGrp‘𝑌)) ∧ ((𝑃 − 1) / 2) ∈ ℕ0𝐴 ∈ ℤ) → (𝐿‘(((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐴)) = (((𝑃 − 1) / 2)(.g‘(mulGrp‘𝑌))(𝐿𝐴)))
4339, 34, 26, 42syl3anc 1371 . . . . . . . . 9 (𝜑 → (𝐿‘(((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐴)) = (((𝑃 − 1) / 2)(.g‘(mulGrp‘𝑌))(𝐿𝐴)))
44 zsubrg 21461 . . . . . . . . . . . . . 14 ℤ ∈ (SubRing‘ℂfld)
45 eqid 2740 . . . . . . . . . . . . . . 15 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
4645subrgsubm 20613 . . . . . . . . . . . . . 14 (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)))
4744, 46mp1i 13 . . . . . . . . . . . . 13 (𝜑 → ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)))
48 eqid 2740 . . . . . . . . . . . . . 14 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
49 eqid 2740 . . . . . . . . . . . . . 14 ((mulGrp‘ℂfld) ↾s ℤ) = ((mulGrp‘ℂfld) ↾s ℤ)
5048, 49, 41submmulg 19158 . . . . . . . . . . . . 13 ((ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ ((𝑃 − 1) / 2) ∈ ℕ0𝐴 ∈ ℤ) → (((𝑃 − 1) / 2)(.g‘(mulGrp‘ℂfld))𝐴) = (((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐴))
5147, 34, 26, 50syl3anc 1371 . . . . . . . . . . . 12 (𝜑 → (((𝑃 − 1) / 2)(.g‘(mulGrp‘ℂfld))𝐴) = (((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐴))
5226zcnd 12748 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℂ)
53 cnfldexp 21440 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (((𝑃 − 1) / 2)(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑((𝑃 − 1) / 2)))
5452, 34, 53syl2anc 583 . . . . . . . . . . . 12 (𝜑 → (((𝑃 − 1) / 2)(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑((𝑃 − 1) / 2)))
5551, 54eqtr3d 2782 . . . . . . . . . . 11 (𝜑 → (((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐴) = (𝐴↑((𝑃 − 1) / 2)))
5655fveq2d 6924 . . . . . . . . . 10 (𝜑 → (𝐿‘(((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐴)) = (𝐿‘(𝐴↑((𝑃 − 1) / 2))))
57 lgsqrlem1.4 . . . . . . . . . . . 12 (𝜑 → ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃) = (1 mod 𝑃))
58 prmnn 16721 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
599, 58syl 17 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℕ)
60 zexpcl 14127 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ)
6126, 34, 60syl2anc 583 . . . . . . . . . . . . 13 (𝜑 → (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ)
62 1zzd 12674 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℤ)
63 moddvds 16313 . . . . . . . . . . . . 13 ((𝑃 ∈ ℕ ∧ (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ ∧ 1 ∈ ℤ) → (((𝐴↑((𝑃 − 1) / 2)) mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1)))
6459, 61, 62, 63syl3anc 1371 . . . . . . . . . . . 12 (𝜑 → (((𝐴↑((𝑃 − 1) / 2)) mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1)))
6557, 64mpbid 232 . . . . . . . . . . 11 (𝜑𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1))
6659nnnn0d 12613 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℕ0)
6710, 20zndvds 21591 . . . . . . . . . . . 12 ((𝑃 ∈ ℕ0 ∧ (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ ∧ 1 ∈ ℤ) → ((𝐿‘(𝐴↑((𝑃 − 1) / 2))) = (𝐿‘1) ↔ 𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1)))
6866, 61, 62, 67syl3anc 1371 . . . . . . . . . . 11 (𝜑 → ((𝐿‘(𝐴↑((𝑃 − 1) / 2))) = (𝐿‘1) ↔ 𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1)))
6965, 68mpbird 257 . . . . . . . . . 10 (𝜑 → (𝐿‘(𝐴↑((𝑃 − 1) / 2))) = (𝐿‘1))
70 zring1 21493 . . . . . . . . . . . 12 1 = (1r‘ℤring)
71 eqid 2740 . . . . . . . . . . . 12 (1r𝑌) = (1r𝑌)
7270, 71rhm1 20515 . . . . . . . . . . 11 (𝐿 ∈ (ℤring RingHom 𝑌) → (𝐿‘1) = (1r𝑌))
7322, 72syl 17 . . . . . . . . . 10 (𝜑 → (𝐿‘1) = (1r𝑌))
7456, 69, 733eqtrd 2784 . . . . . . . . 9 (𝜑 → (𝐿‘(((𝑃 − 1) / 2)(.g‘((mulGrp‘ℂfld) ↾s ℤ))𝐴)) = (1r𝑌))
7543, 74eqtr3d 2782 . . . . . . . 8 (𝜑 → (((𝑃 − 1) / 2)(.g‘(mulGrp‘𝑌))(𝐿𝐴)) = (1r𝑌))
7675eqeq2d 2751 . . . . . . 7 (𝜑 → (((𝑂‘(((𝑃 − 1) / 2) 𝑋))‘(𝐿𝐴)) = (((𝑃 − 1) / 2)(.g‘(mulGrp‘𝑌))(𝐿𝐴)) ↔ ((𝑂‘(((𝑃 − 1) / 2) 𝑋))‘(𝐿𝐴)) = (1r𝑌)))
7776anbi2d 629 . . . . . 6 (𝜑 → (((((𝑃 − 1) / 2) 𝑋) ∈ 𝐵 ∧ ((𝑂‘(((𝑃 − 1) / 2) 𝑋))‘(𝐿𝐴)) = (((𝑃 − 1) / 2)(.g‘(mulGrp‘𝑌))(𝐿𝐴))) ↔ ((((𝑃 − 1) / 2) 𝑋) ∈ 𝐵 ∧ ((𝑂‘(((𝑃 − 1) / 2) 𝑋))‘(𝐿𝐴)) = (1r𝑌))))
7835, 77mpbid 232 . . . . 5 (𝜑 → ((((𝑃 − 1) / 2) 𝑋) ∈ 𝐵 ∧ ((𝑂‘(((𝑃 − 1) / 2) 𝑋))‘(𝐿𝐴)) = (1r𝑌)))
79 eqid 2740 . . . . . . 7 (algSc‘𝑆) = (algSc‘𝑆)
806, 71ringidcl 20289 . . . . . . . 8 (𝑌 ∈ Ring → (1r𝑌) ∈ (Base‘𝑌))
8119, 80syl 17 . . . . . . 7 (𝜑 → (1r𝑌) ∈ (Base‘𝑌))
824, 5, 6, 79, 7, 17, 81, 27evl1scad 22360 . . . . . 6 (𝜑 → (((algSc‘𝑆)‘(1r𝑌)) ∈ 𝐵 ∧ ((𝑂‘((algSc‘𝑆)‘(1r𝑌)))‘(𝐿𝐴)) = (1r𝑌)))
83 lgsqr.u . . . . . . . . . 10 1 = (1r𝑆)
845, 79, 71, 83ply1scl1 22317 . . . . . . . . 9 (𝑌 ∈ Ring → ((algSc‘𝑆)‘(1r𝑌)) = 1 )
8519, 84syl 17 . . . . . . . 8 (𝜑 → ((algSc‘𝑆)‘(1r𝑌)) = 1 )
8685eleq1d 2829 . . . . . . 7 (𝜑 → (((algSc‘𝑆)‘(1r𝑌)) ∈ 𝐵1𝐵))
8785fveq2d 6924 . . . . . . . . 9 (𝜑 → (𝑂‘((algSc‘𝑆)‘(1r𝑌))) = (𝑂1 ))
8887fveq1d 6922 . . . . . . . 8 (𝜑 → ((𝑂‘((algSc‘𝑆)‘(1r𝑌)))‘(𝐿𝐴)) = ((𝑂1 )‘(𝐿𝐴)))
8988eqeq1d 2742 . . . . . . 7 (𝜑 → (((𝑂‘((algSc‘𝑆)‘(1r𝑌)))‘(𝐿𝐴)) = (1r𝑌) ↔ ((𝑂1 )‘(𝐿𝐴)) = (1r𝑌)))
9086, 89anbi12d 631 . . . . . 6 (𝜑 → ((((algSc‘𝑆)‘(1r𝑌)) ∈ 𝐵 ∧ ((𝑂‘((algSc‘𝑆)‘(1r𝑌)))‘(𝐿𝐴)) = (1r𝑌)) ↔ ( 1𝐵 ∧ ((𝑂1 )‘(𝐿𝐴)) = (1r𝑌))))
9182, 90mpbid 232 . . . . 5 (𝜑 → ( 1𝐵 ∧ ((𝑂1 )‘(𝐿𝐴)) = (1r𝑌)))
92 lgsqr.m . . . . 5 = (-g𝑆)
93 eqid 2740 . . . . 5 (-g𝑌) = (-g𝑌)
944, 5, 6, 7, 17, 27, 78, 91, 92, 93evl1subd 22367 . . . 4 (𝜑 → (((((𝑃 − 1) / 2) 𝑋) 1 ) ∈ 𝐵 ∧ ((𝑂‘((((𝑃 − 1) / 2) 𝑋) 1 ))‘(𝐿𝐴)) = ((1r𝑌)(-g𝑌)(1r𝑌))))
9594simprd 495 . . 3 (𝜑 → ((𝑂‘((((𝑃 − 1) / 2) 𝑋) 1 ))‘(𝐿𝐴)) = ((1r𝑌)(-g𝑌)(1r𝑌)))
963, 95eqtrid 2792 . 2 (𝜑 → ((𝑂𝑇)‘(𝐿𝐴)) = ((1r𝑌)(-g𝑌)(1r𝑌)))
97 ringgrp 20265 . . . 4 (𝑌 ∈ Ring → 𝑌 ∈ Grp)
9819, 97syl 17 . . 3 (𝜑𝑌 ∈ Grp)
99 eqid 2740 . . . 4 (0g𝑌) = (0g𝑌)
1006, 99, 93grpsubid 19064 . . 3 ((𝑌 ∈ Grp ∧ (1r𝑌) ∈ (Base‘𝑌)) → ((1r𝑌)(-g𝑌)(1r𝑌)) = (0g𝑌))
10198, 81, 100syl2anc 583 . 2 (𝜑 → ((1r𝑌)(-g𝑌)(1r𝑌)) = (0g𝑌))
10296, 101eqtrd 2780 1 (𝜑 → ((𝑂𝑇)‘(𝐿𝐴)) = (0g𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  cdif 3973  {csn 4648   class class class wbr 5166  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  1c1 11185  cmin 11520   / cdiv 11947  cn 12293  2c2 12348  0cn0 12553  cz 12639   mod cmo 13920  cexp 14112  cdvds 16302  cprime 16718  Basecbs 17258  s cress 17287  0gc0g 17499   MndHom cmhm 18816  SubMndcsubmnd 18817  Grpcgrp 18973  -gcsg 18975  .gcmg 19107  mulGrpcmgp 20161  1rcur 20208  Ringcrg 20260  CRingccrg 20261   RingHom crh 20495  SubRingcsubrg 20595  Domncdomn 20714  IDomncidom 20715  Fieldcfield 20752  fldccnfld 21387  ringczring 21480  ℤRHomczrh 21533  ℤ/nczn 21536  algSccascl 21895  var1cv1 22198  Poly1cpl1 22199  eval1ce1 22339  deg1cdg1 26113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-ec 8765  df-qs 8769  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-gcd 16541  df-prm 16719  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-imas 17568  df-qus 17569  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-nsg 19164  df-eqg 19165  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-srg 20214  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-rhm 20498  df-nzr 20539  df-subrng 20572  df-subrg 20597  df-rlreg 20716  df-domn 20717  df-idom 20718  df-drng 20753  df-field 20754  df-lmod 20882  df-lss 20953  df-lsp 20993  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-rsp 21242  df-2idl 21283  df-cnfld 21388  df-zring 21481  df-zrh 21537  df-zn 21540  df-assa 21896  df-asp 21897  df-ascl 21898  df-psr 21952  df-mvr 21953  df-mpl 21954  df-opsr 21956  df-evls 22121  df-evl 22122  df-psr1 22202  df-vr1 22203  df-ply1 22204  df-evl1 22341
This theorem is referenced by:  lgsqrlem2  27409  lgsqrlem3  27410
  Copyright terms: Public domain W3C validator