MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fta1g Structured version   Visualization version   GIF version

Theorem fta1g 26127
Description: The one-sided fundamental theorem of algebra. A polynomial of degree 𝑛 has at most 𝑛 roots. Unlike the real fundamental theorem fta 27042, which is only true in and other algebraically closed fields, this is true in any integral domain. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
fta1g.p 𝑃 = (Poly1𝑅)
fta1g.b 𝐵 = (Base‘𝑃)
fta1g.d 𝐷 = (deg1𝑅)
fta1g.o 𝑂 = (eval1𝑅)
fta1g.w 𝑊 = (0g𝑅)
fta1g.z 0 = (0g𝑃)
fta1g.1 (𝜑𝑅 ∈ IDomn)
fta1g.2 (𝜑𝐹𝐵)
fta1g.3 (𝜑𝐹0 )
Assertion
Ref Expression
fta1g (𝜑 → (♯‘((𝑂𝐹) “ {𝑊})) ≤ (𝐷𝐹))

Proof of Theorem fta1g
Dummy variables 𝑓 𝑑 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . 2 (𝐷𝐹) = (𝐷𝐹)
2 fveqeq2 6885 . . . 4 (𝑓 = 𝐹 → ((𝐷𝑓) = (𝐷𝐹) ↔ (𝐷𝐹) = (𝐷𝐹)))
3 fveq2 6876 . . . . . . . 8 (𝑓 = 𝐹 → (𝑂𝑓) = (𝑂𝐹))
43cnveqd 5855 . . . . . . 7 (𝑓 = 𝐹(𝑂𝑓) = (𝑂𝐹))
54imaeq1d 6046 . . . . . 6 (𝑓 = 𝐹 → ((𝑂𝑓) “ {𝑊}) = ((𝑂𝐹) “ {𝑊}))
65fveq2d 6880 . . . . 5 (𝑓 = 𝐹 → (♯‘((𝑂𝑓) “ {𝑊})) = (♯‘((𝑂𝐹) “ {𝑊})))
7 fveq2 6876 . . . . 5 (𝑓 = 𝐹 → (𝐷𝑓) = (𝐷𝐹))
86, 7breq12d 5132 . . . 4 (𝑓 = 𝐹 → ((♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓) ↔ (♯‘((𝑂𝐹) “ {𝑊})) ≤ (𝐷𝐹)))
92, 8imbi12d 344 . . 3 (𝑓 = 𝐹 → (((𝐷𝑓) = (𝐷𝐹) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ↔ ((𝐷𝐹) = (𝐷𝐹) → (♯‘((𝑂𝐹) “ {𝑊})) ≤ (𝐷𝐹))))
10 fta1g.1 . . . . . 6 (𝜑𝑅 ∈ IDomn)
11 isidom 20685 . . . . . . 7 (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
1211simplbi 497 . . . . . 6 (𝑅 ∈ IDomn → 𝑅 ∈ CRing)
13 crngring 20205 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
1410, 12, 133syl 18 . . . . 5 (𝜑𝑅 ∈ Ring)
15 fta1g.2 . . . . 5 (𝜑𝐹𝐵)
16 fta1g.3 . . . . 5 (𝜑𝐹0 )
17 fta1g.d . . . . . 6 𝐷 = (deg1𝑅)
18 fta1g.p . . . . . 6 𝑃 = (Poly1𝑅)
19 fta1g.z . . . . . 6 0 = (0g𝑃)
20 fta1g.b . . . . . 6 𝐵 = (Base‘𝑃)
2117, 18, 19, 20deg1nn0cl 26045 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → (𝐷𝐹) ∈ ℕ0)
2214, 15, 16, 21syl3anc 1373 . . . 4 (𝜑 → (𝐷𝐹) ∈ ℕ0)
23 eqeq2 2747 . . . . . . . 8 (𝑥 = 0 → ((𝐷𝑓) = 𝑥 ↔ (𝐷𝑓) = 0))
2423imbi1d 341 . . . . . . 7 (𝑥 = 0 → (((𝐷𝑓) = 𝑥 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ↔ ((𝐷𝑓) = 0 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
2524ralbidv 3163 . . . . . 6 (𝑥 = 0 → (∀𝑓𝐵 ((𝐷𝑓) = 𝑥 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ↔ ∀𝑓𝐵 ((𝐷𝑓) = 0 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
2625imbi2d 340 . . . . 5 (𝑥 = 0 → ((𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = 𝑥 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))) ↔ (𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = 0 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))))
27 eqeq2 2747 . . . . . . . 8 (𝑥 = 𝑑 → ((𝐷𝑓) = 𝑥 ↔ (𝐷𝑓) = 𝑑))
2827imbi1d 341 . . . . . . 7 (𝑥 = 𝑑 → (((𝐷𝑓) = 𝑥 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ↔ ((𝐷𝑓) = 𝑑 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
2928ralbidv 3163 . . . . . 6 (𝑥 = 𝑑 → (∀𝑓𝐵 ((𝐷𝑓) = 𝑥 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ↔ ∀𝑓𝐵 ((𝐷𝑓) = 𝑑 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
3029imbi2d 340 . . . . 5 (𝑥 = 𝑑 → ((𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = 𝑥 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))) ↔ (𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = 𝑑 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))))
31 eqeq2 2747 . . . . . . . 8 (𝑥 = (𝑑 + 1) → ((𝐷𝑓) = 𝑥 ↔ (𝐷𝑓) = (𝑑 + 1)))
3231imbi1d 341 . . . . . . 7 (𝑥 = (𝑑 + 1) → (((𝐷𝑓) = 𝑥 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ↔ ((𝐷𝑓) = (𝑑 + 1) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
3332ralbidv 3163 . . . . . 6 (𝑥 = (𝑑 + 1) → (∀𝑓𝐵 ((𝐷𝑓) = 𝑥 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ↔ ∀𝑓𝐵 ((𝐷𝑓) = (𝑑 + 1) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
3433imbi2d 340 . . . . 5 (𝑥 = (𝑑 + 1) → ((𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = 𝑥 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))) ↔ (𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = (𝑑 + 1) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))))
35 eqeq2 2747 . . . . . . . 8 (𝑥 = (𝐷𝐹) → ((𝐷𝑓) = 𝑥 ↔ (𝐷𝑓) = (𝐷𝐹)))
3635imbi1d 341 . . . . . . 7 (𝑥 = (𝐷𝐹) → (((𝐷𝑓) = 𝑥 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ↔ ((𝐷𝑓) = (𝐷𝐹) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
3736ralbidv 3163 . . . . . 6 (𝑥 = (𝐷𝐹) → (∀𝑓𝐵 ((𝐷𝑓) = 𝑥 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ↔ ∀𝑓𝐵 ((𝐷𝑓) = (𝐷𝐹) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
3837imbi2d 340 . . . . 5 (𝑥 = (𝐷𝐹) → ((𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = 𝑥 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))) ↔ (𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = (𝐷𝐹) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))))
39 simprr 772 . . . . . . . . . . . . . 14 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (𝐷𝑓) = 0)
40 0nn0 12516 . . . . . . . . . . . . . 14 0 ∈ ℕ0
4139, 40eqeltrdi 2842 . . . . . . . . . . . . 13 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (𝐷𝑓) ∈ ℕ0)
4212, 13syl 17 . . . . . . . . . . . . . 14 (𝑅 ∈ IDomn → 𝑅 ∈ Ring)
43 simpl 482 . . . . . . . . . . . . . 14 ((𝑓𝐵 ∧ (𝐷𝑓) = 0) → 𝑓𝐵)
4417, 18, 19, 20deg1nn0clb 26047 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝑓𝐵) → (𝑓0 ↔ (𝐷𝑓) ∈ ℕ0))
4542, 43, 44syl2an 596 . . . . . . . . . . . . 13 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (𝑓0 ↔ (𝐷𝑓) ∈ ℕ0))
4641, 45mpbird 257 . . . . . . . . . . . 12 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → 𝑓0 )
47 simplrr 777 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → (𝐷𝑓) = 0)
48 0le0 12341 . . . . . . . . . . . . . . . . 17 0 ≤ 0
4947, 48eqbrtrdi 5158 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → (𝐷𝑓) ≤ 0)
5042ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → 𝑅 ∈ Ring)
51 simplrl 776 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → 𝑓𝐵)
52 eqid 2735 . . . . . . . . . . . . . . . . . 18 (algSc‘𝑃) = (algSc‘𝑃)
5317, 18, 20, 52deg1le0 26068 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝑓𝐵) → ((𝐷𝑓) ≤ 0 ↔ 𝑓 = ((algSc‘𝑃)‘((coe1𝑓)‘0))))
5450, 51, 53syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → ((𝐷𝑓) ≤ 0 ↔ 𝑓 = ((algSc‘𝑃)‘((coe1𝑓)‘0))))
5549, 54mpbid 232 . . . . . . . . . . . . . . 15 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → 𝑓 = ((algSc‘𝑃)‘((coe1𝑓)‘0)))
5655fveq2d 6880 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → (𝑂𝑓) = (𝑂‘((algSc‘𝑃)‘((coe1𝑓)‘0))))
5712adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → 𝑅 ∈ CRing)
5857adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → 𝑅 ∈ CRing)
59 eqid 2735 . . . . . . . . . . . . . . . . . . . . . . 23 (coe1𝑓) = (coe1𝑓)
60 eqid 2735 . . . . . . . . . . . . . . . . . . . . . . 23 (Base‘𝑅) = (Base‘𝑅)
6159, 20, 18, 60coe1f 22147 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓𝐵 → (coe1𝑓):ℕ0⟶(Base‘𝑅))
6251, 61syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → (coe1𝑓):ℕ0⟶(Base‘𝑅))
63 ffvelcdm 7071 . . . . . . . . . . . . . . . . . . . . 21 (((coe1𝑓):ℕ0⟶(Base‘𝑅) ∧ 0 ∈ ℕ0) → ((coe1𝑓)‘0) ∈ (Base‘𝑅))
6462, 40, 63sylancl 586 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → ((coe1𝑓)‘0) ∈ (Base‘𝑅))
65 fta1g.o . . . . . . . . . . . . . . . . . . . . 21 𝑂 = (eval1𝑅)
6665, 18, 60, 52evl1sca 22272 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ CRing ∧ ((coe1𝑓)‘0) ∈ (Base‘𝑅)) → (𝑂‘((algSc‘𝑃)‘((coe1𝑓)‘0))) = ((Base‘𝑅) × {((coe1𝑓)‘0)}))
6758, 64, 66syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → (𝑂‘((algSc‘𝑃)‘((coe1𝑓)‘0))) = ((Base‘𝑅) × {((coe1𝑓)‘0)}))
6856, 67eqtrd 2770 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → (𝑂𝑓) = ((Base‘𝑅) × {((coe1𝑓)‘0)}))
6968fveq1d 6878 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → ((𝑂𝑓)‘𝑥) = (((Base‘𝑅) × {((coe1𝑓)‘0)})‘𝑥))
70 eqid 2735 . . . . . . . . . . . . . . . . . . . 20 (𝑅s (Base‘𝑅)) = (𝑅s (Base‘𝑅))
71 eqid 2735 . . . . . . . . . . . . . . . . . . . 20 (Base‘(𝑅s (Base‘𝑅))) = (Base‘(𝑅s (Base‘𝑅)))
72 simpl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → 𝑅 ∈ IDomn)
73 fvexd 6891 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (Base‘𝑅) ∈ V)
7465, 18, 70, 60evl1rhm 22270 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅s (Base‘𝑅))))
7520, 71rhmf 20445 . . . . . . . . . . . . . . . . . . . . . 22 (𝑂 ∈ (𝑃 RingHom (𝑅s (Base‘𝑅))) → 𝑂:𝐵⟶(Base‘(𝑅s (Base‘𝑅))))
7657, 74, 753syl 18 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → 𝑂:𝐵⟶(Base‘(𝑅s (Base‘𝑅))))
77 simprl 770 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → 𝑓𝐵)
7876, 77ffvelcdmd 7075 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (𝑂𝑓) ∈ (Base‘(𝑅s (Base‘𝑅))))
7970, 60, 71, 72, 73, 78pwselbas 17503 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (𝑂𝑓):(Base‘𝑅)⟶(Base‘𝑅))
80 ffn 6706 . . . . . . . . . . . . . . . . . . 19 ((𝑂𝑓):(Base‘𝑅)⟶(Base‘𝑅) → (𝑂𝑓) Fn (Base‘𝑅))
81 fniniseg 7050 . . . . . . . . . . . . . . . . . . 19 ((𝑂𝑓) Fn (Base‘𝑅) → (𝑥 ∈ ((𝑂𝑓) “ {𝑊}) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ((𝑂𝑓)‘𝑥) = 𝑊)))
8279, 80, 813syl 18 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (𝑥 ∈ ((𝑂𝑓) “ {𝑊}) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ((𝑂𝑓)‘𝑥) = 𝑊)))
8382simplbda 499 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → ((𝑂𝑓)‘𝑥) = 𝑊)
8482simprbda 498 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → 𝑥 ∈ (Base‘𝑅))
85 fvex 6889 . . . . . . . . . . . . . . . . . . 19 ((coe1𝑓)‘0) ∈ V
8685fvconst2 7196 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (Base‘𝑅) → (((Base‘𝑅) × {((coe1𝑓)‘0)})‘𝑥) = ((coe1𝑓)‘0))
8784, 86syl 17 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → (((Base‘𝑅) × {((coe1𝑓)‘0)})‘𝑥) = ((coe1𝑓)‘0))
8869, 83, 873eqtr3rd 2779 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → ((coe1𝑓)‘0) = 𝑊)
8988fveq2d 6880 . . . . . . . . . . . . . . 15 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → ((algSc‘𝑃)‘((coe1𝑓)‘0)) = ((algSc‘𝑃)‘𝑊))
90 fta1g.w . . . . . . . . . . . . . . . . 17 𝑊 = (0g𝑅)
9118, 52, 90, 19ply1scl0 22227 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → ((algSc‘𝑃)‘𝑊) = 0 )
9250, 91syl 17 . . . . . . . . . . . . . . 15 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → ((algSc‘𝑃)‘𝑊) = 0 )
9355, 89, 923eqtrd 2774 . . . . . . . . . . . . . 14 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → 𝑓 = 0 )
9493ex 412 . . . . . . . . . . . . 13 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (𝑥 ∈ ((𝑂𝑓) “ {𝑊}) → 𝑓 = 0 ))
9594necon3ad 2945 . . . . . . . . . . . 12 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (𝑓0 → ¬ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})))
9646, 95mpd 15 . . . . . . . . . . 11 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → ¬ 𝑥 ∈ ((𝑂𝑓) “ {𝑊}))
9796eq0rdv 4382 . . . . . . . . . 10 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → ((𝑂𝑓) “ {𝑊}) = ∅)
9897fveq2d 6880 . . . . . . . . 9 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (♯‘((𝑂𝑓) “ {𝑊})) = (♯‘∅))
99 hash0 14385 . . . . . . . . 9 (♯‘∅) = 0
10098, 99eqtrdi 2786 . . . . . . . 8 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (♯‘((𝑂𝑓) “ {𝑊})) = 0)
10148, 39breqtrrid 5157 . . . . . . . 8 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → 0 ≤ (𝐷𝑓))
102100, 101eqbrtrd 5141 . . . . . . 7 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))
103102expr 456 . . . . . 6 ((𝑅 ∈ IDomn ∧ 𝑓𝐵) → ((𝐷𝑓) = 0 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))
104103ralrimiva 3132 . . . . 5 (𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = 0 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))
105 fveqeq2 6885 . . . . . . . . . 10 (𝑓 = 𝑔 → ((𝐷𝑓) = 𝑑 ↔ (𝐷𝑔) = 𝑑))
106 fveq2 6876 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → (𝑂𝑓) = (𝑂𝑔))
107106cnveqd 5855 . . . . . . . . . . . . 13 (𝑓 = 𝑔(𝑂𝑓) = (𝑂𝑔))
108107imaeq1d 6046 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((𝑂𝑓) “ {𝑊}) = ((𝑂𝑔) “ {𝑊}))
109108fveq2d 6880 . . . . . . . . . . 11 (𝑓 = 𝑔 → (♯‘((𝑂𝑓) “ {𝑊})) = (♯‘((𝑂𝑔) “ {𝑊})))
110 fveq2 6876 . . . . . . . . . . 11 (𝑓 = 𝑔 → (𝐷𝑓) = (𝐷𝑔))
111109, 110breq12d 5132 . . . . . . . . . 10 (𝑓 = 𝑔 → ((♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓) ↔ (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))
112105, 111imbi12d 344 . . . . . . . . 9 (𝑓 = 𝑔 → (((𝐷𝑓) = 𝑑 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ↔ ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔))))
113112cbvralvw 3220 . . . . . . . 8 (∀𝑓𝐵 ((𝐷𝑓) = 𝑑 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ↔ ∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))
114 simprr 772 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) → (𝐷𝑓) = (𝑑 + 1))
115 peano2nn0 12541 . . . . . . . . . . . . . . . . 17 (𝑑 ∈ ℕ0 → (𝑑 + 1) ∈ ℕ0)
116115ad2antlr 727 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) → (𝑑 + 1) ∈ ℕ0)
117114, 116eqeltrd 2834 . . . . . . . . . . . . . . 15 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) → (𝐷𝑓) ∈ ℕ0)
118117nn0ge0d 12565 . . . . . . . . . . . . . 14 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) → 0 ≤ (𝐷𝑓))
119 fveq2 6876 . . . . . . . . . . . . . . . 16 (((𝑂𝑓) “ {𝑊}) = ∅ → (♯‘((𝑂𝑓) “ {𝑊})) = (♯‘∅))
120119, 99eqtrdi 2786 . . . . . . . . . . . . . . 15 (((𝑂𝑓) “ {𝑊}) = ∅ → (♯‘((𝑂𝑓) “ {𝑊})) = 0)
121120breq1d 5129 . . . . . . . . . . . . . 14 (((𝑂𝑓) “ {𝑊}) = ∅ → ((♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓) ↔ 0 ≤ (𝐷𝑓)))
122118, 121syl5ibrcom 247 . . . . . . . . . . . . 13 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) → (((𝑂𝑓) “ {𝑊}) = ∅ → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))
123122a1dd 50 . . . . . . . . . . . 12 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) → (((𝑂𝑓) “ {𝑊}) = ∅ → (∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
124 n0 4328 . . . . . . . . . . . . 13 (((𝑂𝑓) “ {𝑊}) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ ((𝑂𝑓) “ {𝑊}))
125 simplll 774 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) ∧ (𝑥 ∈ ((𝑂𝑓) “ {𝑊}) ∧ ∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))) → 𝑅 ∈ IDomn)
126 simplrl 776 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) ∧ (𝑥 ∈ ((𝑂𝑓) “ {𝑊}) ∧ ∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))) → 𝑓𝐵)
127 eqid 2735 . . . . . . . . . . . . . . . 16 (var1𝑅) = (var1𝑅)
128 eqid 2735 . . . . . . . . . . . . . . . 16 (-g𝑃) = (-g𝑃)
129 eqid 2735 . . . . . . . . . . . . . . . 16 ((var1𝑅)(-g𝑃)((algSc‘𝑃)‘𝑥)) = ((var1𝑅)(-g𝑃)((algSc‘𝑃)‘𝑥))
130 simpllr 775 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) ∧ (𝑥 ∈ ((𝑂𝑓) “ {𝑊}) ∧ ∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))) → 𝑑 ∈ ℕ0)
131 simplrr 777 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) ∧ (𝑥 ∈ ((𝑂𝑓) “ {𝑊}) ∧ ∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))) → (𝐷𝑓) = (𝑑 + 1))
132 simprl 770 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) ∧ (𝑥 ∈ ((𝑂𝑓) “ {𝑊}) ∧ ∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))) → 𝑥 ∈ ((𝑂𝑓) “ {𝑊}))
133 simprr 772 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) ∧ (𝑥 ∈ ((𝑂𝑓) “ {𝑊}) ∧ ∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))) → ∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))
13418, 20, 17, 65, 90, 19, 125, 126, 60, 127, 128, 52, 129, 130, 131, 132, 133fta1glem2 26126 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) ∧ (𝑥 ∈ ((𝑂𝑓) “ {𝑊}) ∧ ∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))
135134exp32 420 . . . . . . . . . . . . . 14 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) → (𝑥 ∈ ((𝑂𝑓) “ {𝑊}) → (∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
136135exlimdv 1933 . . . . . . . . . . . . 13 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) → (∃𝑥 𝑥 ∈ ((𝑂𝑓) “ {𝑊}) → (∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
137124, 136biimtrid 242 . . . . . . . . . . . 12 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) → (((𝑂𝑓) “ {𝑊}) ≠ ∅ → (∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
138123, 137pm2.61dne 3018 . . . . . . . . . . 11 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) → (∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))
139138expr 456 . . . . . . . . . 10 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ 𝑓𝐵) → ((𝐷𝑓) = (𝑑 + 1) → (∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
140139com23 86 . . . . . . . . 9 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ 𝑓𝐵) → (∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)) → ((𝐷𝑓) = (𝑑 + 1) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
141140ralrimdva 3140 . . . . . . . 8 ((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) → (∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)) → ∀𝑓𝐵 ((𝐷𝑓) = (𝑑 + 1) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
142113, 141biimtrid 242 . . . . . . 7 ((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) → (∀𝑓𝐵 ((𝐷𝑓) = 𝑑 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) → ∀𝑓𝐵 ((𝐷𝑓) = (𝑑 + 1) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
143142expcom 413 . . . . . 6 (𝑑 ∈ ℕ0 → (𝑅 ∈ IDomn → (∀𝑓𝐵 ((𝐷𝑓) = 𝑑 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) → ∀𝑓𝐵 ((𝐷𝑓) = (𝑑 + 1) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))))
144143a2d 29 . . . . 5 (𝑑 ∈ ℕ0 → ((𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = 𝑑 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))) → (𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = (𝑑 + 1) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))))
14526, 30, 34, 38, 104, 144nn0ind 12688 . . . 4 ((𝐷𝐹) ∈ ℕ0 → (𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = (𝐷𝐹) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
14622, 10, 145sylc 65 . . 3 (𝜑 → ∀𝑓𝐵 ((𝐷𝑓) = (𝐷𝐹) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))
1479, 146, 15rspcdva 3602 . 2 (𝜑 → ((𝐷𝐹) = (𝐷𝐹) → (♯‘((𝑂𝐹) “ {𝑊})) ≤ (𝐷𝐹)))
1481, 147mpi 20 1 (𝜑 → (♯‘((𝑂𝐹) “ {𝑊})) ≤ (𝐷𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  wne 2932  wral 3051  Vcvv 3459  c0 4308  {csn 4601   class class class wbr 5119   × cxp 5652  ccnv 5653  cima 5657   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  0cc0 11129  1c1 11130   + caddc 11132  cle 11270  0cn0 12501  chash 14348  Basecbs 17228  0gc0g 17453  s cpws 17460  -gcsg 18918  Ringcrg 20193  CRingccrg 20194   RingHom crh 20429  Domncdomn 20652  IDomncidom 20653  algSccascl 21812  var1cv1 22111  Poly1cpl1 22112  coe1cco1 22113  eval1ce1 22252  deg1cdg1 26011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-ofr 7672  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-oi 9524  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-xnn0 12575  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-ghm 19196  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-srg 20147  df-ring 20195  df-cring 20196  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-rhm 20432  df-nzr 20473  df-subrng 20506  df-subrg 20530  df-rlreg 20654  df-domn 20655  df-idom 20656  df-lmod 20819  df-lss 20889  df-lsp 20929  df-cnfld 21316  df-assa 21813  df-asp 21814  df-ascl 21815  df-psr 21869  df-mvr 21870  df-mpl 21871  df-opsr 21873  df-evls 22032  df-evl 22033  df-psr1 22115  df-vr1 22116  df-ply1 22117  df-coe1 22118  df-evl1 22254  df-mdeg 26012  df-deg1 26013  df-mon1 26088  df-uc1p 26089  df-q1p 26090  df-r1p 26091
This theorem is referenced by:  fta1b  26129  idomrootle  26130  lgsqrlem4  27312  aks6d1c2lem4  42140  aks6d1c6lem3  42185
  Copyright terms: Public domain W3C validator