Step | Hyp | Ref
| Expression |
1 | | fta1glem.5 |
. . . . . . . . . . . . . . . . . 18
β’ (π β π β (β‘(πβπΉ) β {π})) |
2 | | eqid 2732 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π
βs πΎ) = (π
βs πΎ) |
3 | | fta1glem.k |
. . . . . . . . . . . . . . . . . . . . 21
β’ πΎ = (Baseβπ
) |
4 | | eqid 2732 |
. . . . . . . . . . . . . . . . . . . . 21
β’
(Baseβ(π
βs πΎ)) = (Baseβ(π
βs πΎ)) |
5 | | fta1g.1 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π β π
β IDomn) |
6 | 3 | fvexi 6902 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ πΎ β V |
7 | 6 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π β πΎ β V) |
8 | | isidom 20914 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ (π
β IDomn β (π
β CRing β§ π
β Domn)) |
9 | 8 | simplbi 498 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ (π
β IDomn β π
β CRing) |
10 | 5, 9 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (π β π
β CRing) |
11 | | fta1g.o |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ π = (eval1βπ
) |
12 | | fta1g.p |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ π = (Poly1βπ
) |
13 | 11, 12, 2, 3 | evl1rhm 21842 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (π
β CRing β π β (π RingHom (π
βs πΎ))) |
14 | 10, 13 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (π β π β (π RingHom (π
βs πΎ))) |
15 | | fta1g.b |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ π΅ = (Baseβπ) |
16 | 15, 4 | rhmf 20255 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (π β (π RingHom (π
βs πΎ)) β π:π΅βΆ(Baseβ(π
βs πΎ))) |
17 | 14, 16 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π β π:π΅βΆ(Baseβ(π
βs πΎ))) |
18 | | fta1g.2 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π β πΉ β π΅) |
19 | 17, 18 | ffvelcdmd 7084 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π β (πβπΉ) β (Baseβ(π
βs πΎ))) |
20 | 2, 3, 4, 5, 7, 19 | pwselbas 17431 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β (πβπΉ):πΎβΆπΎ) |
21 | 20 | ffnd 6715 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β (πβπΉ) Fn πΎ) |
22 | | fniniseg 7058 |
. . . . . . . . . . . . . . . . . . 19
β’ ((πβπΉ) Fn πΎ β (π β (β‘(πβπΉ) β {π}) β (π β πΎ β§ ((πβπΉ)βπ) = π))) |
23 | 21, 22 | syl 17 |
. . . . . . . . . . . . . . . . . 18
β’ (π β (π β (β‘(πβπΉ) β {π}) β (π β πΎ β§ ((πβπΉ)βπ) = π))) |
24 | 1, 23 | mpbid 231 |
. . . . . . . . . . . . . . . . 17
β’ (π β (π β πΎ β§ ((πβπΉ)βπ) = π)) |
25 | 24 | simprd 496 |
. . . . . . . . . . . . . . . 16
β’ (π β ((πβπΉ)βπ) = π) |
26 | | fta1glem.x |
. . . . . . . . . . . . . . . . 17
β’ π = (var1βπ
) |
27 | | fta1glem.m |
. . . . . . . . . . . . . . . . 17
β’ β =
(-gβπ) |
28 | | fta1glem.a |
. . . . . . . . . . . . . . . . 17
β’ π΄ = (algScβπ) |
29 | | fta1glem.g |
. . . . . . . . . . . . . . . . 17
β’ πΊ = (π β (π΄βπ)) |
30 | 8 | simprbi 497 |
. . . . . . . . . . . . . . . . . . 19
β’ (π
β IDomn β π
β Domn) |
31 | | domnnzr 20903 |
. . . . . . . . . . . . . . . . . . 19
β’ (π
β Domn β π
β NzRing) |
32 | 30, 31 | syl 17 |
. . . . . . . . . . . . . . . . . 18
β’ (π
β IDomn β π
β NzRing) |
33 | 5, 32 | syl 17 |
. . . . . . . . . . . . . . . . 17
β’ (π β π
β NzRing) |
34 | 24 | simpld 495 |
. . . . . . . . . . . . . . . . 17
β’ (π β π β πΎ) |
35 | | fta1g.w |
. . . . . . . . . . . . . . . . 17
β’ π = (0gβπ
) |
36 | | eqid 2732 |
. . . . . . . . . . . . . . . . 17
β’
(β₯rβπ) = (β₯rβπ) |
37 | 12, 15, 3, 26, 27, 28, 29, 11, 33, 10, 34, 18, 35, 36 | facth1 25673 |
. . . . . . . . . . . . . . . 16
β’ (π β (πΊ(β₯rβπ)πΉ β ((πβπΉ)βπ) = π)) |
38 | 25, 37 | mpbird 256 |
. . . . . . . . . . . . . . 15
β’ (π β πΊ(β₯rβπ)πΉ) |
39 | | nzrring 20287 |
. . . . . . . . . . . . . . . . 17
β’ (π
β NzRing β π
β Ring) |
40 | 33, 39 | syl 17 |
. . . . . . . . . . . . . . . 16
β’ (π β π
β Ring) |
41 | | eqid 2732 |
. . . . . . . . . . . . . . . . . . 19
β’
(Monic1pβπ
) = (Monic1pβπ
) |
42 | | fta1g.d |
. . . . . . . . . . . . . . . . . . 19
β’ π· = ( deg1
βπ
) |
43 | 12, 15, 3, 26, 27, 28, 29, 11, 33, 10, 34, 41, 42, 35 | ply1remlem 25671 |
. . . . . . . . . . . . . . . . . 18
β’ (π β (πΊ β (Monic1pβπ
) β§ (π·βπΊ) = 1 β§ (β‘(πβπΊ) β {π}) = {π})) |
44 | 43 | simp1d 1142 |
. . . . . . . . . . . . . . . . 17
β’ (π β πΊ β (Monic1pβπ
)) |
45 | | eqid 2732 |
. . . . . . . . . . . . . . . . . 18
β’
(Unic1pβπ
) = (Unic1pβπ
) |
46 | 45, 41 | mon1puc1p 25659 |
. . . . . . . . . . . . . . . . 17
β’ ((π
β Ring β§ πΊ β
(Monic1pβπ
)) β πΊ β (Unic1pβπ
)) |
47 | 40, 44, 46 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
β’ (π β πΊ β (Unic1pβπ
)) |
48 | | eqid 2732 |
. . . . . . . . . . . . . . . . 17
β’
(.rβπ) = (.rβπ) |
49 | | eqid 2732 |
. . . . . . . . . . . . . . . . 17
β’
(quot1pβπ
) = (quot1pβπ
) |
50 | 12, 36, 15, 45, 48, 49 | dvdsq1p 25669 |
. . . . . . . . . . . . . . . 16
β’ ((π
β Ring β§ πΉ β π΅ β§ πΊ β (Unic1pβπ
)) β (πΊ(β₯rβπ)πΉ β πΉ = ((πΉ(quot1pβπ
)πΊ)(.rβπ)πΊ))) |
51 | 40, 18, 47, 50 | syl3anc 1371 |
. . . . . . . . . . . . . . 15
β’ (π β (πΊ(β₯rβπ)πΉ β πΉ = ((πΉ(quot1pβπ
)πΊ)(.rβπ)πΊ))) |
52 | 38, 51 | mpbid 231 |
. . . . . . . . . . . . . 14
β’ (π β πΉ = ((πΉ(quot1pβπ
)πΊ)(.rβπ)πΊ)) |
53 | 52 | fveq2d 6892 |
. . . . . . . . . . . . 13
β’ (π β (πβπΉ) = (πβ((πΉ(quot1pβπ
)πΊ)(.rβπ)πΊ))) |
54 | 49, 12, 15, 45 | q1pcl 25664 |
. . . . . . . . . . . . . . 15
β’ ((π
β Ring β§ πΉ β π΅ β§ πΊ β (Unic1pβπ
)) β (πΉ(quot1pβπ
)πΊ) β π΅) |
55 | 40, 18, 47, 54 | syl3anc 1371 |
. . . . . . . . . . . . . 14
β’ (π β (πΉ(quot1pβπ
)πΊ) β π΅) |
56 | 12, 15, 41 | mon1pcl 25653 |
. . . . . . . . . . . . . . 15
β’ (πΊ β
(Monic1pβπ
) β πΊ β π΅) |
57 | 44, 56 | syl 17 |
. . . . . . . . . . . . . 14
β’ (π β πΊ β π΅) |
58 | | eqid 2732 |
. . . . . . . . . . . . . . 15
β’
(.rβ(π
βs πΎ)) = (.rβ(π
βs πΎ)) |
59 | 15, 48, 58 | rhmmul 20256 |
. . . . . . . . . . . . . 14
β’ ((π β (π RingHom (π
βs πΎ)) β§ (πΉ(quot1pβπ
)πΊ) β π΅ β§ πΊ β π΅) β (πβ((πΉ(quot1pβπ
)πΊ)(.rβπ)πΊ)) = ((πβ(πΉ(quot1pβπ
)πΊ))(.rβ(π
βs πΎ))(πβπΊ))) |
60 | 14, 55, 57, 59 | syl3anc 1371 |
. . . . . . . . . . . . 13
β’ (π β (πβ((πΉ(quot1pβπ
)πΊ)(.rβπ)πΊ)) = ((πβ(πΉ(quot1pβπ
)πΊ))(.rβ(π
βs πΎ))(πβπΊ))) |
61 | 17, 55 | ffvelcdmd 7084 |
. . . . . . . . . . . . . 14
β’ (π β (πβ(πΉ(quot1pβπ
)πΊ)) β (Baseβ(π
βs πΎ))) |
62 | 17, 57 | ffvelcdmd 7084 |
. . . . . . . . . . . . . 14
β’ (π β (πβπΊ) β (Baseβ(π
βs πΎ))) |
63 | | eqid 2732 |
. . . . . . . . . . . . . 14
β’
(.rβπ
) = (.rβπ
) |
64 | 2, 4, 5, 7, 61, 62, 63, 58 | pwsmulrval 17433 |
. . . . . . . . . . . . 13
β’ (π β ((πβ(πΉ(quot1pβπ
)πΊ))(.rβ(π
βs πΎ))(πβπΊ)) = ((πβ(πΉ(quot1pβπ
)πΊ)) βf
(.rβπ
)(πβπΊ))) |
65 | 53, 60, 64 | 3eqtrd 2776 |
. . . . . . . . . . . 12
β’ (π β (πβπΉ) = ((πβ(πΉ(quot1pβπ
)πΊ)) βf
(.rβπ
)(πβπΊ))) |
66 | 65 | fveq1d 6890 |
. . . . . . . . . . 11
β’ (π β ((πβπΉ)βπ₯) = (((πβ(πΉ(quot1pβπ
)πΊ)) βf
(.rβπ
)(πβπΊ))βπ₯)) |
67 | 66 | adantr 481 |
. . . . . . . . . 10
β’ ((π β§ π₯ β πΎ) β ((πβπΉ)βπ₯) = (((πβ(πΉ(quot1pβπ
)πΊ)) βf
(.rβπ
)(πβπΊ))βπ₯)) |
68 | 2, 3, 4, 5, 7, 61 | pwselbas 17431 |
. . . . . . . . . . . . 13
β’ (π β (πβ(πΉ(quot1pβπ
)πΊ)):πΎβΆπΎ) |
69 | 68 | ffnd 6715 |
. . . . . . . . . . . 12
β’ (π β (πβ(πΉ(quot1pβπ
)πΊ)) Fn πΎ) |
70 | 69 | adantr 481 |
. . . . . . . . . . 11
β’ ((π β§ π₯ β πΎ) β (πβ(πΉ(quot1pβπ
)πΊ)) Fn πΎ) |
71 | 2, 3, 4, 5, 7, 62 | pwselbas 17431 |
. . . . . . . . . . . . 13
β’ (π β (πβπΊ):πΎβΆπΎ) |
72 | 71 | ffnd 6715 |
. . . . . . . . . . . 12
β’ (π β (πβπΊ) Fn πΎ) |
73 | 72 | adantr 481 |
. . . . . . . . . . 11
β’ ((π β§ π₯ β πΎ) β (πβπΊ) Fn πΎ) |
74 | 6 | a1i 11 |
. . . . . . . . . . 11
β’ ((π β§ π₯ β πΎ) β πΎ β V) |
75 | | simpr 485 |
. . . . . . . . . . 11
β’ ((π β§ π₯ β πΎ) β π₯ β πΎ) |
76 | | fnfvof 7683 |
. . . . . . . . . . 11
β’ ((((πβ(πΉ(quot1pβπ
)πΊ)) Fn πΎ β§ (πβπΊ) Fn πΎ) β§ (πΎ β V β§ π₯ β πΎ)) β (((πβ(πΉ(quot1pβπ
)πΊ)) βf
(.rβπ
)(πβπΊ))βπ₯) = (((πβ(πΉ(quot1pβπ
)πΊ))βπ₯)(.rβπ
)((πβπΊ)βπ₯))) |
77 | 70, 73, 74, 75, 76 | syl22anc 837 |
. . . . . . . . . 10
β’ ((π β§ π₯ β πΎ) β (((πβ(πΉ(quot1pβπ
)πΊ)) βf
(.rβπ
)(πβπΊ))βπ₯) = (((πβ(πΉ(quot1pβπ
)πΊ))βπ₯)(.rβπ
)((πβπΊ)βπ₯))) |
78 | 67, 77 | eqtrd 2772 |
. . . . . . . . 9
β’ ((π β§ π₯ β πΎ) β ((πβπΉ)βπ₯) = (((πβ(πΉ(quot1pβπ
)πΊ))βπ₯)(.rβπ
)((πβπΊ)βπ₯))) |
79 | 78 | eqeq1d 2734 |
. . . . . . . 8
β’ ((π β§ π₯ β πΎ) β (((πβπΉ)βπ₯) = π β (((πβ(πΉ(quot1pβπ
)πΊ))βπ₯)(.rβπ
)((πβπΊ)βπ₯)) = π)) |
80 | 5, 30 | syl 17 |
. . . . . . . . . 10
β’ (π β π
β Domn) |
81 | 80 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π₯ β πΎ) β π
β Domn) |
82 | 68 | ffvelcdmda 7083 |
. . . . . . . . 9
β’ ((π β§ π₯ β πΎ) β ((πβ(πΉ(quot1pβπ
)πΊ))βπ₯) β πΎ) |
83 | 71 | ffvelcdmda 7083 |
. . . . . . . . 9
β’ ((π β§ π₯ β πΎ) β ((πβπΊ)βπ₯) β πΎ) |
84 | 3, 63, 35 | domneq0 20905 |
. . . . . . . . 9
β’ ((π
β Domn β§ ((πβ(πΉ(quot1pβπ
)πΊ))βπ₯) β πΎ β§ ((πβπΊ)βπ₯) β πΎ) β ((((πβ(πΉ(quot1pβπ
)πΊ))βπ₯)(.rβπ
)((πβπΊ)βπ₯)) = π β (((πβ(πΉ(quot1pβπ
)πΊ))βπ₯) = π β¨ ((πβπΊ)βπ₯) = π))) |
85 | 81, 82, 83, 84 | syl3anc 1371 |
. . . . . . . 8
β’ ((π β§ π₯ β πΎ) β ((((πβ(πΉ(quot1pβπ
)πΊ))βπ₯)(.rβπ
)((πβπΊ)βπ₯)) = π β (((πβ(πΉ(quot1pβπ
)πΊ))βπ₯) = π β¨ ((πβπΊ)βπ₯) = π))) |
86 | 79, 85 | bitrd 278 |
. . . . . . 7
β’ ((π β§ π₯ β πΎ) β (((πβπΉ)βπ₯) = π β (((πβ(πΉ(quot1pβπ
)πΊ))βπ₯) = π β¨ ((πβπΊ)βπ₯) = π))) |
87 | 86 | pm5.32da 579 |
. . . . . 6
β’ (π β ((π₯ β πΎ β§ ((πβπΉ)βπ₯) = π) β (π₯ β πΎ β§ (((πβ(πΉ(quot1pβπ
)πΊ))βπ₯) = π β¨ ((πβπΊ)βπ₯) = π)))) |
88 | | andi 1006 |
. . . . . 6
β’ ((π₯ β πΎ β§ (((πβ(πΉ(quot1pβπ
)πΊ))βπ₯) = π β¨ ((πβπΊ)βπ₯) = π)) β ((π₯ β πΎ β§ ((πβ(πΉ(quot1pβπ
)πΊ))βπ₯) = π) β¨ (π₯ β πΎ β§ ((πβπΊ)βπ₯) = π))) |
89 | 87, 88 | bitrdi 286 |
. . . . 5
β’ (π β ((π₯ β πΎ β§ ((πβπΉ)βπ₯) = π) β ((π₯ β πΎ β§ ((πβ(πΉ(quot1pβπ
)πΊ))βπ₯) = π) β¨ (π₯ β πΎ β§ ((πβπΊ)βπ₯) = π)))) |
90 | | fniniseg 7058 |
. . . . . 6
β’ ((πβπΉ) Fn πΎ β (π₯ β (β‘(πβπΉ) β {π}) β (π₯ β πΎ β§ ((πβπΉ)βπ₯) = π))) |
91 | 21, 90 | syl 17 |
. . . . 5
β’ (π β (π₯ β (β‘(πβπΉ) β {π}) β (π₯ β πΎ β§ ((πβπΉ)βπ₯) = π))) |
92 | | elun 4147 |
. . . . . 6
β’ (π₯ β ((β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π}) βͺ {π}) β (π₯ β (β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π}) β¨ π₯ β {π})) |
93 | | fniniseg 7058 |
. . . . . . . 8
β’ ((πβ(πΉ(quot1pβπ
)πΊ)) Fn πΎ β (π₯ β (β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π}) β (π₯ β πΎ β§ ((πβ(πΉ(quot1pβπ
)πΊ))βπ₯) = π))) |
94 | 69, 93 | syl 17 |
. . . . . . 7
β’ (π β (π₯ β (β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π}) β (π₯ β πΎ β§ ((πβ(πΉ(quot1pβπ
)πΊ))βπ₯) = π))) |
95 | 43 | simp3d 1144 |
. . . . . . . . 9
β’ (π β (β‘(πβπΊ) β {π}) = {π}) |
96 | 95 | eleq2d 2819 |
. . . . . . . 8
β’ (π β (π₯ β (β‘(πβπΊ) β {π}) β π₯ β {π})) |
97 | | fniniseg 7058 |
. . . . . . . . 9
β’ ((πβπΊ) Fn πΎ β (π₯ β (β‘(πβπΊ) β {π}) β (π₯ β πΎ β§ ((πβπΊ)βπ₯) = π))) |
98 | 72, 97 | syl 17 |
. . . . . . . 8
β’ (π β (π₯ β (β‘(πβπΊ) β {π}) β (π₯ β πΎ β§ ((πβπΊ)βπ₯) = π))) |
99 | 96, 98 | bitr3d 280 |
. . . . . . 7
β’ (π β (π₯ β {π} β (π₯ β πΎ β§ ((πβπΊ)βπ₯) = π))) |
100 | 94, 99 | orbi12d 917 |
. . . . . 6
β’ (π β ((π₯ β (β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π}) β¨ π₯ β {π}) β ((π₯ β πΎ β§ ((πβ(πΉ(quot1pβπ
)πΊ))βπ₯) = π) β¨ (π₯ β πΎ β§ ((πβπΊ)βπ₯) = π)))) |
101 | 92, 100 | bitrid 282 |
. . . . 5
β’ (π β (π₯ β ((β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π}) βͺ {π}) β ((π₯ β πΎ β§ ((πβ(πΉ(quot1pβπ
)πΊ))βπ₯) = π) β¨ (π₯ β πΎ β§ ((πβπΊ)βπ₯) = π)))) |
102 | 89, 91, 101 | 3bitr4d 310 |
. . . 4
β’ (π β (π₯ β (β‘(πβπΉ) β {π}) β π₯ β ((β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π}) βͺ {π}))) |
103 | 102 | eqrdv 2730 |
. . 3
β’ (π β (β‘(πβπΉ) β {π}) = ((β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π}) βͺ {π})) |
104 | 103 | fveq2d 6892 |
. 2
β’ (π β (β―β(β‘(πβπΉ) β {π})) = (β―β((β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π}) βͺ {π}))) |
105 | | fvex 6901 |
. . . . . . . . . 10
β’ (πβ(πΉ(quot1pβπ
)πΊ)) β V |
106 | 105 | cnvex 7912 |
. . . . . . . . 9
β’ β‘(πβ(πΉ(quot1pβπ
)πΊ)) β V |
107 | 106 | imaex 7903 |
. . . . . . . 8
β’ (β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π}) β V |
108 | 107 | a1i 11 |
. . . . . . 7
β’ (π β (β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π}) β V) |
109 | | fta1glem.3 |
. . . . . . 7
β’ (π β π β
β0) |
110 | | fta1g.z |
. . . . . . . . . 10
β’ 0 =
(0gβπ) |
111 | | fta1glem.4 |
. . . . . . . . . 10
β’ (π β (π·βπΉ) = (π + 1)) |
112 | 12, 15, 42, 11, 35, 110, 5, 18, 3, 26, 27, 28, 29, 109, 111, 1 | fta1glem1 25674 |
. . . . . . . . 9
β’ (π β (π·β(πΉ(quot1pβπ
)πΊ)) = π) |
113 | | fveq2 6888 |
. . . . . . . . . . . 12
β’ (π = (πΉ(quot1pβπ
)πΊ) β (π·βπ) = (π·β(πΉ(quot1pβπ
)πΊ))) |
114 | 113 | eqeq1d 2734 |
. . . . . . . . . . 11
β’ (π = (πΉ(quot1pβπ
)πΊ) β ((π·βπ) = π β (π·β(πΉ(quot1pβπ
)πΊ)) = π)) |
115 | | fveq2 6888 |
. . . . . . . . . . . . . . 15
β’ (π = (πΉ(quot1pβπ
)πΊ) β (πβπ) = (πβ(πΉ(quot1pβπ
)πΊ))) |
116 | 115 | cnveqd 5873 |
. . . . . . . . . . . . . 14
β’ (π = (πΉ(quot1pβπ
)πΊ) β β‘(πβπ) = β‘(πβ(πΉ(quot1pβπ
)πΊ))) |
117 | 116 | imaeq1d 6056 |
. . . . . . . . . . . . 13
β’ (π = (πΉ(quot1pβπ
)πΊ) β (β‘(πβπ) β {π}) = (β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π})) |
118 | 117 | fveq2d 6892 |
. . . . . . . . . . . 12
β’ (π = (πΉ(quot1pβπ
)πΊ) β (β―β(β‘(πβπ) β {π})) = (β―β(β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π}))) |
119 | 118, 113 | breq12d 5160 |
. . . . . . . . . . 11
β’ (π = (πΉ(quot1pβπ
)πΊ) β ((β―β(β‘(πβπ) β {π})) β€ (π·βπ) β (β―β(β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π})) β€ (π·β(πΉ(quot1pβπ
)πΊ)))) |
120 | 114, 119 | imbi12d 344 |
. . . . . . . . . 10
β’ (π = (πΉ(quot1pβπ
)πΊ) β (((π·βπ) = π β (β―β(β‘(πβπ) β {π})) β€ (π·βπ)) β ((π·β(πΉ(quot1pβπ
)πΊ)) = π β (β―β(β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π})) β€ (π·β(πΉ(quot1pβπ
)πΊ))))) |
121 | | fta1glem.6 |
. . . . . . . . . 10
β’ (π β βπ β π΅ ((π·βπ) = π β (β―β(β‘(πβπ) β {π})) β€ (π·βπ))) |
122 | 120, 121,
55 | rspcdva 3613 |
. . . . . . . . 9
β’ (π β ((π·β(πΉ(quot1pβπ
)πΊ)) = π β (β―β(β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π})) β€ (π·β(πΉ(quot1pβπ
)πΊ)))) |
123 | 112, 122 | mpd 15 |
. . . . . . . 8
β’ (π β (β―β(β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π})) β€ (π·β(πΉ(quot1pβπ
)πΊ))) |
124 | 123, 112 | breqtrd 5173 |
. . . . . . 7
β’ (π β (β―β(β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π})) β€ π) |
125 | | hashbnd 14292 |
. . . . . . 7
β’ (((β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π}) β V β§ π β β0 β§
(β―β(β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π})) β€ π) β (β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π}) β Fin) |
126 | 108, 109,
124, 125 | syl3anc 1371 |
. . . . . 6
β’ (π β (β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π}) β Fin) |
127 | | snfi 9040 |
. . . . . 6
β’ {π} β Fin |
128 | | unfi 9168 |
. . . . . 6
β’ (((β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π}) β Fin β§ {π} β Fin) β ((β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π}) βͺ {π}) β Fin) |
129 | 126, 127,
128 | sylancl 586 |
. . . . 5
β’ (π β ((β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π}) βͺ {π}) β Fin) |
130 | | hashcl 14312 |
. . . . 5
β’ (((β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π}) βͺ {π}) β Fin β (β―β((β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π}) βͺ {π})) β
β0) |
131 | 129, 130 | syl 17 |
. . . 4
β’ (π β (β―β((β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π}) βͺ {π})) β
β0) |
132 | 131 | nn0red 12529 |
. . 3
β’ (π β (β―β((β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π}) βͺ {π})) β β) |
133 | | hashcl 14312 |
. . . . . 6
β’ ((β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π}) β Fin β (β―β(β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π})) β
β0) |
134 | 126, 133 | syl 17 |
. . . . 5
β’ (π β (β―β(β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π})) β
β0) |
135 | 134 | nn0red 12529 |
. . . 4
β’ (π β (β―β(β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π})) β β) |
136 | | peano2re 11383 |
. . . 4
β’
((β―β(β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π})) β β β
((β―β(β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π})) + 1) β β) |
137 | 135, 136 | syl 17 |
. . 3
β’ (π β ((β―β(β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π})) + 1) β β) |
138 | | peano2nn0 12508 |
. . . . . 6
β’ (π β β0
β (π + 1) β
β0) |
139 | 109, 138 | syl 17 |
. . . . 5
β’ (π β (π + 1) β
β0) |
140 | 111, 139 | eqeltrd 2833 |
. . . 4
β’ (π β (π·βπΉ) β
β0) |
141 | 140 | nn0red 12529 |
. . 3
β’ (π β (π·βπΉ) β β) |
142 | | hashun2 14339 |
. . . . 5
β’ (((β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π}) β Fin β§ {π} β Fin) β (β―β((β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π}) βͺ {π})) β€ ((β―β(β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π})) + (β―β{π}))) |
143 | 126, 127,
142 | sylancl 586 |
. . . 4
β’ (π β (β―β((β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π}) βͺ {π})) β€ ((β―β(β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π})) + (β―β{π}))) |
144 | | hashsng 14325 |
. . . . . 6
β’ (π β (β‘(πβπΉ) β {π}) β (β―β{π}) = 1) |
145 | 1, 144 | syl 17 |
. . . . 5
β’ (π β (β―β{π}) = 1) |
146 | 145 | oveq2d 7421 |
. . . 4
β’ (π β ((β―β(β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π})) + (β―β{π})) = ((β―β(β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π})) + 1)) |
147 | 143, 146 | breqtrd 5173 |
. . 3
β’ (π β (β―β((β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π}) βͺ {π})) β€ ((β―β(β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π})) + 1)) |
148 | 109 | nn0red 12529 |
. . . . 5
β’ (π β π β β) |
149 | | 1red 11211 |
. . . . 5
β’ (π β 1 β
β) |
150 | 135, 148,
149, 124 | leadd1dd 11824 |
. . . 4
β’ (π β ((β―β(β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π})) + 1) β€ (π + 1)) |
151 | 150, 111 | breqtrrd 5175 |
. . 3
β’ (π β ((β―β(β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π})) + 1) β€ (π·βπΉ)) |
152 | 132, 137,
141, 147, 151 | letrd 11367 |
. 2
β’ (π β (β―β((β‘(πβ(πΉ(quot1pβπ
)πΊ)) β {π}) βͺ {π})) β€ (π·βπΉ)) |
153 | 104, 152 | eqbrtrd 5169 |
1
β’ (π β (β―β(β‘(πβπΉ) β {π})) β€ (π·βπΉ)) |