Proof of Theorem fta1glem1
| Step | Hyp | Ref
| Expression |
| 1 | | 1cnd 11235 |
. 2
⊢ (𝜑 → 1 ∈
ℂ) |
| 2 | | fta1g.1 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ IDomn) |
| 3 | | isidom 20690 |
. . . . . . 7
⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) |
| 4 | | domnnzr 20671 |
. . . . . . 7
⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) |
| 5 | 3, 4 | simplbiim 504 |
. . . . . 6
⊢ (𝑅 ∈ IDomn → 𝑅 ∈ NzRing) |
| 6 | 2, 5 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ NzRing) |
| 7 | | nzrring 20481 |
. . . . 5
⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) |
| 8 | 6, 7 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 9 | | fta1g.2 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| 10 | | fta1g.p |
. . . . . . . 8
⊢ 𝑃 = (Poly1‘𝑅) |
| 11 | | fta1g.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑃) |
| 12 | | fta1glem.k |
. . . . . . . 8
⊢ 𝐾 = (Base‘𝑅) |
| 13 | | fta1glem.x |
. . . . . . . 8
⊢ 𝑋 = (var1‘𝑅) |
| 14 | | fta1glem.m |
. . . . . . . 8
⊢ − =
(-g‘𝑃) |
| 15 | | fta1glem.a |
. . . . . . . 8
⊢ 𝐴 = (algSc‘𝑃) |
| 16 | | fta1glem.g |
. . . . . . . 8
⊢ 𝐺 = (𝑋 − (𝐴‘𝑇)) |
| 17 | | fta1g.o |
. . . . . . . 8
⊢ 𝑂 = (eval1‘𝑅) |
| 18 | 3 | simplbi 497 |
. . . . . . . . 9
⊢ (𝑅 ∈ IDomn → 𝑅 ∈ CRing) |
| 19 | 2, 18 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ CRing) |
| 20 | | fta1glem.5 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑇 ∈ (◡(𝑂‘𝐹) “ {𝑊})) |
| 21 | | eqid 2736 |
. . . . . . . . . . . . 13
⊢ (𝑅 ↑s 𝐾) = (𝑅 ↑s 𝐾) |
| 22 | | eqid 2736 |
. . . . . . . . . . . . 13
⊢
(Base‘(𝑅
↑s 𝐾)) = (Base‘(𝑅 ↑s 𝐾)) |
| 23 | 12 | fvexi 6895 |
. . . . . . . . . . . . . 14
⊢ 𝐾 ∈ V |
| 24 | 23 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐾 ∈ V) |
| 25 | 17, 10, 21, 12 | evl1rhm 22275 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐾))) |
| 26 | 19, 25 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐾))) |
| 27 | 11, 22 | rhmf 20450 |
. . . . . . . . . . . . . . 15
⊢ (𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐾)) → 𝑂:𝐵⟶(Base‘(𝑅 ↑s 𝐾))) |
| 28 | 26, 27 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑂:𝐵⟶(Base‘(𝑅 ↑s 𝐾))) |
| 29 | 28, 9 | ffvelcdmd 7080 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑂‘𝐹) ∈ (Base‘(𝑅 ↑s 𝐾))) |
| 30 | 21, 12, 22, 2, 24, 29 | pwselbas 17508 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑂‘𝐹):𝐾⟶𝐾) |
| 31 | 30 | ffnd 6712 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑂‘𝐹) Fn 𝐾) |
| 32 | | fniniseg 7055 |
. . . . . . . . . . 11
⊢ ((𝑂‘𝐹) Fn 𝐾 → (𝑇 ∈ (◡(𝑂‘𝐹) “ {𝑊}) ↔ (𝑇 ∈ 𝐾 ∧ ((𝑂‘𝐹)‘𝑇) = 𝑊))) |
| 33 | 31, 32 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑇 ∈ (◡(𝑂‘𝐹) “ {𝑊}) ↔ (𝑇 ∈ 𝐾 ∧ ((𝑂‘𝐹)‘𝑇) = 𝑊))) |
| 34 | 20, 33 | mpbid 232 |
. . . . . . . . 9
⊢ (𝜑 → (𝑇 ∈ 𝐾 ∧ ((𝑂‘𝐹)‘𝑇) = 𝑊)) |
| 35 | 34 | simpld 494 |
. . . . . . . 8
⊢ (𝜑 → 𝑇 ∈ 𝐾) |
| 36 | | eqid 2736 |
. . . . . . . 8
⊢
(Monic1p‘𝑅) = (Monic1p‘𝑅) |
| 37 | | fta1g.d |
. . . . . . . 8
⊢ 𝐷 = (deg1‘𝑅) |
| 38 | | fta1g.w |
. . . . . . . 8
⊢ 𝑊 = (0g‘𝑅) |
| 39 | 10, 11, 12, 13, 14, 15, 16, 17, 6, 19, 35, 36, 37, 38 | ply1remlem 26127 |
. . . . . . 7
⊢ (𝜑 → (𝐺 ∈ (Monic1p‘𝑅) ∧ (𝐷‘𝐺) = 1 ∧ (◡(𝑂‘𝐺) “ {𝑊}) = {𝑇})) |
| 40 | 39 | simp1d 1142 |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ (Monic1p‘𝑅)) |
| 41 | | eqid 2736 |
. . . . . . 7
⊢
(Unic1p‘𝑅) = (Unic1p‘𝑅) |
| 42 | 41, 36 | mon1puc1p 26113 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈
(Monic1p‘𝑅)) → 𝐺 ∈ (Unic1p‘𝑅)) |
| 43 | 8, 40, 42 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ (Unic1p‘𝑅)) |
| 44 | | eqid 2736 |
. . . . . 6
⊢
(quot1p‘𝑅) = (quot1p‘𝑅) |
| 45 | 44, 10, 11, 41 | q1pcl 26119 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ (Unic1p‘𝑅)) → (𝐹(quot1p‘𝑅)𝐺) ∈ 𝐵) |
| 46 | 8, 9, 43, 45 | syl3anc 1373 |
. . . 4
⊢ (𝜑 → (𝐹(quot1p‘𝑅)𝐺) ∈ 𝐵) |
| 47 | | fta1glem.4 |
. . . . . . . 8
⊢ (𝜑 → (𝐷‘𝐹) = (𝑁 + 1)) |
| 48 | | fta1glem.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 49 | | peano2nn0 12546 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ0) |
| 50 | 48, 49 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 + 1) ∈
ℕ0) |
| 51 | 47, 50 | eqeltrd 2835 |
. . . . . . 7
⊢ (𝜑 → (𝐷‘𝐹) ∈
ℕ0) |
| 52 | | fta1g.z |
. . . . . . . . 9
⊢ 0 =
(0g‘𝑃) |
| 53 | 37, 10, 52, 11 | deg1nn0clb 26052 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵) → (𝐹 ≠ 0 ↔ (𝐷‘𝐹) ∈
ℕ0)) |
| 54 | 8, 9, 53 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (𝐹 ≠ 0 ↔ (𝐷‘𝐹) ∈
ℕ0)) |
| 55 | 51, 54 | mpbird 257 |
. . . . . 6
⊢ (𝜑 → 𝐹 ≠ 0 ) |
| 56 | 34 | simprd 495 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑂‘𝐹)‘𝑇) = 𝑊) |
| 57 | | eqid 2736 |
. . . . . . . . . 10
⊢
(∥r‘𝑃) = (∥r‘𝑃) |
| 58 | 10, 11, 12, 13, 14, 15, 16, 17, 6, 19, 35, 9, 38, 57 | facth1 26129 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺(∥r‘𝑃)𝐹 ↔ ((𝑂‘𝐹)‘𝑇) = 𝑊)) |
| 59 | 56, 58 | mpbird 257 |
. . . . . . . 8
⊢ (𝜑 → 𝐺(∥r‘𝑃)𝐹) |
| 60 | | eqid 2736 |
. . . . . . . . . 10
⊢
(.r‘𝑃) = (.r‘𝑃) |
| 61 | 10, 57, 11, 41, 60, 44 | dvdsq1p 26125 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ (Unic1p‘𝑅)) → (𝐺(∥r‘𝑃)𝐹 ↔ 𝐹 = ((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺))) |
| 62 | 8, 9, 43, 61 | syl3anc 1373 |
. . . . . . . 8
⊢ (𝜑 → (𝐺(∥r‘𝑃)𝐹 ↔ 𝐹 = ((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺))) |
| 63 | 59, 62 | mpbid 232 |
. . . . . . 7
⊢ (𝜑 → 𝐹 = ((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) |
| 64 | 63 | eqcomd 2742 |
. . . . . 6
⊢ (𝜑 → ((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺) = 𝐹) |
| 65 | 10 | ply1crng 22139 |
. . . . . . . . 9
⊢ (𝑅 ∈ CRing → 𝑃 ∈ CRing) |
| 66 | 19, 65 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ CRing) |
| 67 | | crngring 20210 |
. . . . . . . 8
⊢ (𝑃 ∈ CRing → 𝑃 ∈ Ring) |
| 68 | 66, 67 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑃 ∈ Ring) |
| 69 | 10, 11, 36 | mon1pcl 26107 |
. . . . . . . 8
⊢ (𝐺 ∈
(Monic1p‘𝑅) → 𝐺 ∈ 𝐵) |
| 70 | 40, 69 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ 𝐵) |
| 71 | 11, 60, 52 | ringlz 20258 |
. . . . . . 7
⊢ ((𝑃 ∈ Ring ∧ 𝐺 ∈ 𝐵) → ( 0 (.r‘𝑃)𝐺) = 0 ) |
| 72 | 68, 70, 71 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → ( 0 (.r‘𝑃)𝐺) = 0 ) |
| 73 | 55, 64, 72 | 3netr4d 3010 |
. . . . 5
⊢ (𝜑 → ((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺) ≠ ( 0 (.r‘𝑃)𝐺)) |
| 74 | | oveq1 7417 |
. . . . . 6
⊢ ((𝐹(quot1p‘𝑅)𝐺) = 0 → ((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺) = ( 0 (.r‘𝑃)𝐺)) |
| 75 | 74 | necon3i 2965 |
. . . . 5
⊢ (((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺) ≠ ( 0 (.r‘𝑃)𝐺) → (𝐹(quot1p‘𝑅)𝐺) ≠ 0 ) |
| 76 | 73, 75 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐹(quot1p‘𝑅)𝐺) ≠ 0 ) |
| 77 | 37, 10, 52, 11 | deg1nn0cl 26050 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝐹(quot1p‘𝑅)𝐺) ∈ 𝐵 ∧ (𝐹(quot1p‘𝑅)𝐺) ≠ 0 ) → (𝐷‘(𝐹(quot1p‘𝑅)𝐺)) ∈
ℕ0) |
| 78 | 8, 46, 76, 77 | syl3anc 1373 |
. . 3
⊢ (𝜑 → (𝐷‘(𝐹(quot1p‘𝑅)𝐺)) ∈
ℕ0) |
| 79 | 78 | nn0cnd 12569 |
. 2
⊢ (𝜑 → (𝐷‘(𝐹(quot1p‘𝑅)𝐺)) ∈ ℂ) |
| 80 | 48 | nn0cnd 12569 |
. 2
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 81 | 11, 60 | crngcom 20216 |
. . . . . . 7
⊢ ((𝑃 ∈ CRing ∧ (𝐹(quot1p‘𝑅)𝐺) ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺) = (𝐺(.r‘𝑃)(𝐹(quot1p‘𝑅)𝐺))) |
| 82 | 66, 46, 70, 81 | syl3anc 1373 |
. . . . . 6
⊢ (𝜑 → ((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺) = (𝐺(.r‘𝑃)(𝐹(quot1p‘𝑅)𝐺))) |
| 83 | 63, 82 | eqtrd 2771 |
. . . . 5
⊢ (𝜑 → 𝐹 = (𝐺(.r‘𝑃)(𝐹(quot1p‘𝑅)𝐺))) |
| 84 | 83 | fveq2d 6885 |
. . . 4
⊢ (𝜑 → (𝐷‘𝐹) = (𝐷‘(𝐺(.r‘𝑃)(𝐹(quot1p‘𝑅)𝐺)))) |
| 85 | | eqid 2736 |
. . . . 5
⊢
(RLReg‘𝑅) =
(RLReg‘𝑅) |
| 86 | 39 | simp2d 1143 |
. . . . . . 7
⊢ (𝜑 → (𝐷‘𝐺) = 1) |
| 87 | | 1nn0 12522 |
. . . . . . 7
⊢ 1 ∈
ℕ0 |
| 88 | 86, 87 | eqeltrdi 2843 |
. . . . . 6
⊢ (𝜑 → (𝐷‘𝐺) ∈
ℕ0) |
| 89 | 37, 10, 52, 11 | deg1nn0clb 26052 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵) → (𝐺 ≠ 0 ↔ (𝐷‘𝐺) ∈
ℕ0)) |
| 90 | 8, 70, 89 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (𝐺 ≠ 0 ↔ (𝐷‘𝐺) ∈
ℕ0)) |
| 91 | 88, 90 | mpbird 257 |
. . . . 5
⊢ (𝜑 → 𝐺 ≠ 0 ) |
| 92 | | eqid 2736 |
. . . . . . . 8
⊢
(Unit‘𝑅) =
(Unit‘𝑅) |
| 93 | 85, 92 | unitrrg 20668 |
. . . . . . 7
⊢ (𝑅 ∈ Ring →
(Unit‘𝑅) ⊆
(RLReg‘𝑅)) |
| 94 | 8, 93 | syl 17 |
. . . . . 6
⊢ (𝜑 → (Unit‘𝑅) ⊆ (RLReg‘𝑅)) |
| 95 | 37, 92, 41 | uc1pldg 26111 |
. . . . . . 7
⊢ (𝐺 ∈
(Unic1p‘𝑅)
→ ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ (Unit‘𝑅)) |
| 96 | 43, 95 | syl 17 |
. . . . . 6
⊢ (𝜑 →
((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ (Unit‘𝑅)) |
| 97 | 94, 96 | sseldd 3964 |
. . . . 5
⊢ (𝜑 →
((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ (RLReg‘𝑅)) |
| 98 | 37, 10, 85, 11, 60, 52, 8, 70, 91, 97, 46, 76 | deg1mul2 26076 |
. . . 4
⊢ (𝜑 → (𝐷‘(𝐺(.r‘𝑃)(𝐹(quot1p‘𝑅)𝐺))) = ((𝐷‘𝐺) + (𝐷‘(𝐹(quot1p‘𝑅)𝐺)))) |
| 99 | 84, 47, 98 | 3eqtr3d 2779 |
. . 3
⊢ (𝜑 → (𝑁 + 1) = ((𝐷‘𝐺) + (𝐷‘(𝐹(quot1p‘𝑅)𝐺)))) |
| 100 | | ax-1cn 11192 |
. . . 4
⊢ 1 ∈
ℂ |
| 101 | | addcom 11426 |
. . . 4
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → (𝑁 + 1) =
(1 + 𝑁)) |
| 102 | 80, 100, 101 | sylancl 586 |
. . 3
⊢ (𝜑 → (𝑁 + 1) = (1 + 𝑁)) |
| 103 | 86 | oveq1d 7425 |
. . 3
⊢ (𝜑 → ((𝐷‘𝐺) + (𝐷‘(𝐹(quot1p‘𝑅)𝐺))) = (1 + (𝐷‘(𝐹(quot1p‘𝑅)𝐺)))) |
| 104 | 99, 102, 103 | 3eqtr3rd 2780 |
. 2
⊢ (𝜑 → (1 + (𝐷‘(𝐹(quot1p‘𝑅)𝐺))) = (1 + 𝑁)) |
| 105 | 1, 79, 80, 104 | addcanad 11445 |
1
⊢ (𝜑 → (𝐷‘(𝐹(quot1p‘𝑅)𝐺)) = 𝑁) |