MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsqrlem4 Structured version   Visualization version   GIF version

Theorem lgsqrlem4 27310
Description: Lemma for lgsqr 27312. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
lgsqr.y 𝑌 = (ℤ/nℤ‘𝑃)
lgsqr.s 𝑆 = (Poly1𝑌)
lgsqr.b 𝐵 = (Base‘𝑆)
lgsqr.d 𝐷 = (deg1𝑌)
lgsqr.o 𝑂 = (eval1𝑌)
lgsqr.e = (.g‘(mulGrp‘𝑆))
lgsqr.x 𝑋 = (var1𝑌)
lgsqr.m = (-g𝑆)
lgsqr.u 1 = (1r𝑆)
lgsqr.t 𝑇 = ((((𝑃 − 1) / 2) 𝑋) 1 )
lgsqr.l 𝐿 = (ℤRHom‘𝑌)
lgsqr.1 (𝜑𝑃 ∈ (ℙ ∖ {2}))
lgsqr.g 𝐺 = (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑦↑2)))
lgsqr.3 (𝜑𝐴 ∈ ℤ)
lgsqr.4 (𝜑 → (𝐴 /L 𝑃) = 1)
Assertion
Ref Expression
lgsqrlem4 (𝜑 → ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑦,𝑂   𝑥,𝑦,𝑃   𝜑,𝑥,𝑦   𝑦,𝑇   𝑥,𝐿,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑇(𝑥)   1 (𝑥,𝑦)   (𝑥,𝑦)   𝐺(𝑦)   (𝑥,𝑦)   𝑂(𝑥)   𝑋(𝑥,𝑦)

Proof of Theorem lgsqrlem4
StepHypRef Expression
1 lgsqr.y . . . . . . 7 𝑌 = (ℤ/nℤ‘𝑃)
2 lgsqr.s . . . . . . 7 𝑆 = (Poly1𝑌)
3 lgsqr.b . . . . . . 7 𝐵 = (Base‘𝑆)
4 lgsqr.d . . . . . . 7 𝐷 = (deg1𝑌)
5 lgsqr.o . . . . . . 7 𝑂 = (eval1𝑌)
6 lgsqr.e . . . . . . 7 = (.g‘(mulGrp‘𝑆))
7 lgsqr.x . . . . . . 7 𝑋 = (var1𝑌)
8 lgsqr.m . . . . . . 7 = (-g𝑆)
9 lgsqr.u . . . . . . 7 1 = (1r𝑆)
10 lgsqr.t . . . . . . 7 𝑇 = ((((𝑃 − 1) / 2) 𝑋) 1 )
11 lgsqr.l . . . . . . 7 𝐿 = (ℤRHom‘𝑌)
12 lgsqr.1 . . . . . . 7 (𝜑𝑃 ∈ (ℙ ∖ {2}))
13 lgsqr.g . . . . . . 7 𝐺 = (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑦↑2)))
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13lgsqrlem2 27308 . . . . . 6 (𝜑𝐺:(1...((𝑃 − 1) / 2))–1-1→((𝑂𝑇) “ {(0g𝑌)}))
15 fvex 6888 . . . . . . . . . . . 12 (𝑂𝑇) ∈ V
1615cnvex 7919 . . . . . . . . . . 11 (𝑂𝑇) ∈ V
1716imaex 7908 . . . . . . . . . 10 ((𝑂𝑇) “ {(0g𝑌)}) ∈ V
1817f1dom 8986 . . . . . . . . 9 (𝐺:(1...((𝑃 − 1) / 2))–1-1→((𝑂𝑇) “ {(0g𝑌)}) → (1...((𝑃 − 1) / 2)) ≼ ((𝑂𝑇) “ {(0g𝑌)}))
1914, 18syl 17 . . . . . . . 8 (𝜑 → (1...((𝑃 − 1) / 2)) ≼ ((𝑂𝑇) “ {(0g𝑌)}))
20 eqid 2735 . . . . . . . . . . . 12 (0g𝑌) = (0g𝑌)
21 eqid 2735 . . . . . . . . . . . 12 (0g𝑆) = (0g𝑆)
2212eldifad 3938 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℙ)
231znfld 21519 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 𝑌 ∈ Field)
2422, 23syl 17 . . . . . . . . . . . . 13 (𝜑𝑌 ∈ Field)
25 fldidom 20729 . . . . . . . . . . . . 13 (𝑌 ∈ Field → 𝑌 ∈ IDomn)
2624, 25syl 17 . . . . . . . . . . . 12 (𝜑𝑌 ∈ IDomn)
27 isidom 20683 . . . . . . . . . . . . . . . . . . 19 (𝑌 ∈ IDomn ↔ (𝑌 ∈ CRing ∧ 𝑌 ∈ Domn))
2827simplbi 497 . . . . . . . . . . . . . . . . . 18 (𝑌 ∈ IDomn → 𝑌 ∈ CRing)
2926, 28syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑌 ∈ CRing)
30 crngring 20203 . . . . . . . . . . . . . . . . 17 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
3129, 30syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑌 ∈ Ring)
322ply1ring 22181 . . . . . . . . . . . . . . . 16 (𝑌 ∈ Ring → 𝑆 ∈ Ring)
3331, 32syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑆 ∈ Ring)
34 ringgrp 20196 . . . . . . . . . . . . . . 15 (𝑆 ∈ Ring → 𝑆 ∈ Grp)
3533, 34syl 17 . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ Grp)
36 eqid 2735 . . . . . . . . . . . . . . . 16 (mulGrp‘𝑆) = (mulGrp‘𝑆)
3736, 3mgpbas 20103 . . . . . . . . . . . . . . 15 𝐵 = (Base‘(mulGrp‘𝑆))
3836ringmgp 20197 . . . . . . . . . . . . . . . 16 (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd)
3933, 38syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (mulGrp‘𝑆) ∈ Mnd)
40 oddprm 16828 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
4112, 40syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ)
4241nnnn0d 12560 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ0)
437, 2, 3vr1cl 22151 . . . . . . . . . . . . . . . 16 (𝑌 ∈ Ring → 𝑋𝐵)
4431, 43syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑋𝐵)
4537, 6, 39, 42, 44mulgnn0cld 19076 . . . . . . . . . . . . . 14 (𝜑 → (((𝑃 − 1) / 2) 𝑋) ∈ 𝐵)
463, 9ringidcl 20223 . . . . . . . . . . . . . . 15 (𝑆 ∈ Ring → 1𝐵)
4733, 46syl 17 . . . . . . . . . . . . . 14 (𝜑1𝐵)
483, 8grpsubcl 19001 . . . . . . . . . . . . . 14 ((𝑆 ∈ Grp ∧ (((𝑃 − 1) / 2) 𝑋) ∈ 𝐵1𝐵) → ((((𝑃 − 1) / 2) 𝑋) 1 ) ∈ 𝐵)
4935, 45, 47, 48syl3anc 1373 . . . . . . . . . . . . 13 (𝜑 → ((((𝑃 − 1) / 2) 𝑋) 1 ) ∈ 𝐵)
5010, 49eqeltrid 2838 . . . . . . . . . . . 12 (𝜑𝑇𝐵)
5110fveq2i 6878 . . . . . . . . . . . . . . . 16 (𝐷𝑇) = (𝐷‘((((𝑃 − 1) / 2) 𝑋) 1 ))
5241nngt0d 12287 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 < ((𝑃 − 1) / 2))
53 eqid 2735 . . . . . . . . . . . . . . . . . . . . . 22 (algSc‘𝑆) = (algSc‘𝑆)
54 eqid 2735 . . . . . . . . . . . . . . . . . . . . . 22 (1r𝑌) = (1r𝑌)
552, 53, 54, 9ply1scl1 22228 . . . . . . . . . . . . . . . . . . . . 21 (𝑌 ∈ Ring → ((algSc‘𝑆)‘(1r𝑌)) = 1 )
5631, 55syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((algSc‘𝑆)‘(1r𝑌)) = 1 )
5756fveq2d 6879 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐷‘((algSc‘𝑆)‘(1r𝑌))) = (𝐷1 ))
58 eqid 2735 . . . . . . . . . . . . . . . . . . . . . 22 (Base‘𝑌) = (Base‘𝑌)
5958, 54ringidcl 20223 . . . . . . . . . . . . . . . . . . . . 21 (𝑌 ∈ Ring → (1r𝑌) ∈ (Base‘𝑌))
6031, 59syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1r𝑌) ∈ (Base‘𝑌))
61 domnnzr 20664 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑌 ∈ Domn → 𝑌 ∈ NzRing)
6227, 61simplbiim 504 . . . . . . . . . . . . . . . . . . . . . 22 (𝑌 ∈ IDomn → 𝑌 ∈ NzRing)
6326, 62syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑌 ∈ NzRing)
6454, 20nzrnz 20473 . . . . . . . . . . . . . . . . . . . . 21 (𝑌 ∈ NzRing → (1r𝑌) ≠ (0g𝑌))
6563, 64syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1r𝑌) ≠ (0g𝑌))
664, 2, 58, 53, 20deg1scl 26068 . . . . . . . . . . . . . . . . . . . 20 ((𝑌 ∈ Ring ∧ (1r𝑌) ∈ (Base‘𝑌) ∧ (1r𝑌) ≠ (0g𝑌)) → (𝐷‘((algSc‘𝑆)‘(1r𝑌))) = 0)
6731, 60, 65, 66syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐷‘((algSc‘𝑆)‘(1r𝑌))) = 0)
6857, 67eqtr3d 2772 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐷1 ) = 0)
694, 2, 7, 36, 6deg1pw 26076 . . . . . . . . . . . . . . . . . . 19 ((𝑌 ∈ NzRing ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (𝐷‘(((𝑃 − 1) / 2) 𝑋)) = ((𝑃 − 1) / 2))
7063, 42, 69syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐷‘(((𝑃 − 1) / 2) 𝑋)) = ((𝑃 − 1) / 2))
7152, 68, 703brtr4d 5151 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷1 ) < (𝐷‘(((𝑃 − 1) / 2) 𝑋)))
722, 4, 31, 3, 8, 45, 47, 71deg1sub 26063 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐷‘((((𝑃 − 1) / 2) 𝑋) 1 )) = (𝐷‘(((𝑃 − 1) / 2) 𝑋)))
7351, 72eqtrid 2782 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷𝑇) = (𝐷‘(((𝑃 − 1) / 2) 𝑋)))
7473, 70eqtrd 2770 . . . . . . . . . . . . . 14 (𝜑 → (𝐷𝑇) = ((𝑃 − 1) / 2))
7574, 42eqeltrd 2834 . . . . . . . . . . . . 13 (𝜑 → (𝐷𝑇) ∈ ℕ0)
764, 2, 21, 3deg1nn0clb 26045 . . . . . . . . . . . . . 14 ((𝑌 ∈ Ring ∧ 𝑇𝐵) → (𝑇 ≠ (0g𝑆) ↔ (𝐷𝑇) ∈ ℕ0))
7731, 50, 76syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝑇 ≠ (0g𝑆) ↔ (𝐷𝑇) ∈ ℕ0))
7875, 77mpbird 257 . . . . . . . . . . . 12 (𝜑𝑇 ≠ (0g𝑆))
792, 3, 4, 5, 20, 21, 26, 50, 78fta1g 26125 . . . . . . . . . . 11 (𝜑 → (♯‘((𝑂𝑇) “ {(0g𝑌)})) ≤ (𝐷𝑇))
8079, 74breqtrd 5145 . . . . . . . . . 10 (𝜑 → (♯‘((𝑂𝑇) “ {(0g𝑌)})) ≤ ((𝑃 − 1) / 2))
81 hashfz1 14362 . . . . . . . . . . 11 (((𝑃 − 1) / 2) ∈ ℕ0 → (♯‘(1...((𝑃 − 1) / 2))) = ((𝑃 − 1) / 2))
8242, 81syl 17 . . . . . . . . . 10 (𝜑 → (♯‘(1...((𝑃 − 1) / 2))) = ((𝑃 − 1) / 2))
8380, 82breqtrrd 5147 . . . . . . . . 9 (𝜑 → (♯‘((𝑂𝑇) “ {(0g𝑌)})) ≤ (♯‘(1...((𝑃 − 1) / 2))))
84 hashbnd 14352 . . . . . . . . . . 11 ((((𝑂𝑇) “ {(0g𝑌)}) ∈ V ∧ ((𝑃 − 1) / 2) ∈ ℕ0 ∧ (♯‘((𝑂𝑇) “ {(0g𝑌)})) ≤ ((𝑃 − 1) / 2)) → ((𝑂𝑇) “ {(0g𝑌)}) ∈ Fin)
8517, 42, 80, 84mp3an2i 1468 . . . . . . . . . 10 (𝜑 → ((𝑂𝑇) “ {(0g𝑌)}) ∈ Fin)
86 fzfid 13989 . . . . . . . . . 10 (𝜑 → (1...((𝑃 − 1) / 2)) ∈ Fin)
87 hashdom 14395 . . . . . . . . . 10 ((((𝑂𝑇) “ {(0g𝑌)}) ∈ Fin ∧ (1...((𝑃 − 1) / 2)) ∈ Fin) → ((♯‘((𝑂𝑇) “ {(0g𝑌)})) ≤ (♯‘(1...((𝑃 − 1) / 2))) ↔ ((𝑂𝑇) “ {(0g𝑌)}) ≼ (1...((𝑃 − 1) / 2))))
8885, 86, 87syl2anc 584 . . . . . . . . 9 (𝜑 → ((♯‘((𝑂𝑇) “ {(0g𝑌)})) ≤ (♯‘(1...((𝑃 − 1) / 2))) ↔ ((𝑂𝑇) “ {(0g𝑌)}) ≼ (1...((𝑃 − 1) / 2))))
8983, 88mpbid 232 . . . . . . . 8 (𝜑 → ((𝑂𝑇) “ {(0g𝑌)}) ≼ (1...((𝑃 − 1) / 2)))
90 sbth 9105 . . . . . . . 8 (((1...((𝑃 − 1) / 2)) ≼ ((𝑂𝑇) “ {(0g𝑌)}) ∧ ((𝑂𝑇) “ {(0g𝑌)}) ≼ (1...((𝑃 − 1) / 2))) → (1...((𝑃 − 1) / 2)) ≈ ((𝑂𝑇) “ {(0g𝑌)}))
9119, 89, 90syl2anc 584 . . . . . . 7 (𝜑 → (1...((𝑃 − 1) / 2)) ≈ ((𝑂𝑇) “ {(0g𝑌)}))
92 f1finf1o 9275 . . . . . . 7 (((1...((𝑃 − 1) / 2)) ≈ ((𝑂𝑇) “ {(0g𝑌)}) ∧ ((𝑂𝑇) “ {(0g𝑌)}) ∈ Fin) → (𝐺:(1...((𝑃 − 1) / 2))–1-1→((𝑂𝑇) “ {(0g𝑌)}) ↔ 𝐺:(1...((𝑃 − 1) / 2))–1-1-onto→((𝑂𝑇) “ {(0g𝑌)})))
9391, 85, 92syl2anc 584 . . . . . 6 (𝜑 → (𝐺:(1...((𝑃 − 1) / 2))–1-1→((𝑂𝑇) “ {(0g𝑌)}) ↔ 𝐺:(1...((𝑃 − 1) / 2))–1-1-onto→((𝑂𝑇) “ {(0g𝑌)})))
9414, 93mpbid 232 . . . . 5 (𝜑𝐺:(1...((𝑃 − 1) / 2))–1-1-onto→((𝑂𝑇) “ {(0g𝑌)}))
95 f1ocnv 6829 . . . . 5 (𝐺:(1...((𝑃 − 1) / 2))–1-1-onto→((𝑂𝑇) “ {(0g𝑌)}) → 𝐺:((𝑂𝑇) “ {(0g𝑌)})–1-1-onto→(1...((𝑃 − 1) / 2)))
96 f1of 6817 . . . . 5 (𝐺:((𝑂𝑇) “ {(0g𝑌)})–1-1-onto→(1...((𝑃 − 1) / 2)) → 𝐺:((𝑂𝑇) “ {(0g𝑌)})⟶(1...((𝑃 − 1) / 2)))
9794, 95, 963syl 18 . . . 4 (𝜑𝐺:((𝑂𝑇) “ {(0g𝑌)})⟶(1...((𝑃 − 1) / 2)))
98 lgsqr.3 . . . . 5 (𝜑𝐴 ∈ ℤ)
99 lgsqr.4 . . . . 5 (𝜑 → (𝐴 /L 𝑃) = 1)
1001, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 98, 99lgsqrlem3 27309 . . . 4 (𝜑 → (𝐿𝐴) ∈ ((𝑂𝑇) “ {(0g𝑌)}))
10197, 100ffvelcdmd 7074 . . 3 (𝜑 → (𝐺‘(𝐿𝐴)) ∈ (1...((𝑃 − 1) / 2)))
102101elfzelzd 13540 . 2 (𝜑 → (𝐺‘(𝐿𝐴)) ∈ ℤ)
103 fvoveq1 7426 . . . . . 6 (𝑥 = (𝐺‘(𝐿𝐴)) → (𝐿‘(𝑥↑2)) = (𝐿‘((𝐺‘(𝐿𝐴))↑2)))
104 fvoveq1 7426 . . . . . . . 8 (𝑦 = 𝑥 → (𝐿‘(𝑦↑2)) = (𝐿‘(𝑥↑2)))
105104cbvmptv 5225 . . . . . . 7 (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑦↑2))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑥↑2)))
10613, 105eqtri 2758 . . . . . 6 𝐺 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑥↑2)))
107 fvex 6888 . . . . . 6 (𝐿‘((𝐺‘(𝐿𝐴))↑2)) ∈ V
108103, 106, 107fvmpt 6985 . . . . 5 ((𝐺‘(𝐿𝐴)) ∈ (1...((𝑃 − 1) / 2)) → (𝐺‘(𝐺‘(𝐿𝐴))) = (𝐿‘((𝐺‘(𝐿𝐴))↑2)))
109101, 108syl 17 . . . 4 (𝜑 → (𝐺‘(𝐺‘(𝐿𝐴))) = (𝐿‘((𝐺‘(𝐿𝐴))↑2)))
110 f1ocnvfv2 7269 . . . . 5 ((𝐺:(1...((𝑃 − 1) / 2))–1-1-onto→((𝑂𝑇) “ {(0g𝑌)}) ∧ (𝐿𝐴) ∈ ((𝑂𝑇) “ {(0g𝑌)})) → (𝐺‘(𝐺‘(𝐿𝐴))) = (𝐿𝐴))
11194, 100, 110syl2anc 584 . . . 4 (𝜑 → (𝐺‘(𝐺‘(𝐿𝐴))) = (𝐿𝐴))
112109, 111eqtr3d 2772 . . 3 (𝜑 → (𝐿‘((𝐺‘(𝐿𝐴))↑2)) = (𝐿𝐴))
113 prmnn 16691 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
11422, 113syl 17 . . . . 5 (𝜑𝑃 ∈ ℕ)
115114nnnn0d 12560 . . . 4 (𝜑𝑃 ∈ ℕ0)
116 zsqcl 14145 . . . . 5 ((𝐺‘(𝐿𝐴)) ∈ ℤ → ((𝐺‘(𝐿𝐴))↑2) ∈ ℤ)
117102, 116syl 17 . . . 4 (𝜑 → ((𝐺‘(𝐿𝐴))↑2) ∈ ℤ)
1181, 11zndvds 21508 . . . 4 ((𝑃 ∈ ℕ0 ∧ ((𝐺‘(𝐿𝐴))↑2) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝐿‘((𝐺‘(𝐿𝐴))↑2)) = (𝐿𝐴) ↔ 𝑃 ∥ (((𝐺‘(𝐿𝐴))↑2) − 𝐴)))
119115, 117, 98, 118syl3anc 1373 . . 3 (𝜑 → ((𝐿‘((𝐺‘(𝐿𝐴))↑2)) = (𝐿𝐴) ↔ 𝑃 ∥ (((𝐺‘(𝐿𝐴))↑2) − 𝐴)))
120112, 119mpbid 232 . 2 (𝜑𝑃 ∥ (((𝐺‘(𝐿𝐴))↑2) − 𝐴))
121 oveq1 7410 . . . . 5 (𝑥 = (𝐺‘(𝐿𝐴)) → (𝑥↑2) = ((𝐺‘(𝐿𝐴))↑2))
122121oveq1d 7418 . . . 4 (𝑥 = (𝐺‘(𝐿𝐴)) → ((𝑥↑2) − 𝐴) = (((𝐺‘(𝐿𝐴))↑2) − 𝐴))
123122breq2d 5131 . . 3 (𝑥 = (𝐺‘(𝐿𝐴)) → (𝑃 ∥ ((𝑥↑2) − 𝐴) ↔ 𝑃 ∥ (((𝐺‘(𝐿𝐴))↑2) − 𝐴)))
124123rspcev 3601 . 2 (((𝐺‘(𝐿𝐴)) ∈ ℤ ∧ 𝑃 ∥ (((𝐺‘(𝐿𝐴))↑2) − 𝐴)) → ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴))
125102, 120, 124syl2anc 584 1 (𝜑 → ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  wne 2932  wrex 3060  Vcvv 3459  cdif 3923  {csn 4601   class class class wbr 5119  cmpt 5201  ccnv 5653  cima 5657  wf 6526  1-1wf1 6527  1-1-ontowf1o 6529  cfv 6530  (class class class)co 7403  cen 8954  cdom 8955  Fincfn 8957  0cc0 11127  1c1 11128   < clt 11267  cle 11268  cmin 11464   / cdiv 11892  cn 12238  2c2 12293  0cn0 12499  cz 12586  ...cfz 13522  cexp 14077  chash 14346  cdvds 16270  cprime 16688  Basecbs 17226  0gc0g 17451  Mndcmnd 18710  Grpcgrp 18914  -gcsg 18916  .gcmg 19048  mulGrpcmgp 20098  1rcur 20139  Ringcrg 20191  CRingccrg 20192  NzRingcnzr 20470  Domncdomn 20650  IDomncidom 20651  Fieldcfield 20688  ℤRHomczrh 21458  ℤ/nczn 21461  algSccascl 21810  var1cv1 22109  Poly1cpl1 22110  eval1ce1 22250  deg1cdg1 26009   /L clgs 27255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206  ax-mulf 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-ofr 7670  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-tpos 8223  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-er 8717  df-ec 8719  df-qs 8723  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-sup 9452  df-inf 9453  df-oi 9522  df-dju 9913  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-xnn0 12573  df-z 12587  df-dec 12707  df-uz 12851  df-q 12963  df-rp 13007  df-fz 13523  df-fzo 13670  df-fl 13807  df-mod 13885  df-seq 14018  df-exp 14078  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-dvds 16271  df-gcd 16512  df-prm 16689  df-phi 16783  df-pc 16855  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-0g 17453  df-gsum 17454  df-prds 17459  df-pws 17461  df-imas 17520  df-qus 17521  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-mhm 18759  df-submnd 18760  df-grp 18917  df-minusg 18918  df-sbg 18919  df-mulg 19049  df-subg 19104  df-nsg 19105  df-eqg 19106  df-ghm 19194  df-cntz 19298  df-cmn 19761  df-abl 19762  df-mgp 20099  df-rng 20111  df-ur 20140  df-srg 20145  df-ring 20193  df-cring 20194  df-oppr 20295  df-dvdsr 20315  df-unit 20316  df-invr 20346  df-dvr 20359  df-rhm 20430  df-nzr 20471  df-subrng 20504  df-subrg 20528  df-rlreg 20652  df-domn 20653  df-idom 20654  df-drng 20689  df-field 20690  df-lmod 20817  df-lss 20887  df-lsp 20927  df-sra 21129  df-rgmod 21130  df-lidl 21167  df-rsp 21168  df-2idl 21209  df-cnfld 21314  df-zring 21406  df-zrh 21462  df-zn 21465  df-assa 21811  df-asp 21812  df-ascl 21813  df-psr 21867  df-mvr 21868  df-mpl 21869  df-opsr 21871  df-evls 22030  df-evl 22031  df-psr1 22113  df-vr1 22114  df-ply1 22115  df-coe1 22116  df-evl1 22252  df-mdeg 26010  df-deg1 26011  df-mon1 26086  df-uc1p 26087  df-q1p 26088  df-r1p 26089  df-lgs 27256
This theorem is referenced by:  lgsqrlem5  27311
  Copyright terms: Public domain W3C validator