Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fta1glem2 Structured version   Visualization version   GIF version

Theorem fta1glem2 24811
 Description: Lemma for fta1g 24812. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
fta1g.p 𝑃 = (Poly1𝑅)
fta1g.b 𝐵 = (Base‘𝑃)
fta1g.d 𝐷 = ( deg1𝑅)
fta1g.o 𝑂 = (eval1𝑅)
fta1g.w 𝑊 = (0g𝑅)
fta1g.z 0 = (0g𝑃)
fta1g.1 (𝜑𝑅 ∈ IDomn)
fta1g.2 (𝜑𝐹𝐵)
fta1glem.k 𝐾 = (Base‘𝑅)
fta1glem.x 𝑋 = (var1𝑅)
fta1glem.m = (-g𝑃)
fta1glem.a 𝐴 = (algSc‘𝑃)
fta1glem.g 𝐺 = (𝑋 (𝐴𝑇))
fta1glem.3 (𝜑𝑁 ∈ ℕ0)
fta1glem.4 (𝜑 → (𝐷𝐹) = (𝑁 + 1))
fta1glem.5 (𝜑𝑇 ∈ ((𝑂𝐹) “ {𝑊}))
fta1glem.6 (𝜑 → ∀𝑔𝐵 ((𝐷𝑔) = 𝑁 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))
Assertion
Ref Expression
fta1glem2 (𝜑 → (♯‘((𝑂𝐹) “ {𝑊})) ≤ (𝐷𝐹))
Distinct variable groups:   𝐵,𝑔   𝐷,𝑔   𝑔,𝐹   𝑔,𝑁   𝑔,𝑂   𝑔,𝐺   𝑃,𝑔   𝑅,𝑔   𝑔,𝑊
Allowed substitution hints:   𝜑(𝑔)   𝐴(𝑔)   𝑇(𝑔)   𝐾(𝑔)   (𝑔)   𝑋(𝑔)   0 (𝑔)

Proof of Theorem fta1glem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fta1glem.5 . . . . . . . . . . . . . . . . . 18 (𝜑𝑇 ∈ ((𝑂𝐹) “ {𝑊}))
2 eqid 2798 . . . . . . . . . . . . . . . . . . . . 21 (𝑅s 𝐾) = (𝑅s 𝐾)
3 fta1glem.k . . . . . . . . . . . . . . . . . . . . 21 𝐾 = (Base‘𝑅)
4 eqid 2798 . . . . . . . . . . . . . . . . . . . . 21 (Base‘(𝑅s 𝐾)) = (Base‘(𝑅s 𝐾))
5 fta1g.1 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑅 ∈ IDomn)
63fvexi 6669 . . . . . . . . . . . . . . . . . . . . . 22 𝐾 ∈ V
76a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐾 ∈ V)
8 isidom 20091 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
98simplbi 501 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑅 ∈ IDomn → 𝑅 ∈ CRing)
105, 9syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑅 ∈ CRing)
11 fta1g.o . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑂 = (eval1𝑅)
12 fta1g.p . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑃 = (Poly1𝑅)
1311, 12, 2, 3evl1rhm 20997 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)))
1410, 13syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)))
15 fta1g.b . . . . . . . . . . . . . . . . . . . . . . . 24 𝐵 = (Base‘𝑃)
1615, 4rhmf 19495 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)) → 𝑂:𝐵⟶(Base‘(𝑅s 𝐾)))
1714, 16syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑂:𝐵⟶(Base‘(𝑅s 𝐾)))
18 fta1g.2 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐹𝐵)
1917, 18ffvelrnd 6839 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑂𝐹) ∈ (Base‘(𝑅s 𝐾)))
202, 3, 4, 5, 7, 19pwselbas 16774 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑂𝐹):𝐾𝐾)
2120ffnd 6496 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑂𝐹) Fn 𝐾)
22 fniniseg 6817 . . . . . . . . . . . . . . . . . . 19 ((𝑂𝐹) Fn 𝐾 → (𝑇 ∈ ((𝑂𝐹) “ {𝑊}) ↔ (𝑇𝐾 ∧ ((𝑂𝐹)‘𝑇) = 𝑊)))
2321, 22syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑇 ∈ ((𝑂𝐹) “ {𝑊}) ↔ (𝑇𝐾 ∧ ((𝑂𝐹)‘𝑇) = 𝑊)))
241, 23mpbid 235 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑇𝐾 ∧ ((𝑂𝐹)‘𝑇) = 𝑊))
2524simprd 499 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑂𝐹)‘𝑇) = 𝑊)
26 fta1glem.x . . . . . . . . . . . . . . . . 17 𝑋 = (var1𝑅)
27 fta1glem.m . . . . . . . . . . . . . . . . 17 = (-g𝑃)
28 fta1glem.a . . . . . . . . . . . . . . . . 17 𝐴 = (algSc‘𝑃)
29 fta1glem.g . . . . . . . . . . . . . . . . 17 𝐺 = (𝑋 (𝐴𝑇))
308simprbi 500 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ IDomn → 𝑅 ∈ Domn)
31 domnnzr 20082 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
3230, 31syl 17 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ IDomn → 𝑅 ∈ NzRing)
335, 32syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑅 ∈ NzRing)
3424simpld 498 . . . . . . . . . . . . . . . . 17 (𝜑𝑇𝐾)
35 fta1g.w . . . . . . . . . . . . . . . . 17 𝑊 = (0g𝑅)
36 eqid 2798 . . . . . . . . . . . . . . . . 17 (∥r𝑃) = (∥r𝑃)
3712, 15, 3, 26, 27, 28, 29, 11, 33, 10, 34, 18, 35, 36facth1 24809 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐺(∥r𝑃)𝐹 ↔ ((𝑂𝐹)‘𝑇) = 𝑊))
3825, 37mpbird 260 . . . . . . . . . . . . . . 15 (𝜑𝐺(∥r𝑃)𝐹)
39 nzrring 20048 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
4033, 39syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑅 ∈ Ring)
41 eqid 2798 . . . . . . . . . . . . . . . . . . 19 (Monic1p𝑅) = (Monic1p𝑅)
42 fta1g.d . . . . . . . . . . . . . . . . . . 19 𝐷 = ( deg1𝑅)
4312, 15, 3, 26, 27, 28, 29, 11, 33, 10, 34, 41, 42, 35ply1remlem 24807 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐺 ∈ (Monic1p𝑅) ∧ (𝐷𝐺) = 1 ∧ ((𝑂𝐺) “ {𝑊}) = {𝑇}))
4443simp1d 1139 . . . . . . . . . . . . . . . . 17 (𝜑𝐺 ∈ (Monic1p𝑅))
45 eqid 2798 . . . . . . . . . . . . . . . . . 18 (Unic1p𝑅) = (Unic1p𝑅)
4645, 41mon1puc1p 24795 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝐺 ∈ (Monic1p𝑅)) → 𝐺 ∈ (Unic1p𝑅))
4740, 44, 46syl2anc 587 . . . . . . . . . . . . . . . 16 (𝜑𝐺 ∈ (Unic1p𝑅))
48 eqid 2798 . . . . . . . . . . . . . . . . 17 (.r𝑃) = (.r𝑃)
49 eqid 2798 . . . . . . . . . . . . . . . . 17 (quot1p𝑅) = (quot1p𝑅)
5012, 36, 15, 45, 48, 49dvdsq1p 24805 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺 ∈ (Unic1p𝑅)) → (𝐺(∥r𝑃)𝐹𝐹 = ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)))
5140, 18, 47, 50syl3anc 1368 . . . . . . . . . . . . . . 15 (𝜑 → (𝐺(∥r𝑃)𝐹𝐹 = ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)))
5238, 51mpbid 235 . . . . . . . . . . . . . 14 (𝜑𝐹 = ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))
5352fveq2d 6659 . . . . . . . . . . . . 13 (𝜑 → (𝑂𝐹) = (𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)))
5449, 12, 15, 45q1pcl 24800 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺 ∈ (Unic1p𝑅)) → (𝐹(quot1p𝑅)𝐺) ∈ 𝐵)
5540, 18, 47, 54syl3anc 1368 . . . . . . . . . . . . . 14 (𝜑 → (𝐹(quot1p𝑅)𝐺) ∈ 𝐵)
5612, 15, 41mon1pcl 24789 . . . . . . . . . . . . . . 15 (𝐺 ∈ (Monic1p𝑅) → 𝐺𝐵)
5744, 56syl 17 . . . . . . . . . . . . . 14 (𝜑𝐺𝐵)
58 eqid 2798 . . . . . . . . . . . . . . 15 (.r‘(𝑅s 𝐾)) = (.r‘(𝑅s 𝐾))
5915, 48, 58rhmmul 19496 . . . . . . . . . . . . . 14 ((𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)) ∧ (𝐹(quot1p𝑅)𝐺) ∈ 𝐵𝐺𝐵) → (𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) = ((𝑂‘(𝐹(quot1p𝑅)𝐺))(.r‘(𝑅s 𝐾))(𝑂𝐺)))
6014, 55, 57, 59syl3anc 1368 . . . . . . . . . . . . 13 (𝜑 → (𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) = ((𝑂‘(𝐹(quot1p𝑅)𝐺))(.r‘(𝑅s 𝐾))(𝑂𝐺)))
6117, 55ffvelrnd 6839 . . . . . . . . . . . . . 14 (𝜑 → (𝑂‘(𝐹(quot1p𝑅)𝐺)) ∈ (Base‘(𝑅s 𝐾)))
6217, 57ffvelrnd 6839 . . . . . . . . . . . . . 14 (𝜑 → (𝑂𝐺) ∈ (Base‘(𝑅s 𝐾)))
63 eqid 2798 . . . . . . . . . . . . . 14 (.r𝑅) = (.r𝑅)
642, 4, 5, 7, 61, 62, 63, 58pwsmulrval 16776 . . . . . . . . . . . . 13 (𝜑 → ((𝑂‘(𝐹(quot1p𝑅)𝐺))(.r‘(𝑅s 𝐾))(𝑂𝐺)) = ((𝑂‘(𝐹(quot1p𝑅)𝐺)) ∘f (.r𝑅)(𝑂𝐺)))
6553, 60, 643eqtrd 2837 . . . . . . . . . . . 12 (𝜑 → (𝑂𝐹) = ((𝑂‘(𝐹(quot1p𝑅)𝐺)) ∘f (.r𝑅)(𝑂𝐺)))
6665fveq1d 6657 . . . . . . . . . . 11 (𝜑 → ((𝑂𝐹)‘𝑥) = (((𝑂‘(𝐹(quot1p𝑅)𝐺)) ∘f (.r𝑅)(𝑂𝐺))‘𝑥))
6766adantr 484 . . . . . . . . . 10 ((𝜑𝑥𝐾) → ((𝑂𝐹)‘𝑥) = (((𝑂‘(𝐹(quot1p𝑅)𝐺)) ∘f (.r𝑅)(𝑂𝐺))‘𝑥))
682, 3, 4, 5, 7, 61pwselbas 16774 . . . . . . . . . . . . 13 (𝜑 → (𝑂‘(𝐹(quot1p𝑅)𝐺)):𝐾𝐾)
6968ffnd 6496 . . . . . . . . . . . 12 (𝜑 → (𝑂‘(𝐹(quot1p𝑅)𝐺)) Fn 𝐾)
7069adantr 484 . . . . . . . . . . 11 ((𝜑𝑥𝐾) → (𝑂‘(𝐹(quot1p𝑅)𝐺)) Fn 𝐾)
712, 3, 4, 5, 7, 62pwselbas 16774 . . . . . . . . . . . . 13 (𝜑 → (𝑂𝐺):𝐾𝐾)
7271ffnd 6496 . . . . . . . . . . . 12 (𝜑 → (𝑂𝐺) Fn 𝐾)
7372adantr 484 . . . . . . . . . . 11 ((𝜑𝑥𝐾) → (𝑂𝐺) Fn 𝐾)
746a1i 11 . . . . . . . . . . 11 ((𝜑𝑥𝐾) → 𝐾 ∈ V)
75 simpr 488 . . . . . . . . . . 11 ((𝜑𝑥𝐾) → 𝑥𝐾)
76 fnfvof 7416 . . . . . . . . . . 11 ((((𝑂‘(𝐹(quot1p𝑅)𝐺)) Fn 𝐾 ∧ (𝑂𝐺) Fn 𝐾) ∧ (𝐾 ∈ V ∧ 𝑥𝐾)) → (((𝑂‘(𝐹(quot1p𝑅)𝐺)) ∘f (.r𝑅)(𝑂𝐺))‘𝑥) = (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥)(.r𝑅)((𝑂𝐺)‘𝑥)))
7770, 73, 74, 75, 76syl22anc 837 . . . . . . . . . 10 ((𝜑𝑥𝐾) → (((𝑂‘(𝐹(quot1p𝑅)𝐺)) ∘f (.r𝑅)(𝑂𝐺))‘𝑥) = (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥)(.r𝑅)((𝑂𝐺)‘𝑥)))
7867, 77eqtrd 2833 . . . . . . . . 9 ((𝜑𝑥𝐾) → ((𝑂𝐹)‘𝑥) = (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥)(.r𝑅)((𝑂𝐺)‘𝑥)))
7978eqeq1d 2800 . . . . . . . 8 ((𝜑𝑥𝐾) → (((𝑂𝐹)‘𝑥) = 𝑊 ↔ (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥)(.r𝑅)((𝑂𝐺)‘𝑥)) = 𝑊))
805, 30syl 17 . . . . . . . . . 10 (𝜑𝑅 ∈ Domn)
8180adantr 484 . . . . . . . . 9 ((𝜑𝑥𝐾) → 𝑅 ∈ Domn)
8268ffvelrnda 6838 . . . . . . . . 9 ((𝜑𝑥𝐾) → ((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) ∈ 𝐾)
8371ffvelrnda 6838 . . . . . . . . 9 ((𝜑𝑥𝐾) → ((𝑂𝐺)‘𝑥) ∈ 𝐾)
843, 63, 35domneq0 20084 . . . . . . . . 9 ((𝑅 ∈ Domn ∧ ((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) ∈ 𝐾 ∧ ((𝑂𝐺)‘𝑥) ∈ 𝐾) → ((((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥)(.r𝑅)((𝑂𝐺)‘𝑥)) = 𝑊 ↔ (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) = 𝑊 ∨ ((𝑂𝐺)‘𝑥) = 𝑊)))
8581, 82, 83, 84syl3anc 1368 . . . . . . . 8 ((𝜑𝑥𝐾) → ((((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥)(.r𝑅)((𝑂𝐺)‘𝑥)) = 𝑊 ↔ (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) = 𝑊 ∨ ((𝑂𝐺)‘𝑥) = 𝑊)))
8679, 85bitrd 282 . . . . . . 7 ((𝜑𝑥𝐾) → (((𝑂𝐹)‘𝑥) = 𝑊 ↔ (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) = 𝑊 ∨ ((𝑂𝐺)‘𝑥) = 𝑊)))
8786pm5.32da 582 . . . . . 6 (𝜑 → ((𝑥𝐾 ∧ ((𝑂𝐹)‘𝑥) = 𝑊) ↔ (𝑥𝐾 ∧ (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) = 𝑊 ∨ ((𝑂𝐺)‘𝑥) = 𝑊))))
88 andi 1005 . . . . . 6 ((𝑥𝐾 ∧ (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) = 𝑊 ∨ ((𝑂𝐺)‘𝑥) = 𝑊)) ↔ ((𝑥𝐾 ∧ ((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) = 𝑊) ∨ (𝑥𝐾 ∧ ((𝑂𝐺)‘𝑥) = 𝑊)))
8987, 88syl6bb 290 . . . . 5 (𝜑 → ((𝑥𝐾 ∧ ((𝑂𝐹)‘𝑥) = 𝑊) ↔ ((𝑥𝐾 ∧ ((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) = 𝑊) ∨ (𝑥𝐾 ∧ ((𝑂𝐺)‘𝑥) = 𝑊))))
90 fniniseg 6817 . . . . . 6 ((𝑂𝐹) Fn 𝐾 → (𝑥 ∈ ((𝑂𝐹) “ {𝑊}) ↔ (𝑥𝐾 ∧ ((𝑂𝐹)‘𝑥) = 𝑊)))
9121, 90syl 17 . . . . 5 (𝜑 → (𝑥 ∈ ((𝑂𝐹) “ {𝑊}) ↔ (𝑥𝐾 ∧ ((𝑂𝐹)‘𝑥) = 𝑊)))
92 elun 4079 . . . . . 6 (𝑥 ∈ (((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇}) ↔ (𝑥 ∈ ((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∨ 𝑥 ∈ {𝑇}))
93 fniniseg 6817 . . . . . . . 8 ((𝑂‘(𝐹(quot1p𝑅)𝐺)) Fn 𝐾 → (𝑥 ∈ ((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ↔ (𝑥𝐾 ∧ ((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) = 𝑊)))
9469, 93syl 17 . . . . . . 7 (𝜑 → (𝑥 ∈ ((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ↔ (𝑥𝐾 ∧ ((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) = 𝑊)))
9543simp3d 1141 . . . . . . . . 9 (𝜑 → ((𝑂𝐺) “ {𝑊}) = {𝑇})
9695eleq2d 2875 . . . . . . . 8 (𝜑 → (𝑥 ∈ ((𝑂𝐺) “ {𝑊}) ↔ 𝑥 ∈ {𝑇}))
97 fniniseg 6817 . . . . . . . . 9 ((𝑂𝐺) Fn 𝐾 → (𝑥 ∈ ((𝑂𝐺) “ {𝑊}) ↔ (𝑥𝐾 ∧ ((𝑂𝐺)‘𝑥) = 𝑊)))
9872, 97syl 17 . . . . . . . 8 (𝜑 → (𝑥 ∈ ((𝑂𝐺) “ {𝑊}) ↔ (𝑥𝐾 ∧ ((𝑂𝐺)‘𝑥) = 𝑊)))
9996, 98bitr3d 284 . . . . . . 7 (𝜑 → (𝑥 ∈ {𝑇} ↔ (𝑥𝐾 ∧ ((𝑂𝐺)‘𝑥) = 𝑊)))
10094, 99orbi12d 916 . . . . . 6 (𝜑 → ((𝑥 ∈ ((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∨ 𝑥 ∈ {𝑇}) ↔ ((𝑥𝐾 ∧ ((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) = 𝑊) ∨ (𝑥𝐾 ∧ ((𝑂𝐺)‘𝑥) = 𝑊))))
10192, 100syl5bb 286 . . . . 5 (𝜑 → (𝑥 ∈ (((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇}) ↔ ((𝑥𝐾 ∧ ((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑥) = 𝑊) ∨ (𝑥𝐾 ∧ ((𝑂𝐺)‘𝑥) = 𝑊))))
10289, 91, 1013bitr4d 314 . . . 4 (𝜑 → (𝑥 ∈ ((𝑂𝐹) “ {𝑊}) ↔ 𝑥 ∈ (((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇})))
103102eqrdv 2796 . . 3 (𝜑 → ((𝑂𝐹) “ {𝑊}) = (((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇}))
104103fveq2d 6659 . 2 (𝜑 → (♯‘((𝑂𝐹) “ {𝑊})) = (♯‘(((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇})))
105 fvex 6668 . . . . . . . . . 10 (𝑂‘(𝐹(quot1p𝑅)𝐺)) ∈ V
106105cnvex 7625 . . . . . . . . 9 (𝑂‘(𝐹(quot1p𝑅)𝐺)) ∈ V
107106imaex 7616 . . . . . . . 8 ((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∈ V
108107a1i 11 . . . . . . 7 (𝜑 → ((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∈ V)
109 fta1glem.3 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
110 fta1g.z . . . . . . . . . 10 0 = (0g𝑃)
111 fta1glem.4 . . . . . . . . . 10 (𝜑 → (𝐷𝐹) = (𝑁 + 1))
11212, 15, 42, 11, 35, 110, 5, 18, 3, 26, 27, 28, 29, 109, 111, 1fta1glem1 24810 . . . . . . . . 9 (𝜑 → (𝐷‘(𝐹(quot1p𝑅)𝐺)) = 𝑁)
113 fveq2 6655 . . . . . . . . . . . 12 (𝑔 = (𝐹(quot1p𝑅)𝐺) → (𝐷𝑔) = (𝐷‘(𝐹(quot1p𝑅)𝐺)))
114113eqeq1d 2800 . . . . . . . . . . 11 (𝑔 = (𝐹(quot1p𝑅)𝐺) → ((𝐷𝑔) = 𝑁 ↔ (𝐷‘(𝐹(quot1p𝑅)𝐺)) = 𝑁))
115 fveq2 6655 . . . . . . . . . . . . . . 15 (𝑔 = (𝐹(quot1p𝑅)𝐺) → (𝑂𝑔) = (𝑂‘(𝐹(quot1p𝑅)𝐺)))
116115cnveqd 5714 . . . . . . . . . . . . . 14 (𝑔 = (𝐹(quot1p𝑅)𝐺) → (𝑂𝑔) = (𝑂‘(𝐹(quot1p𝑅)𝐺)))
117116imaeq1d 5899 . . . . . . . . . . . . 13 (𝑔 = (𝐹(quot1p𝑅)𝐺) → ((𝑂𝑔) “ {𝑊}) = ((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}))
118117fveq2d 6659 . . . . . . . . . . . 12 (𝑔 = (𝐹(quot1p𝑅)𝐺) → (♯‘((𝑂𝑔) “ {𝑊})) = (♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})))
119118, 113breq12d 5047 . . . . . . . . . . 11 (𝑔 = (𝐹(quot1p𝑅)𝐺) → ((♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔) ↔ (♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) ≤ (𝐷‘(𝐹(quot1p𝑅)𝐺))))
120114, 119imbi12d 348 . . . . . . . . . 10 (𝑔 = (𝐹(quot1p𝑅)𝐺) → (((𝐷𝑔) = 𝑁 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)) ↔ ((𝐷‘(𝐹(quot1p𝑅)𝐺)) = 𝑁 → (♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) ≤ (𝐷‘(𝐹(quot1p𝑅)𝐺)))))
121 fta1glem.6 . . . . . . . . . 10 (𝜑 → ∀𝑔𝐵 ((𝐷𝑔) = 𝑁 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))
122120, 121, 55rspcdva 3574 . . . . . . . . 9 (𝜑 → ((𝐷‘(𝐹(quot1p𝑅)𝐺)) = 𝑁 → (♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) ≤ (𝐷‘(𝐹(quot1p𝑅)𝐺))))
123112, 122mpd 15 . . . . . . . 8 (𝜑 → (♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) ≤ (𝐷‘(𝐹(quot1p𝑅)𝐺)))
124123, 112breqtrd 5060 . . . . . . 7 (𝜑 → (♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) ≤ 𝑁)
125 hashbnd 13712 . . . . . . 7 ((((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∈ V ∧ 𝑁 ∈ ℕ0 ∧ (♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) ≤ 𝑁) → ((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∈ Fin)
126108, 109, 124, 125syl3anc 1368 . . . . . 6 (𝜑 → ((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∈ Fin)
127 snfi 8595 . . . . . 6 {𝑇} ∈ Fin
128 unfi 8787 . . . . . 6 ((((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∈ Fin ∧ {𝑇} ∈ Fin) → (((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇}) ∈ Fin)
129126, 127, 128sylancl 589 . . . . 5 (𝜑 → (((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇}) ∈ Fin)
130 hashcl 13733 . . . . 5 ((((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇}) ∈ Fin → (♯‘(((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇})) ∈ ℕ0)
131129, 130syl 17 . . . 4 (𝜑 → (♯‘(((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇})) ∈ ℕ0)
132131nn0red 11964 . . 3 (𝜑 → (♯‘(((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇})) ∈ ℝ)
133 hashcl 13733 . . . . . 6 (((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∈ Fin → (♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) ∈ ℕ0)
134126, 133syl 17 . . . . 5 (𝜑 → (♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) ∈ ℕ0)
135134nn0red 11964 . . . 4 (𝜑 → (♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) ∈ ℝ)
136 peano2re 10820 . . . 4 ((♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) ∈ ℝ → ((♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) + 1) ∈ ℝ)
137135, 136syl 17 . . 3 (𝜑 → ((♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) + 1) ∈ ℝ)
138 peano2nn0 11943 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
139109, 138syl 17 . . . . 5 (𝜑 → (𝑁 + 1) ∈ ℕ0)
140111, 139eqeltrd 2890 . . . 4 (𝜑 → (𝐷𝐹) ∈ ℕ0)
141140nn0red 11964 . . 3 (𝜑 → (𝐷𝐹) ∈ ℝ)
142 hashun2 13760 . . . . 5 ((((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∈ Fin ∧ {𝑇} ∈ Fin) → (♯‘(((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇})) ≤ ((♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) + (♯‘{𝑇})))
143126, 127, 142sylancl 589 . . . 4 (𝜑 → (♯‘(((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇})) ≤ ((♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) + (♯‘{𝑇})))
144 hashsng 13746 . . . . . 6 (𝑇 ∈ ((𝑂𝐹) “ {𝑊}) → (♯‘{𝑇}) = 1)
1451, 144syl 17 . . . . 5 (𝜑 → (♯‘{𝑇}) = 1)
146145oveq2d 7161 . . . 4 (𝜑 → ((♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) + (♯‘{𝑇})) = ((♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) + 1))
147143, 146breqtrd 5060 . . 3 (𝜑 → (♯‘(((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇})) ≤ ((♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) + 1))
148109nn0red 11964 . . . . 5 (𝜑𝑁 ∈ ℝ)
149 1red 10649 . . . . 5 (𝜑 → 1 ∈ ℝ)
150135, 148, 149, 124leadd1dd 11261 . . . 4 (𝜑 → ((♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) + 1) ≤ (𝑁 + 1))
151150, 111breqtrrd 5062 . . 3 (𝜑 → ((♯‘((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊})) + 1) ≤ (𝐷𝐹))
152132, 137, 141, 147, 151letrd 10804 . 2 (𝜑 → (♯‘(((𝑂‘(𝐹(quot1p𝑅)𝐺)) “ {𝑊}) ∪ {𝑇})) ≤ (𝐷𝐹))
153104, 152eqbrtrd 5056 1 (𝜑 → (♯‘((𝑂𝐹) “ {𝑊})) ≤ (𝐷𝐹))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   = wceq 1538   ∈ wcel 2111  ∀wral 3106  Vcvv 3442   ∪ cun 3881  {csn 4528   class class class wbr 5034  ◡ccnv 5522   “ cima 5526   Fn wfn 6327  ⟶wf 6328  ‘cfv 6332  (class class class)co 7145   ∘f cof 7398  Fincfn 8510  ℝcr 10543  1c1 10545   + caddc 10547   ≤ cle 10683  ℕ0cn0 11903  ♯chash 13706  Basecbs 16495  .rcmulr 16578  0gc0g 16725   ↑s cpws 16732  -gcsg 18117  Ringcrg 19311  CRingccrg 19312  ∥rcdsr 19405   RingHom crh 19481  NzRingcnzr 20044  Domncdomn 20067  IDomncidom 20068  algSccascl 20563  var1cv1 20846  Poly1cpl1 20847  eval1ce1 20979   deg1 cdg1 24696  Monic1pcmn1 24770  Unic1pcuc1p 24771  quot1pcq1p 24772 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5158  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620  ax-pre-mulgt0 10621  ax-pre-sup 10622  ax-addf 10623  ax-mulf 10624 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-int 4843  df-iun 4887  df-iin 4888  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-isom 6341  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7400  df-ofr 7401  df-om 7574  df-1st 7684  df-2nd 7685  df-supp 7827  df-tpos 7893  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-1o 8103  df-2o 8104  df-oadd 8107  df-er 8290  df-map 8409  df-pm 8410  df-ixp 8463  df-en 8511  df-dom 8512  df-sdom 8513  df-fin 8514  df-fsupp 8836  df-sup 8908  df-oi 8976  df-dju 9332  df-card 9370  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-sub 10879  df-neg 10880  df-nn 11644  df-2 11706  df-3 11707  df-4 11708  df-5 11709  df-6 11710  df-7 11711  df-8 11712  df-9 11713  df-n0 11904  df-xnn0 11976  df-z 11990  df-dec 12107  df-uz 12252  df-fz 12906  df-fzo 13049  df-seq 13385  df-hash 13707  df-struct 16497  df-ndx 16498  df-slot 16499  df-base 16501  df-sets 16502  df-ress 16503  df-plusg 16590  df-mulr 16591  df-starv 16592  df-sca 16593  df-vsca 16594  df-ip 16595  df-tset 16596  df-ple 16597  df-ds 16599  df-unif 16600  df-hom 16601  df-cco 16602  df-0g 16727  df-gsum 16728  df-prds 16733  df-pws 16735  df-mre 16869  df-mrc 16870  df-acs 16872  df-mgm 17864  df-sgrp 17913  df-mnd 17924  df-mhm 17968  df-submnd 17969  df-grp 18118  df-minusg 18119  df-sbg 18120  df-mulg 18238  df-subg 18289  df-ghm 18369  df-cntz 18460  df-cmn 18921  df-abl 18922  df-mgp 19254  df-ur 19266  df-srg 19270  df-ring 19313  df-cring 19314  df-oppr 19390  df-dvdsr 19408  df-unit 19409  df-invr 19439  df-rnghom 19484  df-subrg 19547  df-lmod 19650  df-lss 19718  df-lsp 19758  df-nzr 20045  df-rlreg 20070  df-domn 20071  df-idom 20072  df-cnfld 20113  df-assa 20564  df-asp 20565  df-ascl 20566  df-psr 20617  df-mvr 20618  df-mpl 20619  df-opsr 20621  df-evls 20781  df-evl 20782  df-psr1 20850  df-vr1 20851  df-ply1 20852  df-coe1 20853  df-evl1 20981  df-mdeg 24697  df-deg1 24698  df-mon1 24775  df-uc1p 24776  df-q1p 24777  df-r1p 24778 This theorem is referenced by:  fta1g  24812
 Copyright terms: Public domain W3C validator