Step | Hyp | Ref
| Expression |
1 | | lgsqr.y |
. . . . . . 7
β’ π =
(β€/nβ€βπ) |
2 | | lgsqr.s |
. . . . . . 7
β’ π = (Poly1βπ) |
3 | | lgsqr.b |
. . . . . . 7
β’ π΅ = (Baseβπ) |
4 | | lgsqr.d |
. . . . . . 7
β’ π· = ( deg1
βπ) |
5 | | lgsqr.o |
. . . . . . 7
β’ π = (eval1βπ) |
6 | | lgsqr.e |
. . . . . . 7
β’ β =
(.gβ(mulGrpβπ)) |
7 | | lgsqr.x |
. . . . . . 7
β’ π = (var1βπ) |
8 | | lgsqr.m |
. . . . . . 7
β’ β =
(-gβπ) |
9 | | lgsqr.u |
. . . . . . 7
β’ 1 =
(1rβπ) |
10 | | lgsqr.t |
. . . . . . 7
β’ π = ((((π β 1) / 2) β π) β 1 ) |
11 | | lgsqr.l |
. . . . . . 7
β’ πΏ = (β€RHomβπ) |
12 | | lgsqr.1 |
. . . . . . 7
β’ (π β π β (β β
{2})) |
13 | | lgsqr.g |
. . . . . . 7
β’ πΊ = (π¦ β (1...((π β 1) / 2)) β¦ (πΏβ(π¦β2))) |
14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13 | lgsqrlem2 26839 |
. . . . . 6
β’ (π β πΊ:(1...((π β 1) / 2))β1-1β(β‘(πβπ) β {(0gβπ)})) |
15 | | fvex 6901 |
. . . . . . . . . . . 12
β’ (πβπ) β V |
16 | 15 | cnvex 7912 |
. . . . . . . . . . 11
β’ β‘(πβπ) β V |
17 | 16 | imaex 7903 |
. . . . . . . . . 10
β’ (β‘(πβπ) β {(0gβπ)}) β V |
18 | 17 | f1dom 8966 |
. . . . . . . . 9
β’ (πΊ:(1...((π β 1) / 2))β1-1β(β‘(πβπ) β {(0gβπ)}) β (1...((π β 1) / 2)) βΌ (β‘(πβπ) β {(0gβπ)})) |
19 | 14, 18 | syl 17 |
. . . . . . . 8
β’ (π β (1...((π β 1) / 2)) βΌ (β‘(πβπ) β {(0gβπ)})) |
20 | | eqid 2732 |
. . . . . . . . . . . 12
β’
(0gβπ) = (0gβπ) |
21 | | eqid 2732 |
. . . . . . . . . . . 12
β’
(0gβπ) = (0gβπ) |
22 | 12 | eldifad 3959 |
. . . . . . . . . . . . . 14
β’ (π β π β β) |
23 | 1 | znfld 21107 |
. . . . . . . . . . . . . 14
β’ (π β β β π β Field) |
24 | 22, 23 | syl 17 |
. . . . . . . . . . . . 13
β’ (π β π β Field) |
25 | | fldidom 20915 |
. . . . . . . . . . . . 13
β’ (π β Field β π β IDomn) |
26 | 24, 25 | syl 17 |
. . . . . . . . . . . 12
β’ (π β π β IDomn) |
27 | | isidom 20914 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β IDomn β (π β CRing β§ π β Domn)) |
28 | 27 | simplbi 498 |
. . . . . . . . . . . . . . . . . 18
β’ (π β IDomn β π β CRing) |
29 | 26, 28 | syl 17 |
. . . . . . . . . . . . . . . . 17
β’ (π β π β CRing) |
30 | | crngring 20061 |
. . . . . . . . . . . . . . . . 17
β’ (π β CRing β π β Ring) |
31 | 29, 30 | syl 17 |
. . . . . . . . . . . . . . . 16
β’ (π β π β Ring) |
32 | 2 | ply1ring 21761 |
. . . . . . . . . . . . . . . 16
β’ (π β Ring β π β Ring) |
33 | 31, 32 | syl 17 |
. . . . . . . . . . . . . . 15
β’ (π β π β Ring) |
34 | | ringgrp 20054 |
. . . . . . . . . . . . . . 15
β’ (π β Ring β π β Grp) |
35 | 33, 34 | syl 17 |
. . . . . . . . . . . . . 14
β’ (π β π β Grp) |
36 | | eqid 2732 |
. . . . . . . . . . . . . . . 16
β’
(mulGrpβπ) =
(mulGrpβπ) |
37 | 36, 3 | mgpbas 19987 |
. . . . . . . . . . . . . . 15
β’ π΅ =
(Baseβ(mulGrpβπ)) |
38 | 36 | ringmgp 20055 |
. . . . . . . . . . . . . . . 16
β’ (π β Ring β
(mulGrpβπ) β
Mnd) |
39 | 33, 38 | syl 17 |
. . . . . . . . . . . . . . 15
β’ (π β (mulGrpβπ) β Mnd) |
40 | | oddprm 16739 |
. . . . . . . . . . . . . . . . 17
β’ (π β (β β {2})
β ((π β 1) / 2)
β β) |
41 | 12, 40 | syl 17 |
. . . . . . . . . . . . . . . 16
β’ (π β ((π β 1) / 2) β
β) |
42 | 41 | nnnn0d 12528 |
. . . . . . . . . . . . . . 15
β’ (π β ((π β 1) / 2) β
β0) |
43 | 7, 2, 3 | vr1cl 21732 |
. . . . . . . . . . . . . . . 16
β’ (π β Ring β π β π΅) |
44 | 31, 43 | syl 17 |
. . . . . . . . . . . . . . 15
β’ (π β π β π΅) |
45 | 37, 6, 39, 42, 44 | mulgnn0cld 18969 |
. . . . . . . . . . . . . 14
β’ (π β (((π β 1) / 2) β π) β π΅) |
46 | 3, 9 | ringidcl 20076 |
. . . . . . . . . . . . . . 15
β’ (π β Ring β 1 β π΅) |
47 | 33, 46 | syl 17 |
. . . . . . . . . . . . . 14
β’ (π β 1 β π΅) |
48 | 3, 8 | grpsubcl 18899 |
. . . . . . . . . . . . . 14
β’ ((π β Grp β§ (((π β 1) / 2) β π) β π΅ β§ 1 β π΅) β ((((π β 1) / 2) β π) β 1 ) β π΅) |
49 | 35, 45, 47, 48 | syl3anc 1371 |
. . . . . . . . . . . . 13
β’ (π β ((((π β 1) / 2) β π) β 1 ) β π΅) |
50 | 10, 49 | eqeltrid 2837 |
. . . . . . . . . . . 12
β’ (π β π β π΅) |
51 | 10 | fveq2i 6891 |
. . . . . . . . . . . . . . . 16
β’ (π·βπ) = (π·β((((π β 1) / 2) β π) β 1 )) |
52 | 41 | nngt0d 12257 |
. . . . . . . . . . . . . . . . . 18
β’ (π β 0 < ((π β 1) / 2)) |
53 | | eqid 2732 |
. . . . . . . . . . . . . . . . . . . . . 22
β’
(algScβπ) =
(algScβπ) |
54 | | eqid 2732 |
. . . . . . . . . . . . . . . . . . . . . 22
β’
(1rβπ) = (1rβπ) |
55 | 2, 53, 54, 9 | ply1scl1 21806 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π β Ring β
((algScβπ)β(1rβπ)) = 1 ) |
56 | 31, 55 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β ((algScβπ)β(1rβπ)) = 1 ) |
57 | 56 | fveq2d 6892 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β (π·β((algScβπ)β(1rβπ))) = (π·β 1 )) |
58 | | eqid 2732 |
. . . . . . . . . . . . . . . . . . . . . 22
β’
(Baseβπ) =
(Baseβπ) |
59 | 58, 54 | ringidcl 20076 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π β Ring β
(1rβπ)
β (Baseβπ)) |
60 | 31, 59 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β (1rβπ) β (Baseβπ)) |
61 | | domnnzr 20903 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (π β Domn β π β NzRing) |
62 | 27, 61 | simplbiim 505 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π β IDomn β π β NzRing) |
63 | 26, 62 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π β π β NzRing) |
64 | 54, 20 | nzrnz 20286 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π β NzRing β
(1rβπ)
β (0gβπ)) |
65 | 63, 64 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β (1rβπ) β
(0gβπ)) |
66 | 4, 2, 58, 53, 20 | deg1scl 25622 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β Ring β§
(1rβπ)
β (Baseβπ) β§
(1rβπ)
β (0gβπ)) β (π·β((algScβπ)β(1rβπ))) = 0) |
67 | 31, 60, 65, 66 | syl3anc 1371 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β (π·β((algScβπ)β(1rβπ))) = 0) |
68 | 57, 67 | eqtr3d 2774 |
. . . . . . . . . . . . . . . . . 18
β’ (π β (π·β 1 ) = 0) |
69 | 4, 2, 7, 36, 6 | deg1pw 25629 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β NzRing β§ ((π β 1) / 2) β
β0) β (π·β(((π β 1) / 2) β π)) = ((π β 1) / 2)) |
70 | 63, 42, 69 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
β’ (π β (π·β(((π β 1) / 2) β π)) = ((π β 1) / 2)) |
71 | 52, 68, 70 | 3brtr4d 5179 |
. . . . . . . . . . . . . . . . 17
β’ (π β (π·β 1 ) < (π·β(((π β 1) / 2) β π))) |
72 | 2, 4, 31, 3, 8, 45, 47, 71 | deg1sub 25617 |
. . . . . . . . . . . . . . . 16
β’ (π β (π·β((((π β 1) / 2) β π) β 1 )) = (π·β(((π β 1) / 2) β π))) |
73 | 51, 72 | eqtrid 2784 |
. . . . . . . . . . . . . . 15
β’ (π β (π·βπ) = (π·β(((π β 1) / 2) β π))) |
74 | 73, 70 | eqtrd 2772 |
. . . . . . . . . . . . . 14
β’ (π β (π·βπ) = ((π β 1) / 2)) |
75 | 74, 42 | eqeltrd 2833 |
. . . . . . . . . . . . 13
β’ (π β (π·βπ) β
β0) |
76 | 4, 2, 21, 3 | deg1nn0clb 25599 |
. . . . . . . . . . . . . 14
β’ ((π β Ring β§ π β π΅) β (π β (0gβπ) β (π·βπ) β
β0)) |
77 | 31, 50, 76 | syl2anc 584 |
. . . . . . . . . . . . 13
β’ (π β (π β (0gβπ) β (π·βπ) β
β0)) |
78 | 75, 77 | mpbird 256 |
. . . . . . . . . . . 12
β’ (π β π β (0gβπ)) |
79 | 2, 3, 4, 5, 20, 21, 26, 50, 78 | fta1g 25676 |
. . . . . . . . . . 11
β’ (π β (β―β(β‘(πβπ) β {(0gβπ)})) β€ (π·βπ)) |
80 | 79, 74 | breqtrd 5173 |
. . . . . . . . . 10
β’ (π β (β―β(β‘(πβπ) β {(0gβπ)})) β€ ((π β 1) / 2)) |
81 | | hashfz1 14302 |
. . . . . . . . . . 11
β’ (((π β 1) / 2) β
β0 β (β―β(1...((π β 1) / 2))) = ((π β 1) / 2)) |
82 | 42, 81 | syl 17 |
. . . . . . . . . 10
β’ (π β
(β―β(1...((π
β 1) / 2))) = ((π
β 1) / 2)) |
83 | 80, 82 | breqtrrd 5175 |
. . . . . . . . 9
β’ (π β (β―β(β‘(πβπ) β {(0gβπ)})) β€
(β―β(1...((π
β 1) / 2)))) |
84 | | hashbnd 14292 |
. . . . . . . . . . 11
β’ (((β‘(πβπ) β {(0gβπ)}) β V β§ ((π β 1) / 2) β
β0 β§ (β―β(β‘(πβπ) β {(0gβπ)})) β€ ((π β 1) / 2)) β (β‘(πβπ) β {(0gβπ)}) β Fin) |
85 | 17, 42, 80, 84 | mp3an2i 1466 |
. . . . . . . . . 10
β’ (π β (β‘(πβπ) β {(0gβπ)}) β Fin) |
86 | | fzfid 13934 |
. . . . . . . . . 10
β’ (π β (1...((π β 1) / 2)) β
Fin) |
87 | | hashdom 14335 |
. . . . . . . . . 10
β’ (((β‘(πβπ) β {(0gβπ)}) β Fin β§
(1...((π β 1) / 2))
β Fin) β ((β―β(β‘(πβπ) β {(0gβπ)})) β€
(β―β(1...((π
β 1) / 2))) β (β‘(πβπ) β {(0gβπ)}) βΌ (1...((π β 1) /
2)))) |
88 | 85, 86, 87 | syl2anc 584 |
. . . . . . . . 9
β’ (π β ((β―β(β‘(πβπ) β {(0gβπ)})) β€
(β―β(1...((π
β 1) / 2))) β (β‘(πβπ) β {(0gβπ)}) βΌ (1...((π β 1) /
2)))) |
89 | 83, 88 | mpbid 231 |
. . . . . . . 8
β’ (π β (β‘(πβπ) β {(0gβπ)}) βΌ (1...((π β 1) /
2))) |
90 | | sbth 9089 |
. . . . . . . 8
β’
(((1...((π β
1) / 2)) βΌ (β‘(πβπ) β {(0gβπ)}) β§ (β‘(πβπ) β {(0gβπ)}) βΌ (1...((π β 1) / 2))) β
(1...((π β 1) / 2))
β (β‘(πβπ) β {(0gβπ)})) |
91 | 19, 89, 90 | syl2anc 584 |
. . . . . . 7
β’ (π β (1...((π β 1) / 2)) β (β‘(πβπ) β {(0gβπ)})) |
92 | | f1finf1o 9267 |
. . . . . . 7
β’
(((1...((π β
1) / 2)) β (β‘(πβπ) β {(0gβπ)}) β§ (β‘(πβπ) β {(0gβπ)}) β Fin) β (πΊ:(1...((π β 1) / 2))β1-1β(β‘(πβπ) β {(0gβπ)}) β πΊ:(1...((π β 1) / 2))β1-1-ontoβ(β‘(πβπ) β {(0gβπ)}))) |
93 | 91, 85, 92 | syl2anc 584 |
. . . . . 6
β’ (π β (πΊ:(1...((π β 1) / 2))β1-1β(β‘(πβπ) β {(0gβπ)}) β πΊ:(1...((π β 1) / 2))β1-1-ontoβ(β‘(πβπ) β {(0gβπ)}))) |
94 | 14, 93 | mpbid 231 |
. . . . 5
β’ (π β πΊ:(1...((π β 1) / 2))β1-1-ontoβ(β‘(πβπ) β {(0gβπ)})) |
95 | | f1ocnv 6842 |
. . . . 5
β’ (πΊ:(1...((π β 1) / 2))β1-1-ontoβ(β‘(πβπ) β {(0gβπ)}) β β‘πΊ:(β‘(πβπ) β {(0gβπ)})β1-1-ontoβ(1...((π β 1) / 2))) |
96 | | f1of 6830 |
. . . . 5
β’ (β‘πΊ:(β‘(πβπ) β {(0gβπ)})β1-1-ontoβ(1...((π β 1) / 2)) β β‘πΊ:(β‘(πβπ) β {(0gβπ)})βΆ(1...((π β 1) /
2))) |
97 | 94, 95, 96 | 3syl 18 |
. . . 4
β’ (π β β‘πΊ:(β‘(πβπ) β {(0gβπ)})βΆ(1...((π β 1) /
2))) |
98 | | lgsqr.3 |
. . . . 5
β’ (π β π΄ β β€) |
99 | | lgsqr.4 |
. . . . 5
β’ (π β (π΄ /L π) = 1) |
100 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 98, 99 | lgsqrlem3 26840 |
. . . 4
β’ (π β (πΏβπ΄) β (β‘(πβπ) β {(0gβπ)})) |
101 | 97, 100 | ffvelcdmd 7084 |
. . 3
β’ (π β (β‘πΊβ(πΏβπ΄)) β (1...((π β 1) / 2))) |
102 | 101 | elfzelzd 13498 |
. 2
β’ (π β (β‘πΊβ(πΏβπ΄)) β β€) |
103 | | fvoveq1 7428 |
. . . . . 6
β’ (π₯ = (β‘πΊβ(πΏβπ΄)) β (πΏβ(π₯β2)) = (πΏβ((β‘πΊβ(πΏβπ΄))β2))) |
104 | | fvoveq1 7428 |
. . . . . . . 8
β’ (π¦ = π₯ β (πΏβ(π¦β2)) = (πΏβ(π₯β2))) |
105 | 104 | cbvmptv 5260 |
. . . . . . 7
β’ (π¦ β (1...((π β 1) / 2)) β¦ (πΏβ(π¦β2))) = (π₯ β (1...((π β 1) / 2)) β¦ (πΏβ(π₯β2))) |
106 | 13, 105 | eqtri 2760 |
. . . . . 6
β’ πΊ = (π₯ β (1...((π β 1) / 2)) β¦ (πΏβ(π₯β2))) |
107 | | fvex 6901 |
. . . . . 6
β’ (πΏβ((β‘πΊβ(πΏβπ΄))β2)) β V |
108 | 103, 106,
107 | fvmpt 6995 |
. . . . 5
β’ ((β‘πΊβ(πΏβπ΄)) β (1...((π β 1) / 2)) β (πΊβ(β‘πΊβ(πΏβπ΄))) = (πΏβ((β‘πΊβ(πΏβπ΄))β2))) |
109 | 101, 108 | syl 17 |
. . . 4
β’ (π β (πΊβ(β‘πΊβ(πΏβπ΄))) = (πΏβ((β‘πΊβ(πΏβπ΄))β2))) |
110 | | f1ocnvfv2 7271 |
. . . . 5
β’ ((πΊ:(1...((π β 1) / 2))β1-1-ontoβ(β‘(πβπ) β {(0gβπ)}) β§ (πΏβπ΄) β (β‘(πβπ) β {(0gβπ)})) β (πΊβ(β‘πΊβ(πΏβπ΄))) = (πΏβπ΄)) |
111 | 94, 100, 110 | syl2anc 584 |
. . . 4
β’ (π β (πΊβ(β‘πΊβ(πΏβπ΄))) = (πΏβπ΄)) |
112 | 109, 111 | eqtr3d 2774 |
. . 3
β’ (π β (πΏβ((β‘πΊβ(πΏβπ΄))β2)) = (πΏβπ΄)) |
113 | | prmnn 16607 |
. . . . . 6
β’ (π β β β π β
β) |
114 | 22, 113 | syl 17 |
. . . . 5
β’ (π β π β β) |
115 | 114 | nnnn0d 12528 |
. . . 4
β’ (π β π β
β0) |
116 | | zsqcl 14090 |
. . . . 5
β’ ((β‘πΊβ(πΏβπ΄)) β β€ β ((β‘πΊβ(πΏβπ΄))β2) β β€) |
117 | 102, 116 | syl 17 |
. . . 4
β’ (π β ((β‘πΊβ(πΏβπ΄))β2) β β€) |
118 | 1, 11 | zndvds 21096 |
. . . 4
β’ ((π β β0
β§ ((β‘πΊβ(πΏβπ΄))β2) β β€ β§ π΄ β β€) β ((πΏβ((β‘πΊβ(πΏβπ΄))β2)) = (πΏβπ΄) β π β₯ (((β‘πΊβ(πΏβπ΄))β2) β π΄))) |
119 | 115, 117,
98, 118 | syl3anc 1371 |
. . 3
β’ (π β ((πΏβ((β‘πΊβ(πΏβπ΄))β2)) = (πΏβπ΄) β π β₯ (((β‘πΊβ(πΏβπ΄))β2) β π΄))) |
120 | 112, 119 | mpbid 231 |
. 2
β’ (π β π β₯ (((β‘πΊβ(πΏβπ΄))β2) β π΄)) |
121 | | oveq1 7412 |
. . . . 5
β’ (π₯ = (β‘πΊβ(πΏβπ΄)) β (π₯β2) = ((β‘πΊβ(πΏβπ΄))β2)) |
122 | 121 | oveq1d 7420 |
. . . 4
β’ (π₯ = (β‘πΊβ(πΏβπ΄)) β ((π₯β2) β π΄) = (((β‘πΊβ(πΏβπ΄))β2) β π΄)) |
123 | 122 | breq2d 5159 |
. . 3
β’ (π₯ = (β‘πΊβ(πΏβπ΄)) β (π β₯ ((π₯β2) β π΄) β π β₯ (((β‘πΊβ(πΏβπ΄))β2) β π΄))) |
124 | 123 | rspcev 3612 |
. 2
β’ (((β‘πΊβ(πΏβπ΄)) β β€ β§ π β₯ (((β‘πΊβ(πΏβπ΄))β2) β π΄)) β βπ₯ β β€ π β₯ ((π₯β2) β π΄)) |
125 | 102, 120,
124 | syl2anc 584 |
1
β’ (π β βπ₯ β β€ π β₯ ((π₯β2) β π΄)) |