MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fta1glem2 Structured version   Visualization version   GIF version

Theorem fta1glem2 25236
Description: Lemma for fta1g 25237. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
fta1g.p 𝑃 = (Poly1𝑅)
fta1g.b 𝐵 = (Base‘𝑃)
fta1g.d 𝐷 = ( deg1𝑅)
fta1g.o 𝑂 = (eval1𝑅)
fta1g.w 𝑊 = (0g𝑅)
fta1g.z 0 = (0g𝑃)
fta1g.1 (𝜑𝑅 ∈ IDomn)
fta1g.2 (𝜑𝐹𝐵)
fta1glem.k 𝐾 = (Base‘𝑅)
fta1glem.x 𝑋 = (var1𝑅)
fta1glem.m = (-g𝑃)
fta1glem.a 𝐴 = (algSc‘𝑃)
fta1glem.g 𝐺 = (𝑋 (𝐴𝑇))
fta1glem.3 (𝜑𝑁 ∈ ℕ0)
fta1glem.4 (𝜑 → (𝐷𝐹) = (𝑁 + 1))
fta1glem.5 (𝜑𝑇 ∈ ((𝑂𝐹) “ {𝑊}))
fta1glem.6 (𝜑 → ∀𝑔𝐵 ((𝐷𝑔) = 𝑁 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))
Assertion
Ref Expression
fta1glem2 (𝜑 → (♯‘((𝑂𝐹) “ {𝑊})) ≤ (𝐷𝐹))
Distinct variable groups:   𝐵,𝑔   𝐷,𝑔   𝑔,𝐹   𝑔,𝑁   𝑔,𝑂   𝑔,𝐺   𝑃,𝑔   𝑅,𝑔   𝑔,𝑊
Allowed substitution hints:   𝜑(𝑔)   𝐴(𝑔)   𝑇(𝑔)   𝐾(𝑔)   (𝑔)   𝑋(𝑔)   0 (𝑔)

Proof of Theorem fta1glem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fta1glem.5 . . . . . . . . . . . . . . . . . 18 (𝜑𝑇 ∈ ((𝑂𝐹) “ {𝑊}))
2 eqid 2738 . . . . . . . . . . . . . . . . . . . . 21 (𝑅s 𝐾) = (𝑅s 𝐾)
3 fta1glem.k . . . . . . . . . . . . . . . . . . . . 21 𝐾 = (Base‘𝑅)
4 eqid 2738 . . . . . . . . . . . . . . . . . . . . 21 (Base‘(𝑅s 𝐾)) = (Base‘(𝑅s 𝐾))
5 fta1g.1 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑅 ∈ IDomn)
63fvexi 6770 . . . . . . . . . . . . . . . . . . . . . 22 𝐾 ∈ V
76a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐾 ∈ V)
8 isidom 20488 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
98simplbi 497 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑅 ∈ IDomn → 𝑅 ∈ CRing)
105, 9syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑅 ∈ CRing)
11 fta1g.o . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑂 = (eval1𝑅)
12 fta1g.p . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑃 = (Poly1𝑅)
1311, 12, 2, 3evl1rhm 21408 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)))
1410, 13syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)))
15 fta1g.b . . . . . . . . . . . . . . . . . . . . . . . 24 𝐵 = (Base‘𝑃)
1615, 4rhmf 19885 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)) → 𝑂:𝐵⟶(Base‘(𝑅s 𝐾)))
1714, 16syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑂:𝐵⟶(Base‘(𝑅s 𝐾)))
18 fta1g.2 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐹𝐵)
1917, 18ffvelrnd 6944 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑂𝐹) ∈ (Base‘(𝑅s 𝐾)))
202, 3, 4, 5, 7, 19pwselbas 17117 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑂𝐹):𝐾𝐾)
2120ffnd 6585 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑂𝐹) Fn 𝐾)
22 fniniseg 6919 . . . . . . . . . . . . . . . . . . 19 ((𝑂𝐹) Fn 𝐾 → (𝑇 ∈ ((𝑂𝐹) “ {𝑊}) ↔ (𝑇𝐾 ∧ ((𝑂𝐹)‘𝑇) = 𝑊)))
2321, 22syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑇 ∈ ((𝑂𝐹) “ {𝑊}) ↔ (𝑇𝐾 ∧ ((𝑂𝐹)‘𝑇) = 𝑊)))
241, 23mpbid 231 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑇𝐾 ∧ ((𝑂𝐹)‘𝑇) = 𝑊))
2524simprd 495 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑂𝐹)‘𝑇) = 𝑊)
26 fta1glem.x . . . . . . . . . . . . . . . . 17 𝑋 = (var1𝑅)
27 fta1glem.m . . . . . . . . . . . . . . . . 17 = (-g𝑃)
28 fta1glem.a . . . . . . . . . . . . . . . . 17 𝐴 = (algSc‘𝑃)
29 fta1glem.g . . . . . . . . . . . . . . . . 17 𝐺 = (𝑋 (𝐴𝑇))
308simprbi 496 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ IDomn → 𝑅 ∈ Domn)
31 domnnzr 20479 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
3230, 31syl 17 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ IDomn → 𝑅 ∈ NzRing)
335, 32syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑅 ∈ NzRing)
3424simpld 494 . . . . . . . . . . . . . . . . 17 (𝜑𝑇𝐾)
35 fta1g.w . . . . . . . . . . . . . . . . 17 𝑊 = (0g𝑅)
36 eqid 2738 . . . . . . . . . . . . . . . . 17 (∥r𝑃) = (∥r𝑃)
3712, 15, 3, 26, 27, 28, 29, 11, 33, 10, 34, 18, 35, 36facth1 25234 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐺(∥r𝑃)𝐹 ↔ ((𝑂𝐹)‘𝑇) = 𝑊))
3825, 37mpbird 256 . . . . . . . . . . . . . . 15 (𝜑𝐺(∥r𝑃)𝐹)
39 nzrring 20445 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
4033, 39syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑅 ∈ Ring)
41 eqid 2738 . . . . . . . . . . . . . . . . . . 19 (Monic1p𝑅) = (Monic1p𝑅)
42 fta1g.d . . . . . . . . . . . . . . . . . . 19 𝐷 = ( deg1𝑅)
4312, 15, 3, 26, 27, 28, 29, 11, 33, 10, 34, 41, 42, 35ply1remlem 25232 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐺 ∈ (Monic1p𝑅) ∧ (𝐷𝐺) = 1 ∧ ((𝑂𝐺) “ {𝑊}) = {𝑇}))
4443simp1d 1140 . . . . . . . . . . . . . . . . 17 (𝜑𝐺 ∈ (Monic1p𝑅))
45 eqid 2738 . . . . . . . . . . . . . . . . . 18 (Unic1p𝑅) = (Unic1p𝑅)
4645, 41mon1puc1p 25220 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝐺 ∈ (Monic1p𝑅)) → 𝐺 ∈ (Unic1p𝑅))
4740, 44, 46syl2anc 583 . . . . . . . . . . . . . . . 16 (𝜑𝐺 ∈ (Unic1p𝑅))
48 eqid 2738 . . . . . . . . . . . . . . . . 17 (.r𝑃) = (.r𝑃)
49 eqid 2738 . . . . . . . . . . . . . . . . 17 (quot1p𝑅) = (quot1p𝑅)
5012, 36, 15, 45, 48, 49dvdsq1p 25230 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺 ∈ (Unic1p𝑅)) → (𝐺(∥r𝑃)𝐹𝐹 = ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)))
5140, 18, 47, 50syl3anc 1369 . . . . . . . . . . . . . . 15 (𝜑 → (𝐺(∥r𝑃)𝐹𝐹 = ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)))
5238, 51mpbid 231 . . . . . . . . . . . . . 14 (𝜑𝐹 = ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))
5352fveq2d 6760 . . . . . . . . . . . . 13 (𝜑 → (𝑂𝐹) = (𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)))
5449, 12, 15, 45q1pcl 25225 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺 ∈ (Unic1p𝑅)) → (𝐹(quot1p𝑅)𝐺) ∈ 𝐵)
5540, 18, 47, 54syl3anc 1369 . . . . . . . . . . . . . 14 (𝜑 → (𝐹(quot1p𝑅)𝐺) ∈ 𝐵)
5612, 15, 41mon1pcl 25214 . . . . . . . . . . . . . . 15 (𝐺 ∈ (Monic1p𝑅) → 𝐺𝐵)
5744, 56syl 17 . . . . . . . . . . . . . 14 (𝜑𝐺𝐵)
58 eqid 2738 . . . . . . . . . . . . . . 15 (.r‘(𝑅s 𝐾)) = (.r‘(𝑅s 𝐾))
5915, 48, 58rhmmul 19886 . . . . . . . . . . . . . 14 ((𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)) ∧ (𝐹(quot1p𝑅)𝐺) ∈ 𝐵𝐺𝐵) → (𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) = ((𝑂‘(𝐹(quot1p𝑅)𝐺))(.r‘(𝑅s 𝐾))(𝑂𝐺)))
6014, 55, 57, 59syl3anc 1369 . . . . . . . . . . . . 13 (𝜑 → (𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) = ((𝑂‘(𝐹(quot1p𝑅)𝐺))(.r‘(𝑅s 𝐾))(𝑂𝐺)))
6117, 55ffvelrnd 6944 . . . . . . . . . . . . . 14 (𝜑 → (𝑂‘(𝐹(quot1p𝑅)𝐺)) ∈ (Base‘(𝑅s 𝐾)))
6217, 57ffvelrnd 6944 . . . . . . . . . . . . . 14 (𝜑 → (𝑂𝐺) ∈ (Base‘(𝑅s 𝐾)))
63 eqid 2738 . . . . . . . . . . . . . 14 (.r𝑅) = (.r𝑅)
642, 4, 5, 7, 61, 62, 63, 58pwsmulrval 17119 . . . . . . . . . . . . 13 (𝜑 → ((𝑂‘(𝐹(quot1p𝑅)𝐺))(.r‘(𝑅s 𝐾))(𝑂𝐺)) = ((𝑂‘(𝐹(quot1p𝑅)𝐺)) ∘f (.r𝑅)(𝑂𝐺)))
6553, 60, 643eqtrd 2782 . . . . . . . . . . . 12 (𝜑 → (𝑂𝐹) = ((𝑂‘(𝐹(quot1p𝑅)𝐺)) ∘f (.r𝑅)(𝑂𝐺)))
6665fveq1d 6758 . . . . . . . . . . 11 (𝜑 → ((𝑂𝐹)‘𝑥) = (((𝑂‘(𝐹(quot1p𝑅)𝐺)) ∘f (.r𝑅)(𝑂𝐺))‘𝑥))
6766adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝐾) → ((𝑂𝐹)‘𝑥) = (((𝑂‘(𝐹(quot1p𝑅)𝐺)) ∘f (.r𝑅)(𝑂𝐺))‘𝑥))
682, 3, 4, 5, 7, 61pwselbas 17117 . . . . . . . . . . . . 13 (𝜑 → (𝑂‘(𝐹(quot1p𝑅)𝐺)):𝐾𝐾)
6968ffnd 6585 . . . . . . . . . . . 12 (𝜑 → (𝑂‘(𝐹(quot1p𝑅)𝐺)) Fn 𝐾)
7069adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝐾) → (𝑂‘(𝐹(quot1p𝑅)𝐺)) Fn 𝐾)
712, 3, 4, 5, 7, 62pwselbas 17117 . . . . . . . . . . . . 13 (𝜑 → (𝑂𝐺):𝐾𝐾)
7271ffnd 6585 . . . . . . . . . . . 12 (𝜑 → (𝑂𝐺) Fn 𝐾)
7372adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝐾) → (𝑂𝐺) Fn 𝐾)
746a1i 11 . . . . . . . . . . 11 ((𝜑𝑥𝐾) → 𝐾 ∈ V)
75 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥𝐾) → 𝑥𝐾)
76 fnfvof 7528 . . . . . . . . . . 11 ((((𝑂‘(𝐹(quot1p𝑅)𝐺)) Fn 𝐾 ∧ (𝑂𝐺) Fn 𝐾) ∧ (𝐾 ∈ V ∧ 𝑥𝐾)) → (((𝑂‘(𝐹(quot1p𝑅)𝐺)) ∘f (.r𝑅)(𝑂𝐺))‘𝑥) = (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥)(.r𝑅)((𝑂𝐺)‘𝑥)))
7770, 73, 74, 75, 76syl22anc 835 . . . . . . . . . 10 ((𝜑𝑥𝐾) → (((𝑂‘(𝐹(quot1p𝑅)𝐺)) ∘f (.r𝑅)(𝑂𝐺))‘𝑥) = (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥)(.r𝑅)((𝑂𝐺)‘𝑥)))
7867, 77eqtrd 2778 . . . . . . . . 9 ((𝜑𝑥𝐾) → ((𝑂𝐹)‘𝑥) = (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥)(.r𝑅)((𝑂𝐺)‘𝑥)))
7978eqeq1d 2740 . . . . . . . 8 ((𝜑𝑥𝐾) → (((𝑂𝐹)‘𝑥) = 𝑊 ↔ (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥)(.r𝑅)((𝑂𝐺)‘𝑥)) = 𝑊))
805, 30syl 17 . . . . . . . . . 10 (𝜑𝑅 ∈ Domn)
8180adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐾) → 𝑅 ∈ Domn)
8268ffvelrnda 6943 . . . . . . . . 9 ((𝜑𝑥𝐾) → ((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) ∈ 𝐾)
8371ffvelrnda 6943 . . . . . . . . 9 ((𝜑𝑥𝐾) → ((𝑂𝐺)‘𝑥) ∈ 𝐾)
843, 63, 35domneq0 20481 . . . . . . . . 9 ((𝑅 ∈ Domn ∧ ((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) ∈ 𝐾 ∧ ((𝑂𝐺)‘𝑥) ∈ 𝐾) → ((((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥)(.r𝑅)((𝑂𝐺)‘𝑥)) = 𝑊 ↔ (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) = 𝑊 ∨ ((𝑂𝐺)‘𝑥) = 𝑊)))
8581, 82, 83, 84syl3anc 1369 . . . . . . . 8 ((𝜑𝑥𝐾) → ((((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥)(.r𝑅)((𝑂𝐺)‘𝑥)) = 𝑊 ↔ (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) = 𝑊 ∨ ((𝑂𝐺)‘𝑥) = 𝑊)))
8679, 85bitrd 278 . . . . . . 7 ((𝜑𝑥𝐾) → (((𝑂𝐹)‘𝑥) = 𝑊 ↔ (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) = 𝑊 ∨ ((𝑂𝐺)‘𝑥) = 𝑊)))
8786pm5.32da 578 . . . . . 6 (𝜑 → ((𝑥𝐾 ∧ ((𝑂𝐹)‘𝑥) = 𝑊) ↔ (𝑥𝐾 ∧ (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) = 𝑊 ∨ ((𝑂𝐺)‘𝑥) = 𝑊))))
88 andi 1004 . . . . . 6 ((𝑥𝐾 ∧ (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) = 𝑊 ∨ ((𝑂𝐺)‘𝑥) = 𝑊)) ↔ ((𝑥𝐾 ∧ ((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) = 𝑊) ∨ (𝑥𝐾 ∧ ((𝑂𝐺)‘𝑥) = 𝑊)))
8987, 88bitrdi 286 . . . . 5 (𝜑 → ((𝑥𝐾 ∧ ((𝑂𝐹)‘𝑥) = 𝑊) ↔ ((𝑥𝐾 ∧ ((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) = 𝑊) ∨ (𝑥𝐾 ∧ ((𝑂𝐺)‘𝑥) = 𝑊))))
90 fniniseg 6919 . . . . . 6 ((𝑂𝐹) Fn 𝐾 → (𝑥 ∈ ((𝑂𝐹) “ {𝑊}) ↔ (𝑥𝐾 ∧ ((𝑂𝐹)‘𝑥) = 𝑊)))
9121, 90syl 17 . . . . 5 (𝜑 → (𝑥 ∈ ((𝑂𝐹) “ {𝑊}) ↔ (𝑥𝐾 ∧ ((𝑂𝐹)‘𝑥) = 𝑊)))
92 elun 4079 . . . . . 6 (𝑥 ∈ (((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇}) ↔ (𝑥 ∈ ((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∨ 𝑥 ∈ {𝑇}))
93 fniniseg 6919 . . . . . . . 8 ((𝑂‘(𝐹(quot1p𝑅)𝐺)) Fn 𝐾 → (𝑥 ∈ ((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ↔ (𝑥𝐾 ∧ ((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) = 𝑊)))
9469, 93syl 17 . . . . . . 7 (𝜑 → (𝑥 ∈ ((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ↔ (𝑥𝐾 ∧ ((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) = 𝑊)))
9543simp3d 1142 . . . . . . . . 9 (𝜑 → ((𝑂𝐺) “ {𝑊}) = {𝑇})
9695eleq2d 2824 . . . . . . . 8 (𝜑 → (𝑥 ∈ ((𝑂𝐺) “ {𝑊}) ↔ 𝑥 ∈ {𝑇}))
97 fniniseg 6919 . . . . . . . . 9 ((𝑂𝐺) Fn 𝐾 → (𝑥 ∈ ((𝑂𝐺) “ {𝑊}) ↔ (𝑥𝐾 ∧ ((𝑂𝐺)‘𝑥) = 𝑊)))
9872, 97syl 17 . . . . . . . 8 (𝜑 → (𝑥 ∈ ((𝑂𝐺) “ {𝑊}) ↔ (𝑥𝐾 ∧ ((𝑂𝐺)‘𝑥) = 𝑊)))
9996, 98bitr3d 280 . . . . . . 7 (𝜑 → (𝑥 ∈ {𝑇} ↔ (𝑥𝐾 ∧ ((𝑂𝐺)‘𝑥) = 𝑊)))
10094, 99orbi12d 915 . . . . . 6 (𝜑 → ((𝑥 ∈ ((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∨ 𝑥 ∈ {𝑇}) ↔ ((𝑥𝐾 ∧ ((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) = 𝑊) ∨ (𝑥𝐾 ∧ ((𝑂𝐺)‘𝑥) = 𝑊))))
10192, 100syl5bb 282 . . . . 5 (𝜑 → (𝑥 ∈ (((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇}) ↔ ((𝑥𝐾 ∧ ((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) = 𝑊) ∨ (𝑥𝐾 ∧ ((𝑂𝐺)‘𝑥) = 𝑊))))
10289, 91, 1013bitr4d 310 . . . 4 (𝜑 → (𝑥 ∈ ((𝑂𝐹) “ {𝑊}) ↔ 𝑥 ∈ (((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇})))
103102eqrdv 2736 . . 3 (𝜑 → ((𝑂𝐹) “ {𝑊}) = (((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇}))
104103fveq2d 6760 . 2 (𝜑 → (♯‘((𝑂𝐹) “ {𝑊})) = (♯‘(((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇})))
105 fvex 6769 . . . . . . . . . 10 (𝑂‘(𝐹(quot1p𝑅)𝐺)) ∈ V
106105cnvex 7746 . . . . . . . . 9 (𝑂‘(𝐹(quot1p𝑅)𝐺)) ∈ V
107106imaex 7737 . . . . . . . 8 ((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∈ V
108107a1i 11 . . . . . . 7 (𝜑 → ((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∈ V)
109 fta1glem.3 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
110 fta1g.z . . . . . . . . . 10 0 = (0g𝑃)
111 fta1glem.4 . . . . . . . . . 10 (𝜑 → (𝐷𝐹) = (𝑁 + 1))
11212, 15, 42, 11, 35, 110, 5, 18, 3, 26, 27, 28, 29, 109, 111, 1fta1glem1 25235 . . . . . . . . 9 (𝜑 → (𝐷‘(𝐹(quot1p𝑅)𝐺)) = 𝑁)
113 fveq2 6756 . . . . . . . . . . . 12 (𝑔 = (𝐹(quot1p𝑅)𝐺) → (𝐷𝑔) = (𝐷‘(𝐹(quot1p𝑅)𝐺)))
114113eqeq1d 2740 . . . . . . . . . . 11 (𝑔 = (𝐹(quot1p𝑅)𝐺) → ((𝐷𝑔) = 𝑁 ↔ (𝐷‘(𝐹(quot1p𝑅)𝐺)) = 𝑁))
115 fveq2 6756 . . . . . . . . . . . . . . 15 (𝑔 = (𝐹(quot1p𝑅)𝐺) → (𝑂𝑔) = (𝑂‘(𝐹(quot1p𝑅)𝐺)))
116115cnveqd 5773 . . . . . . . . . . . . . 14 (𝑔 = (𝐹(quot1p𝑅)𝐺) → (𝑂𝑔) = (𝑂‘(𝐹(quot1p𝑅)𝐺)))
117116imaeq1d 5957 . . . . . . . . . . . . 13 (𝑔 = (𝐹(quot1p𝑅)𝐺) → ((𝑂𝑔) “ {𝑊}) = ((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}))
118117fveq2d 6760 . . . . . . . . . . . 12 (𝑔 = (𝐹(quot1p𝑅)𝐺) → (♯‘((𝑂𝑔) “ {𝑊})) = (♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})))
119118, 113breq12d 5083 . . . . . . . . . . 11 (𝑔 = (𝐹(quot1p𝑅)𝐺) → ((♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔) ↔ (♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) ≤ (𝐷‘(𝐹(quot1p𝑅)𝐺))))
120114, 119imbi12d 344 . . . . . . . . . 10 (𝑔 = (𝐹(quot1p𝑅)𝐺) → (((𝐷𝑔) = 𝑁 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)) ↔ ((𝐷‘(𝐹(quot1p𝑅)𝐺)) = 𝑁 → (♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) ≤ (𝐷‘(𝐹(quot1p𝑅)𝐺)))))
121 fta1glem.6 . . . . . . . . . 10 (𝜑 → ∀𝑔𝐵 ((𝐷𝑔) = 𝑁 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))
122120, 121, 55rspcdva 3554 . . . . . . . . 9 (𝜑 → ((𝐷‘(𝐹(quot1p𝑅)𝐺)) = 𝑁 → (♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) ≤ (𝐷‘(𝐹(quot1p𝑅)𝐺))))
123112, 122mpd 15 . . . . . . . 8 (𝜑 → (♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) ≤ (𝐷‘(𝐹(quot1p𝑅)𝐺)))
124123, 112breqtrd 5096 . . . . . . 7 (𝜑 → (♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) ≤ 𝑁)
125 hashbnd 13978 . . . . . . 7 ((((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∈ V ∧ 𝑁 ∈ ℕ0 ∧ (♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) ≤ 𝑁) → ((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∈ Fin)
126108, 109, 124, 125syl3anc 1369 . . . . . 6 (𝜑 → ((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∈ Fin)
127 snfi 8788 . . . . . 6 {𝑇} ∈ Fin
128 unfi 8917 . . . . . 6 ((((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∈ Fin ∧ {𝑇} ∈ Fin) → (((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇}) ∈ Fin)
129126, 127, 128sylancl 585 . . . . 5 (𝜑 → (((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇}) ∈ Fin)
130 hashcl 13999 . . . . 5 ((((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇}) ∈ Fin → (♯‘(((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇})) ∈ ℕ0)
131129, 130syl 17 . . . 4 (𝜑 → (♯‘(((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇})) ∈ ℕ0)
132131nn0red 12224 . . 3 (𝜑 → (♯‘(((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇})) ∈ ℝ)
133 hashcl 13999 . . . . . 6 (((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∈ Fin → (♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) ∈ ℕ0)
134126, 133syl 17 . . . . 5 (𝜑 → (♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) ∈ ℕ0)
135134nn0red 12224 . . . 4 (𝜑 → (♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) ∈ ℝ)
136 peano2re 11078 . . . 4 ((♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) ∈ ℝ → ((♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) + 1) ∈ ℝ)
137135, 136syl 17 . . 3 (𝜑 → ((♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) + 1) ∈ ℝ)
138 peano2nn0 12203 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
139109, 138syl 17 . . . . 5 (𝜑 → (𝑁 + 1) ∈ ℕ0)
140111, 139eqeltrd 2839 . . . 4 (𝜑 → (𝐷𝐹) ∈ ℕ0)
141140nn0red 12224 . . 3 (𝜑 → (𝐷𝐹) ∈ ℝ)
142 hashun2 14026 . . . . 5 ((((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∈ Fin ∧ {𝑇} ∈ Fin) → (♯‘(((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇})) ≤ ((♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) + (♯‘{𝑇})))
143126, 127, 142sylancl 585 . . . 4 (𝜑 → (♯‘(((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇})) ≤ ((♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) + (♯‘{𝑇})))
144 hashsng 14012 . . . . . 6 (𝑇 ∈ ((𝑂𝐹) “ {𝑊}) → (♯‘{𝑇}) = 1)
1451, 144syl 17 . . . . 5 (𝜑 → (♯‘{𝑇}) = 1)
146145oveq2d 7271 . . . 4 (𝜑 → ((♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) + (♯‘{𝑇})) = ((♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) + 1))
147143, 146breqtrd 5096 . . 3 (𝜑 → (♯‘(((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇})) ≤ ((♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) + 1))
148109nn0red 12224 . . . . 5 (𝜑𝑁 ∈ ℝ)
149 1red 10907 . . . . 5 (𝜑 → 1 ∈ ℝ)
150135, 148, 149, 124leadd1dd 11519 . . . 4 (𝜑 → ((♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) + 1) ≤ (𝑁 + 1))
151150, 111breqtrrd 5098 . . 3 (𝜑 → ((♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) + 1) ≤ (𝐷𝐹))
152132, 137, 141, 147, 151letrd 11062 . 2 (𝜑 → (♯‘(((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇})) ≤ (𝐷𝐹))
153104, 152eqbrtrd 5092 1 (𝜑 → (♯‘((𝑂𝐹) “ {𝑊})) ≤ (𝐷𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  cun 3881  {csn 4558   class class class wbr 5070  ccnv 5579  cima 5583   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  f cof 7509  Fincfn 8691  cr 10801  1c1 10803   + caddc 10805  cle 10941  0cn0 12163  chash 13972  Basecbs 16840  .rcmulr 16889  0gc0g 17067  s cpws 17074  -gcsg 18494  Ringcrg 19698  CRingccrg 19699  rcdsr 19795   RingHom crh 19871  NzRingcnzr 20441  Domncdomn 20464  IDomncidom 20465  algSccascl 20969  var1cv1 21257  Poly1cpl1 21258  eval1ce1 21390   deg1 cdg1 25121  Monic1pcmn1 25195  Unic1pcuc1p 25196  quot1pcq1p 25197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-0g 17069  df-gsum 17070  df-prds 17075  df-pws 17077  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-srg 19657  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-rnghom 19874  df-subrg 19937  df-lmod 20040  df-lss 20109  df-lsp 20149  df-nzr 20442  df-rlreg 20467  df-domn 20468  df-idom 20469  df-cnfld 20511  df-assa 20970  df-asp 20971  df-ascl 20972  df-psr 21022  df-mvr 21023  df-mpl 21024  df-opsr 21026  df-evls 21192  df-evl 21193  df-psr1 21261  df-vr1 21262  df-ply1 21263  df-coe1 21264  df-evl1 21392  df-mdeg 25122  df-deg1 25123  df-mon1 25200  df-uc1p 25201  df-q1p 25202  df-r1p 25203
This theorem is referenced by:  fta1g  25237
  Copyright terms: Public domain W3C validator