MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fta1glem1 Structured version   Visualization version   GIF version

Theorem fta1glem1 26227
Description: Lemma for fta1g 26229. (Contributed by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
fta1g.p 𝑃 = (Poly1𝑅)
fta1g.b 𝐵 = (Base‘𝑃)
fta1g.d 𝐷 = (deg1𝑅)
fta1g.o 𝑂 = (eval1𝑅)
fta1g.w 𝑊 = (0g𝑅)
fta1g.z 0 = (0g𝑃)
fta1g.1 (𝜑𝑅 ∈ IDomn)
fta1g.2 (𝜑𝐹𝐵)
fta1glem.k 𝐾 = (Base‘𝑅)
fta1glem.x 𝑋 = (var1𝑅)
fta1glem.m = (-g𝑃)
fta1glem.a 𝐴 = (algSc‘𝑃)
fta1glem.g 𝐺 = (𝑋 (𝐴𝑇))
fta1glem.3 (𝜑𝑁 ∈ ℕ0)
fta1glem.4 (𝜑 → (𝐷𝐹) = (𝑁 + 1))
fta1glem.5 (𝜑𝑇 ∈ ((𝑂𝐹) “ {𝑊}))
Assertion
Ref Expression
fta1glem1 (𝜑 → (𝐷‘(𝐹(quot1p𝑅)𝐺)) = 𝑁)

Proof of Theorem fta1glem1
StepHypRef Expression
1 1cnd 11285 . 2 (𝜑 → 1 ∈ ℂ)
2 fta1g.1 . . . . . 6 (𝜑𝑅 ∈ IDomn)
3 isidom 20747 . . . . . . 7 (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
4 domnnzr 20728 . . . . . . 7 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
53, 4simplbiim 504 . . . . . 6 (𝑅 ∈ IDomn → 𝑅 ∈ NzRing)
62, 5syl 17 . . . . 5 (𝜑𝑅 ∈ NzRing)
7 nzrring 20542 . . . . 5 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
86, 7syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
9 fta1g.2 . . . . 5 (𝜑𝐹𝐵)
10 fta1g.p . . . . . . . 8 𝑃 = (Poly1𝑅)
11 fta1g.b . . . . . . . 8 𝐵 = (Base‘𝑃)
12 fta1glem.k . . . . . . . 8 𝐾 = (Base‘𝑅)
13 fta1glem.x . . . . . . . 8 𝑋 = (var1𝑅)
14 fta1glem.m . . . . . . . 8 = (-g𝑃)
15 fta1glem.a . . . . . . . 8 𝐴 = (algSc‘𝑃)
16 fta1glem.g . . . . . . . 8 𝐺 = (𝑋 (𝐴𝑇))
17 fta1g.o . . . . . . . 8 𝑂 = (eval1𝑅)
183simplbi 497 . . . . . . . . 9 (𝑅 ∈ IDomn → 𝑅 ∈ CRing)
192, 18syl 17 . . . . . . . 8 (𝜑𝑅 ∈ CRing)
20 fta1glem.5 . . . . . . . . . 10 (𝜑𝑇 ∈ ((𝑂𝐹) “ {𝑊}))
21 eqid 2740 . . . . . . . . . . . . 13 (𝑅s 𝐾) = (𝑅s 𝐾)
22 eqid 2740 . . . . . . . . . . . . 13 (Base‘(𝑅s 𝐾)) = (Base‘(𝑅s 𝐾))
2312fvexi 6934 . . . . . . . . . . . . . 14 𝐾 ∈ V
2423a1i 11 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ V)
2517, 10, 21, 12evl1rhm 22357 . . . . . . . . . . . . . . . 16 (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)))
2619, 25syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)))
2711, 22rhmf 20511 . . . . . . . . . . . . . . 15 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)) → 𝑂:𝐵⟶(Base‘(𝑅s 𝐾)))
2826, 27syl 17 . . . . . . . . . . . . . 14 (𝜑𝑂:𝐵⟶(Base‘(𝑅s 𝐾)))
2928, 9ffvelcdmd 7119 . . . . . . . . . . . . 13 (𝜑 → (𝑂𝐹) ∈ (Base‘(𝑅s 𝐾)))
3021, 12, 22, 2, 24, 29pwselbas 17549 . . . . . . . . . . . 12 (𝜑 → (𝑂𝐹):𝐾𝐾)
3130ffnd 6748 . . . . . . . . . . 11 (𝜑 → (𝑂𝐹) Fn 𝐾)
32 fniniseg 7093 . . . . . . . . . . 11 ((𝑂𝐹) Fn 𝐾 → (𝑇 ∈ ((𝑂𝐹) “ {𝑊}) ↔ (𝑇𝐾 ∧ ((𝑂𝐹)‘𝑇) = 𝑊)))
3331, 32syl 17 . . . . . . . . . 10 (𝜑 → (𝑇 ∈ ((𝑂𝐹) “ {𝑊}) ↔ (𝑇𝐾 ∧ ((𝑂𝐹)‘𝑇) = 𝑊)))
3420, 33mpbid 232 . . . . . . . . 9 (𝜑 → (𝑇𝐾 ∧ ((𝑂𝐹)‘𝑇) = 𝑊))
3534simpld 494 . . . . . . . 8 (𝜑𝑇𝐾)
36 eqid 2740 . . . . . . . 8 (Monic1p𝑅) = (Monic1p𝑅)
37 fta1g.d . . . . . . . 8 𝐷 = (deg1𝑅)
38 fta1g.w . . . . . . . 8 𝑊 = (0g𝑅)
3910, 11, 12, 13, 14, 15, 16, 17, 6, 19, 35, 36, 37, 38ply1remlem 26224 . . . . . . 7 (𝜑 → (𝐺 ∈ (Monic1p𝑅) ∧ (𝐷𝐺) = 1 ∧ ((𝑂𝐺) “ {𝑊}) = {𝑇}))
4039simp1d 1142 . . . . . 6 (𝜑𝐺 ∈ (Monic1p𝑅))
41 eqid 2740 . . . . . . 7 (Unic1p𝑅) = (Unic1p𝑅)
4241, 36mon1puc1p 26210 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐺 ∈ (Monic1p𝑅)) → 𝐺 ∈ (Unic1p𝑅))
438, 40, 42syl2anc 583 . . . . 5 (𝜑𝐺 ∈ (Unic1p𝑅))
44 eqid 2740 . . . . . 6 (quot1p𝑅) = (quot1p𝑅)
4544, 10, 11, 41q1pcl 26216 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺 ∈ (Unic1p𝑅)) → (𝐹(quot1p𝑅)𝐺) ∈ 𝐵)
468, 9, 43, 45syl3anc 1371 . . . 4 (𝜑 → (𝐹(quot1p𝑅)𝐺) ∈ 𝐵)
47 fta1glem.4 . . . . . . . 8 (𝜑 → (𝐷𝐹) = (𝑁 + 1))
48 fta1glem.3 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
49 peano2nn0 12593 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
5048, 49syl 17 . . . . . . . 8 (𝜑 → (𝑁 + 1) ∈ ℕ0)
5147, 50eqeltrd 2844 . . . . . . 7 (𝜑 → (𝐷𝐹) ∈ ℕ0)
52 fta1g.z . . . . . . . . 9 0 = (0g𝑃)
5337, 10, 52, 11deg1nn0clb 26149 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵) → (𝐹0 ↔ (𝐷𝐹) ∈ ℕ0))
548, 9, 53syl2anc 583 . . . . . . 7 (𝜑 → (𝐹0 ↔ (𝐷𝐹) ∈ ℕ0))
5551, 54mpbird 257 . . . . . 6 (𝜑𝐹0 )
5634simprd 495 . . . . . . . . 9 (𝜑 → ((𝑂𝐹)‘𝑇) = 𝑊)
57 eqid 2740 . . . . . . . . . 10 (∥r𝑃) = (∥r𝑃)
5810, 11, 12, 13, 14, 15, 16, 17, 6, 19, 35, 9, 38, 57facth1 26226 . . . . . . . . 9 (𝜑 → (𝐺(∥r𝑃)𝐹 ↔ ((𝑂𝐹)‘𝑇) = 𝑊))
5956, 58mpbird 257 . . . . . . . 8 (𝜑𝐺(∥r𝑃)𝐹)
60 eqid 2740 . . . . . . . . . 10 (.r𝑃) = (.r𝑃)
6110, 57, 11, 41, 60, 44dvdsq1p 26222 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺 ∈ (Unic1p𝑅)) → (𝐺(∥r𝑃)𝐹𝐹 = ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)))
628, 9, 43, 61syl3anc 1371 . . . . . . . 8 (𝜑 → (𝐺(∥r𝑃)𝐹𝐹 = ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)))
6359, 62mpbid 232 . . . . . . 7 (𝜑𝐹 = ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))
6463eqcomd 2746 . . . . . 6 (𝜑 → ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) = 𝐹)
6510ply1crng 22221 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
6619, 65syl 17 . . . . . . . 8 (𝜑𝑃 ∈ CRing)
67 crngring 20272 . . . . . . . 8 (𝑃 ∈ CRing → 𝑃 ∈ Ring)
6866, 67syl 17 . . . . . . 7 (𝜑𝑃 ∈ Ring)
6910, 11, 36mon1pcl 26204 . . . . . . . 8 (𝐺 ∈ (Monic1p𝑅) → 𝐺𝐵)
7040, 69syl 17 . . . . . . 7 (𝜑𝐺𝐵)
7111, 60, 52ringlz 20316 . . . . . . 7 ((𝑃 ∈ Ring ∧ 𝐺𝐵) → ( 0 (.r𝑃)𝐺) = 0 )
7268, 70, 71syl2anc 583 . . . . . 6 (𝜑 → ( 0 (.r𝑃)𝐺) = 0 )
7355, 64, 723netr4d 3024 . . . . 5 (𝜑 → ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) ≠ ( 0 (.r𝑃)𝐺))
74 oveq1 7455 . . . . . 6 ((𝐹(quot1p𝑅)𝐺) = 0 → ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) = ( 0 (.r𝑃)𝐺))
7574necon3i 2979 . . . . 5 (((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) ≠ ( 0 (.r𝑃)𝐺) → (𝐹(quot1p𝑅)𝐺) ≠ 0 )
7673, 75syl 17 . . . 4 (𝜑 → (𝐹(quot1p𝑅)𝐺) ≠ 0 )
7737, 10, 52, 11deg1nn0cl 26147 . . . 4 ((𝑅 ∈ Ring ∧ (𝐹(quot1p𝑅)𝐺) ∈ 𝐵 ∧ (𝐹(quot1p𝑅)𝐺) ≠ 0 ) → (𝐷‘(𝐹(quot1p𝑅)𝐺)) ∈ ℕ0)
788, 46, 76, 77syl3anc 1371 . . 3 (𝜑 → (𝐷‘(𝐹(quot1p𝑅)𝐺)) ∈ ℕ0)
7978nn0cnd 12615 . 2 (𝜑 → (𝐷‘(𝐹(quot1p𝑅)𝐺)) ∈ ℂ)
8048nn0cnd 12615 . 2 (𝜑𝑁 ∈ ℂ)
8111, 60crngcom 20278 . . . . . . 7 ((𝑃 ∈ CRing ∧ (𝐹(quot1p𝑅)𝐺) ∈ 𝐵𝐺𝐵) → ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) = (𝐺(.r𝑃)(𝐹(quot1p𝑅)𝐺)))
8266, 46, 70, 81syl3anc 1371 . . . . . 6 (𝜑 → ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) = (𝐺(.r𝑃)(𝐹(quot1p𝑅)𝐺)))
8363, 82eqtrd 2780 . . . . 5 (𝜑𝐹 = (𝐺(.r𝑃)(𝐹(quot1p𝑅)𝐺)))
8483fveq2d 6924 . . . 4 (𝜑 → (𝐷𝐹) = (𝐷‘(𝐺(.r𝑃)(𝐹(quot1p𝑅)𝐺))))
85 eqid 2740 . . . . 5 (RLReg‘𝑅) = (RLReg‘𝑅)
8639simp2d 1143 . . . . . . 7 (𝜑 → (𝐷𝐺) = 1)
87 1nn0 12569 . . . . . . 7 1 ∈ ℕ0
8886, 87eqeltrdi 2852 . . . . . 6 (𝜑 → (𝐷𝐺) ∈ ℕ0)
8937, 10, 52, 11deg1nn0clb 26149 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (𝐺0 ↔ (𝐷𝐺) ∈ ℕ0))
908, 70, 89syl2anc 583 . . . . . 6 (𝜑 → (𝐺0 ↔ (𝐷𝐺) ∈ ℕ0))
9188, 90mpbird 257 . . . . 5 (𝜑𝐺0 )
92 eqid 2740 . . . . . . . 8 (Unit‘𝑅) = (Unit‘𝑅)
9385, 92unitrrg 20725 . . . . . . 7 (𝑅 ∈ Ring → (Unit‘𝑅) ⊆ (RLReg‘𝑅))
948, 93syl 17 . . . . . 6 (𝜑 → (Unit‘𝑅) ⊆ (RLReg‘𝑅))
9537, 92, 41uc1pldg 26208 . . . . . . 7 (𝐺 ∈ (Unic1p𝑅) → ((coe1𝐺)‘(𝐷𝐺)) ∈ (Unit‘𝑅))
9643, 95syl 17 . . . . . 6 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ (Unit‘𝑅))
9794, 96sseldd 4009 . . . . 5 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ (RLReg‘𝑅))
9837, 10, 85, 11, 60, 52, 8, 70, 91, 97, 46, 76deg1mul2 26173 . . . 4 (𝜑 → (𝐷‘(𝐺(.r𝑃)(𝐹(quot1p𝑅)𝐺))) = ((𝐷𝐺) + (𝐷‘(𝐹(quot1p𝑅)𝐺))))
9984, 47, 983eqtr3d 2788 . . 3 (𝜑 → (𝑁 + 1) = ((𝐷𝐺) + (𝐷‘(𝐹(quot1p𝑅)𝐺))))
100 ax-1cn 11242 . . . 4 1 ∈ ℂ
101 addcom 11476 . . . 4 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 + 1) = (1 + 𝑁))
10280, 100, 101sylancl 585 . . 3 (𝜑 → (𝑁 + 1) = (1 + 𝑁))
10386oveq1d 7463 . . 3 (𝜑 → ((𝐷𝐺) + (𝐷‘(𝐹(quot1p𝑅)𝐺))) = (1 + (𝐷‘(𝐹(quot1p𝑅)𝐺))))
10499, 102, 1033eqtr3rd 2789 . 2 (𝜑 → (1 + (𝐷‘(𝐹(quot1p𝑅)𝐺))) = (1 + 𝑁))
1051, 79, 80, 104addcanad 11495 1 (𝜑 → (𝐷‘(𝐹(quot1p𝑅)𝐺)) = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  wss 3976  {csn 4648   class class class wbr 5166  ccnv 5699  cima 5703   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  1c1 11185   + caddc 11187  0cn0 12553  Basecbs 17258  .rcmulr 17312  0gc0g 17499  s cpws 17506  -gcsg 18975  Ringcrg 20260  CRingccrg 20261  rcdsr 20380  Unitcui 20381   RingHom crh 20495  NzRingcnzr 20538  RLRegcrlreg 20713  Domncdomn 20714  IDomncidom 20715  algSccascl 21895  var1cv1 22198  Poly1cpl1 22199  coe1cco1 22200  eval1ce1 22339  deg1cdg1 26113  Monic1pcmn1 26185  Unic1pcuc1p 26186  quot1pcq1p 26187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-srg 20214  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-rhm 20498  df-nzr 20539  df-subrng 20572  df-subrg 20597  df-rlreg 20716  df-domn 20717  df-idom 20718  df-lmod 20882  df-lss 20953  df-lsp 20993  df-cnfld 21388  df-assa 21896  df-asp 21897  df-ascl 21898  df-psr 21952  df-mvr 21953  df-mpl 21954  df-opsr 21956  df-evls 22121  df-evl 22122  df-psr1 22202  df-vr1 22203  df-ply1 22204  df-coe1 22205  df-evl1 22341  df-mdeg 26114  df-deg1 26115  df-mon1 26190  df-uc1p 26191  df-q1p 26192  df-r1p 26193
This theorem is referenced by:  fta1glem2  26228
  Copyright terms: Public domain W3C validator