MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqnrmlem2 Structured version   Visualization version   GIF version

Theorem kqnrmlem2 22355
Description: If the Kolmogorov quotient of a space is normal then so is the original space. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqnrmlem2 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) → 𝐽 ∈ Nrm)
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem kqnrmlem2
Dummy variables 𝑚 𝑤 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topontop 21524 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
21adantr 483 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) → 𝐽 ∈ Top)
3 simplr 767 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → (KQ‘𝐽) ∈ Nrm)
4 simpll 765 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → 𝐽 ∈ (TopOn‘𝑋))
5 simprl 769 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → 𝑧𝐽)
6 kqval.2 . . . . . . 7 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
76kqopn 22345 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝐽) → (𝐹𝑧) ∈ (KQ‘𝐽))
84, 5, 7syl2anc 586 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → (𝐹𝑧) ∈ (KQ‘𝐽))
9 simprr 771 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))
109elin1d 4178 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → 𝑤 ∈ (Clsd‘𝐽))
116kqcld 22346 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤 ∈ (Clsd‘𝐽)) → (𝐹𝑤) ∈ (Clsd‘(KQ‘𝐽)))
124, 10, 11syl2anc 586 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → (𝐹𝑤) ∈ (Clsd‘(KQ‘𝐽)))
139elin2d 4179 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → 𝑤 ∈ 𝒫 𝑧)
14 elpwi 4551 . . . . . 6 (𝑤 ∈ 𝒫 𝑧𝑤𝑧)
15 imass2 5968 . . . . . 6 (𝑤𝑧 → (𝐹𝑤) ⊆ (𝐹𝑧))
1613, 14, 153syl 18 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → (𝐹𝑤) ⊆ (𝐹𝑧))
17 nrmsep3 21966 . . . . 5 (((KQ‘𝐽) ∈ Nrm ∧ ((𝐹𝑧) ∈ (KQ‘𝐽) ∧ (𝐹𝑤) ∈ (Clsd‘(KQ‘𝐽)) ∧ (𝐹𝑤) ⊆ (𝐹𝑧))) → ∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))
183, 8, 12, 16, 17syl13anc 1368 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → ∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))
19 simplll 773 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → 𝐽 ∈ (TopOn‘𝑋))
206kqid 22339 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽)))
2119, 20syl 17 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽)))
22 simprl 769 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → 𝑚 ∈ (KQ‘𝐽))
23 cnima 21876 . . . . . 6 ((𝐹 ∈ (𝐽 Cn (KQ‘𝐽)) ∧ 𝑚 ∈ (KQ‘𝐽)) → (𝐹𝑚) ∈ 𝐽)
2421, 22, 23syl2anc 586 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → (𝐹𝑚) ∈ 𝐽)
25 simprrl 779 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → (𝐹𝑤) ⊆ 𝑚)
266kqffn 22336 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
27 fnfun 6456 . . . . . . . 8 (𝐹 Fn 𝑋 → Fun 𝐹)
2819, 26, 273syl 18 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → Fun 𝐹)
2910adantr 483 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → 𝑤 ∈ (Clsd‘𝐽))
30 eqid 2824 . . . . . . . . . 10 𝐽 = 𝐽
3130cldss 21640 . . . . . . . . 9 (𝑤 ∈ (Clsd‘𝐽) → 𝑤 𝐽)
3229, 31syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → 𝑤 𝐽)
33 fndm 6458 . . . . . . . . . 10 (𝐹 Fn 𝑋 → dom 𝐹 = 𝑋)
3419, 26, 333syl 18 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → dom 𝐹 = 𝑋)
35 toponuni 21525 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
3619, 35syl 17 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → 𝑋 = 𝐽)
3734, 36eqtrd 2859 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → dom 𝐹 = 𝐽)
3832, 37sseqtrrd 4011 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → 𝑤 ⊆ dom 𝐹)
39 funimass3 6827 . . . . . . 7 ((Fun 𝐹𝑤 ⊆ dom 𝐹) → ((𝐹𝑤) ⊆ 𝑚𝑤 ⊆ (𝐹𝑚)))
4028, 38, 39syl2anc 586 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → ((𝐹𝑤) ⊆ 𝑚𝑤 ⊆ (𝐹𝑚)))
4125, 40mpbid 234 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → 𝑤 ⊆ (𝐹𝑚))
426kqtopon 22338 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
43 topontop 21524 . . . . . . . . . 10 ((KQ‘𝐽) ∈ (TopOn‘ran 𝐹) → (KQ‘𝐽) ∈ Top)
4419, 42, 433syl 18 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → (KQ‘𝐽) ∈ Top)
45 elssuni 4871 . . . . . . . . . 10 (𝑚 ∈ (KQ‘𝐽) → 𝑚 (KQ‘𝐽))
4645ad2antrl 726 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → 𝑚 (KQ‘𝐽))
47 eqid 2824 . . . . . . . . . 10 (KQ‘𝐽) = (KQ‘𝐽)
4847clscld 21658 . . . . . . . . 9 (((KQ‘𝐽) ∈ Top ∧ 𝑚 (KQ‘𝐽)) → ((cls‘(KQ‘𝐽))‘𝑚) ∈ (Clsd‘(KQ‘𝐽)))
4944, 46, 48syl2anc 586 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → ((cls‘(KQ‘𝐽))‘𝑚) ∈ (Clsd‘(KQ‘𝐽)))
50 cnclima 21879 . . . . . . . 8 ((𝐹 ∈ (𝐽 Cn (KQ‘𝐽)) ∧ ((cls‘(KQ‘𝐽))‘𝑚) ∈ (Clsd‘(KQ‘𝐽))) → (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)) ∈ (Clsd‘𝐽))
5121, 49, 50syl2anc 586 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)) ∈ (Clsd‘𝐽))
5247sscls 21667 . . . . . . . . 9 (((KQ‘𝐽) ∈ Top ∧ 𝑚 (KQ‘𝐽)) → 𝑚 ⊆ ((cls‘(KQ‘𝐽))‘𝑚))
5344, 46, 52syl2anc 586 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → 𝑚 ⊆ ((cls‘(KQ‘𝐽))‘𝑚))
54 imass2 5968 . . . . . . . 8 (𝑚 ⊆ ((cls‘(KQ‘𝐽))‘𝑚) → (𝐹𝑚) ⊆ (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)))
5553, 54syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → (𝐹𝑚) ⊆ (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)))
5630clsss2 21683 . . . . . . 7 (((𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)) ∈ (Clsd‘𝐽) ∧ (𝐹𝑚) ⊆ (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚))) → ((cls‘𝐽)‘(𝐹𝑚)) ⊆ (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)))
5751, 55, 56syl2anc 586 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → ((cls‘𝐽)‘(𝐹𝑚)) ⊆ (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)))
58 simprrr 780 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧))
59 imass2 5968 . . . . . . . 8 (((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧) → (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)) ⊆ (𝐹 “ (𝐹𝑧)))
6058, 59syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)) ⊆ (𝐹 “ (𝐹𝑧)))
615adantr 483 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → 𝑧𝐽)
626kqsat 22342 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝐽) → (𝐹 “ (𝐹𝑧)) = 𝑧)
6319, 61, 62syl2anc 586 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → (𝐹 “ (𝐹𝑧)) = 𝑧)
6460, 63sseqtrd 4010 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)) ⊆ 𝑧)
6557, 64sstrd 3980 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → ((cls‘𝐽)‘(𝐹𝑚)) ⊆ 𝑧)
66 sseq2 3996 . . . . . . 7 (𝑢 = (𝐹𝑚) → (𝑤𝑢𝑤 ⊆ (𝐹𝑚)))
67 fveq2 6673 . . . . . . . 8 (𝑢 = (𝐹𝑚) → ((cls‘𝐽)‘𝑢) = ((cls‘𝐽)‘(𝐹𝑚)))
6867sseq1d 4001 . . . . . . 7 (𝑢 = (𝐹𝑚) → (((cls‘𝐽)‘𝑢) ⊆ 𝑧 ↔ ((cls‘𝐽)‘(𝐹𝑚)) ⊆ 𝑧))
6966, 68anbi12d 632 . . . . . 6 (𝑢 = (𝐹𝑚) → ((𝑤𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑧) ↔ (𝑤 ⊆ (𝐹𝑚) ∧ ((cls‘𝐽)‘(𝐹𝑚)) ⊆ 𝑧)))
7069rspcev 3626 . . . . 5 (((𝐹𝑚) ∈ 𝐽 ∧ (𝑤 ⊆ (𝐹𝑚) ∧ ((cls‘𝐽)‘(𝐹𝑚)) ⊆ 𝑧)) → ∃𝑢𝐽 (𝑤𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑧))
7124, 41, 65, 70syl12anc 834 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → ∃𝑢𝐽 (𝑤𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑧))
7218, 71rexlimddv 3294 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → ∃𝑢𝐽 (𝑤𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑧))
7372ralrimivva 3194 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) → ∀𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧)∃𝑢𝐽 (𝑤𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑧))
74 isnrm 21946 . 2 (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧)∃𝑢𝐽 (𝑤𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑧)))
752, 73, 74sylanbrc 585 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) → 𝐽 ∈ Nrm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wral 3141  wrex 3142  {crab 3145  cin 3938  wss 3939  𝒫 cpw 4542   cuni 4841  cmpt 5149  ccnv 5557  dom cdm 5558  ran crn 5559  cima 5561  Fun wfun 6352   Fn wfn 6353  cfv 6358  (class class class)co 7159  Topctop 21504  TopOnctopon 21521  Clsdccld 21627  clsccl 21629   Cn ccn 21835  Nrmcnrm 21921  KQckq 22304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-map 8411  df-qtop 16783  df-top 21505  df-topon 21522  df-cld 21630  df-cls 21632  df-cn 21838  df-nrm 21928  df-kq 22305
This theorem is referenced by:  kqnrm  22363
  Copyright terms: Public domain W3C validator