MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fta1glem2 Structured version   Visualization version   GIF version

Theorem fta1glem2 26102
Description: Lemma for fta1g 26103. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
fta1g.p 𝑃 = (Poly1𝑅)
fta1g.b 𝐵 = (Base‘𝑃)
fta1g.d 𝐷 = (deg1𝑅)
fta1g.o 𝑂 = (eval1𝑅)
fta1g.w 𝑊 = (0g𝑅)
fta1g.z 0 = (0g𝑃)
fta1g.1 (𝜑𝑅 ∈ IDomn)
fta1g.2 (𝜑𝐹𝐵)
fta1glem.k 𝐾 = (Base‘𝑅)
fta1glem.x 𝑋 = (var1𝑅)
fta1glem.m = (-g𝑃)
fta1glem.a 𝐴 = (algSc‘𝑃)
fta1glem.g 𝐺 = (𝑋 (𝐴𝑇))
fta1glem.3 (𝜑𝑁 ∈ ℕ0)
fta1glem.4 (𝜑 → (𝐷𝐹) = (𝑁 + 1))
fta1glem.5 (𝜑𝑇 ∈ ((𝑂𝐹) “ {𝑊}))
fta1glem.6 (𝜑 → ∀𝑔𝐵 ((𝐷𝑔) = 𝑁 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))
Assertion
Ref Expression
fta1glem2 (𝜑 → (♯‘((𝑂𝐹) “ {𝑊})) ≤ (𝐷𝐹))
Distinct variable groups:   𝐵,𝑔   𝐷,𝑔   𝑔,𝐹   𝑔,𝑁   𝑔,𝑂   𝑔,𝐺   𝑃,𝑔   𝑅,𝑔   𝑔,𝑊
Allowed substitution hints:   𝜑(𝑔)   𝐴(𝑔)   𝑇(𝑔)   𝐾(𝑔)   (𝑔)   𝑋(𝑔)   0 (𝑔)

Proof of Theorem fta1glem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fta1glem.5 . . . . . . . . . . . . . . . . . 18 (𝜑𝑇 ∈ ((𝑂𝐹) “ {𝑊}))
2 eqid 2731 . . . . . . . . . . . . . . . . . . . . 21 (𝑅s 𝐾) = (𝑅s 𝐾)
3 fta1glem.k . . . . . . . . . . . . . . . . . . . . 21 𝐾 = (Base‘𝑅)
4 eqid 2731 . . . . . . . . . . . . . . . . . . . . 21 (Base‘(𝑅s 𝐾)) = (Base‘(𝑅s 𝐾))
5 fta1g.1 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑅 ∈ IDomn)
63fvexi 6836 . . . . . . . . . . . . . . . . . . . . . 22 𝐾 ∈ V
76a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐾 ∈ V)
8 isidom 20641 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
98simplbi 497 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑅 ∈ IDomn → 𝑅 ∈ CRing)
105, 9syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑅 ∈ CRing)
11 fta1g.o . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑂 = (eval1𝑅)
12 fta1g.p . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑃 = (Poly1𝑅)
1311, 12, 2, 3evl1rhm 22248 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)))
1410, 13syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)))
15 fta1g.b . . . . . . . . . . . . . . . . . . . . . . . 24 𝐵 = (Base‘𝑃)
1615, 4rhmf 20403 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)) → 𝑂:𝐵⟶(Base‘(𝑅s 𝐾)))
1714, 16syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑂:𝐵⟶(Base‘(𝑅s 𝐾)))
18 fta1g.2 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐹𝐵)
1917, 18ffvelcdmd 7018 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑂𝐹) ∈ (Base‘(𝑅s 𝐾)))
202, 3, 4, 5, 7, 19pwselbas 17393 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑂𝐹):𝐾𝐾)
2120ffnd 6652 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑂𝐹) Fn 𝐾)
22 fniniseg 6993 . . . . . . . . . . . . . . . . . . 19 ((𝑂𝐹) Fn 𝐾 → (𝑇 ∈ ((𝑂𝐹) “ {𝑊}) ↔ (𝑇𝐾 ∧ ((𝑂𝐹)‘𝑇) = 𝑊)))
2321, 22syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑇 ∈ ((𝑂𝐹) “ {𝑊}) ↔ (𝑇𝐾 ∧ ((𝑂𝐹)‘𝑇) = 𝑊)))
241, 23mpbid 232 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑇𝐾 ∧ ((𝑂𝐹)‘𝑇) = 𝑊))
2524simprd 495 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑂𝐹)‘𝑇) = 𝑊)
26 fta1glem.x . . . . . . . . . . . . . . . . 17 𝑋 = (var1𝑅)
27 fta1glem.m . . . . . . . . . . . . . . . . 17 = (-g𝑃)
28 fta1glem.a . . . . . . . . . . . . . . . . 17 𝐴 = (algSc‘𝑃)
29 fta1glem.g . . . . . . . . . . . . . . . . 17 𝐺 = (𝑋 (𝐴𝑇))
308simprbi 496 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ IDomn → 𝑅 ∈ Domn)
31 domnnzr 20622 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
3230, 31syl 17 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ IDomn → 𝑅 ∈ NzRing)
335, 32syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑅 ∈ NzRing)
3424simpld 494 . . . . . . . . . . . . . . . . 17 (𝜑𝑇𝐾)
35 fta1g.w . . . . . . . . . . . . . . . . 17 𝑊 = (0g𝑅)
36 eqid 2731 . . . . . . . . . . . . . . . . 17 (∥r𝑃) = (∥r𝑃)
3712, 15, 3, 26, 27, 28, 29, 11, 33, 10, 34, 18, 35, 36facth1 26100 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐺(∥r𝑃)𝐹 ↔ ((𝑂𝐹)‘𝑇) = 𝑊))
3825, 37mpbird 257 . . . . . . . . . . . . . . 15 (𝜑𝐺(∥r𝑃)𝐹)
39 nzrring 20432 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
4033, 39syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑅 ∈ Ring)
41 eqid 2731 . . . . . . . . . . . . . . . . . . 19 (Monic1p𝑅) = (Monic1p𝑅)
42 fta1g.d . . . . . . . . . . . . . . . . . . 19 𝐷 = (deg1𝑅)
4312, 15, 3, 26, 27, 28, 29, 11, 33, 10, 34, 41, 42, 35ply1remlem 26098 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐺 ∈ (Monic1p𝑅) ∧ (𝐷𝐺) = 1 ∧ ((𝑂𝐺) “ {𝑊}) = {𝑇}))
4443simp1d 1142 . . . . . . . . . . . . . . . . 17 (𝜑𝐺 ∈ (Monic1p𝑅))
45 eqid 2731 . . . . . . . . . . . . . . . . . 18 (Unic1p𝑅) = (Unic1p𝑅)
4645, 41mon1puc1p 26084 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝐺 ∈ (Monic1p𝑅)) → 𝐺 ∈ (Unic1p𝑅))
4740, 44, 46syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑𝐺 ∈ (Unic1p𝑅))
48 eqid 2731 . . . . . . . . . . . . . . . . 17 (.r𝑃) = (.r𝑃)
49 eqid 2731 . . . . . . . . . . . . . . . . 17 (quot1p𝑅) = (quot1p𝑅)
5012, 36, 15, 45, 48, 49dvdsq1p 26096 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺 ∈ (Unic1p𝑅)) → (𝐺(∥r𝑃)𝐹𝐹 = ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)))
5140, 18, 47, 50syl3anc 1373 . . . . . . . . . . . . . . 15 (𝜑 → (𝐺(∥r𝑃)𝐹𝐹 = ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)))
5238, 51mpbid 232 . . . . . . . . . . . . . 14 (𝜑𝐹 = ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))
5352fveq2d 6826 . . . . . . . . . . . . 13 (𝜑 → (𝑂𝐹) = (𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)))
5449, 12, 15, 45q1pcl 26090 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺 ∈ (Unic1p𝑅)) → (𝐹(quot1p𝑅)𝐺) ∈ 𝐵)
5540, 18, 47, 54syl3anc 1373 . . . . . . . . . . . . . 14 (𝜑 → (𝐹(quot1p𝑅)𝐺) ∈ 𝐵)
5612, 15, 41mon1pcl 26078 . . . . . . . . . . . . . . 15 (𝐺 ∈ (Monic1p𝑅) → 𝐺𝐵)
5744, 56syl 17 . . . . . . . . . . . . . 14 (𝜑𝐺𝐵)
58 eqid 2731 . . . . . . . . . . . . . . 15 (.r‘(𝑅s 𝐾)) = (.r‘(𝑅s 𝐾))
5915, 48, 58rhmmul 20404 . . . . . . . . . . . . . 14 ((𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)) ∧ (𝐹(quot1p𝑅)𝐺) ∈ 𝐵𝐺𝐵) → (𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) = ((𝑂‘(𝐹(quot1p𝑅)𝐺))(.r‘(𝑅s 𝐾))(𝑂𝐺)))
6014, 55, 57, 59syl3anc 1373 . . . . . . . . . . . . 13 (𝜑 → (𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) = ((𝑂‘(𝐹(quot1p𝑅)𝐺))(.r‘(𝑅s 𝐾))(𝑂𝐺)))
6117, 55ffvelcdmd 7018 . . . . . . . . . . . . . 14 (𝜑 → (𝑂‘(𝐹(quot1p𝑅)𝐺)) ∈ (Base‘(𝑅s 𝐾)))
6217, 57ffvelcdmd 7018 . . . . . . . . . . . . . 14 (𝜑 → (𝑂𝐺) ∈ (Base‘(𝑅s 𝐾)))
63 eqid 2731 . . . . . . . . . . . . . 14 (.r𝑅) = (.r𝑅)
642, 4, 5, 7, 61, 62, 63, 58pwsmulrval 17395 . . . . . . . . . . . . 13 (𝜑 → ((𝑂‘(𝐹(quot1p𝑅)𝐺))(.r‘(𝑅s 𝐾))(𝑂𝐺)) = ((𝑂‘(𝐹(quot1p𝑅)𝐺)) ∘f (.r𝑅)(𝑂𝐺)))
6553, 60, 643eqtrd 2770 . . . . . . . . . . . 12 (𝜑 → (𝑂𝐹) = ((𝑂‘(𝐹(quot1p𝑅)𝐺)) ∘f (.r𝑅)(𝑂𝐺)))
6665fveq1d 6824 . . . . . . . . . . 11 (𝜑 → ((𝑂𝐹)‘𝑥) = (((𝑂‘(𝐹(quot1p𝑅)𝐺)) ∘f (.r𝑅)(𝑂𝐺))‘𝑥))
6766adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝐾) → ((𝑂𝐹)‘𝑥) = (((𝑂‘(𝐹(quot1p𝑅)𝐺)) ∘f (.r𝑅)(𝑂𝐺))‘𝑥))
682, 3, 4, 5, 7, 61pwselbas 17393 . . . . . . . . . . . . 13 (𝜑 → (𝑂‘(𝐹(quot1p𝑅)𝐺)):𝐾𝐾)
6968ffnd 6652 . . . . . . . . . . . 12 (𝜑 → (𝑂‘(𝐹(quot1p𝑅)𝐺)) Fn 𝐾)
7069adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝐾) → (𝑂‘(𝐹(quot1p𝑅)𝐺)) Fn 𝐾)
712, 3, 4, 5, 7, 62pwselbas 17393 . . . . . . . . . . . . 13 (𝜑 → (𝑂𝐺):𝐾𝐾)
7271ffnd 6652 . . . . . . . . . . . 12 (𝜑 → (𝑂𝐺) Fn 𝐾)
7372adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝐾) → (𝑂𝐺) Fn 𝐾)
746a1i 11 . . . . . . . . . . 11 ((𝜑𝑥𝐾) → 𝐾 ∈ V)
75 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥𝐾) → 𝑥𝐾)
76 fnfvof 7627 . . . . . . . . . . 11 ((((𝑂‘(𝐹(quot1p𝑅)𝐺)) Fn 𝐾 ∧ (𝑂𝐺) Fn 𝐾) ∧ (𝐾 ∈ V ∧ 𝑥𝐾)) → (((𝑂‘(𝐹(quot1p𝑅)𝐺)) ∘f (.r𝑅)(𝑂𝐺))‘𝑥) = (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥)(.r𝑅)((𝑂𝐺)‘𝑥)))
7770, 73, 74, 75, 76syl22anc 838 . . . . . . . . . 10 ((𝜑𝑥𝐾) → (((𝑂‘(𝐹(quot1p𝑅)𝐺)) ∘f (.r𝑅)(𝑂𝐺))‘𝑥) = (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥)(.r𝑅)((𝑂𝐺)‘𝑥)))
7867, 77eqtrd 2766 . . . . . . . . 9 ((𝜑𝑥𝐾) → ((𝑂𝐹)‘𝑥) = (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥)(.r𝑅)((𝑂𝐺)‘𝑥)))
7978eqeq1d 2733 . . . . . . . 8 ((𝜑𝑥𝐾) → (((𝑂𝐹)‘𝑥) = 𝑊 ↔ (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥)(.r𝑅)((𝑂𝐺)‘𝑥)) = 𝑊))
805, 30syl 17 . . . . . . . . . 10 (𝜑𝑅 ∈ Domn)
8180adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐾) → 𝑅 ∈ Domn)
8268ffvelcdmda 7017 . . . . . . . . 9 ((𝜑𝑥𝐾) → ((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) ∈ 𝐾)
8371ffvelcdmda 7017 . . . . . . . . 9 ((𝜑𝑥𝐾) → ((𝑂𝐺)‘𝑥) ∈ 𝐾)
843, 63, 35domneq0 20624 . . . . . . . . 9 ((𝑅 ∈ Domn ∧ ((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) ∈ 𝐾 ∧ ((𝑂𝐺)‘𝑥) ∈ 𝐾) → ((((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥)(.r𝑅)((𝑂𝐺)‘𝑥)) = 𝑊 ↔ (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) = 𝑊 ∨ ((𝑂𝐺)‘𝑥) = 𝑊)))
8581, 82, 83, 84syl3anc 1373 . . . . . . . 8 ((𝜑𝑥𝐾) → ((((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥)(.r𝑅)((𝑂𝐺)‘𝑥)) = 𝑊 ↔ (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) = 𝑊 ∨ ((𝑂𝐺)‘𝑥) = 𝑊)))
8679, 85bitrd 279 . . . . . . 7 ((𝜑𝑥𝐾) → (((𝑂𝐹)‘𝑥) = 𝑊 ↔ (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) = 𝑊 ∨ ((𝑂𝐺)‘𝑥) = 𝑊)))
8786pm5.32da 579 . . . . . 6 (𝜑 → ((𝑥𝐾 ∧ ((𝑂𝐹)‘𝑥) = 𝑊) ↔ (𝑥𝐾 ∧ (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) = 𝑊 ∨ ((𝑂𝐺)‘𝑥) = 𝑊))))
88 andi 1009 . . . . . 6 ((𝑥𝐾 ∧ (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) = 𝑊 ∨ ((𝑂𝐺)‘𝑥) = 𝑊)) ↔ ((𝑥𝐾 ∧ ((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) = 𝑊) ∨ (𝑥𝐾 ∧ ((𝑂𝐺)‘𝑥) = 𝑊)))
8987, 88bitrdi 287 . . . . 5 (𝜑 → ((𝑥𝐾 ∧ ((𝑂𝐹)‘𝑥) = 𝑊) ↔ ((𝑥𝐾 ∧ ((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) = 𝑊) ∨ (𝑥𝐾 ∧ ((𝑂𝐺)‘𝑥) = 𝑊))))
90 fniniseg 6993 . . . . . 6 ((𝑂𝐹) Fn 𝐾 → (𝑥 ∈ ((𝑂𝐹) “ {𝑊}) ↔ (𝑥𝐾 ∧ ((𝑂𝐹)‘𝑥) = 𝑊)))
9121, 90syl 17 . . . . 5 (𝜑 → (𝑥 ∈ ((𝑂𝐹) “ {𝑊}) ↔ (𝑥𝐾 ∧ ((𝑂𝐹)‘𝑥) = 𝑊)))
92 elun 4103 . . . . . 6 (𝑥 ∈ (((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇}) ↔ (𝑥 ∈ ((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∨ 𝑥 ∈ {𝑇}))
93 fniniseg 6993 . . . . . . . 8 ((𝑂‘(𝐹(quot1p𝑅)𝐺)) Fn 𝐾 → (𝑥 ∈ ((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ↔ (𝑥𝐾 ∧ ((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) = 𝑊)))
9469, 93syl 17 . . . . . . 7 (𝜑 → (𝑥 ∈ ((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ↔ (𝑥𝐾 ∧ ((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) = 𝑊)))
9543simp3d 1144 . . . . . . . . 9 (𝜑 → ((𝑂𝐺) “ {𝑊}) = {𝑇})
9695eleq2d 2817 . . . . . . . 8 (𝜑 → (𝑥 ∈ ((𝑂𝐺) “ {𝑊}) ↔ 𝑥 ∈ {𝑇}))
97 fniniseg 6993 . . . . . . . . 9 ((𝑂𝐺) Fn 𝐾 → (𝑥 ∈ ((𝑂𝐺) “ {𝑊}) ↔ (𝑥𝐾 ∧ ((𝑂𝐺)‘𝑥) = 𝑊)))
9872, 97syl 17 . . . . . . . 8 (𝜑 → (𝑥 ∈ ((𝑂𝐺) “ {𝑊}) ↔ (𝑥𝐾 ∧ ((𝑂𝐺)‘𝑥) = 𝑊)))
9996, 98bitr3d 281 . . . . . . 7 (𝜑 → (𝑥 ∈ {𝑇} ↔ (𝑥𝐾 ∧ ((𝑂𝐺)‘𝑥) = 𝑊)))
10094, 99orbi12d 918 . . . . . 6 (𝜑 → ((𝑥 ∈ ((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∨ 𝑥 ∈ {𝑇}) ↔ ((𝑥𝐾 ∧ ((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) = 𝑊) ∨ (𝑥𝐾 ∧ ((𝑂𝐺)‘𝑥) = 𝑊))))
10192, 100bitrid 283 . . . . 5 (𝜑 → (𝑥 ∈ (((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇}) ↔ ((𝑥𝐾 ∧ ((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) = 𝑊) ∨ (𝑥𝐾 ∧ ((𝑂𝐺)‘𝑥) = 𝑊))))
10289, 91, 1013bitr4d 311 . . . 4 (𝜑 → (𝑥 ∈ ((𝑂𝐹) “ {𝑊}) ↔ 𝑥 ∈ (((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇})))
103102eqrdv 2729 . . 3 (𝜑 → ((𝑂𝐹) “ {𝑊}) = (((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇}))
104103fveq2d 6826 . 2 (𝜑 → (♯‘((𝑂𝐹) “ {𝑊})) = (♯‘(((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇})))
105 fvex 6835 . . . . . . . . . 10 (𝑂‘(𝐹(quot1p𝑅)𝐺)) ∈ V
106105cnvex 7855 . . . . . . . . 9 (𝑂‘(𝐹(quot1p𝑅)𝐺)) ∈ V
107106imaex 7844 . . . . . . . 8 ((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∈ V
108107a1i 11 . . . . . . 7 (𝜑 → ((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∈ V)
109 fta1glem.3 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
110 fta1g.z . . . . . . . . . 10 0 = (0g𝑃)
111 fta1glem.4 . . . . . . . . . 10 (𝜑 → (𝐷𝐹) = (𝑁 + 1))
11212, 15, 42, 11, 35, 110, 5, 18, 3, 26, 27, 28, 29, 109, 111, 1fta1glem1 26101 . . . . . . . . 9 (𝜑 → (𝐷‘(𝐹(quot1p𝑅)𝐺)) = 𝑁)
113 fveq2 6822 . . . . . . . . . . . 12 (𝑔 = (𝐹(quot1p𝑅)𝐺) → (𝐷𝑔) = (𝐷‘(𝐹(quot1p𝑅)𝐺)))
114113eqeq1d 2733 . . . . . . . . . . 11 (𝑔 = (𝐹(quot1p𝑅)𝐺) → ((𝐷𝑔) = 𝑁 ↔ (𝐷‘(𝐹(quot1p𝑅)𝐺)) = 𝑁))
115 fveq2 6822 . . . . . . . . . . . . . . 15 (𝑔 = (𝐹(quot1p𝑅)𝐺) → (𝑂𝑔) = (𝑂‘(𝐹(quot1p𝑅)𝐺)))
116115cnveqd 5815 . . . . . . . . . . . . . 14 (𝑔 = (𝐹(quot1p𝑅)𝐺) → (𝑂𝑔) = (𝑂‘(𝐹(quot1p𝑅)𝐺)))
117116imaeq1d 6008 . . . . . . . . . . . . 13 (𝑔 = (𝐹(quot1p𝑅)𝐺) → ((𝑂𝑔) “ {𝑊}) = ((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}))
118117fveq2d 6826 . . . . . . . . . . . 12 (𝑔 = (𝐹(quot1p𝑅)𝐺) → (♯‘((𝑂𝑔) “ {𝑊})) = (♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})))
119118, 113breq12d 5104 . . . . . . . . . . 11 (𝑔 = (𝐹(quot1p𝑅)𝐺) → ((♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔) ↔ (♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) ≤ (𝐷‘(𝐹(quot1p𝑅)𝐺))))
120114, 119imbi12d 344 . . . . . . . . . 10 (𝑔 = (𝐹(quot1p𝑅)𝐺) → (((𝐷𝑔) = 𝑁 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)) ↔ ((𝐷‘(𝐹(quot1p𝑅)𝐺)) = 𝑁 → (♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) ≤ (𝐷‘(𝐹(quot1p𝑅)𝐺)))))
121 fta1glem.6 . . . . . . . . . 10 (𝜑 → ∀𝑔𝐵 ((𝐷𝑔) = 𝑁 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))
122120, 121, 55rspcdva 3578 . . . . . . . . 9 (𝜑 → ((𝐷‘(𝐹(quot1p𝑅)𝐺)) = 𝑁 → (♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) ≤ (𝐷‘(𝐹(quot1p𝑅)𝐺))))
123112, 122mpd 15 . . . . . . . 8 (𝜑 → (♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) ≤ (𝐷‘(𝐹(quot1p𝑅)𝐺)))
124123, 112breqtrd 5117 . . . . . . 7 (𝜑 → (♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) ≤ 𝑁)
125 hashbnd 14243 . . . . . . 7 ((((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∈ V ∧ 𝑁 ∈ ℕ0 ∧ (♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) ≤ 𝑁) → ((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∈ Fin)
126108, 109, 124, 125syl3anc 1373 . . . . . 6 (𝜑 → ((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∈ Fin)
127 snfi 8965 . . . . . 6 {𝑇} ∈ Fin
128 unfi 9080 . . . . . 6 ((((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∈ Fin ∧ {𝑇} ∈ Fin) → (((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇}) ∈ Fin)
129126, 127, 128sylancl 586 . . . . 5 (𝜑 → (((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇}) ∈ Fin)
130 hashcl 14263 . . . . 5 ((((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇}) ∈ Fin → (♯‘(((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇})) ∈ ℕ0)
131129, 130syl 17 . . . 4 (𝜑 → (♯‘(((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇})) ∈ ℕ0)
132131nn0red 12443 . . 3 (𝜑 → (♯‘(((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇})) ∈ ℝ)
133 hashcl 14263 . . . . . 6 (((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∈ Fin → (♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) ∈ ℕ0)
134126, 133syl 17 . . . . 5 (𝜑 → (♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) ∈ ℕ0)
135134nn0red 12443 . . . 4 (𝜑 → (♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) ∈ ℝ)
136 peano2re 11286 . . . 4 ((♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) ∈ ℝ → ((♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) + 1) ∈ ℝ)
137135, 136syl 17 . . 3 (𝜑 → ((♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) + 1) ∈ ℝ)
138 peano2nn0 12421 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
139109, 138syl 17 . . . . 5 (𝜑 → (𝑁 + 1) ∈ ℕ0)
140111, 139eqeltrd 2831 . . . 4 (𝜑 → (𝐷𝐹) ∈ ℕ0)
141140nn0red 12443 . . 3 (𝜑 → (𝐷𝐹) ∈ ℝ)
142 hashun2 14290 . . . . 5 ((((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∈ Fin ∧ {𝑇} ∈ Fin) → (♯‘(((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇})) ≤ ((♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) + (♯‘{𝑇})))
143126, 127, 142sylancl 586 . . . 4 (𝜑 → (♯‘(((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇})) ≤ ((♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) + (♯‘{𝑇})))
144 hashsng 14276 . . . . . 6 (𝑇 ∈ ((𝑂𝐹) “ {𝑊}) → (♯‘{𝑇}) = 1)
1451, 144syl 17 . . . . 5 (𝜑 → (♯‘{𝑇}) = 1)
146145oveq2d 7362 . . . 4 (𝜑 → ((♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) + (♯‘{𝑇})) = ((♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) + 1))
147143, 146breqtrd 5117 . . 3 (𝜑 → (♯‘(((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇})) ≤ ((♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) + 1))
148109nn0red 12443 . . . . 5 (𝜑𝑁 ∈ ℝ)
149 1red 11113 . . . . 5 (𝜑 → 1 ∈ ℝ)
150135, 148, 149, 124leadd1dd 11731 . . . 4 (𝜑 → ((♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) + 1) ≤ (𝑁 + 1))
151150, 111breqtrrd 5119 . . 3 (𝜑 → ((♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) + 1) ≤ (𝐷𝐹))
152132, 137, 141, 147, 151letrd 11270 . 2 (𝜑 → (♯‘(((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇})) ≤ (𝐷𝐹))
153104, 152eqbrtrd 5113 1 (𝜑 → (♯‘((𝑂𝐹) “ {𝑊})) ≤ (𝐷𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  cun 3900  {csn 4576   class class class wbr 5091  ccnv 5615  cima 5619   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  f cof 7608  Fincfn 8869  cr 11005  1c1 11007   + caddc 11009  cle 11147  0cn0 12381  chash 14237  Basecbs 17120  .rcmulr 17162  0gc0g 17343  s cpws 17350  -gcsg 18848  Ringcrg 20152  CRingccrg 20153  rcdsr 20273   RingHom crh 20388  NzRingcnzr 20428  Domncdomn 20608  IDomncidom 20609  algSccascl 21790  var1cv1 22089  Poly1cpl1 22090  eval1ce1 22230  deg1cdg1 25987  Monic1pcmn1 26059  Unic1pcuc1p 26060  quot1pcq1p 26061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-xnn0 12455  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-ghm 19126  df-cntz 19230  df-cmn 19695  df-abl 19696  df-mgp 20060  df-rng 20072  df-ur 20101  df-srg 20106  df-ring 20154  df-cring 20155  df-oppr 20256  df-dvdsr 20276  df-unit 20277  df-invr 20307  df-rhm 20391  df-nzr 20429  df-subrng 20462  df-subrg 20486  df-rlreg 20610  df-domn 20611  df-idom 20612  df-lmod 20796  df-lss 20866  df-lsp 20906  df-cnfld 21293  df-assa 21791  df-asp 21792  df-ascl 21793  df-psr 21847  df-mvr 21848  df-mpl 21849  df-opsr 21851  df-evls 22010  df-evl 22011  df-psr1 22093  df-vr1 22094  df-ply1 22095  df-coe1 22096  df-evl1 22232  df-mdeg 25988  df-deg1 25989  df-mon1 26064  df-uc1p 26065  df-q1p 26066  df-r1p 26067
This theorem is referenced by:  fta1g  26103
  Copyright terms: Public domain W3C validator