MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fta1g Structured version   Visualization version   GIF version

Theorem fta1g 25237
Description: The one-sided fundamental theorem of algebra. A polynomial of degree 𝑛 has at most 𝑛 roots. Unlike the real fundamental theorem fta 26134, which is only true in and other algebraically closed fields, this is true in any integral domain. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
fta1g.p 𝑃 = (Poly1𝑅)
fta1g.b 𝐵 = (Base‘𝑃)
fta1g.d 𝐷 = ( deg1𝑅)
fta1g.o 𝑂 = (eval1𝑅)
fta1g.w 𝑊 = (0g𝑅)
fta1g.z 0 = (0g𝑃)
fta1g.1 (𝜑𝑅 ∈ IDomn)
fta1g.2 (𝜑𝐹𝐵)
fta1g.3 (𝜑𝐹0 )
Assertion
Ref Expression
fta1g (𝜑 → (♯‘((𝑂𝐹) “ {𝑊})) ≤ (𝐷𝐹))

Proof of Theorem fta1g
Dummy variables 𝑓 𝑑 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . 2 (𝐷𝐹) = (𝐷𝐹)
2 fveqeq2 6765 . . . 4 (𝑓 = 𝐹 → ((𝐷𝑓) = (𝐷𝐹) ↔ (𝐷𝐹) = (𝐷𝐹)))
3 fveq2 6756 . . . . . . . 8 (𝑓 = 𝐹 → (𝑂𝑓) = (𝑂𝐹))
43cnveqd 5773 . . . . . . 7 (𝑓 = 𝐹(𝑂𝑓) = (𝑂𝐹))
54imaeq1d 5957 . . . . . 6 (𝑓 = 𝐹 → ((𝑂𝑓) “ {𝑊}) = ((𝑂𝐹) “ {𝑊}))
65fveq2d 6760 . . . . 5 (𝑓 = 𝐹 → (♯‘((𝑂𝑓) “ {𝑊})) = (♯‘((𝑂𝐹) “ {𝑊})))
7 fveq2 6756 . . . . 5 (𝑓 = 𝐹 → (𝐷𝑓) = (𝐷𝐹))
86, 7breq12d 5083 . . . 4 (𝑓 = 𝐹 → ((♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓) ↔ (♯‘((𝑂𝐹) “ {𝑊})) ≤ (𝐷𝐹)))
92, 8imbi12d 344 . . 3 (𝑓 = 𝐹 → (((𝐷𝑓) = (𝐷𝐹) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ↔ ((𝐷𝐹) = (𝐷𝐹) → (♯‘((𝑂𝐹) “ {𝑊})) ≤ (𝐷𝐹))))
10 fta1g.1 . . . . . 6 (𝜑𝑅 ∈ IDomn)
11 isidom 20488 . . . . . . 7 (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
1211simplbi 497 . . . . . 6 (𝑅 ∈ IDomn → 𝑅 ∈ CRing)
13 crngring 19710 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
1410, 12, 133syl 18 . . . . 5 (𝜑𝑅 ∈ Ring)
15 fta1g.2 . . . . 5 (𝜑𝐹𝐵)
16 fta1g.3 . . . . 5 (𝜑𝐹0 )
17 fta1g.d . . . . . 6 𝐷 = ( deg1𝑅)
18 fta1g.p . . . . . 6 𝑃 = (Poly1𝑅)
19 fta1g.z . . . . . 6 0 = (0g𝑃)
20 fta1g.b . . . . . 6 𝐵 = (Base‘𝑃)
2117, 18, 19, 20deg1nn0cl 25158 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → (𝐷𝐹) ∈ ℕ0)
2214, 15, 16, 21syl3anc 1369 . . . 4 (𝜑 → (𝐷𝐹) ∈ ℕ0)
23 eqeq2 2750 . . . . . . . 8 (𝑥 = 0 → ((𝐷𝑓) = 𝑥 ↔ (𝐷𝑓) = 0))
2423imbi1d 341 . . . . . . 7 (𝑥 = 0 → (((𝐷𝑓) = 𝑥 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ↔ ((𝐷𝑓) = 0 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
2524ralbidv 3120 . . . . . 6 (𝑥 = 0 → (∀𝑓𝐵 ((𝐷𝑓) = 𝑥 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ↔ ∀𝑓𝐵 ((𝐷𝑓) = 0 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
2625imbi2d 340 . . . . 5 (𝑥 = 0 → ((𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = 𝑥 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))) ↔ (𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = 0 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))))
27 eqeq2 2750 . . . . . . . 8 (𝑥 = 𝑑 → ((𝐷𝑓) = 𝑥 ↔ (𝐷𝑓) = 𝑑))
2827imbi1d 341 . . . . . . 7 (𝑥 = 𝑑 → (((𝐷𝑓) = 𝑥 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ↔ ((𝐷𝑓) = 𝑑 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
2928ralbidv 3120 . . . . . 6 (𝑥 = 𝑑 → (∀𝑓𝐵 ((𝐷𝑓) = 𝑥 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ↔ ∀𝑓𝐵 ((𝐷𝑓) = 𝑑 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
3029imbi2d 340 . . . . 5 (𝑥 = 𝑑 → ((𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = 𝑥 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))) ↔ (𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = 𝑑 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))))
31 eqeq2 2750 . . . . . . . 8 (𝑥 = (𝑑 + 1) → ((𝐷𝑓) = 𝑥 ↔ (𝐷𝑓) = (𝑑 + 1)))
3231imbi1d 341 . . . . . . 7 (𝑥 = (𝑑 + 1) → (((𝐷𝑓) = 𝑥 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ↔ ((𝐷𝑓) = (𝑑 + 1) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
3332ralbidv 3120 . . . . . 6 (𝑥 = (𝑑 + 1) → (∀𝑓𝐵 ((𝐷𝑓) = 𝑥 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ↔ ∀𝑓𝐵 ((𝐷𝑓) = (𝑑 + 1) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
3433imbi2d 340 . . . . 5 (𝑥 = (𝑑 + 1) → ((𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = 𝑥 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))) ↔ (𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = (𝑑 + 1) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))))
35 eqeq2 2750 . . . . . . . 8 (𝑥 = (𝐷𝐹) → ((𝐷𝑓) = 𝑥 ↔ (𝐷𝑓) = (𝐷𝐹)))
3635imbi1d 341 . . . . . . 7 (𝑥 = (𝐷𝐹) → (((𝐷𝑓) = 𝑥 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ↔ ((𝐷𝑓) = (𝐷𝐹) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
3736ralbidv 3120 . . . . . 6 (𝑥 = (𝐷𝐹) → (∀𝑓𝐵 ((𝐷𝑓) = 𝑥 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ↔ ∀𝑓𝐵 ((𝐷𝑓) = (𝐷𝐹) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
3837imbi2d 340 . . . . 5 (𝑥 = (𝐷𝐹) → ((𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = 𝑥 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))) ↔ (𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = (𝐷𝐹) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))))
39 simprr 769 . . . . . . . . . . . . . 14 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (𝐷𝑓) = 0)
40 0nn0 12178 . . . . . . . . . . . . . 14 0 ∈ ℕ0
4139, 40eqeltrdi 2847 . . . . . . . . . . . . 13 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (𝐷𝑓) ∈ ℕ0)
4212, 13syl 17 . . . . . . . . . . . . . 14 (𝑅 ∈ IDomn → 𝑅 ∈ Ring)
43 simpl 482 . . . . . . . . . . . . . 14 ((𝑓𝐵 ∧ (𝐷𝑓) = 0) → 𝑓𝐵)
4417, 18, 19, 20deg1nn0clb 25160 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝑓𝐵) → (𝑓0 ↔ (𝐷𝑓) ∈ ℕ0))
4542, 43, 44syl2an 595 . . . . . . . . . . . . 13 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (𝑓0 ↔ (𝐷𝑓) ∈ ℕ0))
4641, 45mpbird 256 . . . . . . . . . . . 12 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → 𝑓0 )
47 simplrr 774 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → (𝐷𝑓) = 0)
48 0le0 12004 . . . . . . . . . . . . . . . . 17 0 ≤ 0
4947, 48eqbrtrdi 5109 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → (𝐷𝑓) ≤ 0)
5042ad2antrr 722 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → 𝑅 ∈ Ring)
51 simplrl 773 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → 𝑓𝐵)
52 eqid 2738 . . . . . . . . . . . . . . . . . 18 (algSc‘𝑃) = (algSc‘𝑃)
5317, 18, 20, 52deg1le0 25181 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝑓𝐵) → ((𝐷𝑓) ≤ 0 ↔ 𝑓 = ((algSc‘𝑃)‘((coe1𝑓)‘0))))
5450, 51, 53syl2anc 583 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → ((𝐷𝑓) ≤ 0 ↔ 𝑓 = ((algSc‘𝑃)‘((coe1𝑓)‘0))))
5549, 54mpbid 231 . . . . . . . . . . . . . . 15 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → 𝑓 = ((algSc‘𝑃)‘((coe1𝑓)‘0)))
5655fveq2d 6760 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → (𝑂𝑓) = (𝑂‘((algSc‘𝑃)‘((coe1𝑓)‘0))))
5712adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → 𝑅 ∈ CRing)
5857adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → 𝑅 ∈ CRing)
59 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . 23 (coe1𝑓) = (coe1𝑓)
60 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . 23 (Base‘𝑅) = (Base‘𝑅)
6159, 20, 18, 60coe1f 21292 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓𝐵 → (coe1𝑓):ℕ0⟶(Base‘𝑅))
6251, 61syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → (coe1𝑓):ℕ0⟶(Base‘𝑅))
63 ffvelrn 6941 . . . . . . . . . . . . . . . . . . . . 21 (((coe1𝑓):ℕ0⟶(Base‘𝑅) ∧ 0 ∈ ℕ0) → ((coe1𝑓)‘0) ∈ (Base‘𝑅))
6462, 40, 63sylancl 585 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → ((coe1𝑓)‘0) ∈ (Base‘𝑅))
65 fta1g.o . . . . . . . . . . . . . . . . . . . . 21 𝑂 = (eval1𝑅)
6665, 18, 60, 52evl1sca 21410 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ CRing ∧ ((coe1𝑓)‘0) ∈ (Base‘𝑅)) → (𝑂‘((algSc‘𝑃)‘((coe1𝑓)‘0))) = ((Base‘𝑅) × {((coe1𝑓)‘0)}))
6758, 64, 66syl2anc 583 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → (𝑂‘((algSc‘𝑃)‘((coe1𝑓)‘0))) = ((Base‘𝑅) × {((coe1𝑓)‘0)}))
6856, 67eqtrd 2778 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → (𝑂𝑓) = ((Base‘𝑅) × {((coe1𝑓)‘0)}))
6968fveq1d 6758 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → ((𝑂𝑓)‘𝑥) = (((Base‘𝑅) × {((coe1𝑓)‘0)})‘𝑥))
70 eqid 2738 . . . . . . . . . . . . . . . . . . . 20 (𝑅s (Base‘𝑅)) = (𝑅s (Base‘𝑅))
71 eqid 2738 . . . . . . . . . . . . . . . . . . . 20 (Base‘(𝑅s (Base‘𝑅))) = (Base‘(𝑅s (Base‘𝑅)))
72 simpl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → 𝑅 ∈ IDomn)
73 fvexd 6771 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (Base‘𝑅) ∈ V)
7465, 18, 70, 60evl1rhm 21408 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅s (Base‘𝑅))))
7520, 71rhmf 19885 . . . . . . . . . . . . . . . . . . . . . 22 (𝑂 ∈ (𝑃 RingHom (𝑅s (Base‘𝑅))) → 𝑂:𝐵⟶(Base‘(𝑅s (Base‘𝑅))))
7657, 74, 753syl 18 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → 𝑂:𝐵⟶(Base‘(𝑅s (Base‘𝑅))))
77 simprl 767 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → 𝑓𝐵)
7876, 77ffvelrnd 6944 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (𝑂𝑓) ∈ (Base‘(𝑅s (Base‘𝑅))))
7970, 60, 71, 72, 73, 78pwselbas 17117 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (𝑂𝑓):(Base‘𝑅)⟶(Base‘𝑅))
80 ffn 6584 . . . . . . . . . . . . . . . . . . 19 ((𝑂𝑓):(Base‘𝑅)⟶(Base‘𝑅) → (𝑂𝑓) Fn (Base‘𝑅))
81 fniniseg 6919 . . . . . . . . . . . . . . . . . . 19 ((𝑂𝑓) Fn (Base‘𝑅) → (𝑥 ∈ ((𝑂𝑓) “ {𝑊}) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ((𝑂𝑓)‘𝑥) = 𝑊)))
8279, 80, 813syl 18 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (𝑥 ∈ ((𝑂𝑓) “ {𝑊}) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ((𝑂𝑓)‘𝑥) = 𝑊)))
8382simplbda 499 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → ((𝑂𝑓)‘𝑥) = 𝑊)
8482simprbda 498 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → 𝑥 ∈ (Base‘𝑅))
85 fvex 6769 . . . . . . . . . . . . . . . . . . 19 ((coe1𝑓)‘0) ∈ V
8685fvconst2 7061 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (Base‘𝑅) → (((Base‘𝑅) × {((coe1𝑓)‘0)})‘𝑥) = ((coe1𝑓)‘0))
8784, 86syl 17 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → (((Base‘𝑅) × {((coe1𝑓)‘0)})‘𝑥) = ((coe1𝑓)‘0))
8869, 83, 873eqtr3rd 2787 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → ((coe1𝑓)‘0) = 𝑊)
8988fveq2d 6760 . . . . . . . . . . . . . . 15 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → ((algSc‘𝑃)‘((coe1𝑓)‘0)) = ((algSc‘𝑃)‘𝑊))
90 fta1g.w . . . . . . . . . . . . . . . . 17 𝑊 = (0g𝑅)
9118, 52, 90, 19ply1scl0 21371 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → ((algSc‘𝑃)‘𝑊) = 0 )
9250, 91syl 17 . . . . . . . . . . . . . . 15 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → ((algSc‘𝑃)‘𝑊) = 0 )
9355, 89, 923eqtrd 2782 . . . . . . . . . . . . . 14 (((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) ∧ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})) → 𝑓 = 0 )
9493ex 412 . . . . . . . . . . . . 13 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (𝑥 ∈ ((𝑂𝑓) “ {𝑊}) → 𝑓 = 0 ))
9594necon3ad 2955 . . . . . . . . . . . 12 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (𝑓0 → ¬ 𝑥 ∈ ((𝑂𝑓) “ {𝑊})))
9646, 95mpd 15 . . . . . . . . . . 11 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → ¬ 𝑥 ∈ ((𝑂𝑓) “ {𝑊}))
9796eq0rdv 4335 . . . . . . . . . 10 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → ((𝑂𝑓) “ {𝑊}) = ∅)
9897fveq2d 6760 . . . . . . . . 9 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (♯‘((𝑂𝑓) “ {𝑊})) = (♯‘∅))
99 hash0 14010 . . . . . . . . 9 (♯‘∅) = 0
10098, 99eqtrdi 2795 . . . . . . . 8 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (♯‘((𝑂𝑓) “ {𝑊})) = 0)
10148, 39breqtrrid 5108 . . . . . . . 8 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → 0 ≤ (𝐷𝑓))
102100, 101eqbrtrd 5092 . . . . . . 7 ((𝑅 ∈ IDomn ∧ (𝑓𝐵 ∧ (𝐷𝑓) = 0)) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))
103102expr 456 . . . . . 6 ((𝑅 ∈ IDomn ∧ 𝑓𝐵) → ((𝐷𝑓) = 0 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))
104103ralrimiva 3107 . . . . 5 (𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = 0 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))
105 fveqeq2 6765 . . . . . . . . . 10 (𝑓 = 𝑔 → ((𝐷𝑓) = 𝑑 ↔ (𝐷𝑔) = 𝑑))
106 fveq2 6756 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → (𝑂𝑓) = (𝑂𝑔))
107106cnveqd 5773 . . . . . . . . . . . . 13 (𝑓 = 𝑔(𝑂𝑓) = (𝑂𝑔))
108107imaeq1d 5957 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((𝑂𝑓) “ {𝑊}) = ((𝑂𝑔) “ {𝑊}))
109108fveq2d 6760 . . . . . . . . . . 11 (𝑓 = 𝑔 → (♯‘((𝑂𝑓) “ {𝑊})) = (♯‘((𝑂𝑔) “ {𝑊})))
110 fveq2 6756 . . . . . . . . . . 11 (𝑓 = 𝑔 → (𝐷𝑓) = (𝐷𝑔))
111109, 110breq12d 5083 . . . . . . . . . 10 (𝑓 = 𝑔 → ((♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓) ↔ (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))
112105, 111imbi12d 344 . . . . . . . . 9 (𝑓 = 𝑔 → (((𝐷𝑓) = 𝑑 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ↔ ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔))))
113112cbvralvw 3372 . . . . . . . 8 (∀𝑓𝐵 ((𝐷𝑓) = 𝑑 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) ↔ ∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))
114 simprr 769 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) → (𝐷𝑓) = (𝑑 + 1))
115 peano2nn0 12203 . . . . . . . . . . . . . . . . 17 (𝑑 ∈ ℕ0 → (𝑑 + 1) ∈ ℕ0)
116115ad2antlr 723 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) → (𝑑 + 1) ∈ ℕ0)
117114, 116eqeltrd 2839 . . . . . . . . . . . . . . 15 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) → (𝐷𝑓) ∈ ℕ0)
118117nn0ge0d 12226 . . . . . . . . . . . . . 14 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) → 0 ≤ (𝐷𝑓))
119 fveq2 6756 . . . . . . . . . . . . . . . 16 (((𝑂𝑓) “ {𝑊}) = ∅ → (♯‘((𝑂𝑓) “ {𝑊})) = (♯‘∅))
120119, 99eqtrdi 2795 . . . . . . . . . . . . . . 15 (((𝑂𝑓) “ {𝑊}) = ∅ → (♯‘((𝑂𝑓) “ {𝑊})) = 0)
121120breq1d 5080 . . . . . . . . . . . . . 14 (((𝑂𝑓) “ {𝑊}) = ∅ → ((♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓) ↔ 0 ≤ (𝐷𝑓)))
122118, 121syl5ibrcom 246 . . . . . . . . . . . . 13 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) → (((𝑂𝑓) “ {𝑊}) = ∅ → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))
123122a1dd 50 . . . . . . . . . . . 12 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) → (((𝑂𝑓) “ {𝑊}) = ∅ → (∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
124 n0 4277 . . . . . . . . . . . . 13 (((𝑂𝑓) “ {𝑊}) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ ((𝑂𝑓) “ {𝑊}))
125 simplll 771 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) ∧ (𝑥 ∈ ((𝑂𝑓) “ {𝑊}) ∧ ∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))) → 𝑅 ∈ IDomn)
126 simplrl 773 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) ∧ (𝑥 ∈ ((𝑂𝑓) “ {𝑊}) ∧ ∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))) → 𝑓𝐵)
127 eqid 2738 . . . . . . . . . . . . . . . 16 (var1𝑅) = (var1𝑅)
128 eqid 2738 . . . . . . . . . . . . . . . 16 (-g𝑃) = (-g𝑃)
129 eqid 2738 . . . . . . . . . . . . . . . 16 ((var1𝑅)(-g𝑃)((algSc‘𝑃)‘𝑥)) = ((var1𝑅)(-g𝑃)((algSc‘𝑃)‘𝑥))
130 simpllr 772 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) ∧ (𝑥 ∈ ((𝑂𝑓) “ {𝑊}) ∧ ∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))) → 𝑑 ∈ ℕ0)
131 simplrr 774 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) ∧ (𝑥 ∈ ((𝑂𝑓) “ {𝑊}) ∧ ∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))) → (𝐷𝑓) = (𝑑 + 1))
132 simprl 767 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) ∧ (𝑥 ∈ ((𝑂𝑓) “ {𝑊}) ∧ ∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))) → 𝑥 ∈ ((𝑂𝑓) “ {𝑊}))
133 simprr 769 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) ∧ (𝑥 ∈ ((𝑂𝑓) “ {𝑊}) ∧ ∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))) → ∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))
13418, 20, 17, 65, 90, 19, 125, 126, 60, 127, 128, 52, 129, 130, 131, 132, 133fta1glem2 25236 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) ∧ (𝑥 ∈ ((𝑂𝑓) “ {𝑊}) ∧ ∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))
135134exp32 420 . . . . . . . . . . . . . 14 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) → (𝑥 ∈ ((𝑂𝑓) “ {𝑊}) → (∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
136135exlimdv 1937 . . . . . . . . . . . . 13 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) → (∃𝑥 𝑥 ∈ ((𝑂𝑓) “ {𝑊}) → (∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
137124, 136syl5bi 241 . . . . . . . . . . . 12 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) → (((𝑂𝑓) “ {𝑊}) ≠ ∅ → (∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
138123, 137pm2.61dne 3030 . . . . . . . . . . 11 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ (𝑓𝐵 ∧ (𝐷𝑓) = (𝑑 + 1))) → (∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))
139138expr 456 . . . . . . . . . 10 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ 𝑓𝐵) → ((𝐷𝑓) = (𝑑 + 1) → (∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
140139com23 86 . . . . . . . . 9 (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) ∧ 𝑓𝐵) → (∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)) → ((𝐷𝑓) = (𝑑 + 1) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
141140ralrimdva 3112 . . . . . . . 8 ((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) → (∀𝑔𝐵 ((𝐷𝑔) = 𝑑 → (♯‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)) → ∀𝑓𝐵 ((𝐷𝑓) = (𝑑 + 1) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
142113, 141syl5bi 241 . . . . . . 7 ((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0) → (∀𝑓𝐵 ((𝐷𝑓) = 𝑑 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) → ∀𝑓𝐵 ((𝐷𝑓) = (𝑑 + 1) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
143142expcom 413 . . . . . 6 (𝑑 ∈ ℕ0 → (𝑅 ∈ IDomn → (∀𝑓𝐵 ((𝐷𝑓) = 𝑑 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)) → ∀𝑓𝐵 ((𝐷𝑓) = (𝑑 + 1) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))))
144143a2d 29 . . . . 5 (𝑑 ∈ ℕ0 → ((𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = 𝑑 → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))) → (𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = (𝑑 + 1) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))))
14526, 30, 34, 38, 104, 144nn0ind 12345 . . . 4 ((𝐷𝐹) ∈ ℕ0 → (𝑅 ∈ IDomn → ∀𝑓𝐵 ((𝐷𝑓) = (𝐷𝐹) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓))))
14622, 10, 145sylc 65 . . 3 (𝜑 → ∀𝑓𝐵 ((𝐷𝑓) = (𝐷𝐹) → (♯‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))
1479, 146, 15rspcdva 3554 . 2 (𝜑 → ((𝐷𝐹) = (𝐷𝐹) → (♯‘((𝑂𝐹) “ {𝑊})) ≤ (𝐷𝐹)))
1481, 147mpi 20 1 (𝜑 → (♯‘((𝑂𝐹) “ {𝑊})) ≤ (𝐷𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  wne 2942  wral 3063  Vcvv 3422  c0 4253  {csn 4558   class class class wbr 5070   × cxp 5578  ccnv 5579  cima 5583   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803   + caddc 10805  cle 10941  0cn0 12163  chash 13972  Basecbs 16840  0gc0g 17067  s cpws 17074  -gcsg 18494  Ringcrg 19698  CRingccrg 19699   RingHom crh 19871  Domncdomn 20464  IDomncidom 20465  algSccascl 20969  var1cv1 21257  Poly1cpl1 21258  coe1cco1 21259  eval1ce1 21390   deg1 cdg1 25121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-0g 17069  df-gsum 17070  df-prds 17075  df-pws 17077  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-srg 19657  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-rnghom 19874  df-subrg 19937  df-lmod 20040  df-lss 20109  df-lsp 20149  df-nzr 20442  df-rlreg 20467  df-domn 20468  df-idom 20469  df-cnfld 20511  df-assa 20970  df-asp 20971  df-ascl 20972  df-psr 21022  df-mvr 21023  df-mpl 21024  df-opsr 21026  df-evls 21192  df-evl 21193  df-psr1 21261  df-vr1 21262  df-ply1 21263  df-coe1 21264  df-evl1 21392  df-mdeg 25122  df-deg1 25123  df-mon1 25200  df-uc1p 25201  df-q1p 25202  df-r1p 25203
This theorem is referenced by:  fta1b  25239  lgsqrlem4  26402  idomrootle  40936
  Copyright terms: Public domain W3C validator