MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fta1glem1 Structured version   Visualization version   GIF version

Theorem fta1glem1 26080
Description: Lemma for fta1g 26082. (Contributed by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
fta1g.p 𝑃 = (Poly1𝑅)
fta1g.b 𝐵 = (Base‘𝑃)
fta1g.d 𝐷 = (deg1𝑅)
fta1g.o 𝑂 = (eval1𝑅)
fta1g.w 𝑊 = (0g𝑅)
fta1g.z 0 = (0g𝑃)
fta1g.1 (𝜑𝑅 ∈ IDomn)
fta1g.2 (𝜑𝐹𝐵)
fta1glem.k 𝐾 = (Base‘𝑅)
fta1glem.x 𝑋 = (var1𝑅)
fta1glem.m = (-g𝑃)
fta1glem.a 𝐴 = (algSc‘𝑃)
fta1glem.g 𝐺 = (𝑋 (𝐴𝑇))
fta1glem.3 (𝜑𝑁 ∈ ℕ0)
fta1glem.4 (𝜑 → (𝐷𝐹) = (𝑁 + 1))
fta1glem.5 (𝜑𝑇 ∈ ((𝑂𝐹) “ {𝑊}))
Assertion
Ref Expression
fta1glem1 (𝜑 → (𝐷‘(𝐹(quot1p𝑅)𝐺)) = 𝑁)

Proof of Theorem fta1glem1
StepHypRef Expression
1 1cnd 11176 . 2 (𝜑 → 1 ∈ ℂ)
2 fta1g.1 . . . . . 6 (𝜑𝑅 ∈ IDomn)
3 isidom 20641 . . . . . . 7 (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
4 domnnzr 20622 . . . . . . 7 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
53, 4simplbiim 504 . . . . . 6 (𝑅 ∈ IDomn → 𝑅 ∈ NzRing)
62, 5syl 17 . . . . 5 (𝜑𝑅 ∈ NzRing)
7 nzrring 20432 . . . . 5 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
86, 7syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
9 fta1g.2 . . . . 5 (𝜑𝐹𝐵)
10 fta1g.p . . . . . . . 8 𝑃 = (Poly1𝑅)
11 fta1g.b . . . . . . . 8 𝐵 = (Base‘𝑃)
12 fta1glem.k . . . . . . . 8 𝐾 = (Base‘𝑅)
13 fta1glem.x . . . . . . . 8 𝑋 = (var1𝑅)
14 fta1glem.m . . . . . . . 8 = (-g𝑃)
15 fta1glem.a . . . . . . . 8 𝐴 = (algSc‘𝑃)
16 fta1glem.g . . . . . . . 8 𝐺 = (𝑋 (𝐴𝑇))
17 fta1g.o . . . . . . . 8 𝑂 = (eval1𝑅)
183simplbi 497 . . . . . . . . 9 (𝑅 ∈ IDomn → 𝑅 ∈ CRing)
192, 18syl 17 . . . . . . . 8 (𝜑𝑅 ∈ CRing)
20 fta1glem.5 . . . . . . . . . 10 (𝜑𝑇 ∈ ((𝑂𝐹) “ {𝑊}))
21 eqid 2730 . . . . . . . . . . . . 13 (𝑅s 𝐾) = (𝑅s 𝐾)
22 eqid 2730 . . . . . . . . . . . . 13 (Base‘(𝑅s 𝐾)) = (Base‘(𝑅s 𝐾))
2312fvexi 6875 . . . . . . . . . . . . . 14 𝐾 ∈ V
2423a1i 11 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ V)
2517, 10, 21, 12evl1rhm 22226 . . . . . . . . . . . . . . . 16 (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)))
2619, 25syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)))
2711, 22rhmf 20401 . . . . . . . . . . . . . . 15 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)) → 𝑂:𝐵⟶(Base‘(𝑅s 𝐾)))
2826, 27syl 17 . . . . . . . . . . . . . 14 (𝜑𝑂:𝐵⟶(Base‘(𝑅s 𝐾)))
2928, 9ffvelcdmd 7060 . . . . . . . . . . . . 13 (𝜑 → (𝑂𝐹) ∈ (Base‘(𝑅s 𝐾)))
3021, 12, 22, 2, 24, 29pwselbas 17459 . . . . . . . . . . . 12 (𝜑 → (𝑂𝐹):𝐾𝐾)
3130ffnd 6692 . . . . . . . . . . 11 (𝜑 → (𝑂𝐹) Fn 𝐾)
32 fniniseg 7035 . . . . . . . . . . 11 ((𝑂𝐹) Fn 𝐾 → (𝑇 ∈ ((𝑂𝐹) “ {𝑊}) ↔ (𝑇𝐾 ∧ ((𝑂𝐹)‘𝑇) = 𝑊)))
3331, 32syl 17 . . . . . . . . . 10 (𝜑 → (𝑇 ∈ ((𝑂𝐹) “ {𝑊}) ↔ (𝑇𝐾 ∧ ((𝑂𝐹)‘𝑇) = 𝑊)))
3420, 33mpbid 232 . . . . . . . . 9 (𝜑 → (𝑇𝐾 ∧ ((𝑂𝐹)‘𝑇) = 𝑊))
3534simpld 494 . . . . . . . 8 (𝜑𝑇𝐾)
36 eqid 2730 . . . . . . . 8 (Monic1p𝑅) = (Monic1p𝑅)
37 fta1g.d . . . . . . . 8 𝐷 = (deg1𝑅)
38 fta1g.w . . . . . . . 8 𝑊 = (0g𝑅)
3910, 11, 12, 13, 14, 15, 16, 17, 6, 19, 35, 36, 37, 38ply1remlem 26077 . . . . . . 7 (𝜑 → (𝐺 ∈ (Monic1p𝑅) ∧ (𝐷𝐺) = 1 ∧ ((𝑂𝐺) “ {𝑊}) = {𝑇}))
4039simp1d 1142 . . . . . 6 (𝜑𝐺 ∈ (Monic1p𝑅))
41 eqid 2730 . . . . . . 7 (Unic1p𝑅) = (Unic1p𝑅)
4241, 36mon1puc1p 26063 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐺 ∈ (Monic1p𝑅)) → 𝐺 ∈ (Unic1p𝑅))
438, 40, 42syl2anc 584 . . . . 5 (𝜑𝐺 ∈ (Unic1p𝑅))
44 eqid 2730 . . . . . 6 (quot1p𝑅) = (quot1p𝑅)
4544, 10, 11, 41q1pcl 26069 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺 ∈ (Unic1p𝑅)) → (𝐹(quot1p𝑅)𝐺) ∈ 𝐵)
468, 9, 43, 45syl3anc 1373 . . . 4 (𝜑 → (𝐹(quot1p𝑅)𝐺) ∈ 𝐵)
47 fta1glem.4 . . . . . . . 8 (𝜑 → (𝐷𝐹) = (𝑁 + 1))
48 fta1glem.3 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
49 peano2nn0 12489 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
5048, 49syl 17 . . . . . . . 8 (𝜑 → (𝑁 + 1) ∈ ℕ0)
5147, 50eqeltrd 2829 . . . . . . 7 (𝜑 → (𝐷𝐹) ∈ ℕ0)
52 fta1g.z . . . . . . . . 9 0 = (0g𝑃)
5337, 10, 52, 11deg1nn0clb 26002 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵) → (𝐹0 ↔ (𝐷𝐹) ∈ ℕ0))
548, 9, 53syl2anc 584 . . . . . . 7 (𝜑 → (𝐹0 ↔ (𝐷𝐹) ∈ ℕ0))
5551, 54mpbird 257 . . . . . 6 (𝜑𝐹0 )
5634simprd 495 . . . . . . . . 9 (𝜑 → ((𝑂𝐹)‘𝑇) = 𝑊)
57 eqid 2730 . . . . . . . . . 10 (∥r𝑃) = (∥r𝑃)
5810, 11, 12, 13, 14, 15, 16, 17, 6, 19, 35, 9, 38, 57facth1 26079 . . . . . . . . 9 (𝜑 → (𝐺(∥r𝑃)𝐹 ↔ ((𝑂𝐹)‘𝑇) = 𝑊))
5956, 58mpbird 257 . . . . . . . 8 (𝜑𝐺(∥r𝑃)𝐹)
60 eqid 2730 . . . . . . . . . 10 (.r𝑃) = (.r𝑃)
6110, 57, 11, 41, 60, 44dvdsq1p 26075 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺 ∈ (Unic1p𝑅)) → (𝐺(∥r𝑃)𝐹𝐹 = ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)))
628, 9, 43, 61syl3anc 1373 . . . . . . . 8 (𝜑 → (𝐺(∥r𝑃)𝐹𝐹 = ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)))
6359, 62mpbid 232 . . . . . . 7 (𝜑𝐹 = ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))
6463eqcomd 2736 . . . . . 6 (𝜑 → ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) = 𝐹)
6510ply1crng 22090 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
6619, 65syl 17 . . . . . . . 8 (𝜑𝑃 ∈ CRing)
67 crngring 20161 . . . . . . . 8 (𝑃 ∈ CRing → 𝑃 ∈ Ring)
6866, 67syl 17 . . . . . . 7 (𝜑𝑃 ∈ Ring)
6910, 11, 36mon1pcl 26057 . . . . . . . 8 (𝐺 ∈ (Monic1p𝑅) → 𝐺𝐵)
7040, 69syl 17 . . . . . . 7 (𝜑𝐺𝐵)
7111, 60, 52ringlz 20209 . . . . . . 7 ((𝑃 ∈ Ring ∧ 𝐺𝐵) → ( 0 (.r𝑃)𝐺) = 0 )
7268, 70, 71syl2anc 584 . . . . . 6 (𝜑 → ( 0 (.r𝑃)𝐺) = 0 )
7355, 64, 723netr4d 3003 . . . . 5 (𝜑 → ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) ≠ ( 0 (.r𝑃)𝐺))
74 oveq1 7397 . . . . . 6 ((𝐹(quot1p𝑅)𝐺) = 0 → ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) = ( 0 (.r𝑃)𝐺))
7574necon3i 2958 . . . . 5 (((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) ≠ ( 0 (.r𝑃)𝐺) → (𝐹(quot1p𝑅)𝐺) ≠ 0 )
7673, 75syl 17 . . . 4 (𝜑 → (𝐹(quot1p𝑅)𝐺) ≠ 0 )
7737, 10, 52, 11deg1nn0cl 26000 . . . 4 ((𝑅 ∈ Ring ∧ (𝐹(quot1p𝑅)𝐺) ∈ 𝐵 ∧ (𝐹(quot1p𝑅)𝐺) ≠ 0 ) → (𝐷‘(𝐹(quot1p𝑅)𝐺)) ∈ ℕ0)
788, 46, 76, 77syl3anc 1373 . . 3 (𝜑 → (𝐷‘(𝐹(quot1p𝑅)𝐺)) ∈ ℕ0)
7978nn0cnd 12512 . 2 (𝜑 → (𝐷‘(𝐹(quot1p𝑅)𝐺)) ∈ ℂ)
8048nn0cnd 12512 . 2 (𝜑𝑁 ∈ ℂ)
8111, 60crngcom 20167 . . . . . . 7 ((𝑃 ∈ CRing ∧ (𝐹(quot1p𝑅)𝐺) ∈ 𝐵𝐺𝐵) → ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) = (𝐺(.r𝑃)(𝐹(quot1p𝑅)𝐺)))
8266, 46, 70, 81syl3anc 1373 . . . . . 6 (𝜑 → ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) = (𝐺(.r𝑃)(𝐹(quot1p𝑅)𝐺)))
8363, 82eqtrd 2765 . . . . 5 (𝜑𝐹 = (𝐺(.r𝑃)(𝐹(quot1p𝑅)𝐺)))
8483fveq2d 6865 . . . 4 (𝜑 → (𝐷𝐹) = (𝐷‘(𝐺(.r𝑃)(𝐹(quot1p𝑅)𝐺))))
85 eqid 2730 . . . . 5 (RLReg‘𝑅) = (RLReg‘𝑅)
8639simp2d 1143 . . . . . . 7 (𝜑 → (𝐷𝐺) = 1)
87 1nn0 12465 . . . . . . 7 1 ∈ ℕ0
8886, 87eqeltrdi 2837 . . . . . 6 (𝜑 → (𝐷𝐺) ∈ ℕ0)
8937, 10, 52, 11deg1nn0clb 26002 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (𝐺0 ↔ (𝐷𝐺) ∈ ℕ0))
908, 70, 89syl2anc 584 . . . . . 6 (𝜑 → (𝐺0 ↔ (𝐷𝐺) ∈ ℕ0))
9188, 90mpbird 257 . . . . 5 (𝜑𝐺0 )
92 eqid 2730 . . . . . . . 8 (Unit‘𝑅) = (Unit‘𝑅)
9385, 92unitrrg 20619 . . . . . . 7 (𝑅 ∈ Ring → (Unit‘𝑅) ⊆ (RLReg‘𝑅))
948, 93syl 17 . . . . . 6 (𝜑 → (Unit‘𝑅) ⊆ (RLReg‘𝑅))
9537, 92, 41uc1pldg 26061 . . . . . . 7 (𝐺 ∈ (Unic1p𝑅) → ((coe1𝐺)‘(𝐷𝐺)) ∈ (Unit‘𝑅))
9643, 95syl 17 . . . . . 6 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ (Unit‘𝑅))
9794, 96sseldd 3950 . . . . 5 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ (RLReg‘𝑅))
9837, 10, 85, 11, 60, 52, 8, 70, 91, 97, 46, 76deg1mul2 26026 . . . 4 (𝜑 → (𝐷‘(𝐺(.r𝑃)(𝐹(quot1p𝑅)𝐺))) = ((𝐷𝐺) + (𝐷‘(𝐹(quot1p𝑅)𝐺))))
9984, 47, 983eqtr3d 2773 . . 3 (𝜑 → (𝑁 + 1) = ((𝐷𝐺) + (𝐷‘(𝐹(quot1p𝑅)𝐺))))
100 ax-1cn 11133 . . . 4 1 ∈ ℂ
101 addcom 11367 . . . 4 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 + 1) = (1 + 𝑁))
10280, 100, 101sylancl 586 . . 3 (𝜑 → (𝑁 + 1) = (1 + 𝑁))
10386oveq1d 7405 . . 3 (𝜑 → ((𝐷𝐺) + (𝐷‘(𝐹(quot1p𝑅)𝐺))) = (1 + (𝐷‘(𝐹(quot1p𝑅)𝐺))))
10499, 102, 1033eqtr3rd 2774 . 2 (𝜑 → (1 + (𝐷‘(𝐹(quot1p𝑅)𝐺))) = (1 + 𝑁))
1051, 79, 80, 104addcanad 11386 1 (𝜑 → (𝐷‘(𝐹(quot1p𝑅)𝐺)) = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  Vcvv 3450  wss 3917  {csn 4592   class class class wbr 5110  ccnv 5640  cima 5644   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  1c1 11076   + caddc 11078  0cn0 12449  Basecbs 17186  .rcmulr 17228  0gc0g 17409  s cpws 17416  -gcsg 18874  Ringcrg 20149  CRingccrg 20150  rcdsr 20270  Unitcui 20271   RingHom crh 20385  NzRingcnzr 20428  RLRegcrlreg 20607  Domncdomn 20608  IDomncidom 20609  algSccascl 21768  var1cv1 22067  Poly1cpl1 22068  coe1cco1 22069  eval1ce1 22208  deg1cdg1 25966  Monic1pcmn1 26038  Unic1pcuc1p 26039  quot1pcq1p 26040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-srg 20103  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-rhm 20388  df-nzr 20429  df-subrng 20462  df-subrg 20486  df-rlreg 20610  df-domn 20611  df-idom 20612  df-lmod 20775  df-lss 20845  df-lsp 20885  df-cnfld 21272  df-assa 21769  df-asp 21770  df-ascl 21771  df-psr 21825  df-mvr 21826  df-mpl 21827  df-opsr 21829  df-evls 21988  df-evl 21989  df-psr1 22071  df-vr1 22072  df-ply1 22073  df-coe1 22074  df-evl1 22210  df-mdeg 25967  df-deg1 25968  df-mon1 26043  df-uc1p 26044  df-q1p 26045  df-r1p 26046
This theorem is referenced by:  fta1glem2  26081
  Copyright terms: Public domain W3C validator