MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fta1glem2 Structured version   Visualization version   GIF version

Theorem fta1glem2 26208
Description: Lemma for fta1g 26209. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
fta1g.p 𝑃 = (Poly1𝑅)
fta1g.b 𝐵 = (Base‘𝑃)
fta1g.d 𝐷 = (deg1𝑅)
fta1g.o 𝑂 = (eval1𝑅)
fta1g.w 𝑊 = (0g𝑅)
fta1g.z 0 = (0g𝑃)
fta1g.1 (𝜑𝑅 ∈ IDomn)
fta1g.2 (𝜑𝐹𝐵)
fta1glem.k 𝐾 = (Base‘𝑅)
fta1glem.x 𝑋 = (var1𝑅)
fta1glem.m = (-g𝑃)
fta1glem.a 𝐴 = (algSc‘𝑃)
fta1glem.g 𝐺 = (𝑋 (𝐴𝑇))
fta1glem.3 (𝜑𝑁 ∈ ℕ0)
fta1glem.4 (𝜑 → (𝐷𝐹) = (𝑁 + 1))
fta1glem.5 (𝜑𝑇 ∈ ((𝑂𝐹) “ {𝑊}))
fta1glem.6 (𝜑 → ∀𝑔𝐵 ((𝐷𝑔) = 𝑁 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))
Assertion
Ref Expression
fta1glem2 (𝜑 → (♯‘((𝑂𝐹) “ {𝑊})) ≤ (𝐷𝐹))
Distinct variable groups:   𝐵,𝑔   𝐷,𝑔   𝑔,𝐹   𝑔,𝑁   𝑔,𝑂   𝑔,𝐺   𝑃,𝑔   𝑅,𝑔   𝑔,𝑊
Allowed substitution hints:   𝜑(𝑔)   𝐴(𝑔)   𝑇(𝑔)   𝐾(𝑔)   (𝑔)   𝑋(𝑔)   0 (𝑔)

Proof of Theorem fta1glem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fta1glem.5 . . . . . . . . . . . . . . . . . 18 (𝜑𝑇 ∈ ((𝑂𝐹) “ {𝑊}))
2 eqid 2737 . . . . . . . . . . . . . . . . . . . . 21 (𝑅s 𝐾) = (𝑅s 𝐾)
3 fta1glem.k . . . . . . . . . . . . . . . . . . . . 21 𝐾 = (Base‘𝑅)
4 eqid 2737 . . . . . . . . . . . . . . . . . . . . 21 (Base‘(𝑅s 𝐾)) = (Base‘(𝑅s 𝐾))
5 fta1g.1 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑅 ∈ IDomn)
63fvexi 6920 . . . . . . . . . . . . . . . . . . . . . 22 𝐾 ∈ V
76a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐾 ∈ V)
8 isidom 20725 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
98simplbi 497 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑅 ∈ IDomn → 𝑅 ∈ CRing)
105, 9syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑅 ∈ CRing)
11 fta1g.o . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑂 = (eval1𝑅)
12 fta1g.p . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑃 = (Poly1𝑅)
1311, 12, 2, 3evl1rhm 22336 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)))
1410, 13syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)))
15 fta1g.b . . . . . . . . . . . . . . . . . . . . . . . 24 𝐵 = (Base‘𝑃)
1615, 4rhmf 20485 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)) → 𝑂:𝐵⟶(Base‘(𝑅s 𝐾)))
1714, 16syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑂:𝐵⟶(Base‘(𝑅s 𝐾)))
18 fta1g.2 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐹𝐵)
1917, 18ffvelcdmd 7105 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑂𝐹) ∈ (Base‘(𝑅s 𝐾)))
202, 3, 4, 5, 7, 19pwselbas 17534 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑂𝐹):𝐾𝐾)
2120ffnd 6737 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑂𝐹) Fn 𝐾)
22 fniniseg 7080 . . . . . . . . . . . . . . . . . . 19 ((𝑂𝐹) Fn 𝐾 → (𝑇 ∈ ((𝑂𝐹) “ {𝑊}) ↔ (𝑇𝐾 ∧ ((𝑂𝐹)‘𝑇) = 𝑊)))
2321, 22syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑇 ∈ ((𝑂𝐹) “ {𝑊}) ↔ (𝑇𝐾 ∧ ((𝑂𝐹)‘𝑇) = 𝑊)))
241, 23mpbid 232 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑇𝐾 ∧ ((𝑂𝐹)‘𝑇) = 𝑊))
2524simprd 495 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑂𝐹)‘𝑇) = 𝑊)
26 fta1glem.x . . . . . . . . . . . . . . . . 17 𝑋 = (var1𝑅)
27 fta1glem.m . . . . . . . . . . . . . . . . 17 = (-g𝑃)
28 fta1glem.a . . . . . . . . . . . . . . . . 17 𝐴 = (algSc‘𝑃)
29 fta1glem.g . . . . . . . . . . . . . . . . 17 𝐺 = (𝑋 (𝐴𝑇))
308simprbi 496 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ IDomn → 𝑅 ∈ Domn)
31 domnnzr 20706 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
3230, 31syl 17 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ IDomn → 𝑅 ∈ NzRing)
335, 32syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑅 ∈ NzRing)
3424simpld 494 . . . . . . . . . . . . . . . . 17 (𝜑𝑇𝐾)
35 fta1g.w . . . . . . . . . . . . . . . . 17 𝑊 = (0g𝑅)
36 eqid 2737 . . . . . . . . . . . . . . . . 17 (∥r𝑃) = (∥r𝑃)
3712, 15, 3, 26, 27, 28, 29, 11, 33, 10, 34, 18, 35, 36facth1 26206 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐺(∥r𝑃)𝐹 ↔ ((𝑂𝐹)‘𝑇) = 𝑊))
3825, 37mpbird 257 . . . . . . . . . . . . . . 15 (𝜑𝐺(∥r𝑃)𝐹)
39 nzrring 20516 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
4033, 39syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑅 ∈ Ring)
41 eqid 2737 . . . . . . . . . . . . . . . . . . 19 (Monic1p𝑅) = (Monic1p𝑅)
42 fta1g.d . . . . . . . . . . . . . . . . . . 19 𝐷 = (deg1𝑅)
4312, 15, 3, 26, 27, 28, 29, 11, 33, 10, 34, 41, 42, 35ply1remlem 26204 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐺 ∈ (Monic1p𝑅) ∧ (𝐷𝐺) = 1 ∧ ((𝑂𝐺) “ {𝑊}) = {𝑇}))
4443simp1d 1143 . . . . . . . . . . . . . . . . 17 (𝜑𝐺 ∈ (Monic1p𝑅))
45 eqid 2737 . . . . . . . . . . . . . . . . . 18 (Unic1p𝑅) = (Unic1p𝑅)
4645, 41mon1puc1p 26190 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝐺 ∈ (Monic1p𝑅)) → 𝐺 ∈ (Unic1p𝑅))
4740, 44, 46syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑𝐺 ∈ (Unic1p𝑅))
48 eqid 2737 . . . . . . . . . . . . . . . . 17 (.r𝑃) = (.r𝑃)
49 eqid 2737 . . . . . . . . . . . . . . . . 17 (quot1p𝑅) = (quot1p𝑅)
5012, 36, 15, 45, 48, 49dvdsq1p 26202 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺 ∈ (Unic1p𝑅)) → (𝐺(∥r𝑃)𝐹𝐹 = ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)))
5140, 18, 47, 50syl3anc 1373 . . . . . . . . . . . . . . 15 (𝜑 → (𝐺(∥r𝑃)𝐹𝐹 = ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)))
5238, 51mpbid 232 . . . . . . . . . . . . . 14 (𝜑𝐹 = ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))
5352fveq2d 6910 . . . . . . . . . . . . 13 (𝜑 → (𝑂𝐹) = (𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)))
5449, 12, 15, 45q1pcl 26196 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺 ∈ (Unic1p𝑅)) → (𝐹(quot1p𝑅)𝐺) ∈ 𝐵)
5540, 18, 47, 54syl3anc 1373 . . . . . . . . . . . . . 14 (𝜑 → (𝐹(quot1p𝑅)𝐺) ∈ 𝐵)
5612, 15, 41mon1pcl 26184 . . . . . . . . . . . . . . 15 (𝐺 ∈ (Monic1p𝑅) → 𝐺𝐵)
5744, 56syl 17 . . . . . . . . . . . . . 14 (𝜑𝐺𝐵)
58 eqid 2737 . . . . . . . . . . . . . . 15 (.r‘(𝑅s 𝐾)) = (.r‘(𝑅s 𝐾))
5915, 48, 58rhmmul 20486 . . . . . . . . . . . . . 14 ((𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)) ∧ (𝐹(quot1p𝑅)𝐺) ∈ 𝐵𝐺𝐵) → (𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) = ((𝑂‘(𝐹(quot1p𝑅)𝐺))(.r‘(𝑅s 𝐾))(𝑂𝐺)))
6014, 55, 57, 59syl3anc 1373 . . . . . . . . . . . . 13 (𝜑 → (𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) = ((𝑂‘(𝐹(quot1p𝑅)𝐺))(.r‘(𝑅s 𝐾))(𝑂𝐺)))
6117, 55ffvelcdmd 7105 . . . . . . . . . . . . . 14 (𝜑 → (𝑂‘(𝐹(quot1p𝑅)𝐺)) ∈ (Base‘(𝑅s 𝐾)))
6217, 57ffvelcdmd 7105 . . . . . . . . . . . . . 14 (𝜑 → (𝑂𝐺) ∈ (Base‘(𝑅s 𝐾)))
63 eqid 2737 . . . . . . . . . . . . . 14 (.r𝑅) = (.r𝑅)
642, 4, 5, 7, 61, 62, 63, 58pwsmulrval 17536 . . . . . . . . . . . . 13 (𝜑 → ((𝑂‘(𝐹(quot1p𝑅)𝐺))(.r‘(𝑅s 𝐾))(𝑂𝐺)) = ((𝑂‘(𝐹(quot1p𝑅)𝐺)) ∘f (.r𝑅)(𝑂𝐺)))
6553, 60, 643eqtrd 2781 . . . . . . . . . . . 12 (𝜑 → (𝑂𝐹) = ((𝑂‘(𝐹(quot1p𝑅)𝐺)) ∘f (.r𝑅)(𝑂𝐺)))
6665fveq1d 6908 . . . . . . . . . . 11 (𝜑 → ((𝑂𝐹)‘𝑥) = (((𝑂‘(𝐹(quot1p𝑅)𝐺)) ∘f (.r𝑅)(𝑂𝐺))‘𝑥))
6766adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝐾) → ((𝑂𝐹)‘𝑥) = (((𝑂‘(𝐹(quot1p𝑅)𝐺)) ∘f (.r𝑅)(𝑂𝐺))‘𝑥))
682, 3, 4, 5, 7, 61pwselbas 17534 . . . . . . . . . . . . 13 (𝜑 → (𝑂‘(𝐹(quot1p𝑅)𝐺)):𝐾𝐾)
6968ffnd 6737 . . . . . . . . . . . 12 (𝜑 → (𝑂‘(𝐹(quot1p𝑅)𝐺)) Fn 𝐾)
7069adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝐾) → (𝑂‘(𝐹(quot1p𝑅)𝐺)) Fn 𝐾)
712, 3, 4, 5, 7, 62pwselbas 17534 . . . . . . . . . . . . 13 (𝜑 → (𝑂𝐺):𝐾𝐾)
7271ffnd 6737 . . . . . . . . . . . 12 (𝜑 → (𝑂𝐺) Fn 𝐾)
7372adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝐾) → (𝑂𝐺) Fn 𝐾)
746a1i 11 . . . . . . . . . . 11 ((𝜑𝑥𝐾) → 𝐾 ∈ V)
75 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥𝐾) → 𝑥𝐾)
76 fnfvof 7714 . . . . . . . . . . 11 ((((𝑂‘(𝐹(quot1p𝑅)𝐺)) Fn 𝐾 ∧ (𝑂𝐺) Fn 𝐾) ∧ (𝐾 ∈ V ∧ 𝑥𝐾)) → (((𝑂‘(𝐹(quot1p𝑅)𝐺)) ∘f (.r𝑅)(𝑂𝐺))‘𝑥) = (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥)(.r𝑅)((𝑂𝐺)‘𝑥)))
7770, 73, 74, 75, 76syl22anc 839 . . . . . . . . . 10 ((𝜑𝑥𝐾) → (((𝑂‘(𝐹(quot1p𝑅)𝐺)) ∘f (.r𝑅)(𝑂𝐺))‘𝑥) = (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥)(.r𝑅)((𝑂𝐺)‘𝑥)))
7867, 77eqtrd 2777 . . . . . . . . 9 ((𝜑𝑥𝐾) → ((𝑂𝐹)‘𝑥) = (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥)(.r𝑅)((𝑂𝐺)‘𝑥)))
7978eqeq1d 2739 . . . . . . . 8 ((𝜑𝑥𝐾) → (((𝑂𝐹)‘𝑥) = 𝑊 ↔ (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥)(.r𝑅)((𝑂𝐺)‘𝑥)) = 𝑊))
805, 30syl 17 . . . . . . . . . 10 (𝜑𝑅 ∈ Domn)
8180adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐾) → 𝑅 ∈ Domn)
8268ffvelcdmda 7104 . . . . . . . . 9 ((𝜑𝑥𝐾) → ((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) ∈ 𝐾)
8371ffvelcdmda 7104 . . . . . . . . 9 ((𝜑𝑥𝐾) → ((𝑂𝐺)‘𝑥) ∈ 𝐾)
843, 63, 35domneq0 20708 . . . . . . . . 9 ((𝑅 ∈ Domn ∧ ((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) ∈ 𝐾 ∧ ((𝑂𝐺)‘𝑥) ∈ 𝐾) → ((((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥)(.r𝑅)((𝑂𝐺)‘𝑥)) = 𝑊 ↔ (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) = 𝑊 ∨ ((𝑂𝐺)‘𝑥) = 𝑊)))
8581, 82, 83, 84syl3anc 1373 . . . . . . . 8 ((𝜑𝑥𝐾) → ((((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥)(.r𝑅)((𝑂𝐺)‘𝑥)) = 𝑊 ↔ (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) = 𝑊 ∨ ((𝑂𝐺)‘𝑥) = 𝑊)))
8679, 85bitrd 279 . . . . . . 7 ((𝜑𝑥𝐾) → (((𝑂𝐹)‘𝑥) = 𝑊 ↔ (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) = 𝑊 ∨ ((𝑂𝐺)‘𝑥) = 𝑊)))
8786pm5.32da 579 . . . . . 6 (𝜑 → ((𝑥𝐾 ∧ ((𝑂𝐹)‘𝑥) = 𝑊) ↔ (𝑥𝐾 ∧ (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) = 𝑊 ∨ ((𝑂𝐺)‘𝑥) = 𝑊))))
88 andi 1010 . . . . . 6 ((𝑥𝐾 ∧ (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) = 𝑊 ∨ ((𝑂𝐺)‘𝑥) = 𝑊)) ↔ ((𝑥𝐾 ∧ ((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) = 𝑊) ∨ (𝑥𝐾 ∧ ((𝑂𝐺)‘𝑥) = 𝑊)))
8987, 88bitrdi 287 . . . . 5 (𝜑 → ((𝑥𝐾 ∧ ((𝑂𝐹)‘𝑥) = 𝑊) ↔ ((𝑥𝐾 ∧ ((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) = 𝑊) ∨ (𝑥𝐾 ∧ ((𝑂𝐺)‘𝑥) = 𝑊))))
90 fniniseg 7080 . . . . . 6 ((𝑂𝐹) Fn 𝐾 → (𝑥 ∈ ((𝑂𝐹) “ {𝑊}) ↔ (𝑥𝐾 ∧ ((𝑂𝐹)‘𝑥) = 𝑊)))
9121, 90syl 17 . . . . 5 (𝜑 → (𝑥 ∈ ((𝑂𝐹) “ {𝑊}) ↔ (𝑥𝐾 ∧ ((𝑂𝐹)‘𝑥) = 𝑊)))
92 elun 4153 . . . . . 6 (𝑥 ∈ (((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇}) ↔ (𝑥 ∈ ((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∨ 𝑥 ∈ {𝑇}))
93 fniniseg 7080 . . . . . . . 8 ((𝑂‘(𝐹(quot1p𝑅)𝐺)) Fn 𝐾 → (𝑥 ∈ ((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ↔ (𝑥𝐾 ∧ ((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) = 𝑊)))
9469, 93syl 17 . . . . . . 7 (𝜑 → (𝑥 ∈ ((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ↔ (𝑥𝐾 ∧ ((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) = 𝑊)))
9543simp3d 1145 . . . . . . . . 9 (𝜑 → ((𝑂𝐺) “ {𝑊}) = {𝑇})
9695eleq2d 2827 . . . . . . . 8 (𝜑 → (𝑥 ∈ ((𝑂𝐺) “ {𝑊}) ↔ 𝑥 ∈ {𝑇}))
97 fniniseg 7080 . . . . . . . . 9 ((𝑂𝐺) Fn 𝐾 → (𝑥 ∈ ((𝑂𝐺) “ {𝑊}) ↔ (𝑥𝐾 ∧ ((𝑂𝐺)‘𝑥) = 𝑊)))
9872, 97syl 17 . . . . . . . 8 (𝜑 → (𝑥 ∈ ((𝑂𝐺) “ {𝑊}) ↔ (𝑥𝐾 ∧ ((𝑂𝐺)‘𝑥) = 𝑊)))
9996, 98bitr3d 281 . . . . . . 7 (𝜑 → (𝑥 ∈ {𝑇} ↔ (𝑥𝐾 ∧ ((𝑂𝐺)‘𝑥) = 𝑊)))
10094, 99orbi12d 919 . . . . . 6 (𝜑 → ((𝑥 ∈ ((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∨ 𝑥 ∈ {𝑇}) ↔ ((𝑥𝐾 ∧ ((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) = 𝑊) ∨ (𝑥𝐾 ∧ ((𝑂𝐺)‘𝑥) = 𝑊))))
10192, 100bitrid 283 . . . . 5 (𝜑 → (𝑥 ∈ (((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇}) ↔ ((𝑥𝐾 ∧ ((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) = 𝑊) ∨ (𝑥𝐾 ∧ ((𝑂𝐺)‘𝑥) = 𝑊))))
10289, 91, 1013bitr4d 311 . . . 4 (𝜑 → (𝑥 ∈ ((𝑂𝐹) “ {𝑊}) ↔ 𝑥 ∈ (((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇})))
103102eqrdv 2735 . . 3 (𝜑 → ((𝑂𝐹) “ {𝑊}) = (((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇}))
104103fveq2d 6910 . 2 (𝜑 → (♯‘((𝑂𝐹) “ {𝑊})) = (♯‘(((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇})))
105 fvex 6919 . . . . . . . . . 10 (𝑂‘(𝐹(quot1p𝑅)𝐺)) ∈ V
106105cnvex 7947 . . . . . . . . 9 (𝑂‘(𝐹(quot1p𝑅)𝐺)) ∈ V
107106imaex 7936 . . . . . . . 8 ((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∈ V
108107a1i 11 . . . . . . 7 (𝜑 → ((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∈ V)
109 fta1glem.3 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
110 fta1g.z . . . . . . . . . 10 0 = (0g𝑃)
111 fta1glem.4 . . . . . . . . . 10 (𝜑 → (𝐷𝐹) = (𝑁 + 1))
11212, 15, 42, 11, 35, 110, 5, 18, 3, 26, 27, 28, 29, 109, 111, 1fta1glem1 26207 . . . . . . . . 9 (𝜑 → (𝐷‘(𝐹(quot1p𝑅)𝐺)) = 𝑁)
113 fveq2 6906 . . . . . . . . . . . 12 (𝑔 = (𝐹(quot1p𝑅)𝐺) → (𝐷𝑔) = (𝐷‘(𝐹(quot1p𝑅)𝐺)))
114113eqeq1d 2739 . . . . . . . . . . 11 (𝑔 = (𝐹(quot1p𝑅)𝐺) → ((𝐷𝑔) = 𝑁 ↔ (𝐷‘(𝐹(quot1p𝑅)𝐺)) = 𝑁))
115 fveq2 6906 . . . . . . . . . . . . . . 15 (𝑔 = (𝐹(quot1p𝑅)𝐺) → (𝑂𝑔) = (𝑂‘(𝐹(quot1p𝑅)𝐺)))
116115cnveqd 5886 . . . . . . . . . . . . . 14 (𝑔 = (𝐹(quot1p𝑅)𝐺) → (𝑂𝑔) = (𝑂‘(𝐹(quot1p𝑅)𝐺)))
117116imaeq1d 6077 . . . . . . . . . . . . 13 (𝑔 = (𝐹(quot1p𝑅)𝐺) → ((𝑂𝑔) “ {𝑊}) = ((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}))
118117fveq2d 6910 . . . . . . . . . . . 12 (𝑔 = (𝐹(quot1p𝑅)𝐺) → (♯‘((𝑂𝑔) “ {𝑊})) = (♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})))
119118, 113breq12d 5156 . . . . . . . . . . 11 (𝑔 = (𝐹(quot1p𝑅)𝐺) → ((♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔) ↔ (♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) ≤ (𝐷‘(𝐹(quot1p𝑅)𝐺))))
120114, 119imbi12d 344 . . . . . . . . . 10 (𝑔 = (𝐹(quot1p𝑅)𝐺) → (((𝐷𝑔) = 𝑁 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)) ↔ ((𝐷‘(𝐹(quot1p𝑅)𝐺)) = 𝑁 → (♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) ≤ (𝐷‘(𝐹(quot1p𝑅)𝐺)))))
121 fta1glem.6 . . . . . . . . . 10 (𝜑 → ∀𝑔𝐵 ((𝐷𝑔) = 𝑁 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))
122120, 121, 55rspcdva 3623 . . . . . . . . 9 (𝜑 → ((𝐷‘(𝐹(quot1p𝑅)𝐺)) = 𝑁 → (♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) ≤ (𝐷‘(𝐹(quot1p𝑅)𝐺))))
123112, 122mpd 15 . . . . . . . 8 (𝜑 → (♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) ≤ (𝐷‘(𝐹(quot1p𝑅)𝐺)))
124123, 112breqtrd 5169 . . . . . . 7 (𝜑 → (♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) ≤ 𝑁)
125 hashbnd 14375 . . . . . . 7 ((((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∈ V ∧ 𝑁 ∈ ℕ0 ∧ (♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) ≤ 𝑁) → ((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∈ Fin)
126108, 109, 124, 125syl3anc 1373 . . . . . 6 (𝜑 → ((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∈ Fin)
127 snfi 9083 . . . . . 6 {𝑇} ∈ Fin
128 unfi 9211 . . . . . 6 ((((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∈ Fin ∧ {𝑇} ∈ Fin) → (((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇}) ∈ Fin)
129126, 127, 128sylancl 586 . . . . 5 (𝜑 → (((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇}) ∈ Fin)
130 hashcl 14395 . . . . 5 ((((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇}) ∈ Fin → (♯‘(((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇})) ∈ ℕ0)
131129, 130syl 17 . . . 4 (𝜑 → (♯‘(((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇})) ∈ ℕ0)
132131nn0red 12588 . . 3 (𝜑 → (♯‘(((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇})) ∈ ℝ)
133 hashcl 14395 . . . . . 6 (((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∈ Fin → (♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) ∈ ℕ0)
134126, 133syl 17 . . . . 5 (𝜑 → (♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) ∈ ℕ0)
135134nn0red 12588 . . . 4 (𝜑 → (♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) ∈ ℝ)
136 peano2re 11434 . . . 4 ((♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) ∈ ℝ → ((♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) + 1) ∈ ℝ)
137135, 136syl 17 . . 3 (𝜑 → ((♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) + 1) ∈ ℝ)
138 peano2nn0 12566 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
139109, 138syl 17 . . . . 5 (𝜑 → (𝑁 + 1) ∈ ℕ0)
140111, 139eqeltrd 2841 . . . 4 (𝜑 → (𝐷𝐹) ∈ ℕ0)
141140nn0red 12588 . . 3 (𝜑 → (𝐷𝐹) ∈ ℝ)
142 hashun2 14422 . . . . 5 ((((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∈ Fin ∧ {𝑇} ∈ Fin) → (♯‘(((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇})) ≤ ((♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) + (♯‘{𝑇})))
143126, 127, 142sylancl 586 . . . 4 (𝜑 → (♯‘(((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇})) ≤ ((♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) + (♯‘{𝑇})))
144 hashsng 14408 . . . . . 6 (𝑇 ∈ ((𝑂𝐹) “ {𝑊}) → (♯‘{𝑇}) = 1)
1451, 144syl 17 . . . . 5 (𝜑 → (♯‘{𝑇}) = 1)
146145oveq2d 7447 . . . 4 (𝜑 → ((♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) + (♯‘{𝑇})) = ((♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) + 1))
147143, 146breqtrd 5169 . . 3 (𝜑 → (♯‘(((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇})) ≤ ((♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) + 1))
148109nn0red 12588 . . . . 5 (𝜑𝑁 ∈ ℝ)
149 1red 11262 . . . . 5 (𝜑 → 1 ∈ ℝ)
150135, 148, 149, 124leadd1dd 11877 . . . 4 (𝜑 → ((♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) + 1) ≤ (𝑁 + 1))
151150, 111breqtrrd 5171 . . 3 (𝜑 → ((♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) + 1) ≤ (𝐷𝐹))
152132, 137, 141, 147, 151letrd 11418 . 2 (𝜑 → (♯‘(((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇})) ≤ (𝐷𝐹))
153104, 152eqbrtrd 5165 1 (𝜑 → (♯‘((𝑂𝐹) “ {𝑊})) ≤ (𝐷𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480  cun 3949  {csn 4626   class class class wbr 5143  ccnv 5684  cima 5688   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  f cof 7695  Fincfn 8985  cr 11154  1c1 11156   + caddc 11158  cle 11296  0cn0 12526  chash 14369  Basecbs 17247  .rcmulr 17298  0gc0g 17484  s cpws 17491  -gcsg 18953  Ringcrg 20230  CRingccrg 20231  rcdsr 20354   RingHom crh 20469  NzRingcnzr 20512  Domncdomn 20692  IDomncidom 20693  algSccascl 21872  var1cv1 22177  Poly1cpl1 22178  eval1ce1 22318  deg1cdg1 26093  Monic1pcmn1 26165  Unic1pcuc1p 26166  quot1pcq1p 26167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-oi 9550  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-xnn0 12600  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-ghm 19231  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-srg 20184  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-rhm 20472  df-nzr 20513  df-subrng 20546  df-subrg 20570  df-rlreg 20694  df-domn 20695  df-idom 20696  df-lmod 20860  df-lss 20930  df-lsp 20970  df-cnfld 21365  df-assa 21873  df-asp 21874  df-ascl 21875  df-psr 21929  df-mvr 21930  df-mpl 21931  df-opsr 21933  df-evls 22098  df-evl 22099  df-psr1 22181  df-vr1 22182  df-ply1 22183  df-coe1 22184  df-evl1 22320  df-mdeg 26094  df-deg1 26095  df-mon1 26170  df-uc1p 26171  df-q1p 26172  df-r1p 26173
This theorem is referenced by:  fta1g  26209
  Copyright terms: Public domain W3C validator