MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drngdomn Structured version   Visualization version   GIF version

Theorem drngdomn 20659
Description: A division ring is a domain. (Contributed by Mario Carneiro, 29-Mar-2015.)
Assertion
Ref Expression
drngdomn (𝑅 ∈ DivRing → 𝑅 ∈ Domn)

Proof of Theorem drngdomn
StepHypRef Expression
1 drngnzr 20658 . 2 (𝑅 ∈ DivRing → 𝑅 ∈ NzRing)
2 eqid 2731 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2731 . . . . 5 (Unit‘𝑅) = (Unit‘𝑅)
4 eqid 2731 . . . . 5 (0g𝑅) = (0g𝑅)
52, 3, 4isdrng 20643 . . . 4 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = ((Base‘𝑅) ∖ {(0g𝑅)})))
65simprbi 496 . . 3 (𝑅 ∈ DivRing → (Unit‘𝑅) = ((Base‘𝑅) ∖ {(0g𝑅)}))
7 drngring 20646 . . . 4 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
8 eqid 2731 . . . . 5 (RLReg‘𝑅) = (RLReg‘𝑅)
98, 3unitrrg 20613 . . . 4 (𝑅 ∈ Ring → (Unit‘𝑅) ⊆ (RLReg‘𝑅))
107, 9syl 17 . . 3 (𝑅 ∈ DivRing → (Unit‘𝑅) ⊆ (RLReg‘𝑅))
116, 10eqsstrrd 3965 . 2 (𝑅 ∈ DivRing → ((Base‘𝑅) ∖ {(0g𝑅)}) ⊆ (RLReg‘𝑅))
122, 8, 4isdomn2 20621 . 2 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ((Base‘𝑅) ∖ {(0g𝑅)}) ⊆ (RLReg‘𝑅)))
131, 11, 12sylanbrc 583 1 (𝑅 ∈ DivRing → 𝑅 ∈ Domn)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cdif 3894  wss 3897  {csn 4571  cfv 6476  Basecbs 17115  0gc0g 17338  Ringcrg 20146  Unitcui 20268  NzRingcnzr 20422  RLRegcrlreg 20601  Domncdomn 20602  DivRingcdr 20639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-0g 17340  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-cmn 19689  df-abl 19690  df-mgp 20054  df-rng 20066  df-ur 20095  df-ring 20148  df-oppr 20250  df-dvdsr 20270  df-unit 20271  df-invr 20301  df-nzr 20423  df-rlreg 20604  df-domn 20605  df-drng 20641
This theorem is referenced by:  drngmcl  20660  drngmul0or  20670  fldidom  20681  fidomndrng  20683  abvtriv  20744  ply1unit  33530  ply1dg1rt  33535  cos9thpiminply  33793  aks6d1c5lem3  42170  drngmullcan  42558  drngmulrcan  42559
  Copyright terms: Public domain W3C validator