MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsqrlem4 Structured version   Visualization version   GIF version

Theorem lgsqrlem4 25923
Description: Lemma for lgsqr 25925. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
lgsqr.y 𝑌 = (ℤ/nℤ‘𝑃)
lgsqr.s 𝑆 = (Poly1𝑌)
lgsqr.b 𝐵 = (Base‘𝑆)
lgsqr.d 𝐷 = ( deg1𝑌)
lgsqr.o 𝑂 = (eval1𝑌)
lgsqr.e = (.g‘(mulGrp‘𝑆))
lgsqr.x 𝑋 = (var1𝑌)
lgsqr.m = (-g𝑆)
lgsqr.u 1 = (1r𝑆)
lgsqr.t 𝑇 = ((((𝑃 − 1) / 2) 𝑋) 1 )
lgsqr.l 𝐿 = (ℤRHom‘𝑌)
lgsqr.1 (𝜑𝑃 ∈ (ℙ ∖ {2}))
lgsqr.g 𝐺 = (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑦↑2)))
lgsqr.3 (𝜑𝐴 ∈ ℤ)
lgsqr.4 (𝜑 → (𝐴 /L 𝑃) = 1)
Assertion
Ref Expression
lgsqrlem4 (𝜑 → ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑦,𝑂   𝑥,𝑦,𝑃   𝜑,𝑥,𝑦   𝑦,𝑇   𝑥,𝐿,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑇(𝑥)   1 (𝑥,𝑦)   (𝑥,𝑦)   𝐺(𝑦)   (𝑥,𝑦)   𝑂(𝑥)   𝑋(𝑥,𝑦)

Proof of Theorem lgsqrlem4
StepHypRef Expression
1 lgsqr.y . . . . . . 7 𝑌 = (ℤ/nℤ‘𝑃)
2 lgsqr.s . . . . . . 7 𝑆 = (Poly1𝑌)
3 lgsqr.b . . . . . . 7 𝐵 = (Base‘𝑆)
4 lgsqr.d . . . . . . 7 𝐷 = ( deg1𝑌)
5 lgsqr.o . . . . . . 7 𝑂 = (eval1𝑌)
6 lgsqr.e . . . . . . 7 = (.g‘(mulGrp‘𝑆))
7 lgsqr.x . . . . . . 7 𝑋 = (var1𝑌)
8 lgsqr.m . . . . . . 7 = (-g𝑆)
9 lgsqr.u . . . . . . 7 1 = (1r𝑆)
10 lgsqr.t . . . . . . 7 𝑇 = ((((𝑃 − 1) / 2) 𝑋) 1 )
11 lgsqr.l . . . . . . 7 𝐿 = (ℤRHom‘𝑌)
12 lgsqr.1 . . . . . . 7 (𝜑𝑃 ∈ (ℙ ∖ {2}))
13 lgsqr.g . . . . . . 7 𝐺 = (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑦↑2)))
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13lgsqrlem2 25921 . . . . . 6 (𝜑𝐺:(1...((𝑃 − 1) / 2))–1-1→((𝑂𝑇) “ {(0g𝑌)}))
15 fvex 6676 . . . . . . . . . . . 12 (𝑂𝑇) ∈ V
1615cnvex 7623 . . . . . . . . . . 11 (𝑂𝑇) ∈ V
1716imaex 7614 . . . . . . . . . 10 ((𝑂𝑇) “ {(0g𝑌)}) ∈ V
1817f1dom 8524 . . . . . . . . 9 (𝐺:(1...((𝑃 − 1) / 2))–1-1→((𝑂𝑇) “ {(0g𝑌)}) → (1...((𝑃 − 1) / 2)) ≼ ((𝑂𝑇) “ {(0g𝑌)}))
1914, 18syl 17 . . . . . . . 8 (𝜑 → (1...((𝑃 − 1) / 2)) ≼ ((𝑂𝑇) “ {(0g𝑌)}))
20 eqid 2820 . . . . . . . . . . . 12 (0g𝑌) = (0g𝑌)
21 eqid 2820 . . . . . . . . . . . 12 (0g𝑆) = (0g𝑆)
2212eldifad 3941 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℙ)
231znfld 20702 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 𝑌 ∈ Field)
2422, 23syl 17 . . . . . . . . . . . . 13 (𝜑𝑌 ∈ Field)
25 fldidom 20073 . . . . . . . . . . . . 13 (𝑌 ∈ Field → 𝑌 ∈ IDomn)
2624, 25syl 17 . . . . . . . . . . . 12 (𝜑𝑌 ∈ IDomn)
27 isidom 20072 . . . . . . . . . . . . . . . . . . 19 (𝑌 ∈ IDomn ↔ (𝑌 ∈ CRing ∧ 𝑌 ∈ Domn))
2827simplbi 500 . . . . . . . . . . . . . . . . . 18 (𝑌 ∈ IDomn → 𝑌 ∈ CRing)
2926, 28syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑌 ∈ CRing)
30 crngring 19303 . . . . . . . . . . . . . . . . 17 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
3129, 30syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑌 ∈ Ring)
322ply1ring 20411 . . . . . . . . . . . . . . . 16 (𝑌 ∈ Ring → 𝑆 ∈ Ring)
3331, 32syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑆 ∈ Ring)
34 ringgrp 19297 . . . . . . . . . . . . . . 15 (𝑆 ∈ Ring → 𝑆 ∈ Grp)
3533, 34syl 17 . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ Grp)
36 eqid 2820 . . . . . . . . . . . . . . . . 17 (mulGrp‘𝑆) = (mulGrp‘𝑆)
3736ringmgp 19298 . . . . . . . . . . . . . . . 16 (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd)
3833, 37syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (mulGrp‘𝑆) ∈ Mnd)
39 oddprm 16142 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
4012, 39syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ)
4140nnnn0d 11949 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ0)
427, 2, 3vr1cl 20380 . . . . . . . . . . . . . . . 16 (𝑌 ∈ Ring → 𝑋𝐵)
4331, 42syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑋𝐵)
4436, 3mgpbas 19240 . . . . . . . . . . . . . . . 16 𝐵 = (Base‘(mulGrp‘𝑆))
4544, 6mulgnn0cl 18239 . . . . . . . . . . . . . . 15 (((mulGrp‘𝑆) ∈ Mnd ∧ ((𝑃 − 1) / 2) ∈ ℕ0𝑋𝐵) → (((𝑃 − 1) / 2) 𝑋) ∈ 𝐵)
4638, 41, 43, 45syl3anc 1366 . . . . . . . . . . . . . 14 (𝜑 → (((𝑃 − 1) / 2) 𝑋) ∈ 𝐵)
473, 9ringidcl 19313 . . . . . . . . . . . . . . 15 (𝑆 ∈ Ring → 1𝐵)
4833, 47syl 17 . . . . . . . . . . . . . 14 (𝜑1𝐵)
493, 8grpsubcl 18174 . . . . . . . . . . . . . 14 ((𝑆 ∈ Grp ∧ (((𝑃 − 1) / 2) 𝑋) ∈ 𝐵1𝐵) → ((((𝑃 − 1) / 2) 𝑋) 1 ) ∈ 𝐵)
5035, 46, 48, 49syl3anc 1366 . . . . . . . . . . . . 13 (𝜑 → ((((𝑃 − 1) / 2) 𝑋) 1 ) ∈ 𝐵)
5110, 50eqeltrid 2916 . . . . . . . . . . . 12 (𝜑𝑇𝐵)
5210fveq2i 6666 . . . . . . . . . . . . . . . 16 (𝐷𝑇) = (𝐷‘((((𝑃 − 1) / 2) 𝑋) 1 ))
5340nngt0d 11680 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 < ((𝑃 − 1) / 2))
54 eqid 2820 . . . . . . . . . . . . . . . . . . . . . 22 (algSc‘𝑆) = (algSc‘𝑆)
55 eqid 2820 . . . . . . . . . . . . . . . . . . . . . 22 (1r𝑌) = (1r𝑌)
562, 54, 55, 9ply1scl1 20455 . . . . . . . . . . . . . . . . . . . . 21 (𝑌 ∈ Ring → ((algSc‘𝑆)‘(1r𝑌)) = 1 )
5731, 56syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((algSc‘𝑆)‘(1r𝑌)) = 1 )
5857fveq2d 6667 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐷‘((algSc‘𝑆)‘(1r𝑌))) = (𝐷1 ))
59 eqid 2820 . . . . . . . . . . . . . . . . . . . . . 22 (Base‘𝑌) = (Base‘𝑌)
6059, 55ringidcl 19313 . . . . . . . . . . . . . . . . . . . . 21 (𝑌 ∈ Ring → (1r𝑌) ∈ (Base‘𝑌))
6131, 60syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1r𝑌) ∈ (Base‘𝑌))
62 domnnzr 20063 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑌 ∈ Domn → 𝑌 ∈ NzRing)
6327, 62simplbiim 507 . . . . . . . . . . . . . . . . . . . . . 22 (𝑌 ∈ IDomn → 𝑌 ∈ NzRing)
6426, 63syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑌 ∈ NzRing)
6555, 20nzrnz 20028 . . . . . . . . . . . . . . . . . . . . 21 (𝑌 ∈ NzRing → (1r𝑌) ≠ (0g𝑌))
6664, 65syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1r𝑌) ≠ (0g𝑌))
674, 2, 59, 54, 20deg1scl 24705 . . . . . . . . . . . . . . . . . . . 20 ((𝑌 ∈ Ring ∧ (1r𝑌) ∈ (Base‘𝑌) ∧ (1r𝑌) ≠ (0g𝑌)) → (𝐷‘((algSc‘𝑆)‘(1r𝑌))) = 0)
6831, 61, 66, 67syl3anc 1366 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐷‘((algSc‘𝑆)‘(1r𝑌))) = 0)
6958, 68eqtr3d 2857 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐷1 ) = 0)
704, 2, 7, 36, 6deg1pw 24712 . . . . . . . . . . . . . . . . . . 19 ((𝑌 ∈ NzRing ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (𝐷‘(((𝑃 − 1) / 2) 𝑋)) = ((𝑃 − 1) / 2))
7164, 41, 70syl2anc 586 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐷‘(((𝑃 − 1) / 2) 𝑋)) = ((𝑃 − 1) / 2))
7253, 69, 713brtr4d 5091 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷1 ) < (𝐷‘(((𝑃 − 1) / 2) 𝑋)))
732, 4, 31, 3, 8, 46, 48, 72deg1sub 24700 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐷‘((((𝑃 − 1) / 2) 𝑋) 1 )) = (𝐷‘(((𝑃 − 1) / 2) 𝑋)))
7452, 73syl5eq 2867 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷𝑇) = (𝐷‘(((𝑃 − 1) / 2) 𝑋)))
7574, 71eqtrd 2855 . . . . . . . . . . . . . 14 (𝜑 → (𝐷𝑇) = ((𝑃 − 1) / 2))
7675, 41eqeltrd 2912 . . . . . . . . . . . . 13 (𝜑 → (𝐷𝑇) ∈ ℕ0)
774, 2, 21, 3deg1nn0clb 24682 . . . . . . . . . . . . . 14 ((𝑌 ∈ Ring ∧ 𝑇𝐵) → (𝑇 ≠ (0g𝑆) ↔ (𝐷𝑇) ∈ ℕ0))
7831, 51, 77syl2anc 586 . . . . . . . . . . . . 13 (𝜑 → (𝑇 ≠ (0g𝑆) ↔ (𝐷𝑇) ∈ ℕ0))
7976, 78mpbird 259 . . . . . . . . . . . 12 (𝜑𝑇 ≠ (0g𝑆))
802, 3, 4, 5, 20, 21, 26, 51, 79fta1g 24759 . . . . . . . . . . 11 (𝜑 → (♯‘((𝑂𝑇) “ {(0g𝑌)})) ≤ (𝐷𝑇))
8180, 75breqtrd 5085 . . . . . . . . . 10 (𝜑 → (♯‘((𝑂𝑇) “ {(0g𝑌)})) ≤ ((𝑃 − 1) / 2))
82 hashfz1 13703 . . . . . . . . . . 11 (((𝑃 − 1) / 2) ∈ ℕ0 → (♯‘(1...((𝑃 − 1) / 2))) = ((𝑃 − 1) / 2))
8341, 82syl 17 . . . . . . . . . 10 (𝜑 → (♯‘(1...((𝑃 − 1) / 2))) = ((𝑃 − 1) / 2))
8481, 83breqtrrd 5087 . . . . . . . . 9 (𝜑 → (♯‘((𝑂𝑇) “ {(0g𝑌)})) ≤ (♯‘(1...((𝑃 − 1) / 2))))
85 hashbnd 13693 . . . . . . . . . . 11 ((((𝑂𝑇) “ {(0g𝑌)}) ∈ V ∧ ((𝑃 − 1) / 2) ∈ ℕ0 ∧ (♯‘((𝑂𝑇) “ {(0g𝑌)})) ≤ ((𝑃 − 1) / 2)) → ((𝑂𝑇) “ {(0g𝑌)}) ∈ Fin)
8617, 41, 81, 85mp3an2i 1461 . . . . . . . . . 10 (𝜑 → ((𝑂𝑇) “ {(0g𝑌)}) ∈ Fin)
87 fzfid 13338 . . . . . . . . . 10 (𝜑 → (1...((𝑃 − 1) / 2)) ∈ Fin)
88 hashdom 13737 . . . . . . . . . 10 ((((𝑂𝑇) “ {(0g𝑌)}) ∈ Fin ∧ (1...((𝑃 − 1) / 2)) ∈ Fin) → ((♯‘((𝑂𝑇) “ {(0g𝑌)})) ≤ (♯‘(1...((𝑃 − 1) / 2))) ↔ ((𝑂𝑇) “ {(0g𝑌)}) ≼ (1...((𝑃 − 1) / 2))))
8986, 87, 88syl2anc 586 . . . . . . . . 9 (𝜑 → ((♯‘((𝑂𝑇) “ {(0g𝑌)})) ≤ (♯‘(1...((𝑃 − 1) / 2))) ↔ ((𝑂𝑇) “ {(0g𝑌)}) ≼ (1...((𝑃 − 1) / 2))))
9084, 89mpbid 234 . . . . . . . 8 (𝜑 → ((𝑂𝑇) “ {(0g𝑌)}) ≼ (1...((𝑃 − 1) / 2)))
91 sbth 8630 . . . . . . . 8 (((1...((𝑃 − 1) / 2)) ≼ ((𝑂𝑇) “ {(0g𝑌)}) ∧ ((𝑂𝑇) “ {(0g𝑌)}) ≼ (1...((𝑃 − 1) / 2))) → (1...((𝑃 − 1) / 2)) ≈ ((𝑂𝑇) “ {(0g𝑌)}))
9219, 90, 91syl2anc 586 . . . . . . 7 (𝜑 → (1...((𝑃 − 1) / 2)) ≈ ((𝑂𝑇) “ {(0g𝑌)}))
93 f1finf1o 8738 . . . . . . 7 (((1...((𝑃 − 1) / 2)) ≈ ((𝑂𝑇) “ {(0g𝑌)}) ∧ ((𝑂𝑇) “ {(0g𝑌)}) ∈ Fin) → (𝐺:(1...((𝑃 − 1) / 2))–1-1→((𝑂𝑇) “ {(0g𝑌)}) ↔ 𝐺:(1...((𝑃 − 1) / 2))–1-1-onto→((𝑂𝑇) “ {(0g𝑌)})))
9492, 86, 93syl2anc 586 . . . . . 6 (𝜑 → (𝐺:(1...((𝑃 − 1) / 2))–1-1→((𝑂𝑇) “ {(0g𝑌)}) ↔ 𝐺:(1...((𝑃 − 1) / 2))–1-1-onto→((𝑂𝑇) “ {(0g𝑌)})))
9514, 94mpbid 234 . . . . 5 (𝜑𝐺:(1...((𝑃 − 1) / 2))–1-1-onto→((𝑂𝑇) “ {(0g𝑌)}))
96 f1ocnv 6620 . . . . 5 (𝐺:(1...((𝑃 − 1) / 2))–1-1-onto→((𝑂𝑇) “ {(0g𝑌)}) → 𝐺:((𝑂𝑇) “ {(0g𝑌)})–1-1-onto→(1...((𝑃 − 1) / 2)))
97 f1of 6608 . . . . 5 (𝐺:((𝑂𝑇) “ {(0g𝑌)})–1-1-onto→(1...((𝑃 − 1) / 2)) → 𝐺:((𝑂𝑇) “ {(0g𝑌)})⟶(1...((𝑃 − 1) / 2)))
9895, 96, 973syl 18 . . . 4 (𝜑𝐺:((𝑂𝑇) “ {(0g𝑌)})⟶(1...((𝑃 − 1) / 2)))
99 lgsqr.3 . . . . 5 (𝜑𝐴 ∈ ℤ)
100 lgsqr.4 . . . . 5 (𝜑 → (𝐴 /L 𝑃) = 1)
1011, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 99, 100lgsqrlem3 25922 . . . 4 (𝜑 → (𝐿𝐴) ∈ ((𝑂𝑇) “ {(0g𝑌)}))
10298, 101ffvelrnd 6845 . . 3 (𝜑 → (𝐺‘(𝐿𝐴)) ∈ (1...((𝑃 − 1) / 2)))
103 elfzelz 12905 . . 3 ((𝐺‘(𝐿𝐴)) ∈ (1...((𝑃 − 1) / 2)) → (𝐺‘(𝐿𝐴)) ∈ ℤ)
104102, 103syl 17 . 2 (𝜑 → (𝐺‘(𝐿𝐴)) ∈ ℤ)
105 fvoveq1 7172 . . . . . 6 (𝑥 = (𝐺‘(𝐿𝐴)) → (𝐿‘(𝑥↑2)) = (𝐿‘((𝐺‘(𝐿𝐴))↑2)))
106 fvoveq1 7172 . . . . . . . 8 (𝑦 = 𝑥 → (𝐿‘(𝑦↑2)) = (𝐿‘(𝑥↑2)))
107106cbvmptv 5162 . . . . . . 7 (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑦↑2))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑥↑2)))
10813, 107eqtri 2843 . . . . . 6 𝐺 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑥↑2)))
109 fvex 6676 . . . . . 6 (𝐿‘((𝐺‘(𝐿𝐴))↑2)) ∈ V
110105, 108, 109fvmpt 6761 . . . . 5 ((𝐺‘(𝐿𝐴)) ∈ (1...((𝑃 − 1) / 2)) → (𝐺‘(𝐺‘(𝐿𝐴))) = (𝐿‘((𝐺‘(𝐿𝐴))↑2)))
111102, 110syl 17 . . . 4 (𝜑 → (𝐺‘(𝐺‘(𝐿𝐴))) = (𝐿‘((𝐺‘(𝐿𝐴))↑2)))
112 f1ocnvfv2 7027 . . . . 5 ((𝐺:(1...((𝑃 − 1) / 2))–1-1-onto→((𝑂𝑇) “ {(0g𝑌)}) ∧ (𝐿𝐴) ∈ ((𝑂𝑇) “ {(0g𝑌)})) → (𝐺‘(𝐺‘(𝐿𝐴))) = (𝐿𝐴))
11395, 101, 112syl2anc 586 . . . 4 (𝜑 → (𝐺‘(𝐺‘(𝐿𝐴))) = (𝐿𝐴))
114111, 113eqtr3d 2857 . . 3 (𝜑 → (𝐿‘((𝐺‘(𝐿𝐴))↑2)) = (𝐿𝐴))
115 prmnn 16013 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
11622, 115syl 17 . . . . 5 (𝜑𝑃 ∈ ℕ)
117116nnnn0d 11949 . . . 4 (𝜑𝑃 ∈ ℕ0)
118 zsqcl 13491 . . . . 5 ((𝐺‘(𝐿𝐴)) ∈ ℤ → ((𝐺‘(𝐿𝐴))↑2) ∈ ℤ)
119104, 118syl 17 . . . 4 (𝜑 → ((𝐺‘(𝐿𝐴))↑2) ∈ ℤ)
1201, 11zndvds 20691 . . . 4 ((𝑃 ∈ ℕ0 ∧ ((𝐺‘(𝐿𝐴))↑2) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝐿‘((𝐺‘(𝐿𝐴))↑2)) = (𝐿𝐴) ↔ 𝑃 ∥ (((𝐺‘(𝐿𝐴))↑2) − 𝐴)))
121117, 119, 99, 120syl3anc 1366 . . 3 (𝜑 → ((𝐿‘((𝐺‘(𝐿𝐴))↑2)) = (𝐿𝐴) ↔ 𝑃 ∥ (((𝐺‘(𝐿𝐴))↑2) − 𝐴)))
122114, 121mpbid 234 . 2 (𝜑𝑃 ∥ (((𝐺‘(𝐿𝐴))↑2) − 𝐴))
123 oveq1 7156 . . . . 5 (𝑥 = (𝐺‘(𝐿𝐴)) → (𝑥↑2) = ((𝐺‘(𝐿𝐴))↑2))
124123oveq1d 7164 . . . 4 (𝑥 = (𝐺‘(𝐿𝐴)) → ((𝑥↑2) − 𝐴) = (((𝐺‘(𝐿𝐴))↑2) − 𝐴))
125124breq2d 5071 . . 3 (𝑥 = (𝐺‘(𝐿𝐴)) → (𝑃 ∥ ((𝑥↑2) − 𝐴) ↔ 𝑃 ∥ (((𝐺‘(𝐿𝐴))↑2) − 𝐴)))
126125rspcev 3620 . 2 (((𝐺‘(𝐿𝐴)) ∈ ℤ ∧ 𝑃 ∥ (((𝐺‘(𝐿𝐴))↑2) − 𝐴)) → ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴))
127104, 122, 126syl2anc 586 1 (𝜑 → ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1536  wcel 2113  wne 3015  wrex 3138  Vcvv 3491  cdif 3926  {csn 4560   class class class wbr 5059  cmpt 5139  ccnv 5547  cima 5551  wf 6344  1-1wf1 6345  1-1-ontowf1o 6347  cfv 6348  (class class class)co 7149  cen 8499  cdom 8500  Fincfn 8502  0cc0 10530  1c1 10531   < clt 10668  cle 10669  cmin 10863   / cdiv 11290  cn 11631  2c2 11686  0cn0 11891  cz 11975  ...cfz 12889  cexp 13426  chash 13687  cdvds 15602  cprime 16010  Basecbs 16478  0gc0g 16708  Mndcmnd 17906  Grpcgrp 18098  -gcsg 18100  .gcmg 18219  mulGrpcmgp 19234  1rcur 19246  Ringcrg 19292  CRingccrg 19293  Fieldcfield 19498  NzRingcnzr 20025  Domncdomn 20048  IDomncidom 20049  algSccascl 20079  var1cv1 20339  Poly1cpl1 20340  eval1ce1 20472  ℤRHomczrh 20642  ℤ/nczn 20645   deg1 cdg1 24646   /L clgs 25868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-iin 4915  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-of 7402  df-ofr 7403  df-om 7574  df-1st 7682  df-2nd 7683  df-supp 7824  df-tpos 7885  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-1o 8095  df-2o 8096  df-oadd 8099  df-er 8282  df-ec 8284  df-qs 8288  df-map 8401  df-pm 8402  df-ixp 8455  df-en 8503  df-dom 8504  df-sdom 8505  df-fin 8506  df-fsupp 8827  df-sup 8899  df-inf 8900  df-oi 8967  df-dju 9323  df-card 9361  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11632  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-xnn0 11962  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-fz 12890  df-fzo 13031  df-fl 13159  df-mod 13235  df-seq 13367  df-exp 13427  df-hash 13688  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-dvds 15603  df-gcd 15839  df-prm 16011  df-phi 16098  df-pc 16169  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-starv 16575  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-unif 16583  df-hom 16584  df-cco 16585  df-0g 16710  df-gsum 16711  df-prds 16716  df-pws 16718  df-imas 16776  df-qus 16777  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-mhm 17951  df-submnd 17952  df-grp 18101  df-minusg 18102  df-sbg 18103  df-mulg 18220  df-subg 18271  df-nsg 18272  df-eqg 18273  df-ghm 18351  df-cntz 18442  df-cmn 18903  df-abl 18904  df-mgp 19235  df-ur 19247  df-srg 19251  df-ring 19294  df-cring 19295  df-oppr 19368  df-dvdsr 19386  df-unit 19387  df-invr 19417  df-dvr 19428  df-rnghom 19462  df-drng 19499  df-field 19500  df-subrg 19528  df-lmod 19631  df-lss 19699  df-lsp 19739  df-sra 19939  df-rgmod 19940  df-lidl 19941  df-rsp 19942  df-2idl 20000  df-nzr 20026  df-rlreg 20051  df-domn 20052  df-idom 20053  df-assa 20080  df-asp 20081  df-ascl 20082  df-psr 20131  df-mvr 20132  df-mpl 20133  df-opsr 20135  df-evls 20281  df-evl 20282  df-psr1 20343  df-vr1 20344  df-ply1 20345  df-coe1 20346  df-evl1 20474  df-cnfld 20541  df-zring 20613  df-zrh 20646  df-zn 20649  df-mdeg 24647  df-deg1 24648  df-mon1 24722  df-uc1p 24723  df-q1p 24724  df-r1p 24725  df-lgs 25869
This theorem is referenced by:  lgsqrlem5  25924
  Copyright terms: Public domain W3C validator