MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqnrmlem2 Structured version   Visualization version   GIF version

Theorem kqnrmlem2 23687
Description: If the Kolmogorov quotient of a space is normal then so is the original space. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqnrmlem2 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) → 𝐽 ∈ Nrm)
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem kqnrmlem2
Dummy variables 𝑚 𝑤 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topontop 22856 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
21adantr 480 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) → 𝐽 ∈ Top)
3 simplr 768 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → (KQ‘𝐽) ∈ Nrm)
4 simpll 766 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → 𝐽 ∈ (TopOn‘𝑋))
5 simprl 770 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → 𝑧𝐽)
6 kqval.2 . . . . . . 7 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
76kqopn 23677 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝐽) → (𝐹𝑧) ∈ (KQ‘𝐽))
84, 5, 7syl2anc 584 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → (𝐹𝑧) ∈ (KQ‘𝐽))
9 simprr 772 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))
109elin1d 4184 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → 𝑤 ∈ (Clsd‘𝐽))
116kqcld 23678 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤 ∈ (Clsd‘𝐽)) → (𝐹𝑤) ∈ (Clsd‘(KQ‘𝐽)))
124, 10, 11syl2anc 584 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → (𝐹𝑤) ∈ (Clsd‘(KQ‘𝐽)))
139elin2d 4185 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → 𝑤 ∈ 𝒫 𝑧)
14 elpwi 4587 . . . . . 6 (𝑤 ∈ 𝒫 𝑧𝑤𝑧)
15 imass2 6094 . . . . . 6 (𝑤𝑧 → (𝐹𝑤) ⊆ (𝐹𝑧))
1613, 14, 153syl 18 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → (𝐹𝑤) ⊆ (𝐹𝑧))
17 nrmsep3 23298 . . . . 5 (((KQ‘𝐽) ∈ Nrm ∧ ((𝐹𝑧) ∈ (KQ‘𝐽) ∧ (𝐹𝑤) ∈ (Clsd‘(KQ‘𝐽)) ∧ (𝐹𝑤) ⊆ (𝐹𝑧))) → ∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))
183, 8, 12, 16, 17syl13anc 1374 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → ∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))
19 simplll 774 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → 𝐽 ∈ (TopOn‘𝑋))
206kqid 23671 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽)))
2119, 20syl 17 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽)))
22 simprl 770 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → 𝑚 ∈ (KQ‘𝐽))
23 cnima 23208 . . . . . 6 ((𝐹 ∈ (𝐽 Cn (KQ‘𝐽)) ∧ 𝑚 ∈ (KQ‘𝐽)) → (𝐹𝑚) ∈ 𝐽)
2421, 22, 23syl2anc 584 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → (𝐹𝑚) ∈ 𝐽)
25 simprrl 780 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → (𝐹𝑤) ⊆ 𝑚)
266kqffn 23668 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
27 fnfun 6643 . . . . . . . 8 (𝐹 Fn 𝑋 → Fun 𝐹)
2819, 26, 273syl 18 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → Fun 𝐹)
2910adantr 480 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → 𝑤 ∈ (Clsd‘𝐽))
30 eqid 2736 . . . . . . . . . 10 𝐽 = 𝐽
3130cldss 22972 . . . . . . . . 9 (𝑤 ∈ (Clsd‘𝐽) → 𝑤 𝐽)
3229, 31syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → 𝑤 𝐽)
33 fndm 6646 . . . . . . . . . 10 (𝐹 Fn 𝑋 → dom 𝐹 = 𝑋)
3419, 26, 333syl 18 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → dom 𝐹 = 𝑋)
35 toponuni 22857 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
3619, 35syl 17 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → 𝑋 = 𝐽)
3734, 36eqtrd 2771 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → dom 𝐹 = 𝐽)
3832, 37sseqtrrd 4001 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → 𝑤 ⊆ dom 𝐹)
39 funimass3 7049 . . . . . . 7 ((Fun 𝐹𝑤 ⊆ dom 𝐹) → ((𝐹𝑤) ⊆ 𝑚𝑤 ⊆ (𝐹𝑚)))
4028, 38, 39syl2anc 584 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → ((𝐹𝑤) ⊆ 𝑚𝑤 ⊆ (𝐹𝑚)))
4125, 40mpbid 232 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → 𝑤 ⊆ (𝐹𝑚))
426kqtopon 23670 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
43 topontop 22856 . . . . . . . . . 10 ((KQ‘𝐽) ∈ (TopOn‘ran 𝐹) → (KQ‘𝐽) ∈ Top)
4419, 42, 433syl 18 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → (KQ‘𝐽) ∈ Top)
45 elssuni 4918 . . . . . . . . . 10 (𝑚 ∈ (KQ‘𝐽) → 𝑚 (KQ‘𝐽))
4645ad2antrl 728 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → 𝑚 (KQ‘𝐽))
47 eqid 2736 . . . . . . . . . 10 (KQ‘𝐽) = (KQ‘𝐽)
4847clscld 22990 . . . . . . . . 9 (((KQ‘𝐽) ∈ Top ∧ 𝑚 (KQ‘𝐽)) → ((cls‘(KQ‘𝐽))‘𝑚) ∈ (Clsd‘(KQ‘𝐽)))
4944, 46, 48syl2anc 584 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → ((cls‘(KQ‘𝐽))‘𝑚) ∈ (Clsd‘(KQ‘𝐽)))
50 cnclima 23211 . . . . . . . 8 ((𝐹 ∈ (𝐽 Cn (KQ‘𝐽)) ∧ ((cls‘(KQ‘𝐽))‘𝑚) ∈ (Clsd‘(KQ‘𝐽))) → (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)) ∈ (Clsd‘𝐽))
5121, 49, 50syl2anc 584 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)) ∈ (Clsd‘𝐽))
5247sscls 22999 . . . . . . . . 9 (((KQ‘𝐽) ∈ Top ∧ 𝑚 (KQ‘𝐽)) → 𝑚 ⊆ ((cls‘(KQ‘𝐽))‘𝑚))
5344, 46, 52syl2anc 584 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → 𝑚 ⊆ ((cls‘(KQ‘𝐽))‘𝑚))
54 imass2 6094 . . . . . . . 8 (𝑚 ⊆ ((cls‘(KQ‘𝐽))‘𝑚) → (𝐹𝑚) ⊆ (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)))
5553, 54syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → (𝐹𝑚) ⊆ (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)))
5630clsss2 23015 . . . . . . 7 (((𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)) ∈ (Clsd‘𝐽) ∧ (𝐹𝑚) ⊆ (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚))) → ((cls‘𝐽)‘(𝐹𝑚)) ⊆ (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)))
5751, 55, 56syl2anc 584 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → ((cls‘𝐽)‘(𝐹𝑚)) ⊆ (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)))
58 simprrr 781 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧))
59 imass2 6094 . . . . . . . 8 (((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧) → (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)) ⊆ (𝐹 “ (𝐹𝑧)))
6058, 59syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)) ⊆ (𝐹 “ (𝐹𝑧)))
615adantr 480 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → 𝑧𝐽)
626kqsat 23674 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝐽) → (𝐹 “ (𝐹𝑧)) = 𝑧)
6319, 61, 62syl2anc 584 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → (𝐹 “ (𝐹𝑧)) = 𝑧)
6460, 63sseqtrd 4000 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)) ⊆ 𝑧)
6557, 64sstrd 3974 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → ((cls‘𝐽)‘(𝐹𝑚)) ⊆ 𝑧)
66 sseq2 3990 . . . . . . 7 (𝑢 = (𝐹𝑚) → (𝑤𝑢𝑤 ⊆ (𝐹𝑚)))
67 fveq2 6881 . . . . . . . 8 (𝑢 = (𝐹𝑚) → ((cls‘𝐽)‘𝑢) = ((cls‘𝐽)‘(𝐹𝑚)))
6867sseq1d 3995 . . . . . . 7 (𝑢 = (𝐹𝑚) → (((cls‘𝐽)‘𝑢) ⊆ 𝑧 ↔ ((cls‘𝐽)‘(𝐹𝑚)) ⊆ 𝑧))
6966, 68anbi12d 632 . . . . . 6 (𝑢 = (𝐹𝑚) → ((𝑤𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑧) ↔ (𝑤 ⊆ (𝐹𝑚) ∧ ((cls‘𝐽)‘(𝐹𝑚)) ⊆ 𝑧)))
7069rspcev 3606 . . . . 5 (((𝐹𝑚) ∈ 𝐽 ∧ (𝑤 ⊆ (𝐹𝑚) ∧ ((cls‘𝐽)‘(𝐹𝑚)) ⊆ 𝑧)) → ∃𝑢𝐽 (𝑤𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑧))
7124, 41, 65, 70syl12anc 836 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → ∃𝑢𝐽 (𝑤𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑧))
7218, 71rexlimddv 3148 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → ∃𝑢𝐽 (𝑤𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑧))
7372ralrimivva 3188 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) → ∀𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧)∃𝑢𝐽 (𝑤𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑧))
74 isnrm 23278 . 2 (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧)∃𝑢𝐽 (𝑤𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑧)))
752, 73, 74sylanbrc 583 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) → 𝐽 ∈ Nrm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  wrex 3061  {crab 3420  cin 3930  wss 3931  𝒫 cpw 4580   cuni 4888  cmpt 5206  ccnv 5658  dom cdm 5659  ran crn 5660  cima 5662  Fun wfun 6530   Fn wfn 6531  cfv 6536  (class class class)co 7410  Topctop 22836  TopOnctopon 22853  Clsdccld 22959  clsccl 22961   Cn ccn 23167  Nrmcnrm 23253  KQckq 23636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-map 8847  df-qtop 17526  df-top 22837  df-topon 22854  df-cld 22962  df-cls 22964  df-cn 23170  df-nrm 23260  df-kq 23637
This theorem is referenced by:  kqnrm  23695
  Copyright terms: Public domain W3C validator