MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsqrlem4 Structured version   Visualization version   GIF version

Theorem lgsqrlem4 25933
Description: Lemma for lgsqr 25935. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
lgsqr.y 𝑌 = (ℤ/nℤ‘𝑃)
lgsqr.s 𝑆 = (Poly1𝑌)
lgsqr.b 𝐵 = (Base‘𝑆)
lgsqr.d 𝐷 = ( deg1𝑌)
lgsqr.o 𝑂 = (eval1𝑌)
lgsqr.e = (.g‘(mulGrp‘𝑆))
lgsqr.x 𝑋 = (var1𝑌)
lgsqr.m = (-g𝑆)
lgsqr.u 1 = (1r𝑆)
lgsqr.t 𝑇 = ((((𝑃 − 1) / 2) 𝑋) 1 )
lgsqr.l 𝐿 = (ℤRHom‘𝑌)
lgsqr.1 (𝜑𝑃 ∈ (ℙ ∖ {2}))
lgsqr.g 𝐺 = (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑦↑2)))
lgsqr.3 (𝜑𝐴 ∈ ℤ)
lgsqr.4 (𝜑 → (𝐴 /L 𝑃) = 1)
Assertion
Ref Expression
lgsqrlem4 (𝜑 → ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑦,𝑂   𝑥,𝑦,𝑃   𝜑,𝑥,𝑦   𝑦,𝑇   𝑥,𝐿,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑇(𝑥)   1 (𝑥,𝑦)   (𝑥,𝑦)   𝐺(𝑦)   (𝑥,𝑦)   𝑂(𝑥)   𝑋(𝑥,𝑦)

Proof of Theorem lgsqrlem4
StepHypRef Expression
1 lgsqr.y . . . . . . 7 𝑌 = (ℤ/nℤ‘𝑃)
2 lgsqr.s . . . . . . 7 𝑆 = (Poly1𝑌)
3 lgsqr.b . . . . . . 7 𝐵 = (Base‘𝑆)
4 lgsqr.d . . . . . . 7 𝐷 = ( deg1𝑌)
5 lgsqr.o . . . . . . 7 𝑂 = (eval1𝑌)
6 lgsqr.e . . . . . . 7 = (.g‘(mulGrp‘𝑆))
7 lgsqr.x . . . . . . 7 𝑋 = (var1𝑌)
8 lgsqr.m . . . . . . 7 = (-g𝑆)
9 lgsqr.u . . . . . . 7 1 = (1r𝑆)
10 lgsqr.t . . . . . . 7 𝑇 = ((((𝑃 − 1) / 2) 𝑋) 1 )
11 lgsqr.l . . . . . . 7 𝐿 = (ℤRHom‘𝑌)
12 lgsqr.1 . . . . . . 7 (𝜑𝑃 ∈ (ℙ ∖ {2}))
13 lgsqr.g . . . . . . 7 𝐺 = (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑦↑2)))
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13lgsqrlem2 25931 . . . . . 6 (𝜑𝐺:(1...((𝑃 − 1) / 2))–1-1→((𝑂𝑇) “ {(0g𝑌)}))
15 fvex 6658 . . . . . . . . . . . 12 (𝑂𝑇) ∈ V
1615cnvex 7612 . . . . . . . . . . 11 (𝑂𝑇) ∈ V
1716imaex 7603 . . . . . . . . . 10 ((𝑂𝑇) “ {(0g𝑌)}) ∈ V
1817f1dom 8514 . . . . . . . . 9 (𝐺:(1...((𝑃 − 1) / 2))–1-1→((𝑂𝑇) “ {(0g𝑌)}) → (1...((𝑃 − 1) / 2)) ≼ ((𝑂𝑇) “ {(0g𝑌)}))
1914, 18syl 17 . . . . . . . 8 (𝜑 → (1...((𝑃 − 1) / 2)) ≼ ((𝑂𝑇) “ {(0g𝑌)}))
20 eqid 2798 . . . . . . . . . . . 12 (0g𝑌) = (0g𝑌)
21 eqid 2798 . . . . . . . . . . . 12 (0g𝑆) = (0g𝑆)
2212eldifad 3893 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℙ)
231znfld 20252 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 𝑌 ∈ Field)
2422, 23syl 17 . . . . . . . . . . . . 13 (𝜑𝑌 ∈ Field)
25 fldidom 20071 . . . . . . . . . . . . 13 (𝑌 ∈ Field → 𝑌 ∈ IDomn)
2624, 25syl 17 . . . . . . . . . . . 12 (𝜑𝑌 ∈ IDomn)
27 isidom 20070 . . . . . . . . . . . . . . . . . . 19 (𝑌 ∈ IDomn ↔ (𝑌 ∈ CRing ∧ 𝑌 ∈ Domn))
2827simplbi 501 . . . . . . . . . . . . . . . . . 18 (𝑌 ∈ IDomn → 𝑌 ∈ CRing)
2926, 28syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑌 ∈ CRing)
30 crngring 19302 . . . . . . . . . . . . . . . . 17 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
3129, 30syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑌 ∈ Ring)
322ply1ring 20877 . . . . . . . . . . . . . . . 16 (𝑌 ∈ Ring → 𝑆 ∈ Ring)
3331, 32syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑆 ∈ Ring)
34 ringgrp 19295 . . . . . . . . . . . . . . 15 (𝑆 ∈ Ring → 𝑆 ∈ Grp)
3533, 34syl 17 . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ Grp)
36 eqid 2798 . . . . . . . . . . . . . . . . 17 (mulGrp‘𝑆) = (mulGrp‘𝑆)
3736ringmgp 19296 . . . . . . . . . . . . . . . 16 (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd)
3833, 37syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (mulGrp‘𝑆) ∈ Mnd)
39 oddprm 16137 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
4012, 39syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ)
4140nnnn0d 11943 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ0)
427, 2, 3vr1cl 20846 . . . . . . . . . . . . . . . 16 (𝑌 ∈ Ring → 𝑋𝐵)
4331, 42syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑋𝐵)
4436, 3mgpbas 19238 . . . . . . . . . . . . . . . 16 𝐵 = (Base‘(mulGrp‘𝑆))
4544, 6mulgnn0cl 18236 . . . . . . . . . . . . . . 15 (((mulGrp‘𝑆) ∈ Mnd ∧ ((𝑃 − 1) / 2) ∈ ℕ0𝑋𝐵) → (((𝑃 − 1) / 2) 𝑋) ∈ 𝐵)
4638, 41, 43, 45syl3anc 1368 . . . . . . . . . . . . . 14 (𝜑 → (((𝑃 − 1) / 2) 𝑋) ∈ 𝐵)
473, 9ringidcl 19314 . . . . . . . . . . . . . . 15 (𝑆 ∈ Ring → 1𝐵)
4833, 47syl 17 . . . . . . . . . . . . . 14 (𝜑1𝐵)
493, 8grpsubcl 18171 . . . . . . . . . . . . . 14 ((𝑆 ∈ Grp ∧ (((𝑃 − 1) / 2) 𝑋) ∈ 𝐵1𝐵) → ((((𝑃 − 1) / 2) 𝑋) 1 ) ∈ 𝐵)
5035, 46, 48, 49syl3anc 1368 . . . . . . . . . . . . 13 (𝜑 → ((((𝑃 − 1) / 2) 𝑋) 1 ) ∈ 𝐵)
5110, 50eqeltrid 2894 . . . . . . . . . . . 12 (𝜑𝑇𝐵)
5210fveq2i 6648 . . . . . . . . . . . . . . . 16 (𝐷𝑇) = (𝐷‘((((𝑃 − 1) / 2) 𝑋) 1 ))
5340nngt0d 11674 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 < ((𝑃 − 1) / 2))
54 eqid 2798 . . . . . . . . . . . . . . . . . . . . . 22 (algSc‘𝑆) = (algSc‘𝑆)
55 eqid 2798 . . . . . . . . . . . . . . . . . . . . . 22 (1r𝑌) = (1r𝑌)
562, 54, 55, 9ply1scl1 20921 . . . . . . . . . . . . . . . . . . . . 21 (𝑌 ∈ Ring → ((algSc‘𝑆)‘(1r𝑌)) = 1 )
5731, 56syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((algSc‘𝑆)‘(1r𝑌)) = 1 )
5857fveq2d 6649 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐷‘((algSc‘𝑆)‘(1r𝑌))) = (𝐷1 ))
59 eqid 2798 . . . . . . . . . . . . . . . . . . . . . 22 (Base‘𝑌) = (Base‘𝑌)
6059, 55ringidcl 19314 . . . . . . . . . . . . . . . . . . . . 21 (𝑌 ∈ Ring → (1r𝑌) ∈ (Base‘𝑌))
6131, 60syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1r𝑌) ∈ (Base‘𝑌))
62 domnnzr 20061 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑌 ∈ Domn → 𝑌 ∈ NzRing)
6327, 62simplbiim 508 . . . . . . . . . . . . . . . . . . . . . 22 (𝑌 ∈ IDomn → 𝑌 ∈ NzRing)
6426, 63syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑌 ∈ NzRing)
6555, 20nzrnz 20026 . . . . . . . . . . . . . . . . . . . . 21 (𝑌 ∈ NzRing → (1r𝑌) ≠ (0g𝑌))
6664, 65syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1r𝑌) ≠ (0g𝑌))
674, 2, 59, 54, 20deg1scl 24714 . . . . . . . . . . . . . . . . . . . 20 ((𝑌 ∈ Ring ∧ (1r𝑌) ∈ (Base‘𝑌) ∧ (1r𝑌) ≠ (0g𝑌)) → (𝐷‘((algSc‘𝑆)‘(1r𝑌))) = 0)
6831, 61, 66, 67syl3anc 1368 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐷‘((algSc‘𝑆)‘(1r𝑌))) = 0)
6958, 68eqtr3d 2835 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐷1 ) = 0)
704, 2, 7, 36, 6deg1pw 24721 . . . . . . . . . . . . . . . . . . 19 ((𝑌 ∈ NzRing ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (𝐷‘(((𝑃 − 1) / 2) 𝑋)) = ((𝑃 − 1) / 2))
7164, 41, 70syl2anc 587 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐷‘(((𝑃 − 1) / 2) 𝑋)) = ((𝑃 − 1) / 2))
7253, 69, 713brtr4d 5062 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷1 ) < (𝐷‘(((𝑃 − 1) / 2) 𝑋)))
732, 4, 31, 3, 8, 46, 48, 72deg1sub 24709 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐷‘((((𝑃 − 1) / 2) 𝑋) 1 )) = (𝐷‘(((𝑃 − 1) / 2) 𝑋)))
7452, 73syl5eq 2845 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷𝑇) = (𝐷‘(((𝑃 − 1) / 2) 𝑋)))
7574, 71eqtrd 2833 . . . . . . . . . . . . . 14 (𝜑 → (𝐷𝑇) = ((𝑃 − 1) / 2))
7675, 41eqeltrd 2890 . . . . . . . . . . . . 13 (𝜑 → (𝐷𝑇) ∈ ℕ0)
774, 2, 21, 3deg1nn0clb 24691 . . . . . . . . . . . . . 14 ((𝑌 ∈ Ring ∧ 𝑇𝐵) → (𝑇 ≠ (0g𝑆) ↔ (𝐷𝑇) ∈ ℕ0))
7831, 51, 77syl2anc 587 . . . . . . . . . . . . 13 (𝜑 → (𝑇 ≠ (0g𝑆) ↔ (𝐷𝑇) ∈ ℕ0))
7976, 78mpbird 260 . . . . . . . . . . . 12 (𝜑𝑇 ≠ (0g𝑆))
802, 3, 4, 5, 20, 21, 26, 51, 79fta1g 24768 . . . . . . . . . . 11 (𝜑 → (♯‘((𝑂𝑇) “ {(0g𝑌)})) ≤ (𝐷𝑇))
8180, 75breqtrd 5056 . . . . . . . . . 10 (𝜑 → (♯‘((𝑂𝑇) “ {(0g𝑌)})) ≤ ((𝑃 − 1) / 2))
82 hashfz1 13702 . . . . . . . . . . 11 (((𝑃 − 1) / 2) ∈ ℕ0 → (♯‘(1...((𝑃 − 1) / 2))) = ((𝑃 − 1) / 2))
8341, 82syl 17 . . . . . . . . . 10 (𝜑 → (♯‘(1...((𝑃 − 1) / 2))) = ((𝑃 − 1) / 2))
8481, 83breqtrrd 5058 . . . . . . . . 9 (𝜑 → (♯‘((𝑂𝑇) “ {(0g𝑌)})) ≤ (♯‘(1...((𝑃 − 1) / 2))))
85 hashbnd 13692 . . . . . . . . . . 11 ((((𝑂𝑇) “ {(0g𝑌)}) ∈ V ∧ ((𝑃 − 1) / 2) ∈ ℕ0 ∧ (♯‘((𝑂𝑇) “ {(0g𝑌)})) ≤ ((𝑃 − 1) / 2)) → ((𝑂𝑇) “ {(0g𝑌)}) ∈ Fin)
8617, 41, 81, 85mp3an2i 1463 . . . . . . . . . 10 (𝜑 → ((𝑂𝑇) “ {(0g𝑌)}) ∈ Fin)
87 fzfid 13336 . . . . . . . . . 10 (𝜑 → (1...((𝑃 − 1) / 2)) ∈ Fin)
88 hashdom 13736 . . . . . . . . . 10 ((((𝑂𝑇) “ {(0g𝑌)}) ∈ Fin ∧ (1...((𝑃 − 1) / 2)) ∈ Fin) → ((♯‘((𝑂𝑇) “ {(0g𝑌)})) ≤ (♯‘(1...((𝑃 − 1) / 2))) ↔ ((𝑂𝑇) “ {(0g𝑌)}) ≼ (1...((𝑃 − 1) / 2))))
8986, 87, 88syl2anc 587 . . . . . . . . 9 (𝜑 → ((♯‘((𝑂𝑇) “ {(0g𝑌)})) ≤ (♯‘(1...((𝑃 − 1) / 2))) ↔ ((𝑂𝑇) “ {(0g𝑌)}) ≼ (1...((𝑃 − 1) / 2))))
9084, 89mpbid 235 . . . . . . . 8 (𝜑 → ((𝑂𝑇) “ {(0g𝑌)}) ≼ (1...((𝑃 − 1) / 2)))
91 sbth 8621 . . . . . . . 8 (((1...((𝑃 − 1) / 2)) ≼ ((𝑂𝑇) “ {(0g𝑌)}) ∧ ((𝑂𝑇) “ {(0g𝑌)}) ≼ (1...((𝑃 − 1) / 2))) → (1...((𝑃 − 1) / 2)) ≈ ((𝑂𝑇) “ {(0g𝑌)}))
9219, 90, 91syl2anc 587 . . . . . . 7 (𝜑 → (1...((𝑃 − 1) / 2)) ≈ ((𝑂𝑇) “ {(0g𝑌)}))
93 f1finf1o 8729 . . . . . . 7 (((1...((𝑃 − 1) / 2)) ≈ ((𝑂𝑇) “ {(0g𝑌)}) ∧ ((𝑂𝑇) “ {(0g𝑌)}) ∈ Fin) → (𝐺:(1...((𝑃 − 1) / 2))–1-1→((𝑂𝑇) “ {(0g𝑌)}) ↔ 𝐺:(1...((𝑃 − 1) / 2))–1-1-onto→((𝑂𝑇) “ {(0g𝑌)})))
9492, 86, 93syl2anc 587 . . . . . 6 (𝜑 → (𝐺:(1...((𝑃 − 1) / 2))–1-1→((𝑂𝑇) “ {(0g𝑌)}) ↔ 𝐺:(1...((𝑃 − 1) / 2))–1-1-onto→((𝑂𝑇) “ {(0g𝑌)})))
9514, 94mpbid 235 . . . . 5 (𝜑𝐺:(1...((𝑃 − 1) / 2))–1-1-onto→((𝑂𝑇) “ {(0g𝑌)}))
96 f1ocnv 6602 . . . . 5 (𝐺:(1...((𝑃 − 1) / 2))–1-1-onto→((𝑂𝑇) “ {(0g𝑌)}) → 𝐺:((𝑂𝑇) “ {(0g𝑌)})–1-1-onto→(1...((𝑃 − 1) / 2)))
97 f1of 6590 . . . . 5 (𝐺:((𝑂𝑇) “ {(0g𝑌)})–1-1-onto→(1...((𝑃 − 1) / 2)) → 𝐺:((𝑂𝑇) “ {(0g𝑌)})⟶(1...((𝑃 − 1) / 2)))
9895, 96, 973syl 18 . . . 4 (𝜑𝐺:((𝑂𝑇) “ {(0g𝑌)})⟶(1...((𝑃 − 1) / 2)))
99 lgsqr.3 . . . . 5 (𝜑𝐴 ∈ ℤ)
100 lgsqr.4 . . . . 5 (𝜑 → (𝐴 /L 𝑃) = 1)
1011, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 99, 100lgsqrlem3 25932 . . . 4 (𝜑 → (𝐿𝐴) ∈ ((𝑂𝑇) “ {(0g𝑌)}))
10298, 101ffvelrnd 6829 . . 3 (𝜑 → (𝐺‘(𝐿𝐴)) ∈ (1...((𝑃 − 1) / 2)))
103 elfzelz 12902 . . 3 ((𝐺‘(𝐿𝐴)) ∈ (1...((𝑃 − 1) / 2)) → (𝐺‘(𝐿𝐴)) ∈ ℤ)
104102, 103syl 17 . 2 (𝜑 → (𝐺‘(𝐿𝐴)) ∈ ℤ)
105 fvoveq1 7158 . . . . . 6 (𝑥 = (𝐺‘(𝐿𝐴)) → (𝐿‘(𝑥↑2)) = (𝐿‘((𝐺‘(𝐿𝐴))↑2)))
106 fvoveq1 7158 . . . . . . . 8 (𝑦 = 𝑥 → (𝐿‘(𝑦↑2)) = (𝐿‘(𝑥↑2)))
107106cbvmptv 5133 . . . . . . 7 (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑦↑2))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑥↑2)))
10813, 107eqtri 2821 . . . . . 6 𝐺 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑥↑2)))
109 fvex 6658 . . . . . 6 (𝐿‘((𝐺‘(𝐿𝐴))↑2)) ∈ V
110105, 108, 109fvmpt 6745 . . . . 5 ((𝐺‘(𝐿𝐴)) ∈ (1...((𝑃 − 1) / 2)) → (𝐺‘(𝐺‘(𝐿𝐴))) = (𝐿‘((𝐺‘(𝐿𝐴))↑2)))
111102, 110syl 17 . . . 4 (𝜑 → (𝐺‘(𝐺‘(𝐿𝐴))) = (𝐿‘((𝐺‘(𝐿𝐴))↑2)))
112 f1ocnvfv2 7012 . . . . 5 ((𝐺:(1...((𝑃 − 1) / 2))–1-1-onto→((𝑂𝑇) “ {(0g𝑌)}) ∧ (𝐿𝐴) ∈ ((𝑂𝑇) “ {(0g𝑌)})) → (𝐺‘(𝐺‘(𝐿𝐴))) = (𝐿𝐴))
11395, 101, 112syl2anc 587 . . . 4 (𝜑 → (𝐺‘(𝐺‘(𝐿𝐴))) = (𝐿𝐴))
114111, 113eqtr3d 2835 . . 3 (𝜑 → (𝐿‘((𝐺‘(𝐿𝐴))↑2)) = (𝐿𝐴))
115 prmnn 16008 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
11622, 115syl 17 . . . . 5 (𝜑𝑃 ∈ ℕ)
117116nnnn0d 11943 . . . 4 (𝜑𝑃 ∈ ℕ0)
118 zsqcl 13490 . . . . 5 ((𝐺‘(𝐿𝐴)) ∈ ℤ → ((𝐺‘(𝐿𝐴))↑2) ∈ ℤ)
119104, 118syl 17 . . . 4 (𝜑 → ((𝐺‘(𝐿𝐴))↑2) ∈ ℤ)
1201, 11zndvds 20241 . . . 4 ((𝑃 ∈ ℕ0 ∧ ((𝐺‘(𝐿𝐴))↑2) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝐿‘((𝐺‘(𝐿𝐴))↑2)) = (𝐿𝐴) ↔ 𝑃 ∥ (((𝐺‘(𝐿𝐴))↑2) − 𝐴)))
121117, 119, 99, 120syl3anc 1368 . . 3 (𝜑 → ((𝐿‘((𝐺‘(𝐿𝐴))↑2)) = (𝐿𝐴) ↔ 𝑃 ∥ (((𝐺‘(𝐿𝐴))↑2) − 𝐴)))
122114, 121mpbid 235 . 2 (𝜑𝑃 ∥ (((𝐺‘(𝐿𝐴))↑2) − 𝐴))
123 oveq1 7142 . . . . 5 (𝑥 = (𝐺‘(𝐿𝐴)) → (𝑥↑2) = ((𝐺‘(𝐿𝐴))↑2))
124123oveq1d 7150 . . . 4 (𝑥 = (𝐺‘(𝐿𝐴)) → ((𝑥↑2) − 𝐴) = (((𝐺‘(𝐿𝐴))↑2) − 𝐴))
125124breq2d 5042 . . 3 (𝑥 = (𝐺‘(𝐿𝐴)) → (𝑃 ∥ ((𝑥↑2) − 𝐴) ↔ 𝑃 ∥ (((𝐺‘(𝐿𝐴))↑2) − 𝐴)))
126125rspcev 3571 . 2 (((𝐺‘(𝐿𝐴)) ∈ ℤ ∧ 𝑃 ∥ (((𝐺‘(𝐿𝐴))↑2) − 𝐴)) → ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴))
127104, 122, 126syl2anc 587 1 (𝜑 → ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1538  wcel 2111  wne 2987  wrex 3107  Vcvv 3441  cdif 3878  {csn 4525   class class class wbr 5030  cmpt 5110  ccnv 5518  cima 5522  wf 6320  1-1wf1 6321  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  cen 8489  cdom 8490  Fincfn 8492  0cc0 10526  1c1 10527   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  cn 11625  2c2 11680  0cn0 11885  cz 11969  ...cfz 12885  cexp 13425  chash 13686  cdvds 15599  cprime 16005  Basecbs 16475  0gc0g 16705  Mndcmnd 17903  Grpcgrp 18095  -gcsg 18097  .gcmg 18216  mulGrpcmgp 19232  1rcur 19244  Ringcrg 19290  CRingccrg 19291  Fieldcfield 19496  NzRingcnzr 20023  Domncdomn 20046  IDomncidom 20047  ℤRHomczrh 20193  ℤ/nczn 20196  algSccascl 20541  var1cv1 20805  Poly1cpl1 20806  eval1ce1 20938   deg1 cdg1 24655   /L clgs 25878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-ofr 7390  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-ec 8274  df-qs 8278  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-gcd 15834  df-prm 16006  df-phi 16093  df-pc 16164  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-0g 16707  df-gsum 16708  df-prds 16713  df-pws 16715  df-imas 16773  df-qus 16774  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-nsg 18269  df-eqg 18270  df-ghm 18348  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-srg 19249  df-ring 19292  df-cring 19293  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-rnghom 19463  df-drng 19497  df-field 19498  df-subrg 19526  df-lmod 19629  df-lss 19697  df-lsp 19737  df-sra 19937  df-rgmod 19938  df-lidl 19939  df-rsp 19940  df-2idl 19998  df-nzr 20024  df-rlreg 20049  df-domn 20050  df-idom 20051  df-cnfld 20092  df-zring 20164  df-zrh 20197  df-zn 20200  df-assa 20542  df-asp 20543  df-ascl 20544  df-psr 20594  df-mvr 20595  df-mpl 20596  df-opsr 20598  df-evls 20745  df-evl 20746  df-psr1 20809  df-vr1 20810  df-ply1 20811  df-coe1 20812  df-evl1 20940  df-mdeg 24656  df-deg1 24657  df-mon1 24731  df-uc1p 24732  df-q1p 24733  df-r1p 24734  df-lgs 25879
This theorem is referenced by:  lgsqrlem5  25934
  Copyright terms: Public domain W3C validator