MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fta1glem1 Structured version   Visualization version   GIF version

Theorem fta1glem1 25530
Description: Lemma for fta1g 25532. (Contributed by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
fta1g.p 𝑃 = (Poly1𝑅)
fta1g.b 𝐵 = (Base‘𝑃)
fta1g.d 𝐷 = ( deg1𝑅)
fta1g.o 𝑂 = (eval1𝑅)
fta1g.w 𝑊 = (0g𝑅)
fta1g.z 0 = (0g𝑃)
fta1g.1 (𝜑𝑅 ∈ IDomn)
fta1g.2 (𝜑𝐹𝐵)
fta1glem.k 𝐾 = (Base‘𝑅)
fta1glem.x 𝑋 = (var1𝑅)
fta1glem.m = (-g𝑃)
fta1glem.a 𝐴 = (algSc‘𝑃)
fta1glem.g 𝐺 = (𝑋 (𝐴𝑇))
fta1glem.3 (𝜑𝑁 ∈ ℕ0)
fta1glem.4 (𝜑 → (𝐷𝐹) = (𝑁 + 1))
fta1glem.5 (𝜑𝑇 ∈ ((𝑂𝐹) “ {𝑊}))
Assertion
Ref Expression
fta1glem1 (𝜑 → (𝐷‘(𝐹(quot1p𝑅)𝐺)) = 𝑁)

Proof of Theorem fta1glem1
StepHypRef Expression
1 1cnd 11150 . 2 (𝜑 → 1 ∈ ℂ)
2 fta1g.1 . . . . . 6 (𝜑𝑅 ∈ IDomn)
3 isidom 20774 . . . . . . 7 (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
4 domnnzr 20765 . . . . . . 7 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
53, 4simplbiim 505 . . . . . 6 (𝑅 ∈ IDomn → 𝑅 ∈ NzRing)
62, 5syl 17 . . . . 5 (𝜑𝑅 ∈ NzRing)
7 nzrring 20731 . . . . 5 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
86, 7syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
9 fta1g.2 . . . . 5 (𝜑𝐹𝐵)
10 fta1g.p . . . . . . . 8 𝑃 = (Poly1𝑅)
11 fta1g.b . . . . . . . 8 𝐵 = (Base‘𝑃)
12 fta1glem.k . . . . . . . 8 𝐾 = (Base‘𝑅)
13 fta1glem.x . . . . . . . 8 𝑋 = (var1𝑅)
14 fta1glem.m . . . . . . . 8 = (-g𝑃)
15 fta1glem.a . . . . . . . 8 𝐴 = (algSc‘𝑃)
16 fta1glem.g . . . . . . . 8 𝐺 = (𝑋 (𝐴𝑇))
17 fta1g.o . . . . . . . 8 𝑂 = (eval1𝑅)
183simplbi 498 . . . . . . . . 9 (𝑅 ∈ IDomn → 𝑅 ∈ CRing)
192, 18syl 17 . . . . . . . 8 (𝜑𝑅 ∈ CRing)
20 fta1glem.5 . . . . . . . . . 10 (𝜑𝑇 ∈ ((𝑂𝐹) “ {𝑊}))
21 eqid 2736 . . . . . . . . . . . . 13 (𝑅s 𝐾) = (𝑅s 𝐾)
22 eqid 2736 . . . . . . . . . . . . 13 (Base‘(𝑅s 𝐾)) = (Base‘(𝑅s 𝐾))
2312fvexi 6856 . . . . . . . . . . . . . 14 𝐾 ∈ V
2423a1i 11 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ V)
2517, 10, 21, 12evl1rhm 21698 . . . . . . . . . . . . . . . 16 (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)))
2619, 25syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)))
2711, 22rhmf 20158 . . . . . . . . . . . . . . 15 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)) → 𝑂:𝐵⟶(Base‘(𝑅s 𝐾)))
2826, 27syl 17 . . . . . . . . . . . . . 14 (𝜑𝑂:𝐵⟶(Base‘(𝑅s 𝐾)))
2928, 9ffvelcdmd 7036 . . . . . . . . . . . . 13 (𝜑 → (𝑂𝐹) ∈ (Base‘(𝑅s 𝐾)))
3021, 12, 22, 2, 24, 29pwselbas 17371 . . . . . . . . . . . 12 (𝜑 → (𝑂𝐹):𝐾𝐾)
3130ffnd 6669 . . . . . . . . . . 11 (𝜑 → (𝑂𝐹) Fn 𝐾)
32 fniniseg 7010 . . . . . . . . . . 11 ((𝑂𝐹) Fn 𝐾 → (𝑇 ∈ ((𝑂𝐹) “ {𝑊}) ↔ (𝑇𝐾 ∧ ((𝑂𝐹)‘𝑇) = 𝑊)))
3331, 32syl 17 . . . . . . . . . 10 (𝜑 → (𝑇 ∈ ((𝑂𝐹) “ {𝑊}) ↔ (𝑇𝐾 ∧ ((𝑂𝐹)‘𝑇) = 𝑊)))
3420, 33mpbid 231 . . . . . . . . 9 (𝜑 → (𝑇𝐾 ∧ ((𝑂𝐹)‘𝑇) = 𝑊))
3534simpld 495 . . . . . . . 8 (𝜑𝑇𝐾)
36 eqid 2736 . . . . . . . 8 (Monic1p𝑅) = (Monic1p𝑅)
37 fta1g.d . . . . . . . 8 𝐷 = ( deg1𝑅)
38 fta1g.w . . . . . . . 8 𝑊 = (0g𝑅)
3910, 11, 12, 13, 14, 15, 16, 17, 6, 19, 35, 36, 37, 38ply1remlem 25527 . . . . . . 7 (𝜑 → (𝐺 ∈ (Monic1p𝑅) ∧ (𝐷𝐺) = 1 ∧ ((𝑂𝐺) “ {𝑊}) = {𝑇}))
4039simp1d 1142 . . . . . 6 (𝜑𝐺 ∈ (Monic1p𝑅))
41 eqid 2736 . . . . . . 7 (Unic1p𝑅) = (Unic1p𝑅)
4241, 36mon1puc1p 25515 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐺 ∈ (Monic1p𝑅)) → 𝐺 ∈ (Unic1p𝑅))
438, 40, 42syl2anc 584 . . . . 5 (𝜑𝐺 ∈ (Unic1p𝑅))
44 eqid 2736 . . . . . 6 (quot1p𝑅) = (quot1p𝑅)
4544, 10, 11, 41q1pcl 25520 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺 ∈ (Unic1p𝑅)) → (𝐹(quot1p𝑅)𝐺) ∈ 𝐵)
468, 9, 43, 45syl3anc 1371 . . . 4 (𝜑 → (𝐹(quot1p𝑅)𝐺) ∈ 𝐵)
47 fta1glem.4 . . . . . . . 8 (𝜑 → (𝐷𝐹) = (𝑁 + 1))
48 fta1glem.3 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
49 peano2nn0 12453 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
5048, 49syl 17 . . . . . . . 8 (𝜑 → (𝑁 + 1) ∈ ℕ0)
5147, 50eqeltrd 2838 . . . . . . 7 (𝜑 → (𝐷𝐹) ∈ ℕ0)
52 fta1g.z . . . . . . . . 9 0 = (0g𝑃)
5337, 10, 52, 11deg1nn0clb 25455 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵) → (𝐹0 ↔ (𝐷𝐹) ∈ ℕ0))
548, 9, 53syl2anc 584 . . . . . . 7 (𝜑 → (𝐹0 ↔ (𝐷𝐹) ∈ ℕ0))
5551, 54mpbird 256 . . . . . 6 (𝜑𝐹0 )
5634simprd 496 . . . . . . . . 9 (𝜑 → ((𝑂𝐹)‘𝑇) = 𝑊)
57 eqid 2736 . . . . . . . . . 10 (∥r𝑃) = (∥r𝑃)
5810, 11, 12, 13, 14, 15, 16, 17, 6, 19, 35, 9, 38, 57facth1 25529 . . . . . . . . 9 (𝜑 → (𝐺(∥r𝑃)𝐹 ↔ ((𝑂𝐹)‘𝑇) = 𝑊))
5956, 58mpbird 256 . . . . . . . 8 (𝜑𝐺(∥r𝑃)𝐹)
60 eqid 2736 . . . . . . . . . 10 (.r𝑃) = (.r𝑃)
6110, 57, 11, 41, 60, 44dvdsq1p 25525 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺 ∈ (Unic1p𝑅)) → (𝐺(∥r𝑃)𝐹𝐹 = ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)))
628, 9, 43, 61syl3anc 1371 . . . . . . . 8 (𝜑 → (𝐺(∥r𝑃)𝐹𝐹 = ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)))
6359, 62mpbid 231 . . . . . . 7 (𝜑𝐹 = ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))
6463eqcomd 2742 . . . . . 6 (𝜑 → ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) = 𝐹)
6510ply1crng 21569 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
6619, 65syl 17 . . . . . . . 8 (𝜑𝑃 ∈ CRing)
67 crngring 19976 . . . . . . . 8 (𝑃 ∈ CRing → 𝑃 ∈ Ring)
6866, 67syl 17 . . . . . . 7 (𝜑𝑃 ∈ Ring)
6910, 11, 36mon1pcl 25509 . . . . . . . 8 (𝐺 ∈ (Monic1p𝑅) → 𝐺𝐵)
7040, 69syl 17 . . . . . . 7 (𝜑𝐺𝐵)
7111, 60, 52ringlz 20011 . . . . . . 7 ((𝑃 ∈ Ring ∧ 𝐺𝐵) → ( 0 (.r𝑃)𝐺) = 0 )
7268, 70, 71syl2anc 584 . . . . . 6 (𝜑 → ( 0 (.r𝑃)𝐺) = 0 )
7355, 64, 723netr4d 3021 . . . . 5 (𝜑 → ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) ≠ ( 0 (.r𝑃)𝐺))
74 oveq1 7364 . . . . . 6 ((𝐹(quot1p𝑅)𝐺) = 0 → ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) = ( 0 (.r𝑃)𝐺))
7574necon3i 2976 . . . . 5 (((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) ≠ ( 0 (.r𝑃)𝐺) → (𝐹(quot1p𝑅)𝐺) ≠ 0 )
7673, 75syl 17 . . . 4 (𝜑 → (𝐹(quot1p𝑅)𝐺) ≠ 0 )
7737, 10, 52, 11deg1nn0cl 25453 . . . 4 ((𝑅 ∈ Ring ∧ (𝐹(quot1p𝑅)𝐺) ∈ 𝐵 ∧ (𝐹(quot1p𝑅)𝐺) ≠ 0 ) → (𝐷‘(𝐹(quot1p𝑅)𝐺)) ∈ ℕ0)
788, 46, 76, 77syl3anc 1371 . . 3 (𝜑 → (𝐷‘(𝐹(quot1p𝑅)𝐺)) ∈ ℕ0)
7978nn0cnd 12475 . 2 (𝜑 → (𝐷‘(𝐹(quot1p𝑅)𝐺)) ∈ ℂ)
8048nn0cnd 12475 . 2 (𝜑𝑁 ∈ ℂ)
8111, 60crngcom 19982 . . . . . . 7 ((𝑃 ∈ CRing ∧ (𝐹(quot1p𝑅)𝐺) ∈ 𝐵𝐺𝐵) → ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) = (𝐺(.r𝑃)(𝐹(quot1p𝑅)𝐺)))
8266, 46, 70, 81syl3anc 1371 . . . . . 6 (𝜑 → ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) = (𝐺(.r𝑃)(𝐹(quot1p𝑅)𝐺)))
8363, 82eqtrd 2776 . . . . 5 (𝜑𝐹 = (𝐺(.r𝑃)(𝐹(quot1p𝑅)𝐺)))
8483fveq2d 6846 . . . 4 (𝜑 → (𝐷𝐹) = (𝐷‘(𝐺(.r𝑃)(𝐹(quot1p𝑅)𝐺))))
85 eqid 2736 . . . . 5 (RLReg‘𝑅) = (RLReg‘𝑅)
8639simp2d 1143 . . . . . . 7 (𝜑 → (𝐷𝐺) = 1)
87 1nn0 12429 . . . . . . 7 1 ∈ ℕ0
8886, 87eqeltrdi 2846 . . . . . 6 (𝜑 → (𝐷𝐺) ∈ ℕ0)
8937, 10, 52, 11deg1nn0clb 25455 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (𝐺0 ↔ (𝐷𝐺) ∈ ℕ0))
908, 70, 89syl2anc 584 . . . . . 6 (𝜑 → (𝐺0 ↔ (𝐷𝐺) ∈ ℕ0))
9188, 90mpbird 256 . . . . 5 (𝜑𝐺0 )
92 eqid 2736 . . . . . . . 8 (Unit‘𝑅) = (Unit‘𝑅)
9385, 92unitrrg 20763 . . . . . . 7 (𝑅 ∈ Ring → (Unit‘𝑅) ⊆ (RLReg‘𝑅))
948, 93syl 17 . . . . . 6 (𝜑 → (Unit‘𝑅) ⊆ (RLReg‘𝑅))
9537, 92, 41uc1pldg 25513 . . . . . . 7 (𝐺 ∈ (Unic1p𝑅) → ((coe1𝐺)‘(𝐷𝐺)) ∈ (Unit‘𝑅))
9643, 95syl 17 . . . . . 6 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ (Unit‘𝑅))
9794, 96sseldd 3945 . . . . 5 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ (RLReg‘𝑅))
9837, 10, 85, 11, 60, 52, 8, 70, 91, 97, 46, 76deg1mul2 25479 . . . 4 (𝜑 → (𝐷‘(𝐺(.r𝑃)(𝐹(quot1p𝑅)𝐺))) = ((𝐷𝐺) + (𝐷‘(𝐹(quot1p𝑅)𝐺))))
9984, 47, 983eqtr3d 2784 . . 3 (𝜑 → (𝑁 + 1) = ((𝐷𝐺) + (𝐷‘(𝐹(quot1p𝑅)𝐺))))
100 ax-1cn 11109 . . . 4 1 ∈ ℂ
101 addcom 11341 . . . 4 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 + 1) = (1 + 𝑁))
10280, 100, 101sylancl 586 . . 3 (𝜑 → (𝑁 + 1) = (1 + 𝑁))
10386oveq1d 7372 . . 3 (𝜑 → ((𝐷𝐺) + (𝐷‘(𝐹(quot1p𝑅)𝐺))) = (1 + (𝐷‘(𝐹(quot1p𝑅)𝐺))))
10499, 102, 1033eqtr3rd 2785 . 2 (𝜑 → (1 + (𝐷‘(𝐹(quot1p𝑅)𝐺))) = (1 + 𝑁))
1051, 79, 80, 104addcanad 11360 1 (𝜑 → (𝐷‘(𝐹(quot1p𝑅)𝐺)) = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  Vcvv 3445  wss 3910  {csn 4586   class class class wbr 5105  ccnv 5632  cima 5636   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  1c1 11052   + caddc 11054  0cn0 12413  Basecbs 17083  .rcmulr 17134  0gc0g 17321  s cpws 17328  -gcsg 18750  Ringcrg 19964  CRingccrg 19965  rcdsr 20067  Unitcui 20068   RingHom crh 20143  NzRingcnzr 20727  RLRegcrlreg 20749  Domncdomn 20750  IDomncidom 20751  algSccascl 21258  var1cv1 21547  Poly1cpl1 21548  coe1cco1 21549  eval1ce1 21680   deg1 cdg1 25416  Monic1pcmn1 25490  Unic1pcuc1p 25491  quot1pcq1p 25492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-ofr 7618  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-0g 17323  df-gsum 17324  df-prds 17329  df-pws 17331  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-ghm 19006  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-srg 19918  df-ring 19966  df-cring 19967  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-rnghom 20146  df-subrg 20220  df-lmod 20324  df-lss 20393  df-lsp 20433  df-nzr 20728  df-rlreg 20753  df-domn 20754  df-idom 20755  df-cnfld 20797  df-assa 21259  df-asp 21260  df-ascl 21261  df-psr 21311  df-mvr 21312  df-mpl 21313  df-opsr 21315  df-evls 21482  df-evl 21483  df-psr1 21551  df-vr1 21552  df-ply1 21553  df-coe1 21554  df-evl1 21682  df-mdeg 25417  df-deg1 25418  df-mon1 25495  df-uc1p 25496  df-q1p 25497  df-r1p 25498
This theorem is referenced by:  fta1glem2  25531
  Copyright terms: Public domain W3C validator