Proof of Theorem lgsqrlem4
Step | Hyp | Ref
| Expression |
1 | | lgsqr.y |
. . . . . . 7
⊢ 𝑌 =
(ℤ/nℤ‘𝑃) |
2 | | lgsqr.s |
. . . . . . 7
⊢ 𝑆 = (Poly1‘𝑌) |
3 | | lgsqr.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑆) |
4 | | lgsqr.d |
. . . . . . 7
⊢ 𝐷 = ( deg1
‘𝑌) |
5 | | lgsqr.o |
. . . . . . 7
⊢ 𝑂 = (eval1‘𝑌) |
6 | | lgsqr.e |
. . . . . . 7
⊢ ↑ =
(.g‘(mulGrp‘𝑆)) |
7 | | lgsqr.x |
. . . . . . 7
⊢ 𝑋 = (var1‘𝑌) |
8 | | lgsqr.m |
. . . . . . 7
⊢ − =
(-g‘𝑆) |
9 | | lgsqr.u |
. . . . . . 7
⊢ 1 =
(1r‘𝑆) |
10 | | lgsqr.t |
. . . . . . 7
⊢ 𝑇 = ((((𝑃 − 1) / 2) ↑ 𝑋) − 1 ) |
11 | | lgsqr.l |
. . . . . . 7
⊢ 𝐿 = (ℤRHom‘𝑌) |
12 | | lgsqr.1 |
. . . . . . 7
⊢ (𝜑 → 𝑃 ∈ (ℙ ∖
{2})) |
13 | | lgsqr.g |
. . . . . . 7
⊢ 𝐺 = (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑦↑2))) |
14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13 | lgsqrlem2 26030 |
. . . . . 6
⊢ (𝜑 → 𝐺:(1...((𝑃 − 1) / 2))–1-1→(◡(𝑂‘𝑇) “ {(0g‘𝑌)})) |
15 | | fvex 6671 |
. . . . . . . . . . . 12
⊢ (𝑂‘𝑇) ∈ V |
16 | 15 | cnvex 7635 |
. . . . . . . . . . 11
⊢ ◡(𝑂‘𝑇) ∈ V |
17 | 16 | imaex 7626 |
. . . . . . . . . 10
⊢ (◡(𝑂‘𝑇) “ {(0g‘𝑌)}) ∈ V |
18 | 17 | f1dom 8549 |
. . . . . . . . 9
⊢ (𝐺:(1...((𝑃 − 1) / 2))–1-1→(◡(𝑂‘𝑇) “ {(0g‘𝑌)}) → (1...((𝑃 − 1) / 2)) ≼ (◡(𝑂‘𝑇) “ {(0g‘𝑌)})) |
19 | 14, 18 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (1...((𝑃 − 1) / 2)) ≼ (◡(𝑂‘𝑇) “ {(0g‘𝑌)})) |
20 | | eqid 2758 |
. . . . . . . . . . . 12
⊢
(0g‘𝑌) = (0g‘𝑌) |
21 | | eqid 2758 |
. . . . . . . . . . . 12
⊢
(0g‘𝑆) = (0g‘𝑆) |
22 | 12 | eldifad 3870 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑃 ∈ ℙ) |
23 | 1 | znfld 20328 |
. . . . . . . . . . . . . 14
⊢ (𝑃 ∈ ℙ → 𝑌 ∈ Field) |
24 | 22, 23 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑌 ∈ Field) |
25 | | fldidom 20146 |
. . . . . . . . . . . . 13
⊢ (𝑌 ∈ Field → 𝑌 ∈ IDomn) |
26 | 24, 25 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑌 ∈ IDomn) |
27 | | isidom 20145 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑌 ∈ IDomn ↔ (𝑌 ∈ CRing ∧ 𝑌 ∈ Domn)) |
28 | 27 | simplbi 501 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑌 ∈ IDomn → 𝑌 ∈ CRing) |
29 | 26, 28 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑌 ∈ CRing) |
30 | | crngring 19377 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑌 ∈ CRing → 𝑌 ∈ Ring) |
31 | 29, 30 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑌 ∈ Ring) |
32 | 2 | ply1ring 20972 |
. . . . . . . . . . . . . . . 16
⊢ (𝑌 ∈ Ring → 𝑆 ∈ Ring) |
33 | 31, 32 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑆 ∈ Ring) |
34 | | ringgrp 19370 |
. . . . . . . . . . . . . . 15
⊢ (𝑆 ∈ Ring → 𝑆 ∈ Grp) |
35 | 33, 34 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑆 ∈ Grp) |
36 | | eqid 2758 |
. . . . . . . . . . . . . . . . 17
⊢
(mulGrp‘𝑆) =
(mulGrp‘𝑆) |
37 | 36 | ringmgp 19371 |
. . . . . . . . . . . . . . . 16
⊢ (𝑆 ∈ Ring →
(mulGrp‘𝑆) ∈
Mnd) |
38 | 33, 37 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (mulGrp‘𝑆) ∈ Mnd) |
39 | | oddprm 16202 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ ((𝑃 − 1) / 2)
∈ ℕ) |
40 | 12, 39 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝑃 − 1) / 2) ∈
ℕ) |
41 | 40 | nnnn0d 11994 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑃 − 1) / 2) ∈
ℕ0) |
42 | 7, 2, 3 | vr1cl 20941 |
. . . . . . . . . . . . . . . 16
⊢ (𝑌 ∈ Ring → 𝑋 ∈ 𝐵) |
43 | 31, 42 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
44 | 36, 3 | mgpbas 19313 |
. . . . . . . . . . . . . . . 16
⊢ 𝐵 =
(Base‘(mulGrp‘𝑆)) |
45 | 44, 6 | mulgnn0cl 18311 |
. . . . . . . . . . . . . . 15
⊢
(((mulGrp‘𝑆)
∈ Mnd ∧ ((𝑃
− 1) / 2) ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (((𝑃 − 1) / 2) ↑ 𝑋) ∈ 𝐵) |
46 | 38, 41, 43, 45 | syl3anc 1368 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (((𝑃 − 1) / 2) ↑ 𝑋) ∈ 𝐵) |
47 | 3, 9 | ringidcl 19389 |
. . . . . . . . . . . . . . 15
⊢ (𝑆 ∈ Ring → 1 ∈ 𝐵) |
48 | 33, 47 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 1 ∈ 𝐵) |
49 | 3, 8 | grpsubcl 18246 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 ∈ Grp ∧ (((𝑃 − 1) / 2) ↑ 𝑋) ∈ 𝐵 ∧ 1 ∈ 𝐵) → ((((𝑃 − 1) / 2) ↑ 𝑋) − 1 ) ∈ 𝐵) |
50 | 35, 46, 48, 49 | syl3anc 1368 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((((𝑃 − 1) / 2) ↑ 𝑋) − 1 ) ∈ 𝐵) |
51 | 10, 50 | eqeltrid 2856 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑇 ∈ 𝐵) |
52 | 10 | fveq2i 6661 |
. . . . . . . . . . . . . . . 16
⊢ (𝐷‘𝑇) = (𝐷‘((((𝑃 − 1) / 2) ↑ 𝑋) − 1 )) |
53 | 40 | nngt0d 11723 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 0 < ((𝑃 − 1) / 2)) |
54 | | eqid 2758 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(algSc‘𝑆) =
(algSc‘𝑆) |
55 | | eqid 2758 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(1r‘𝑌) = (1r‘𝑌) |
56 | 2, 54, 55, 9 | ply1scl1 21016 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑌 ∈ Ring →
((algSc‘𝑆)‘(1r‘𝑌)) = 1 ) |
57 | 31, 56 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((algSc‘𝑆)‘(1r‘𝑌)) = 1 ) |
58 | 57 | fveq2d 6662 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐷‘((algSc‘𝑆)‘(1r‘𝑌))) = (𝐷‘ 1 )) |
59 | | eqid 2758 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(Base‘𝑌) =
(Base‘𝑌) |
60 | 59, 55 | ringidcl 19389 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑌 ∈ Ring →
(1r‘𝑌)
∈ (Base‘𝑌)) |
61 | 31, 60 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (1r‘𝑌) ∈ (Base‘𝑌)) |
62 | | domnnzr 20136 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑌 ∈ Domn → 𝑌 ∈ NzRing) |
63 | 27, 62 | simplbiim 508 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑌 ∈ IDomn → 𝑌 ∈ NzRing) |
64 | 26, 63 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑌 ∈ NzRing) |
65 | 55, 20 | nzrnz 20101 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑌 ∈ NzRing →
(1r‘𝑌)
≠ (0g‘𝑌)) |
66 | 64, 65 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (1r‘𝑌) ≠
(0g‘𝑌)) |
67 | 4, 2, 59, 54, 20 | deg1scl 24813 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑌 ∈ Ring ∧
(1r‘𝑌)
∈ (Base‘𝑌) ∧
(1r‘𝑌)
≠ (0g‘𝑌)) → (𝐷‘((algSc‘𝑆)‘(1r‘𝑌))) = 0) |
68 | 31, 61, 66, 67 | syl3anc 1368 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐷‘((algSc‘𝑆)‘(1r‘𝑌))) = 0) |
69 | 58, 68 | eqtr3d 2795 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐷‘ 1 ) = 0) |
70 | 4, 2, 7, 36, 6 | deg1pw 24820 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑌 ∈ NzRing ∧ ((𝑃 − 1) / 2) ∈
ℕ0) → (𝐷‘(((𝑃 − 1) / 2) ↑ 𝑋)) = ((𝑃 − 1) / 2)) |
71 | 64, 41, 70 | syl2anc 587 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐷‘(((𝑃 − 1) / 2) ↑ 𝑋)) = ((𝑃 − 1) / 2)) |
72 | 53, 69, 71 | 3brtr4d 5064 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐷‘ 1 ) < (𝐷‘(((𝑃 − 1) / 2) ↑ 𝑋))) |
73 | 2, 4, 31, 3, 8, 46, 48, 72 | deg1sub 24808 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐷‘((((𝑃 − 1) / 2) ↑ 𝑋) − 1 )) = (𝐷‘(((𝑃 − 1) / 2) ↑ 𝑋))) |
74 | 52, 73 | syl5eq 2805 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐷‘𝑇) = (𝐷‘(((𝑃 − 1) / 2) ↑ 𝑋))) |
75 | 74, 71 | eqtrd 2793 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐷‘𝑇) = ((𝑃 − 1) / 2)) |
76 | 75, 41 | eqeltrd 2852 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐷‘𝑇) ∈
ℕ0) |
77 | 4, 2, 21, 3 | deg1nn0clb 24790 |
. . . . . . . . . . . . . 14
⊢ ((𝑌 ∈ Ring ∧ 𝑇 ∈ 𝐵) → (𝑇 ≠ (0g‘𝑆) ↔ (𝐷‘𝑇) ∈
ℕ0)) |
78 | 31, 51, 77 | syl2anc 587 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑇 ≠ (0g‘𝑆) ↔ (𝐷‘𝑇) ∈
ℕ0)) |
79 | 76, 78 | mpbird 260 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑇 ≠ (0g‘𝑆)) |
80 | 2, 3, 4, 5, 20, 21, 26, 51, 79 | fta1g 24867 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘(◡(𝑂‘𝑇) “ {(0g‘𝑌)})) ≤ (𝐷‘𝑇)) |
81 | 80, 75 | breqtrd 5058 |
. . . . . . . . . 10
⊢ (𝜑 → (♯‘(◡(𝑂‘𝑇) “ {(0g‘𝑌)})) ≤ ((𝑃 − 1) / 2)) |
82 | | hashfz1 13756 |
. . . . . . . . . . 11
⊢ (((𝑃 − 1) / 2) ∈
ℕ0 → (♯‘(1...((𝑃 − 1) / 2))) = ((𝑃 − 1) / 2)) |
83 | 41, 82 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 →
(♯‘(1...((𝑃
− 1) / 2))) = ((𝑃
− 1) / 2)) |
84 | 81, 83 | breqtrrd 5060 |
. . . . . . . . 9
⊢ (𝜑 → (♯‘(◡(𝑂‘𝑇) “ {(0g‘𝑌)})) ≤
(♯‘(1...((𝑃
− 1) / 2)))) |
85 | | hashbnd 13746 |
. . . . . . . . . . 11
⊢ (((◡(𝑂‘𝑇) “ {(0g‘𝑌)}) ∈ V ∧ ((𝑃 − 1) / 2) ∈
ℕ0 ∧ (♯‘(◡(𝑂‘𝑇) “ {(0g‘𝑌)})) ≤ ((𝑃 − 1) / 2)) → (◡(𝑂‘𝑇) “ {(0g‘𝑌)}) ∈ Fin) |
86 | 17, 41, 81, 85 | mp3an2i 1463 |
. . . . . . . . . 10
⊢ (𝜑 → (◡(𝑂‘𝑇) “ {(0g‘𝑌)}) ∈ Fin) |
87 | | fzfid 13390 |
. . . . . . . . . 10
⊢ (𝜑 → (1...((𝑃 − 1) / 2)) ∈
Fin) |
88 | | hashdom 13790 |
. . . . . . . . . 10
⊢ (((◡(𝑂‘𝑇) “ {(0g‘𝑌)}) ∈ Fin ∧
(1...((𝑃 − 1) / 2))
∈ Fin) → ((♯‘(◡(𝑂‘𝑇) “ {(0g‘𝑌)})) ≤
(♯‘(1...((𝑃
− 1) / 2))) ↔ (◡(𝑂‘𝑇) “ {(0g‘𝑌)}) ≼ (1...((𝑃 − 1) /
2)))) |
89 | 86, 87, 88 | syl2anc 587 |
. . . . . . . . 9
⊢ (𝜑 → ((♯‘(◡(𝑂‘𝑇) “ {(0g‘𝑌)})) ≤
(♯‘(1...((𝑃
− 1) / 2))) ↔ (◡(𝑂‘𝑇) “ {(0g‘𝑌)}) ≼ (1...((𝑃 − 1) /
2)))) |
90 | 84, 89 | mpbid 235 |
. . . . . . . 8
⊢ (𝜑 → (◡(𝑂‘𝑇) “ {(0g‘𝑌)}) ≼ (1...((𝑃 − 1) /
2))) |
91 | | sbth 8659 |
. . . . . . . 8
⊢
(((1...((𝑃 −
1) / 2)) ≼ (◡(𝑂‘𝑇) “ {(0g‘𝑌)}) ∧ (◡(𝑂‘𝑇) “ {(0g‘𝑌)}) ≼ (1...((𝑃 − 1) / 2))) →
(1...((𝑃 − 1) / 2))
≈ (◡(𝑂‘𝑇) “ {(0g‘𝑌)})) |
92 | 19, 90, 91 | syl2anc 587 |
. . . . . . 7
⊢ (𝜑 → (1...((𝑃 − 1) / 2)) ≈ (◡(𝑂‘𝑇) “ {(0g‘𝑌)})) |
93 | | f1finf1o 8782 |
. . . . . . 7
⊢
(((1...((𝑃 −
1) / 2)) ≈ (◡(𝑂‘𝑇) “ {(0g‘𝑌)}) ∧ (◡(𝑂‘𝑇) “ {(0g‘𝑌)}) ∈ Fin) → (𝐺:(1...((𝑃 − 1) / 2))–1-1→(◡(𝑂‘𝑇) “ {(0g‘𝑌)}) ↔ 𝐺:(1...((𝑃 − 1) / 2))–1-1-onto→(◡(𝑂‘𝑇) “ {(0g‘𝑌)}))) |
94 | 92, 86, 93 | syl2anc 587 |
. . . . . 6
⊢ (𝜑 → (𝐺:(1...((𝑃 − 1) / 2))–1-1→(◡(𝑂‘𝑇) “ {(0g‘𝑌)}) ↔ 𝐺:(1...((𝑃 − 1) / 2))–1-1-onto→(◡(𝑂‘𝑇) “ {(0g‘𝑌)}))) |
95 | 14, 94 | mpbid 235 |
. . . . 5
⊢ (𝜑 → 𝐺:(1...((𝑃 − 1) / 2))–1-1-onto→(◡(𝑂‘𝑇) “ {(0g‘𝑌)})) |
96 | | f1ocnv 6614 |
. . . . 5
⊢ (𝐺:(1...((𝑃 − 1) / 2))–1-1-onto→(◡(𝑂‘𝑇) “ {(0g‘𝑌)}) → ◡𝐺:(◡(𝑂‘𝑇) “ {(0g‘𝑌)})–1-1-onto→(1...((𝑃 − 1) / 2))) |
97 | | f1of 6602 |
. . . . 5
⊢ (◡𝐺:(◡(𝑂‘𝑇) “ {(0g‘𝑌)})–1-1-onto→(1...((𝑃 − 1) / 2)) → ◡𝐺:(◡(𝑂‘𝑇) “ {(0g‘𝑌)})⟶(1...((𝑃 − 1) /
2))) |
98 | 95, 96, 97 | 3syl 18 |
. . . 4
⊢ (𝜑 → ◡𝐺:(◡(𝑂‘𝑇) “ {(0g‘𝑌)})⟶(1...((𝑃 − 1) /
2))) |
99 | | lgsqr.3 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ ℤ) |
100 | | lgsqr.4 |
. . . . 5
⊢ (𝜑 → (𝐴 /L 𝑃) = 1) |
101 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 99, 100 | lgsqrlem3 26031 |
. . . 4
⊢ (𝜑 → (𝐿‘𝐴) ∈ (◡(𝑂‘𝑇) “ {(0g‘𝑌)})) |
102 | 98, 101 | ffvelrnd 6843 |
. . 3
⊢ (𝜑 → (◡𝐺‘(𝐿‘𝐴)) ∈ (1...((𝑃 − 1) / 2))) |
103 | | elfzelz 12956 |
. . 3
⊢ ((◡𝐺‘(𝐿‘𝐴)) ∈ (1...((𝑃 − 1) / 2)) → (◡𝐺‘(𝐿‘𝐴)) ∈ ℤ) |
104 | 102, 103 | syl 17 |
. 2
⊢ (𝜑 → (◡𝐺‘(𝐿‘𝐴)) ∈ ℤ) |
105 | | fvoveq1 7173 |
. . . . . 6
⊢ (𝑥 = (◡𝐺‘(𝐿‘𝐴)) → (𝐿‘(𝑥↑2)) = (𝐿‘((◡𝐺‘(𝐿‘𝐴))↑2))) |
106 | | fvoveq1 7173 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (𝐿‘(𝑦↑2)) = (𝐿‘(𝑥↑2))) |
107 | 106 | cbvmptv 5135 |
. . . . . . 7
⊢ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑦↑2))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑥↑2))) |
108 | 13, 107 | eqtri 2781 |
. . . . . 6
⊢ 𝐺 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑥↑2))) |
109 | | fvex 6671 |
. . . . . 6
⊢ (𝐿‘((◡𝐺‘(𝐿‘𝐴))↑2)) ∈ V |
110 | 105, 108,
109 | fvmpt 6759 |
. . . . 5
⊢ ((◡𝐺‘(𝐿‘𝐴)) ∈ (1...((𝑃 − 1) / 2)) → (𝐺‘(◡𝐺‘(𝐿‘𝐴))) = (𝐿‘((◡𝐺‘(𝐿‘𝐴))↑2))) |
111 | 102, 110 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐺‘(◡𝐺‘(𝐿‘𝐴))) = (𝐿‘((◡𝐺‘(𝐿‘𝐴))↑2))) |
112 | | f1ocnvfv2 7026 |
. . . . 5
⊢ ((𝐺:(1...((𝑃 − 1) / 2))–1-1-onto→(◡(𝑂‘𝑇) “ {(0g‘𝑌)}) ∧ (𝐿‘𝐴) ∈ (◡(𝑂‘𝑇) “ {(0g‘𝑌)})) → (𝐺‘(◡𝐺‘(𝐿‘𝐴))) = (𝐿‘𝐴)) |
113 | 95, 101, 112 | syl2anc 587 |
. . . 4
⊢ (𝜑 → (𝐺‘(◡𝐺‘(𝐿‘𝐴))) = (𝐿‘𝐴)) |
114 | 111, 113 | eqtr3d 2795 |
. . 3
⊢ (𝜑 → (𝐿‘((◡𝐺‘(𝐿‘𝐴))↑2)) = (𝐿‘𝐴)) |
115 | | prmnn 16070 |
. . . . . 6
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
116 | 22, 115 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ ℕ) |
117 | 116 | nnnn0d 11994 |
. . . 4
⊢ (𝜑 → 𝑃 ∈
ℕ0) |
118 | | zsqcl 13544 |
. . . . 5
⊢ ((◡𝐺‘(𝐿‘𝐴)) ∈ ℤ → ((◡𝐺‘(𝐿‘𝐴))↑2) ∈ ℤ) |
119 | 104, 118 | syl 17 |
. . . 4
⊢ (𝜑 → ((◡𝐺‘(𝐿‘𝐴))↑2) ∈ ℤ) |
120 | 1, 11 | zndvds 20317 |
. . . 4
⊢ ((𝑃 ∈ ℕ0
∧ ((◡𝐺‘(𝐿‘𝐴))↑2) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝐿‘((◡𝐺‘(𝐿‘𝐴))↑2)) = (𝐿‘𝐴) ↔ 𝑃 ∥ (((◡𝐺‘(𝐿‘𝐴))↑2) − 𝐴))) |
121 | 117, 119,
99, 120 | syl3anc 1368 |
. . 3
⊢ (𝜑 → ((𝐿‘((◡𝐺‘(𝐿‘𝐴))↑2)) = (𝐿‘𝐴) ↔ 𝑃 ∥ (((◡𝐺‘(𝐿‘𝐴))↑2) − 𝐴))) |
122 | 114, 121 | mpbid 235 |
. 2
⊢ (𝜑 → 𝑃 ∥ (((◡𝐺‘(𝐿‘𝐴))↑2) − 𝐴)) |
123 | | oveq1 7157 |
. . . . 5
⊢ (𝑥 = (◡𝐺‘(𝐿‘𝐴)) → (𝑥↑2) = ((◡𝐺‘(𝐿‘𝐴))↑2)) |
124 | 123 | oveq1d 7165 |
. . . 4
⊢ (𝑥 = (◡𝐺‘(𝐿‘𝐴)) → ((𝑥↑2) − 𝐴) = (((◡𝐺‘(𝐿‘𝐴))↑2) − 𝐴)) |
125 | 124 | breq2d 5044 |
. . 3
⊢ (𝑥 = (◡𝐺‘(𝐿‘𝐴)) → (𝑃 ∥ ((𝑥↑2) − 𝐴) ↔ 𝑃 ∥ (((◡𝐺‘(𝐿‘𝐴))↑2) − 𝐴))) |
126 | 125 | rspcev 3541 |
. 2
⊢ (((◡𝐺‘(𝐿‘𝐴)) ∈ ℤ ∧ 𝑃 ∥ (((◡𝐺‘(𝐿‘𝐴))↑2) − 𝐴)) → ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴)) |
127 | 104, 122,
126 | syl2anc 587 |
1
⊢ (𝜑 → ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴)) |