MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsqrlem4 Structured version   Visualization version   GIF version

Theorem lgsqrlem4 27258
Description: Lemma for lgsqr 27260. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
lgsqr.y 𝑌 = (ℤ/nℤ‘𝑃)
lgsqr.s 𝑆 = (Poly1𝑌)
lgsqr.b 𝐵 = (Base‘𝑆)
lgsqr.d 𝐷 = (deg1𝑌)
lgsqr.o 𝑂 = (eval1𝑌)
lgsqr.e = (.g‘(mulGrp‘𝑆))
lgsqr.x 𝑋 = (var1𝑌)
lgsqr.m = (-g𝑆)
lgsqr.u 1 = (1r𝑆)
lgsqr.t 𝑇 = ((((𝑃 − 1) / 2) 𝑋) 1 )
lgsqr.l 𝐿 = (ℤRHom‘𝑌)
lgsqr.1 (𝜑𝑃 ∈ (ℙ ∖ {2}))
lgsqr.g 𝐺 = (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑦↑2)))
lgsqr.3 (𝜑𝐴 ∈ ℤ)
lgsqr.4 (𝜑 → (𝐴 /L 𝑃) = 1)
Assertion
Ref Expression
lgsqrlem4 (𝜑 → ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑦,𝑂   𝑥,𝑦,𝑃   𝜑,𝑥,𝑦   𝑦,𝑇   𝑥,𝐿,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑇(𝑥)   1 (𝑥,𝑦)   (𝑥,𝑦)   𝐺(𝑦)   (𝑥,𝑦)   𝑂(𝑥)   𝑋(𝑥,𝑦)

Proof of Theorem lgsqrlem4
StepHypRef Expression
1 lgsqr.y . . . . . . 7 𝑌 = (ℤ/nℤ‘𝑃)
2 lgsqr.s . . . . . . 7 𝑆 = (Poly1𝑌)
3 lgsqr.b . . . . . . 7 𝐵 = (Base‘𝑆)
4 lgsqr.d . . . . . . 7 𝐷 = (deg1𝑌)
5 lgsqr.o . . . . . . 7 𝑂 = (eval1𝑌)
6 lgsqr.e . . . . . . 7 = (.g‘(mulGrp‘𝑆))
7 lgsqr.x . . . . . . 7 𝑋 = (var1𝑌)
8 lgsqr.m . . . . . . 7 = (-g𝑆)
9 lgsqr.u . . . . . . 7 1 = (1r𝑆)
10 lgsqr.t . . . . . . 7 𝑇 = ((((𝑃 − 1) / 2) 𝑋) 1 )
11 lgsqr.l . . . . . . 7 𝐿 = (ℤRHom‘𝑌)
12 lgsqr.1 . . . . . . 7 (𝜑𝑃 ∈ (ℙ ∖ {2}))
13 lgsqr.g . . . . . . 7 𝐺 = (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑦↑2)))
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13lgsqrlem2 27256 . . . . . 6 (𝜑𝐺:(1...((𝑃 − 1) / 2))–1-1→((𝑂𝑇) “ {(0g𝑌)}))
15 fvex 6835 . . . . . . . . . . . 12 (𝑂𝑇) ∈ V
1615cnvex 7858 . . . . . . . . . . 11 (𝑂𝑇) ∈ V
1716imaex 7847 . . . . . . . . . 10 ((𝑂𝑇) “ {(0g𝑌)}) ∈ V
1817f1dom 8899 . . . . . . . . 9 (𝐺:(1...((𝑃 − 1) / 2))–1-1→((𝑂𝑇) “ {(0g𝑌)}) → (1...((𝑃 − 1) / 2)) ≼ ((𝑂𝑇) “ {(0g𝑌)}))
1914, 18syl 17 . . . . . . . 8 (𝜑 → (1...((𝑃 − 1) / 2)) ≼ ((𝑂𝑇) “ {(0g𝑌)}))
20 eqid 2729 . . . . . . . . . . . 12 (0g𝑌) = (0g𝑌)
21 eqid 2729 . . . . . . . . . . . 12 (0g𝑆) = (0g𝑆)
2212eldifad 3915 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℙ)
231znfld 21467 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 𝑌 ∈ Field)
2422, 23syl 17 . . . . . . . . . . . . 13 (𝜑𝑌 ∈ Field)
25 fldidom 20656 . . . . . . . . . . . . 13 (𝑌 ∈ Field → 𝑌 ∈ IDomn)
2624, 25syl 17 . . . . . . . . . . . 12 (𝜑𝑌 ∈ IDomn)
27 isidom 20610 . . . . . . . . . . . . . . . . . . 19 (𝑌 ∈ IDomn ↔ (𝑌 ∈ CRing ∧ 𝑌 ∈ Domn))
2827simplbi 497 . . . . . . . . . . . . . . . . . 18 (𝑌 ∈ IDomn → 𝑌 ∈ CRing)
2926, 28syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑌 ∈ CRing)
30 crngring 20130 . . . . . . . . . . . . . . . . 17 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
3129, 30syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑌 ∈ Ring)
322ply1ring 22130 . . . . . . . . . . . . . . . 16 (𝑌 ∈ Ring → 𝑆 ∈ Ring)
3331, 32syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑆 ∈ Ring)
34 ringgrp 20123 . . . . . . . . . . . . . . 15 (𝑆 ∈ Ring → 𝑆 ∈ Grp)
3533, 34syl 17 . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ Grp)
36 eqid 2729 . . . . . . . . . . . . . . . 16 (mulGrp‘𝑆) = (mulGrp‘𝑆)
3736, 3mgpbas 20030 . . . . . . . . . . . . . . 15 𝐵 = (Base‘(mulGrp‘𝑆))
3836ringmgp 20124 . . . . . . . . . . . . . . . 16 (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd)
3933, 38syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (mulGrp‘𝑆) ∈ Mnd)
40 oddprm 16722 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
4112, 40syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ)
4241nnnn0d 12445 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ0)
437, 2, 3vr1cl 22100 . . . . . . . . . . . . . . . 16 (𝑌 ∈ Ring → 𝑋𝐵)
4431, 43syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑋𝐵)
4537, 6, 39, 42, 44mulgnn0cld 18974 . . . . . . . . . . . . . 14 (𝜑 → (((𝑃 − 1) / 2) 𝑋) ∈ 𝐵)
463, 9ringidcl 20150 . . . . . . . . . . . . . . 15 (𝑆 ∈ Ring → 1𝐵)
4733, 46syl 17 . . . . . . . . . . . . . 14 (𝜑1𝐵)
483, 8grpsubcl 18899 . . . . . . . . . . . . . 14 ((𝑆 ∈ Grp ∧ (((𝑃 − 1) / 2) 𝑋) ∈ 𝐵1𝐵) → ((((𝑃 − 1) / 2) 𝑋) 1 ) ∈ 𝐵)
4935, 45, 47, 48syl3anc 1373 . . . . . . . . . . . . 13 (𝜑 → ((((𝑃 − 1) / 2) 𝑋) 1 ) ∈ 𝐵)
5010, 49eqeltrid 2832 . . . . . . . . . . . 12 (𝜑𝑇𝐵)
5110fveq2i 6825 . . . . . . . . . . . . . . . 16 (𝐷𝑇) = (𝐷‘((((𝑃 − 1) / 2) 𝑋) 1 ))
5241nngt0d 12177 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 < ((𝑃 − 1) / 2))
53 eqid 2729 . . . . . . . . . . . . . . . . . . . . . 22 (algSc‘𝑆) = (algSc‘𝑆)
54 eqid 2729 . . . . . . . . . . . . . . . . . . . . . 22 (1r𝑌) = (1r𝑌)
552, 53, 54, 9ply1scl1 22177 . . . . . . . . . . . . . . . . . . . . 21 (𝑌 ∈ Ring → ((algSc‘𝑆)‘(1r𝑌)) = 1 )
5631, 55syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((algSc‘𝑆)‘(1r𝑌)) = 1 )
5756fveq2d 6826 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐷‘((algSc‘𝑆)‘(1r𝑌))) = (𝐷1 ))
58 eqid 2729 . . . . . . . . . . . . . . . . . . . . . 22 (Base‘𝑌) = (Base‘𝑌)
5958, 54ringidcl 20150 . . . . . . . . . . . . . . . . . . . . 21 (𝑌 ∈ Ring → (1r𝑌) ∈ (Base‘𝑌))
6031, 59syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1r𝑌) ∈ (Base‘𝑌))
61 domnnzr 20591 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑌 ∈ Domn → 𝑌 ∈ NzRing)
6227, 61simplbiim 504 . . . . . . . . . . . . . . . . . . . . . 22 (𝑌 ∈ IDomn → 𝑌 ∈ NzRing)
6326, 62syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑌 ∈ NzRing)
6454, 20nzrnz 20400 . . . . . . . . . . . . . . . . . . . . 21 (𝑌 ∈ NzRing → (1r𝑌) ≠ (0g𝑌))
6563, 64syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1r𝑌) ≠ (0g𝑌))
664, 2, 58, 53, 20deg1scl 26016 . . . . . . . . . . . . . . . . . . . 20 ((𝑌 ∈ Ring ∧ (1r𝑌) ∈ (Base‘𝑌) ∧ (1r𝑌) ≠ (0g𝑌)) → (𝐷‘((algSc‘𝑆)‘(1r𝑌))) = 0)
6731, 60, 65, 66syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐷‘((algSc‘𝑆)‘(1r𝑌))) = 0)
6857, 67eqtr3d 2766 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐷1 ) = 0)
694, 2, 7, 36, 6deg1pw 26024 . . . . . . . . . . . . . . . . . . 19 ((𝑌 ∈ NzRing ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (𝐷‘(((𝑃 − 1) / 2) 𝑋)) = ((𝑃 − 1) / 2))
7063, 42, 69syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐷‘(((𝑃 − 1) / 2) 𝑋)) = ((𝑃 − 1) / 2))
7152, 68, 703brtr4d 5124 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷1 ) < (𝐷‘(((𝑃 − 1) / 2) 𝑋)))
722, 4, 31, 3, 8, 45, 47, 71deg1sub 26011 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐷‘((((𝑃 − 1) / 2) 𝑋) 1 )) = (𝐷‘(((𝑃 − 1) / 2) 𝑋)))
7351, 72eqtrid 2776 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷𝑇) = (𝐷‘(((𝑃 − 1) / 2) 𝑋)))
7473, 70eqtrd 2764 . . . . . . . . . . . . . 14 (𝜑 → (𝐷𝑇) = ((𝑃 − 1) / 2))
7574, 42eqeltrd 2828 . . . . . . . . . . . . 13 (𝜑 → (𝐷𝑇) ∈ ℕ0)
764, 2, 21, 3deg1nn0clb 25993 . . . . . . . . . . . . . 14 ((𝑌 ∈ Ring ∧ 𝑇𝐵) → (𝑇 ≠ (0g𝑆) ↔ (𝐷𝑇) ∈ ℕ0))
7731, 50, 76syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝑇 ≠ (0g𝑆) ↔ (𝐷𝑇) ∈ ℕ0))
7875, 77mpbird 257 . . . . . . . . . . . 12 (𝜑𝑇 ≠ (0g𝑆))
792, 3, 4, 5, 20, 21, 26, 50, 78fta1g 26073 . . . . . . . . . . 11 (𝜑 → (♯‘((𝑂𝑇) “ {(0g𝑌)})) ≤ (𝐷𝑇))
8079, 74breqtrd 5118 . . . . . . . . . 10 (𝜑 → (♯‘((𝑂𝑇) “ {(0g𝑌)})) ≤ ((𝑃 − 1) / 2))
81 hashfz1 14253 . . . . . . . . . . 11 (((𝑃 − 1) / 2) ∈ ℕ0 → (♯‘(1...((𝑃 − 1) / 2))) = ((𝑃 − 1) / 2))
8242, 81syl 17 . . . . . . . . . 10 (𝜑 → (♯‘(1...((𝑃 − 1) / 2))) = ((𝑃 − 1) / 2))
8380, 82breqtrrd 5120 . . . . . . . . 9 (𝜑 → (♯‘((𝑂𝑇) “ {(0g𝑌)})) ≤ (♯‘(1...((𝑃 − 1) / 2))))
84 hashbnd 14243 . . . . . . . . . . 11 ((((𝑂𝑇) “ {(0g𝑌)}) ∈ V ∧ ((𝑃 − 1) / 2) ∈ ℕ0 ∧ (♯‘((𝑂𝑇) “ {(0g𝑌)})) ≤ ((𝑃 − 1) / 2)) → ((𝑂𝑇) “ {(0g𝑌)}) ∈ Fin)
8517, 42, 80, 84mp3an2i 1468 . . . . . . . . . 10 (𝜑 → ((𝑂𝑇) “ {(0g𝑌)}) ∈ Fin)
86 fzfid 13880 . . . . . . . . . 10 (𝜑 → (1...((𝑃 − 1) / 2)) ∈ Fin)
87 hashdom 14286 . . . . . . . . . 10 ((((𝑂𝑇) “ {(0g𝑌)}) ∈ Fin ∧ (1...((𝑃 − 1) / 2)) ∈ Fin) → ((♯‘((𝑂𝑇) “ {(0g𝑌)})) ≤ (♯‘(1...((𝑃 − 1) / 2))) ↔ ((𝑂𝑇) “ {(0g𝑌)}) ≼ (1...((𝑃 − 1) / 2))))
8885, 86, 87syl2anc 584 . . . . . . . . 9 (𝜑 → ((♯‘((𝑂𝑇) “ {(0g𝑌)})) ≤ (♯‘(1...((𝑃 − 1) / 2))) ↔ ((𝑂𝑇) “ {(0g𝑌)}) ≼ (1...((𝑃 − 1) / 2))))
8983, 88mpbid 232 . . . . . . . 8 (𝜑 → ((𝑂𝑇) “ {(0g𝑌)}) ≼ (1...((𝑃 − 1) / 2)))
90 sbth 9014 . . . . . . . 8 (((1...((𝑃 − 1) / 2)) ≼ ((𝑂𝑇) “ {(0g𝑌)}) ∧ ((𝑂𝑇) “ {(0g𝑌)}) ≼ (1...((𝑃 − 1) / 2))) → (1...((𝑃 − 1) / 2)) ≈ ((𝑂𝑇) “ {(0g𝑌)}))
9119, 89, 90syl2anc 584 . . . . . . 7 (𝜑 → (1...((𝑃 − 1) / 2)) ≈ ((𝑂𝑇) “ {(0g𝑌)}))
92 f1finf1o 9162 . . . . . . 7 (((1...((𝑃 − 1) / 2)) ≈ ((𝑂𝑇) “ {(0g𝑌)}) ∧ ((𝑂𝑇) “ {(0g𝑌)}) ∈ Fin) → (𝐺:(1...((𝑃 − 1) / 2))–1-1→((𝑂𝑇) “ {(0g𝑌)}) ↔ 𝐺:(1...((𝑃 − 1) / 2))–1-1-onto→((𝑂𝑇) “ {(0g𝑌)})))
9391, 85, 92syl2anc 584 . . . . . 6 (𝜑 → (𝐺:(1...((𝑃 − 1) / 2))–1-1→((𝑂𝑇) “ {(0g𝑌)}) ↔ 𝐺:(1...((𝑃 − 1) / 2))–1-1-onto→((𝑂𝑇) “ {(0g𝑌)})))
9414, 93mpbid 232 . . . . 5 (𝜑𝐺:(1...((𝑃 − 1) / 2))–1-1-onto→((𝑂𝑇) “ {(0g𝑌)}))
95 f1ocnv 6776 . . . . 5 (𝐺:(1...((𝑃 − 1) / 2))–1-1-onto→((𝑂𝑇) “ {(0g𝑌)}) → 𝐺:((𝑂𝑇) “ {(0g𝑌)})–1-1-onto→(1...((𝑃 − 1) / 2)))
96 f1of 6764 . . . . 5 (𝐺:((𝑂𝑇) “ {(0g𝑌)})–1-1-onto→(1...((𝑃 − 1) / 2)) → 𝐺:((𝑂𝑇) “ {(0g𝑌)})⟶(1...((𝑃 − 1) / 2)))
9794, 95, 963syl 18 . . . 4 (𝜑𝐺:((𝑂𝑇) “ {(0g𝑌)})⟶(1...((𝑃 − 1) / 2)))
98 lgsqr.3 . . . . 5 (𝜑𝐴 ∈ ℤ)
99 lgsqr.4 . . . . 5 (𝜑 → (𝐴 /L 𝑃) = 1)
1001, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 98, 99lgsqrlem3 27257 . . . 4 (𝜑 → (𝐿𝐴) ∈ ((𝑂𝑇) “ {(0g𝑌)}))
10197, 100ffvelcdmd 7019 . . 3 (𝜑 → (𝐺‘(𝐿𝐴)) ∈ (1...((𝑃 − 1) / 2)))
102101elfzelzd 13428 . 2 (𝜑 → (𝐺‘(𝐿𝐴)) ∈ ℤ)
103 fvoveq1 7372 . . . . . 6 (𝑥 = (𝐺‘(𝐿𝐴)) → (𝐿‘(𝑥↑2)) = (𝐿‘((𝐺‘(𝐿𝐴))↑2)))
104 fvoveq1 7372 . . . . . . . 8 (𝑦 = 𝑥 → (𝐿‘(𝑦↑2)) = (𝐿‘(𝑥↑2)))
105104cbvmptv 5196 . . . . . . 7 (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑦↑2))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑥↑2)))
10613, 105eqtri 2752 . . . . . 6 𝐺 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑥↑2)))
107 fvex 6835 . . . . . 6 (𝐿‘((𝐺‘(𝐿𝐴))↑2)) ∈ V
108103, 106, 107fvmpt 6930 . . . . 5 ((𝐺‘(𝐿𝐴)) ∈ (1...((𝑃 − 1) / 2)) → (𝐺‘(𝐺‘(𝐿𝐴))) = (𝐿‘((𝐺‘(𝐿𝐴))↑2)))
109101, 108syl 17 . . . 4 (𝜑 → (𝐺‘(𝐺‘(𝐿𝐴))) = (𝐿‘((𝐺‘(𝐿𝐴))↑2)))
110 f1ocnvfv2 7214 . . . . 5 ((𝐺:(1...((𝑃 − 1) / 2))–1-1-onto→((𝑂𝑇) “ {(0g𝑌)}) ∧ (𝐿𝐴) ∈ ((𝑂𝑇) “ {(0g𝑌)})) → (𝐺‘(𝐺‘(𝐿𝐴))) = (𝐿𝐴))
11194, 100, 110syl2anc 584 . . . 4 (𝜑 → (𝐺‘(𝐺‘(𝐿𝐴))) = (𝐿𝐴))
112109, 111eqtr3d 2766 . . 3 (𝜑 → (𝐿‘((𝐺‘(𝐿𝐴))↑2)) = (𝐿𝐴))
113 prmnn 16585 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
11422, 113syl 17 . . . . 5 (𝜑𝑃 ∈ ℕ)
115114nnnn0d 12445 . . . 4 (𝜑𝑃 ∈ ℕ0)
116 zsqcl 14036 . . . . 5 ((𝐺‘(𝐿𝐴)) ∈ ℤ → ((𝐺‘(𝐿𝐴))↑2) ∈ ℤ)
117102, 116syl 17 . . . 4 (𝜑 → ((𝐺‘(𝐿𝐴))↑2) ∈ ℤ)
1181, 11zndvds 21456 . . . 4 ((𝑃 ∈ ℕ0 ∧ ((𝐺‘(𝐿𝐴))↑2) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝐿‘((𝐺‘(𝐿𝐴))↑2)) = (𝐿𝐴) ↔ 𝑃 ∥ (((𝐺‘(𝐿𝐴))↑2) − 𝐴)))
119115, 117, 98, 118syl3anc 1373 . . 3 (𝜑 → ((𝐿‘((𝐺‘(𝐿𝐴))↑2)) = (𝐿𝐴) ↔ 𝑃 ∥ (((𝐺‘(𝐿𝐴))↑2) − 𝐴)))
120112, 119mpbid 232 . 2 (𝜑𝑃 ∥ (((𝐺‘(𝐿𝐴))↑2) − 𝐴))
121 oveq1 7356 . . . . 5 (𝑥 = (𝐺‘(𝐿𝐴)) → (𝑥↑2) = ((𝐺‘(𝐿𝐴))↑2))
122121oveq1d 7364 . . . 4 (𝑥 = (𝐺‘(𝐿𝐴)) → ((𝑥↑2) − 𝐴) = (((𝐺‘(𝐿𝐴))↑2) − 𝐴))
123122breq2d 5104 . . 3 (𝑥 = (𝐺‘(𝐿𝐴)) → (𝑃 ∥ ((𝑥↑2) − 𝐴) ↔ 𝑃 ∥ (((𝐺‘(𝐿𝐴))↑2) − 𝐴)))
124123rspcev 3577 . 2 (((𝐺‘(𝐿𝐴)) ∈ ℤ ∧ 𝑃 ∥ (((𝐺‘(𝐿𝐴))↑2) − 𝐴)) → ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴))
125102, 120, 124syl2anc 584 1 (𝜑 → ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wne 2925  wrex 3053  Vcvv 3436  cdif 3900  {csn 4577   class class class wbr 5092  cmpt 5173  ccnv 5618  cima 5622  wf 6478  1-1wf1 6479  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  cen 8869  cdom 8870  Fincfn 8872  0cc0 11009  1c1 11010   < clt 11149  cle 11150  cmin 11347   / cdiv 11777  cn 12128  2c2 12183  0cn0 12384  cz 12471  ...cfz 13410  cexp 13968  chash 14237  cdvds 16163  cprime 16582  Basecbs 17120  0gc0g 17343  Mndcmnd 18608  Grpcgrp 18812  -gcsg 18814  .gcmg 18946  mulGrpcmgp 20025  1rcur 20066  Ringcrg 20118  CRingccrg 20119  NzRingcnzr 20397  Domncdomn 20577  IDomncidom 20578  Fieldcfield 20615  ℤRHomczrh 21406  ℤ/nczn 21409  algSccascl 21759  var1cv1 22058  Poly1cpl1 22059  eval1ce1 22199  deg1cdg1 25957   /L clgs 27203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-ec 8627  df-qs 8631  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-xnn0 12458  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406  df-prm 16583  df-phi 16677  df-pc 16749  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-imas 17412  df-qus 17413  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-nsg 19003  df-eqg 19004  df-ghm 19092  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-srg 20072  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-rhm 20357  df-nzr 20398  df-subrng 20431  df-subrg 20455  df-rlreg 20579  df-domn 20580  df-idom 20581  df-drng 20616  df-field 20617  df-lmod 20765  df-lss 20835  df-lsp 20875  df-sra 21077  df-rgmod 21078  df-lidl 21115  df-rsp 21116  df-2idl 21157  df-cnfld 21262  df-zring 21354  df-zrh 21410  df-zn 21413  df-assa 21760  df-asp 21761  df-ascl 21762  df-psr 21816  df-mvr 21817  df-mpl 21818  df-opsr 21820  df-evls 21979  df-evl 21980  df-psr1 22062  df-vr1 22063  df-ply1 22064  df-coe1 22065  df-evl1 22201  df-mdeg 25958  df-deg1 25959  df-mon1 26034  df-uc1p 26035  df-q1p 26036  df-r1p 26037  df-lgs 27204
This theorem is referenced by:  lgsqrlem5  27259
  Copyright terms: Public domain W3C validator