MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fta1glem1 Structured version   Visualization version   GIF version

Theorem fta1glem1 25482
Description: Lemma for fta1g 25484. (Contributed by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
fta1g.p 𝑃 = (Poly1𝑅)
fta1g.b 𝐵 = (Base‘𝑃)
fta1g.d 𝐷 = ( deg1𝑅)
fta1g.o 𝑂 = (eval1𝑅)
fta1g.w 𝑊 = (0g𝑅)
fta1g.z 0 = (0g𝑃)
fta1g.1 (𝜑𝑅 ∈ IDomn)
fta1g.2 (𝜑𝐹𝐵)
fta1glem.k 𝐾 = (Base‘𝑅)
fta1glem.x 𝑋 = (var1𝑅)
fta1glem.m = (-g𝑃)
fta1glem.a 𝐴 = (algSc‘𝑃)
fta1glem.g 𝐺 = (𝑋 (𝐴𝑇))
fta1glem.3 (𝜑𝑁 ∈ ℕ0)
fta1glem.4 (𝜑 → (𝐷𝐹) = (𝑁 + 1))
fta1glem.5 (𝜑𝑇 ∈ ((𝑂𝐹) “ {𝑊}))
Assertion
Ref Expression
fta1glem1 (𝜑 → (𝐷‘(𝐹(quot1p𝑅)𝐺)) = 𝑁)

Proof of Theorem fta1glem1
StepHypRef Expression
1 1cnd 11108 . 2 (𝜑 → 1 ∈ ℂ)
2 fta1g.1 . . . . . 6 (𝜑𝑅 ∈ IDomn)
3 isidom 20727 . . . . . . 7 (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
4 domnnzr 20718 . . . . . . 7 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
53, 4simplbiim 505 . . . . . 6 (𝑅 ∈ IDomn → 𝑅 ∈ NzRing)
62, 5syl 17 . . . . 5 (𝜑𝑅 ∈ NzRing)
7 nzrring 20684 . . . . 5 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
86, 7syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
9 fta1g.2 . . . . 5 (𝜑𝐹𝐵)
10 fta1g.p . . . . . . . 8 𝑃 = (Poly1𝑅)
11 fta1g.b . . . . . . . 8 𝐵 = (Base‘𝑃)
12 fta1glem.k . . . . . . . 8 𝐾 = (Base‘𝑅)
13 fta1glem.x . . . . . . . 8 𝑋 = (var1𝑅)
14 fta1glem.m . . . . . . . 8 = (-g𝑃)
15 fta1glem.a . . . . . . . 8 𝐴 = (algSc‘𝑃)
16 fta1glem.g . . . . . . . 8 𝐺 = (𝑋 (𝐴𝑇))
17 fta1g.o . . . . . . . 8 𝑂 = (eval1𝑅)
183simplbi 498 . . . . . . . . 9 (𝑅 ∈ IDomn → 𝑅 ∈ CRing)
192, 18syl 17 . . . . . . . 8 (𝜑𝑅 ∈ CRing)
20 fta1glem.5 . . . . . . . . . 10 (𝜑𝑇 ∈ ((𝑂𝐹) “ {𝑊}))
21 eqid 2737 . . . . . . . . . . . . 13 (𝑅s 𝐾) = (𝑅s 𝐾)
22 eqid 2737 . . . . . . . . . . . . 13 (Base‘(𝑅s 𝐾)) = (Base‘(𝑅s 𝐾))
2312fvexi 6853 . . . . . . . . . . . . . 14 𝐾 ∈ V
2423a1i 11 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ V)
2517, 10, 21, 12evl1rhm 21650 . . . . . . . . . . . . . . . 16 (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)))
2619, 25syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)))
2711, 22rhmf 20111 . . . . . . . . . . . . . . 15 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)) → 𝑂:𝐵⟶(Base‘(𝑅s 𝐾)))
2826, 27syl 17 . . . . . . . . . . . . . 14 (𝜑𝑂:𝐵⟶(Base‘(𝑅s 𝐾)))
2928, 9ffvelcdmd 7032 . . . . . . . . . . . . 13 (𝜑 → (𝑂𝐹) ∈ (Base‘(𝑅s 𝐾)))
3021, 12, 22, 2, 24, 29pwselbas 17331 . . . . . . . . . . . 12 (𝜑 → (𝑂𝐹):𝐾𝐾)
3130ffnd 6666 . . . . . . . . . . 11 (𝜑 → (𝑂𝐹) Fn 𝐾)
32 fniniseg 7007 . . . . . . . . . . 11 ((𝑂𝐹) Fn 𝐾 → (𝑇 ∈ ((𝑂𝐹) “ {𝑊}) ↔ (𝑇𝐾 ∧ ((𝑂𝐹)‘𝑇) = 𝑊)))
3331, 32syl 17 . . . . . . . . . 10 (𝜑 → (𝑇 ∈ ((𝑂𝐹) “ {𝑊}) ↔ (𝑇𝐾 ∧ ((𝑂𝐹)‘𝑇) = 𝑊)))
3420, 33mpbid 231 . . . . . . . . 9 (𝜑 → (𝑇𝐾 ∧ ((𝑂𝐹)‘𝑇) = 𝑊))
3534simpld 495 . . . . . . . 8 (𝜑𝑇𝐾)
36 eqid 2737 . . . . . . . 8 (Monic1p𝑅) = (Monic1p𝑅)
37 fta1g.d . . . . . . . 8 𝐷 = ( deg1𝑅)
38 fta1g.w . . . . . . . 8 𝑊 = (0g𝑅)
3910, 11, 12, 13, 14, 15, 16, 17, 6, 19, 35, 36, 37, 38ply1remlem 25479 . . . . . . 7 (𝜑 → (𝐺 ∈ (Monic1p𝑅) ∧ (𝐷𝐺) = 1 ∧ ((𝑂𝐺) “ {𝑊}) = {𝑇}))
4039simp1d 1142 . . . . . 6 (𝜑𝐺 ∈ (Monic1p𝑅))
41 eqid 2737 . . . . . . 7 (Unic1p𝑅) = (Unic1p𝑅)
4241, 36mon1puc1p 25467 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐺 ∈ (Monic1p𝑅)) → 𝐺 ∈ (Unic1p𝑅))
438, 40, 42syl2anc 584 . . . . 5 (𝜑𝐺 ∈ (Unic1p𝑅))
44 eqid 2737 . . . . . 6 (quot1p𝑅) = (quot1p𝑅)
4544, 10, 11, 41q1pcl 25472 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺 ∈ (Unic1p𝑅)) → (𝐹(quot1p𝑅)𝐺) ∈ 𝐵)
468, 9, 43, 45syl3anc 1371 . . . 4 (𝜑 → (𝐹(quot1p𝑅)𝐺) ∈ 𝐵)
47 fta1glem.4 . . . . . . . 8 (𝜑 → (𝐷𝐹) = (𝑁 + 1))
48 fta1glem.3 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
49 peano2nn0 12411 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
5048, 49syl 17 . . . . . . . 8 (𝜑 → (𝑁 + 1) ∈ ℕ0)
5147, 50eqeltrd 2838 . . . . . . 7 (𝜑 → (𝐷𝐹) ∈ ℕ0)
52 fta1g.z . . . . . . . . 9 0 = (0g𝑃)
5337, 10, 52, 11deg1nn0clb 25407 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵) → (𝐹0 ↔ (𝐷𝐹) ∈ ℕ0))
548, 9, 53syl2anc 584 . . . . . . 7 (𝜑 → (𝐹0 ↔ (𝐷𝐹) ∈ ℕ0))
5551, 54mpbird 256 . . . . . 6 (𝜑𝐹0 )
5634simprd 496 . . . . . . . . 9 (𝜑 → ((𝑂𝐹)‘𝑇) = 𝑊)
57 eqid 2737 . . . . . . . . . 10 (∥r𝑃) = (∥r𝑃)
5810, 11, 12, 13, 14, 15, 16, 17, 6, 19, 35, 9, 38, 57facth1 25481 . . . . . . . . 9 (𝜑 → (𝐺(∥r𝑃)𝐹 ↔ ((𝑂𝐹)‘𝑇) = 𝑊))
5956, 58mpbird 256 . . . . . . . 8 (𝜑𝐺(∥r𝑃)𝐹)
60 eqid 2737 . . . . . . . . . 10 (.r𝑃) = (.r𝑃)
6110, 57, 11, 41, 60, 44dvdsq1p 25477 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺 ∈ (Unic1p𝑅)) → (𝐺(∥r𝑃)𝐹𝐹 = ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)))
628, 9, 43, 61syl3anc 1371 . . . . . . . 8 (𝜑 → (𝐺(∥r𝑃)𝐹𝐹 = ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)))
6359, 62mpbid 231 . . . . . . 7 (𝜑𝐹 = ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))
6463eqcomd 2743 . . . . . 6 (𝜑 → ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) = 𝐹)
6510ply1crng 21521 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
6619, 65syl 17 . . . . . . . 8 (𝜑𝑃 ∈ CRing)
67 crngring 19930 . . . . . . . 8 (𝑃 ∈ CRing → 𝑃 ∈ Ring)
6866, 67syl 17 . . . . . . 7 (𝜑𝑃 ∈ Ring)
6910, 11, 36mon1pcl 25461 . . . . . . . 8 (𝐺 ∈ (Monic1p𝑅) → 𝐺𝐵)
7040, 69syl 17 . . . . . . 7 (𝜑𝐺𝐵)
7111, 60, 52ringlz 19964 . . . . . . 7 ((𝑃 ∈ Ring ∧ 𝐺𝐵) → ( 0 (.r𝑃)𝐺) = 0 )
7268, 70, 71syl2anc 584 . . . . . 6 (𝜑 → ( 0 (.r𝑃)𝐺) = 0 )
7355, 64, 723netr4d 3019 . . . . 5 (𝜑 → ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) ≠ ( 0 (.r𝑃)𝐺))
74 oveq1 7358 . . . . . 6 ((𝐹(quot1p𝑅)𝐺) = 0 → ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) = ( 0 (.r𝑃)𝐺))
7574necon3i 2974 . . . . 5 (((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) ≠ ( 0 (.r𝑃)𝐺) → (𝐹(quot1p𝑅)𝐺) ≠ 0 )
7673, 75syl 17 . . . 4 (𝜑 → (𝐹(quot1p𝑅)𝐺) ≠ 0 )
7737, 10, 52, 11deg1nn0cl 25405 . . . 4 ((𝑅 ∈ Ring ∧ (𝐹(quot1p𝑅)𝐺) ∈ 𝐵 ∧ (𝐹(quot1p𝑅)𝐺) ≠ 0 ) → (𝐷‘(𝐹(quot1p𝑅)𝐺)) ∈ ℕ0)
788, 46, 76, 77syl3anc 1371 . . 3 (𝜑 → (𝐷‘(𝐹(quot1p𝑅)𝐺)) ∈ ℕ0)
7978nn0cnd 12433 . 2 (𝜑 → (𝐷‘(𝐹(quot1p𝑅)𝐺)) ∈ ℂ)
8048nn0cnd 12433 . 2 (𝜑𝑁 ∈ ℂ)
8111, 60crngcom 19936 . . . . . . 7 ((𝑃 ∈ CRing ∧ (𝐹(quot1p𝑅)𝐺) ∈ 𝐵𝐺𝐵) → ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) = (𝐺(.r𝑃)(𝐹(quot1p𝑅)𝐺)))
8266, 46, 70, 81syl3anc 1371 . . . . . 6 (𝜑 → ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) = (𝐺(.r𝑃)(𝐹(quot1p𝑅)𝐺)))
8363, 82eqtrd 2777 . . . . 5 (𝜑𝐹 = (𝐺(.r𝑃)(𝐹(quot1p𝑅)𝐺)))
8483fveq2d 6843 . . . 4 (𝜑 → (𝐷𝐹) = (𝐷‘(𝐺(.r𝑃)(𝐹(quot1p𝑅)𝐺))))
85 eqid 2737 . . . . 5 (RLReg‘𝑅) = (RLReg‘𝑅)
8639simp2d 1143 . . . . . . 7 (𝜑 → (𝐷𝐺) = 1)
87 1nn0 12387 . . . . . . 7 1 ∈ ℕ0
8886, 87eqeltrdi 2846 . . . . . 6 (𝜑 → (𝐷𝐺) ∈ ℕ0)
8937, 10, 52, 11deg1nn0clb 25407 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (𝐺0 ↔ (𝐷𝐺) ∈ ℕ0))
908, 70, 89syl2anc 584 . . . . . 6 (𝜑 → (𝐺0 ↔ (𝐷𝐺) ∈ ℕ0))
9188, 90mpbird 256 . . . . 5 (𝜑𝐺0 )
92 eqid 2737 . . . . . . . 8 (Unit‘𝑅) = (Unit‘𝑅)
9385, 92unitrrg 20716 . . . . . . 7 (𝑅 ∈ Ring → (Unit‘𝑅) ⊆ (RLReg‘𝑅))
948, 93syl 17 . . . . . 6 (𝜑 → (Unit‘𝑅) ⊆ (RLReg‘𝑅))
9537, 92, 41uc1pldg 25465 . . . . . . 7 (𝐺 ∈ (Unic1p𝑅) → ((coe1𝐺)‘(𝐷𝐺)) ∈ (Unit‘𝑅))
9643, 95syl 17 . . . . . 6 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ (Unit‘𝑅))
9794, 96sseldd 3943 . . . . 5 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ (RLReg‘𝑅))
9837, 10, 85, 11, 60, 52, 8, 70, 91, 97, 46, 76deg1mul2 25431 . . . 4 (𝜑 → (𝐷‘(𝐺(.r𝑃)(𝐹(quot1p𝑅)𝐺))) = ((𝐷𝐺) + (𝐷‘(𝐹(quot1p𝑅)𝐺))))
9984, 47, 983eqtr3d 2785 . . 3 (𝜑 → (𝑁 + 1) = ((𝐷𝐺) + (𝐷‘(𝐹(quot1p𝑅)𝐺))))
100 ax-1cn 11067 . . . 4 1 ∈ ℂ
101 addcom 11299 . . . 4 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 + 1) = (1 + 𝑁))
10280, 100, 101sylancl 586 . . 3 (𝜑 → (𝑁 + 1) = (1 + 𝑁))
10386oveq1d 7366 . . 3 (𝜑 → ((𝐷𝐺) + (𝐷‘(𝐹(quot1p𝑅)𝐺))) = (1 + (𝐷‘(𝐹(quot1p𝑅)𝐺))))
10499, 102, 1033eqtr3rd 2786 . 2 (𝜑 → (1 + (𝐷‘(𝐹(quot1p𝑅)𝐺))) = (1 + 𝑁))
1051, 79, 80, 104addcanad 11318 1 (𝜑 → (𝐷‘(𝐹(quot1p𝑅)𝐺)) = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2941  Vcvv 3443  wss 3908  {csn 4584   class class class wbr 5103  ccnv 5630  cima 5634   Fn wfn 6488  wf 6489  cfv 6493  (class class class)co 7351  cc 11007  1c1 11010   + caddc 11012  0cn0 12371  Basecbs 17043  .rcmulr 17094  0gc0g 17281  s cpws 17288  -gcsg 18710  Ringcrg 19918  CRingccrg 19919  rcdsr 20020  Unitcui 20021   RingHom crh 20096  NzRingcnzr 20680  RLRegcrlreg 20702  Domncdomn 20703  IDomncidom 20704  algSccascl 21211  var1cv1 21499  Poly1cpl1 21500  coe1cco1 21501  eval1ce1 21632   deg1 cdg1 25368  Monic1pcmn1 25442  Unic1pcuc1p 25443  quot1pcq1p 25444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7664  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-tp 4589  df-op 4591  df-uni 4864  df-int 4906  df-iun 4954  df-iin 4955  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-se 5587  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-isom 6502  df-riota 7307  df-ov 7354  df-oprab 7355  df-mpo 7356  df-of 7609  df-ofr 7610  df-om 7795  df-1st 7913  df-2nd 7914  df-supp 8085  df-tpos 8149  df-frecs 8204  df-wrecs 8235  df-recs 8309  df-rdg 8348  df-1o 8404  df-er 8606  df-map 8725  df-pm 8726  df-ixp 8794  df-en 8842  df-dom 8843  df-sdom 8844  df-fin 8845  df-fsupp 9264  df-sup 9336  df-oi 9404  df-card 9833  df-pnf 11149  df-mnf 11150  df-xr 11151  df-ltxr 11152  df-le 11153  df-sub 11345  df-neg 11346  df-nn 12112  df-2 12174  df-3 12175  df-4 12176  df-5 12177  df-6 12178  df-7 12179  df-8 12180  df-9 12181  df-n0 12372  df-z 12458  df-dec 12577  df-uz 12722  df-fz 13379  df-fzo 13522  df-seq 13861  df-hash 14185  df-struct 16979  df-sets 16996  df-slot 17014  df-ndx 17026  df-base 17044  df-ress 17073  df-plusg 17106  df-mulr 17107  df-starv 17108  df-sca 17109  df-vsca 17110  df-ip 17111  df-tset 17112  df-ple 17113  df-ds 17115  df-unif 17116  df-hom 17117  df-cco 17118  df-0g 17283  df-gsum 17284  df-prds 17289  df-pws 17291  df-mre 17426  df-mrc 17427  df-acs 17429  df-mgm 18457  df-sgrp 18506  df-mnd 18517  df-mhm 18561  df-submnd 18562  df-grp 18711  df-minusg 18712  df-sbg 18713  df-mulg 18832  df-subg 18884  df-ghm 18965  df-cntz 19056  df-cmn 19523  df-abl 19524  df-mgp 19856  df-ur 19873  df-srg 19877  df-ring 19920  df-cring 19921  df-oppr 20002  df-dvdsr 20023  df-unit 20024  df-invr 20054  df-rnghom 20099  df-subrg 20173  df-lmod 20277  df-lss 20346  df-lsp 20386  df-nzr 20681  df-rlreg 20706  df-domn 20707  df-idom 20708  df-cnfld 20750  df-assa 21212  df-asp 21213  df-ascl 21214  df-psr 21264  df-mvr 21265  df-mpl 21266  df-opsr 21268  df-evls 21434  df-evl 21435  df-psr1 21503  df-vr1 21504  df-ply1 21505  df-coe1 21506  df-evl1 21634  df-mdeg 25369  df-deg1 25370  df-mon1 25447  df-uc1p 25448  df-q1p 25449  df-r1p 25450
This theorem is referenced by:  fta1glem2  25483
  Copyright terms: Public domain W3C validator