MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fta1g Structured version   Visualization version   GIF version

Theorem fta1g 26082
Description: The one-sided fundamental theorem of algebra. A polynomial of degree 𝑛 has at most 𝑛 roots. Unlike the real fundamental theorem fta 26997, which is only true in and other algebraically closed fields, this is true in any integral domain. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
fta1g.p 𝑃 = (Poly1𝑅)
fta1g.b 𝐵 = (Base‘𝑃)
fta1g.d 𝐷 = (deg1𝑅)
fta1g.o 𝑂 = (eval1𝑅)
fta1g.w 𝑊 = (0g𝑅)
fta1g.z 0 = (0g𝑃)
fta1g.1 (𝜑𝑅 ∈ IDomn)
fta1g.2 (𝜑𝐹𝐵)
fta1g.3 (𝜑𝐹0 )
Assertion
Ref Expression
fta1g (𝜑 → (♯‘((𝑂𝐹) “ {𝑊})) ≤ (𝐷𝐹))

Proof of Theorem fta1g
Dummy variables 𝑓 𝑑 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . 2 (𝐷𝐹) = (𝐷𝐹)
2 fveqeq2 6870 . . . 4 (𝑓 = 𝐹 → ((𝐷𝑓) = (𝐷𝐹) ↔ (𝐷𝐹) = (𝐷𝐹)))
3 fveq2 6861 . . . . . . . 8 (𝑓 = 𝐹 → (𝑂𝑓) = (𝑂𝐹))
43cnveqd 5842 . . . . . . 7 (𝑓 = 𝐹(𝑂𝑓) = (𝑂𝐹))
54imaeq1d 6033 . . . . . 6 (𝑓 = 𝐹 → ((𝑂𝑓) “ {𝑊}) = ((𝑂𝐹) “ {𝑊}))
65fveq2d 6865 . . . . 5 (𝑓 = 𝐹 → (♯‘((𝑂𝑓) “ {𝑊})) = (♯‘((𝑂𝐹) “ {𝑊})))
7 fveq2 6861 . . . . 5 (𝑓 = 𝐹 → (𝐷𝑓) = (𝐷𝐹))
86, 7breq12d 5123 . . . 4 (𝑓 = 𝐹 → ((♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓) ↔ (♯‘((𝑂𝐹) “ {𝑊})) ≤ (𝐷𝐹)))
92, 8imbi12d 344 . . 3 (𝑓 = 𝐹 → (((𝐷𝑓) = (𝐷𝐹) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ↔ ((𝐷𝐹) = (𝐷𝐹) → (♯‘((𝑂𝐹) “ {𝑊})) ≤ (𝐷𝐹))))
10 fta1g.1 . . . . . 6 (𝜑𝑅 ∈ IDomn)
11 isidom 20641 . . . . . . 7 (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
1211simplbi 497 . . . . . 6 (𝑅 ∈ IDomn → 𝑅 ∈ CRing)
13 crngring 20161 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
1410, 12, 133syl 18 . . . . 5 (𝜑𝑅 ∈ Ring)
15 fta1g.2 . . . . 5 (𝜑𝐹𝐵)
16 fta1g.3 . . . . 5 (𝜑𝐹0 )
17 fta1g.d . . . . . 6 𝐷 = (deg1𝑅)
18 fta1g.p . . . . . 6 𝑃 = (Poly1𝑅)
19 fta1g.z . . . . . 6 0 = (0g𝑃)
20 fta1g.b . . . . . 6 𝐵 = (Base‘𝑃)
2117, 18, 19, 20deg1nn0cl 26000 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → (𝐷𝐹) ∈ ℕ0)
2214, 15, 16, 21syl3anc 1373 . . . 4 (𝜑 → (𝐷𝐹) ∈ ℕ0)
23 eqeq2 2742 . . . . . . . 8 (𝑥 = 0 → ((𝐷𝑓) = 𝑥 ↔ (𝐷𝑓) = 0))
2423imbi1d 341 . . . . . . 7 (𝑥 = 0 → (((𝐷𝑓) = 𝑥 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ↔ ((𝐷𝑓) = 0 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
2524ralbidv 3157 . . . . . 6 (𝑥 = 0 → (∀𝑓𝐵 ((𝐷𝑓) = 𝑥 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ↔ ∀𝑓𝐵 ((𝐷𝑓) = 0 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
2625imbi2d 340 . . . . 5 (𝑥 = 0 → ((𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = 𝑥 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))) ↔ (𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = 0 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))))
27 eqeq2 2742 . . . . . . . 8 (𝑥 = 𝑑 → ((𝐷𝑓) = 𝑥 ↔ (𝐷𝑓) = 𝑑))
2827imbi1d 341 . . . . . . 7 (𝑥 = 𝑑 → (((𝐷𝑓) = 𝑥 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ↔ ((𝐷𝑓) = 𝑑 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
2928ralbidv 3157 . . . . . 6 (𝑥 = 𝑑 → (∀𝑓𝐵 ((𝐷𝑓) = 𝑥 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ↔ ∀𝑓𝐵 ((𝐷𝑓) = 𝑑 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
3029imbi2d 340 . . . . 5 (𝑥 = 𝑑 → ((𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = 𝑥 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))) ↔ (𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = 𝑑 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))))
31 eqeq2 2742 . . . . . . . 8 (𝑥 = (𝑑 + 1) → ((𝐷𝑓) = 𝑥 ↔ (𝐷𝑓) = (𝑑 + 1)))
3231imbi1d 341 . . . . . . 7 (𝑥 = (𝑑 + 1) → (((𝐷𝑓) = 𝑥 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ↔ ((𝐷𝑓) = (𝑑 + 1) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
3332ralbidv 3157 . . . . . 6 (𝑥 = (𝑑 + 1) → (∀𝑓𝐵 ((𝐷𝑓) = 𝑥 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ↔ ∀𝑓𝐵 ((𝐷𝑓) = (𝑑 + 1) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
3433imbi2d 340 . . . . 5 (𝑥 = (𝑑 + 1) → ((𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = 𝑥 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))) ↔ (𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = (𝑑 + 1) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))))
35 eqeq2 2742 . . . . . . . 8 (𝑥 = (𝐷𝐹) → ((𝐷𝑓) = 𝑥 ↔ (𝐷𝑓) = (𝐷𝐹)))
3635imbi1d 341 . . . . . . 7 (𝑥 = (𝐷𝐹) → (((𝐷𝑓) = 𝑥 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ↔ ((𝐷𝑓) = (𝐷𝐹) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
3736ralbidv 3157 . . . . . 6 (𝑥 = (𝐷𝐹) → (∀𝑓𝐵 ((𝐷𝑓) = 𝑥 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ↔ ∀𝑓𝐵 ((𝐷𝑓) = (𝐷𝐹) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
3837imbi2d 340 . . . . 5 (𝑥 = (𝐷𝐹) → ((𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = 𝑥 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))) ↔ (𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = (𝐷𝐹) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))))
39 simprr 772 . . . . . . . . . . . . . 14 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (𝐷𝑓) = 0)
40 0nn0 12464 . . . . . . . . . . . . . 14 0 ∈ ℕ0
4139, 40eqeltrdi 2837 . . . . . . . . . . . . 13 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (𝐷𝑓) ∈ ℕ0)
4212, 13syl 17 . . . . . . . . . . . . . 14 (𝑅 ∈ IDomn → 𝑅 ∈ Ring)
43 simpl 482 . . . . . . . . . . . . . 14 ((𝑓𝐵 ∧ (𝐷𝑓) = 0) → 𝑓𝐵)
4417, 18, 19, 20deg1nn0clb 26002 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝑓𝐵) → (𝑓0 ↔ (𝐷𝑓) ∈ ℕ0))
4542, 43, 44syl2an 596 . . . . . . . . . . . . 13 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (𝑓0 ↔ (𝐷𝑓) ∈ ℕ0))
4641, 45mpbird 257 . . . . . . . . . . . 12 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → 𝑓0 )
47 simplrr 777 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → (𝐷𝑓) = 0)
48 0le0 12294 . . . . . . . . . . . . . . . . 17 0 ≤ 0
4947, 48eqbrtrdi 5149 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → (𝐷𝑓) ≤ 0)
5042ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → 𝑅 ∈ Ring)
51 simplrl 776 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → 𝑓𝐵)
52 eqid 2730 . . . . . . . . . . . . . . . . . 18 (algSc‘𝑃) = (algSc‘𝑃)
5317, 18, 20, 52deg1le0 26023 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝑓𝐵) → ((𝐷𝑓) ≤ 0 ↔ 𝑓 = ((algSc‘𝑃)‘((coe1𝑓)‘0))))
5450, 51, 53syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → ((𝐷𝑓) ≤ 0 ↔ 𝑓 = ((algSc‘𝑃)‘((coe1𝑓)‘0))))
5549, 54mpbid 232 . . . . . . . . . . . . . . 15 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → 𝑓 = ((algSc‘𝑃)‘((coe1𝑓)‘0)))
5655fveq2d 6865 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → (𝑂𝑓) = (𝑂‘((algSc‘𝑃)‘((coe1𝑓)‘0))))
5712adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → 𝑅 ∈ CRing)
5857adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → 𝑅 ∈ CRing)
59 eqid 2730 . . . . . . . . . . . . . . . . . . . . . . 23 (coe1𝑓) = (coe1𝑓)
60 eqid 2730 . . . . . . . . . . . . . . . . . . . . . . 23 (Base‘𝑅) = (Base‘𝑅)
6159, 20, 18, 60coe1f 22103 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓𝐵 → (coe1𝑓):ℕ0⟶(Base‘𝑅))
6251, 61syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → (coe1𝑓):ℕ0⟶(Base‘𝑅))
63 ffvelcdm 7056 . . . . . . . . . . . . . . . . . . . . 21 (((coe1𝑓):ℕ0⟶(Base‘𝑅) ∧ 0 ∈ ℕ0) → ((coe1𝑓)‘0) ∈ (Base‘𝑅))
6462, 40, 63sylancl 586 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → ((coe1𝑓)‘0) ∈ (Base‘𝑅))
65 fta1g.o . . . . . . . . . . . . . . . . . . . . 21 𝑂 = (eval1𝑅)
6665, 18, 60, 52evl1sca 22228 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ CRing ∧ ((coe1𝑓)‘0) ∈ (Base‘𝑅)) → (𝑂‘((algSc‘𝑃)‘((coe1𝑓)‘0))) = ((Base‘𝑅) × {((coe1𝑓)‘0)}))
6758, 64, 66syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → (𝑂‘((algSc‘𝑃)‘((coe1𝑓)‘0))) = ((Base‘𝑅) × {((coe1𝑓)‘0)}))
6856, 67eqtrd 2765 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → (𝑂𝑓) = ((Base‘𝑅) × {((coe1𝑓)‘0)}))
6968fveq1d 6863 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → ((𝑂𝑓)‘𝑥) = (((Base‘𝑅) × {((coe1𝑓)‘0)})‘𝑥))
70 eqid 2730 . . . . . . . . . . . . . . . . . . . 20 (𝑅s (Base‘𝑅)) = (𝑅s (Base‘𝑅))
71 eqid 2730 . . . . . . . . . . . . . . . . . . . 20 (Base‘(𝑅s (Base‘𝑅))) = (Base‘(𝑅s (Base‘𝑅)))
72 simpl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → 𝑅 ∈ IDomn)
73 fvexd 6876 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (Base‘𝑅) ∈ V)
7465, 18, 70, 60evl1rhm 22226 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅s (Base‘𝑅))))
7520, 71rhmf 20401 . . . . . . . . . . . . . . . . . . . . . 22 (𝑂 ∈ (𝑃 RingHom (𝑅s (Base‘𝑅))) → 𝑂:𝐵⟶(Base‘(𝑅s (Base‘𝑅))))
7657, 74, 753syl 18 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → 𝑂:𝐵⟶(Base‘(𝑅s (Base‘𝑅))))
77 simprl 770 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → 𝑓𝐵)
7876, 77ffvelcdmd 7060 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (𝑂𝑓) ∈ (Base‘(𝑅s (Base‘𝑅))))
7970, 60, 71, 72, 73, 78pwselbas 17459 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (𝑂𝑓):(Base‘𝑅)⟶(Base‘𝑅))
80 ffn 6691 . . . . . . . . . . . . . . . . . . 19 ((𝑂𝑓):(Base‘𝑅)⟶(Base‘𝑅) → (𝑂𝑓) Fn (Base‘𝑅))
81 fniniseg 7035 . . . . . . . . . . . . . . . . . . 19 ((𝑂𝑓) Fn (Base‘𝑅) → (𝑥 ∈ ((𝑂𝑓) “ {𝑊}) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ((𝑂𝑓)‘𝑥) = 𝑊)))
8279, 80, 813syl 18 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (𝑥 ∈ ((𝑂𝑓) “ {𝑊}) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ((𝑂𝑓)‘𝑥) = 𝑊)))
8382simplbda 499 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → ((𝑂𝑓)‘𝑥) = 𝑊)
8482simprbda 498 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → 𝑥 ∈ (Base‘𝑅))
85 fvex 6874 . . . . . . . . . . . . . . . . . . 19 ((coe1𝑓)‘0) ∈ V
8685fvconst2 7181 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (Base‘𝑅) → (((Base‘𝑅) × {((coe1𝑓)‘0)})‘𝑥) = ((coe1𝑓)‘0))
8784, 86syl 17 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → (((Base‘𝑅) × {((coe1𝑓)‘0)})‘𝑥) = ((coe1𝑓)‘0))
8869, 83, 873eqtr3rd 2774 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → ((coe1𝑓)‘0) = 𝑊)
8988fveq2d 6865 . . . . . . . . . . . . . . 15 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → ((algSc‘𝑃)‘((coe1𝑓)‘0)) = ((algSc‘𝑃)‘𝑊))
90 fta1g.w . . . . . . . . . . . . . . . . 17 𝑊 = (0g𝑅)
9118, 52, 90, 19ply1scl0 22183 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → ((algSc‘𝑃)‘𝑊) = 0 )
9250, 91syl 17 . . . . . . . . . . . . . . 15 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → ((algSc‘𝑃)‘𝑊) = 0 )
9355, 89, 923eqtrd 2769 . . . . . . . . . . . . . 14 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → 𝑓 = 0 )
9493ex 412 . . . . . . . . . . . . 13 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (𝑥 ∈ ((𝑂𝑓) “ {𝑊}) → 𝑓 = 0 ))
9594necon3ad 2939 . . . . . . . . . . . 12 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (𝑓0 → ¬ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})))
9646, 95mpd 15 . . . . . . . . . . 11 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → ¬ 𝑥 ∈ ((𝑂𝑓) “ {𝑊}))
9796eq0rdv 4373 . . . . . . . . . 10 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → ((𝑂𝑓) “ {𝑊}) = ∅)
9897fveq2d 6865 . . . . . . . . 9 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (♯‘((𝑂𝑓) “ {𝑊})) = (♯‘∅))
99 hash0 14339 . . . . . . . . 9 (♯‘∅) = 0
10098, 99eqtrdi 2781 . . . . . . . 8 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (♯‘((𝑂𝑓) “ {𝑊})) = 0)
10148, 39breqtrrid 5148 . . . . . . . 8 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → 0 ≤ (𝐷𝑓))
102100, 101eqbrtrd 5132 . . . . . . 7 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))
103102expr 456 . . . . . 6 ((𝑅 ∈ IDomn ∧ 𝑓𝐵) → ((𝐷𝑓) = 0 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))
104103ralrimiva 3126 . . . . 5 (𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = 0 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))
105 fveqeq2 6870 . . . . . . . . . 10 (𝑓 = 𝑔 → ((𝐷𝑓) = 𝑑 ↔ (𝐷𝑔) = 𝑑))
106 fveq2 6861 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → (𝑂𝑓) = (𝑂𝑔))
107106cnveqd 5842 . . . . . . . . . . . . 13 (𝑓 = 𝑔(𝑂𝑓) = (𝑂𝑔))
108107imaeq1d 6033 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((𝑂𝑓) “ {𝑊}) = ((𝑂𝑔) “ {𝑊}))
109108fveq2d 6865 . . . . . . . . . . 11 (𝑓 = 𝑔 → (♯‘((𝑂𝑓) “ {𝑊})) = (♯‘((𝑂𝑔) “ {𝑊})))
110 fveq2 6861 . . . . . . . . . . 11 (𝑓 = 𝑔 → (𝐷𝑓) = (𝐷𝑔))
111109, 110breq12d 5123 . . . . . . . . . 10 (𝑓 = 𝑔 → ((♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓) ↔ (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))
112105, 111imbi12d 344 . . . . . . . . 9 (𝑓 = 𝑔 → (((𝐷𝑓) = 𝑑 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ↔ ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔))))
113112cbvralvw 3216 . . . . . . . 8 (∀𝑓𝐵 ((𝐷𝑓) = 𝑑 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ↔ ∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))
114 simprr 772 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) → (𝐷𝑓) = (𝑑 + 1))
115 peano2nn0 12489 . . . . . . . . . . . . . . . . 17 (𝑑 ∈ ℕ0 → (𝑑 + 1) ∈ ℕ0)
116115ad2antlr 727 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) → (𝑑 + 1) ∈ ℕ0)
117114, 116eqeltrd 2829 . . . . . . . . . . . . . . 15 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) → (𝐷𝑓) ∈ ℕ0)
118117nn0ge0d 12513 . . . . . . . . . . . . . 14 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) → 0 ≤ (𝐷𝑓))
119 fveq2 6861 . . . . . . . . . . . . . . . 16 (((𝑂𝑓) “ {𝑊}) = ∅ → (♯‘((𝑂𝑓) “ {𝑊})) = (♯‘∅))
120119, 99eqtrdi 2781 . . . . . . . . . . . . . . 15 (((𝑂𝑓) “ {𝑊}) = ∅ → (♯‘((𝑂𝑓) “ {𝑊})) = 0)
121120breq1d 5120 . . . . . . . . . . . . . 14 (((𝑂𝑓) “ {𝑊}) = ∅ → ((♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓) ↔ 0 ≤ (𝐷𝑓)))
122118, 121syl5ibrcom 247 . . . . . . . . . . . . 13 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) → (((𝑂𝑓) “ {𝑊}) = ∅ → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))
123122a1dd 50 . . . . . . . . . . . 12 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) → (((𝑂𝑓) “ {𝑊}) = ∅ → (∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
124 n0 4319 . . . . . . . . . . . . 13 (((𝑂𝑓) “ {𝑊}) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ ((𝑂𝑓) “ {𝑊}))
125 simplll 774 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) ∧ (𝑥 ∈ ((𝑂𝑓) “ {𝑊}) ∧ ∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))) → 𝑅 ∈ IDomn)
126 simplrl 776 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) ∧ (𝑥 ∈ ((𝑂𝑓) “ {𝑊}) ∧ ∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))) → 𝑓𝐵)
127 eqid 2730 . . . . . . . . . . . . . . . 16 (var1𝑅) = (var1𝑅)
128 eqid 2730 . . . . . . . . . . . . . . . 16 (-g𝑃) = (-g𝑃)
129 eqid 2730 . . . . . . . . . . . . . . . 16 ((var1𝑅)(-g𝑃)((algSc‘𝑃)‘𝑥)) = ((var1𝑅)(-g𝑃)((algSc‘𝑃)‘𝑥))
130 simpllr 775 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) ∧ (𝑥 ∈ ((𝑂𝑓) “ {𝑊}) ∧ ∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))) → 𝑑 ∈ ℕ0)
131 simplrr 777 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) ∧ (𝑥 ∈ ((𝑂𝑓) “ {𝑊}) ∧ ∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))) → (𝐷𝑓) = (𝑑 + 1))
132 simprl 770 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) ∧ (𝑥 ∈ ((𝑂𝑓) “ {𝑊}) ∧ ∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))) → 𝑥 ∈ ((𝑂𝑓) “ {𝑊}))
133 simprr 772 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) ∧ (𝑥 ∈ ((𝑂𝑓) “ {𝑊}) ∧ ∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))) → ∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))
13418, 20, 17, 65, 90, 19, 125, 126, 60, 127, 128, 52, 129, 130, 131, 132, 133fta1glem2 26081 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) ∧ (𝑥 ∈ ((𝑂𝑓) “ {𝑊}) ∧ ∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))
135134exp32 420 . . . . . . . . . . . . . 14 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) → (𝑥 ∈ ((𝑂𝑓) “ {𝑊}) → (∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
136135exlimdv 1933 . . . . . . . . . . . . 13 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) → (∃𝑥 𝑥 ∈ ((𝑂𝑓) “ {𝑊}) → (∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
137124, 136biimtrid 242 . . . . . . . . . . . 12 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) → (((𝑂𝑓) “ {𝑊}) ≠ ∅ → (∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
138123, 137pm2.61dne 3012 . . . . . . . . . . 11 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) → (∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))
139138expr 456 . . . . . . . . . 10 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ 𝑓𝐵) → ((𝐷𝑓) = (𝑑 + 1) → (∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
140139com23 86 . . . . . . . . 9 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ 𝑓𝐵) → (∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)) → ((𝐷𝑓) = (𝑑 + 1) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
141140ralrimdva 3134 . . . . . . . 8 ((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) → (∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)) → ∀𝑓𝐵 ((𝐷𝑓) = (𝑑 + 1) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
142113, 141biimtrid 242 . . . . . . 7 ((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) → (∀𝑓𝐵 ((𝐷𝑓) = 𝑑 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) → ∀𝑓𝐵 ((𝐷𝑓) = (𝑑 + 1) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
143142expcom 413 . . . . . 6 (𝑑 ∈ ℕ0 → (𝑅 ∈ IDomn → (∀𝑓𝐵 ((𝐷𝑓) = 𝑑 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) → ∀𝑓𝐵 ((𝐷𝑓) = (𝑑 + 1) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))))
144143a2d 29 . . . . 5 (𝑑 ∈ ℕ0 → ((𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = 𝑑 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))) → (𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = (𝑑 + 1) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))))
14526, 30, 34, 38, 104, 144nn0ind 12636 . . . 4 ((𝐷𝐹) ∈ ℕ0 → (𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = (𝐷𝐹) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
14622, 10, 145sylc 65 . . 3 (𝜑 → ∀𝑓𝐵 ((𝐷𝑓) = (𝐷𝐹) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))
1479, 146, 15rspcdva 3592 . 2 (𝜑 → ((𝐷𝐹) = (𝐷𝐹) → (♯‘((𝑂𝐹) “ {𝑊})) ≤ (𝐷𝐹)))
1481, 147mpi 20 1 (𝜑 → (♯‘((𝑂𝐹) “ {𝑊})) ≤ (𝐷𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2926  wral 3045  Vcvv 3450  c0 4299  {csn 4592   class class class wbr 5110   × cxp 5639  ccnv 5640  cima 5644   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076   + caddc 11078  cle 11216  0cn0 12449  chash 14302  Basecbs 17186  0gc0g 17409  s cpws 17416  -gcsg 18874  Ringcrg 20149  CRingccrg 20150   RingHom crh 20385  Domncdomn 20608  IDomncidom 20609  algSccascl 21768  var1cv1 22067  Poly1cpl1 22068  coe1cco1 22069  eval1ce1 22208  deg1cdg1 25966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-srg 20103  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-rhm 20388  df-nzr 20429  df-subrng 20462  df-subrg 20486  df-rlreg 20610  df-domn 20611  df-idom 20612  df-lmod 20775  df-lss 20845  df-lsp 20885  df-cnfld 21272  df-assa 21769  df-asp 21770  df-ascl 21771  df-psr 21825  df-mvr 21826  df-mpl 21827  df-opsr 21829  df-evls 21988  df-evl 21989  df-psr1 22071  df-vr1 22072  df-ply1 22073  df-coe1 22074  df-evl1 22210  df-mdeg 25967  df-deg1 25968  df-mon1 26043  df-uc1p 26044  df-q1p 26045  df-r1p 26046
This theorem is referenced by:  fta1b  26084  idomrootle  26085  lgsqrlem4  27267  aks6d1c2lem4  42122  aks6d1c6lem3  42167
  Copyright terms: Public domain W3C validator