Step | Hyp | Ref
| Expression |
1 | | topontop 21970 |
. . 3
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
2 | 1 | adantr 480 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) → 𝐽 ∈ Top) |
3 | | simplr 765 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → (KQ‘𝐽) ∈ Nrm) |
4 | | simpll 763 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → 𝐽 ∈ (TopOn‘𝑋)) |
5 | | simprl 767 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → 𝑧 ∈ 𝐽) |
6 | | kqval.2 |
. . . . . . 7
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) |
7 | 6 | kqopn 22793 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝐽) → (𝐹 “ 𝑧) ∈ (KQ‘𝐽)) |
8 | 4, 5, 7 | syl2anc 583 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → (𝐹 “ 𝑧) ∈ (KQ‘𝐽)) |
9 | | simprr 769 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧)) |
10 | 9 | elin1d 4128 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → 𝑤 ∈ (Clsd‘𝐽)) |
11 | 6 | kqcld 22794 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤 ∈ (Clsd‘𝐽)) → (𝐹 “ 𝑤) ∈ (Clsd‘(KQ‘𝐽))) |
12 | 4, 10, 11 | syl2anc 583 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → (𝐹 “ 𝑤) ∈ (Clsd‘(KQ‘𝐽))) |
13 | 9 | elin2d 4129 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → 𝑤 ∈ 𝒫 𝑧) |
14 | | elpwi 4539 |
. . . . . 6
⊢ (𝑤 ∈ 𝒫 𝑧 → 𝑤 ⊆ 𝑧) |
15 | | imass2 5999 |
. . . . . 6
⊢ (𝑤 ⊆ 𝑧 → (𝐹 “ 𝑤) ⊆ (𝐹 “ 𝑧)) |
16 | 13, 14, 15 | 3syl 18 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → (𝐹 “ 𝑤) ⊆ (𝐹 “ 𝑧)) |
17 | | nrmsep3 22414 |
. . . . 5
⊢
(((KQ‘𝐽)
∈ Nrm ∧ ((𝐹
“ 𝑧) ∈
(KQ‘𝐽) ∧ (𝐹 “ 𝑤) ∈ (Clsd‘(KQ‘𝐽)) ∧ (𝐹 “ 𝑤) ⊆ (𝐹 “ 𝑧))) → ∃𝑚 ∈ (KQ‘𝐽)((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧))) |
18 | 3, 8, 12, 16, 17 | syl13anc 1370 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → ∃𝑚 ∈ (KQ‘𝐽)((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧))) |
19 | | simplll 771 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → 𝐽 ∈ (TopOn‘𝑋)) |
20 | 6 | kqid 22787 |
. . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽))) |
21 | 19, 20 | syl 17 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽))) |
22 | | simprl 767 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → 𝑚 ∈ (KQ‘𝐽)) |
23 | | cnima 22324 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐽 Cn (KQ‘𝐽)) ∧ 𝑚 ∈ (KQ‘𝐽)) → (◡𝐹 “ 𝑚) ∈ 𝐽) |
24 | 21, 22, 23 | syl2anc 583 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → (◡𝐹 “ 𝑚) ∈ 𝐽) |
25 | | simprrl 777 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → (𝐹 “ 𝑤) ⊆ 𝑚) |
26 | 6 | kqffn 22784 |
. . . . . . . 8
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋) |
27 | | fnfun 6517 |
. . . . . . . 8
⊢ (𝐹 Fn 𝑋 → Fun 𝐹) |
28 | 19, 26, 27 | 3syl 18 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → Fun 𝐹) |
29 | 10 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → 𝑤 ∈ (Clsd‘𝐽)) |
30 | | eqid 2738 |
. . . . . . . . . 10
⊢ ∪ 𝐽 =
∪ 𝐽 |
31 | 30 | cldss 22088 |
. . . . . . . . 9
⊢ (𝑤 ∈ (Clsd‘𝐽) → 𝑤 ⊆ ∪ 𝐽) |
32 | 29, 31 | syl 17 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → 𝑤 ⊆ ∪ 𝐽) |
33 | | fndm 6520 |
. . . . . . . . . 10
⊢ (𝐹 Fn 𝑋 → dom 𝐹 = 𝑋) |
34 | 19, 26, 33 | 3syl 18 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → dom 𝐹 = 𝑋) |
35 | | toponuni 21971 |
. . . . . . . . . 10
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
36 | 19, 35 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → 𝑋 = ∪ 𝐽) |
37 | 34, 36 | eqtrd 2778 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → dom 𝐹 = ∪ 𝐽) |
38 | 32, 37 | sseqtrrd 3958 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → 𝑤 ⊆ dom 𝐹) |
39 | | funimass3 6913 |
. . . . . . 7
⊢ ((Fun
𝐹 ∧ 𝑤 ⊆ dom 𝐹) → ((𝐹 “ 𝑤) ⊆ 𝑚 ↔ 𝑤 ⊆ (◡𝐹 “ 𝑚))) |
40 | 28, 38, 39 | syl2anc 583 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → ((𝐹 “ 𝑤) ⊆ 𝑚 ↔ 𝑤 ⊆ (◡𝐹 “ 𝑚))) |
41 | 25, 40 | mpbid 231 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → 𝑤 ⊆ (◡𝐹 “ 𝑚)) |
42 | 6 | kqtopon 22786 |
. . . . . . . . . 10
⊢ (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹)) |
43 | | topontop 21970 |
. . . . . . . . . 10
⊢
((KQ‘𝐽) ∈
(TopOn‘ran 𝐹) →
(KQ‘𝐽) ∈
Top) |
44 | 19, 42, 43 | 3syl 18 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → (KQ‘𝐽) ∈ Top) |
45 | | elssuni 4868 |
. . . . . . . . . 10
⊢ (𝑚 ∈ (KQ‘𝐽) → 𝑚 ⊆ ∪
(KQ‘𝐽)) |
46 | 45 | ad2antrl 724 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → 𝑚 ⊆ ∪
(KQ‘𝐽)) |
47 | | eqid 2738 |
. . . . . . . . . 10
⊢ ∪ (KQ‘𝐽) = ∪
(KQ‘𝐽) |
48 | 47 | clscld 22106 |
. . . . . . . . 9
⊢
(((KQ‘𝐽)
∈ Top ∧ 𝑚 ⊆
∪ (KQ‘𝐽)) → ((cls‘(KQ‘𝐽))‘𝑚) ∈ (Clsd‘(KQ‘𝐽))) |
49 | 44, 46, 48 | syl2anc 583 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → ((cls‘(KQ‘𝐽))‘𝑚) ∈ (Clsd‘(KQ‘𝐽))) |
50 | | cnclima 22327 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝐽 Cn (KQ‘𝐽)) ∧ ((cls‘(KQ‘𝐽))‘𝑚) ∈ (Clsd‘(KQ‘𝐽))) → (◡𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)) ∈ (Clsd‘𝐽)) |
51 | 21, 49, 50 | syl2anc 583 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → (◡𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)) ∈ (Clsd‘𝐽)) |
52 | 47 | sscls 22115 |
. . . . . . . . 9
⊢
(((KQ‘𝐽)
∈ Top ∧ 𝑚 ⊆
∪ (KQ‘𝐽)) → 𝑚 ⊆ ((cls‘(KQ‘𝐽))‘𝑚)) |
53 | 44, 46, 52 | syl2anc 583 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → 𝑚 ⊆ ((cls‘(KQ‘𝐽))‘𝑚)) |
54 | | imass2 5999 |
. . . . . . . 8
⊢ (𝑚 ⊆
((cls‘(KQ‘𝐽))‘𝑚) → (◡𝐹 “ 𝑚) ⊆ (◡𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚))) |
55 | 53, 54 | syl 17 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → (◡𝐹 “ 𝑚) ⊆ (◡𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚))) |
56 | 30 | clsss2 22131 |
. . . . . . 7
⊢ (((◡𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)) ∈ (Clsd‘𝐽) ∧ (◡𝐹 “ 𝑚) ⊆ (◡𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚))) → ((cls‘𝐽)‘(◡𝐹 “ 𝑚)) ⊆ (◡𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚))) |
57 | 51, 55, 56 | syl2anc 583 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → ((cls‘𝐽)‘(◡𝐹 “ 𝑚)) ⊆ (◡𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚))) |
58 | | simprrr 778 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)) |
59 | | imass2 5999 |
. . . . . . . 8
⊢
(((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧) → (◡𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)) ⊆ (◡𝐹 “ (𝐹 “ 𝑧))) |
60 | 58, 59 | syl 17 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → (◡𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)) ⊆ (◡𝐹 “ (𝐹 “ 𝑧))) |
61 | 5 | adantr 480 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → 𝑧 ∈ 𝐽) |
62 | 6 | kqsat 22790 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝐽) → (◡𝐹 “ (𝐹 “ 𝑧)) = 𝑧) |
63 | 19, 61, 62 | syl2anc 583 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → (◡𝐹 “ (𝐹 “ 𝑧)) = 𝑧) |
64 | 60, 63 | sseqtrd 3957 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → (◡𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)) ⊆ 𝑧) |
65 | 57, 64 | sstrd 3927 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → ((cls‘𝐽)‘(◡𝐹 “ 𝑚)) ⊆ 𝑧) |
66 | | sseq2 3943 |
. . . . . . 7
⊢ (𝑢 = (◡𝐹 “ 𝑚) → (𝑤 ⊆ 𝑢 ↔ 𝑤 ⊆ (◡𝐹 “ 𝑚))) |
67 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑢 = (◡𝐹 “ 𝑚) → ((cls‘𝐽)‘𝑢) = ((cls‘𝐽)‘(◡𝐹 “ 𝑚))) |
68 | 67 | sseq1d 3948 |
. . . . . . 7
⊢ (𝑢 = (◡𝐹 “ 𝑚) → (((cls‘𝐽)‘𝑢) ⊆ 𝑧 ↔ ((cls‘𝐽)‘(◡𝐹 “ 𝑚)) ⊆ 𝑧)) |
69 | 66, 68 | anbi12d 630 |
. . . . . 6
⊢ (𝑢 = (◡𝐹 “ 𝑚) → ((𝑤 ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑧) ↔ (𝑤 ⊆ (◡𝐹 “ 𝑚) ∧ ((cls‘𝐽)‘(◡𝐹 “ 𝑚)) ⊆ 𝑧))) |
70 | 69 | rspcev 3552 |
. . . . 5
⊢ (((◡𝐹 “ 𝑚) ∈ 𝐽 ∧ (𝑤 ⊆ (◡𝐹 “ 𝑚) ∧ ((cls‘𝐽)‘(◡𝐹 “ 𝑚)) ⊆ 𝑧)) → ∃𝑢 ∈ 𝐽 (𝑤 ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑧)) |
71 | 24, 41, 65, 70 | syl12anc 833 |
. . . 4
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → ∃𝑢 ∈ 𝐽 (𝑤 ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑧)) |
72 | 18, 71 | rexlimddv 3219 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → ∃𝑢 ∈ 𝐽 (𝑤 ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑧)) |
73 | 72 | ralrimivva 3114 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) →
∀𝑧 ∈ 𝐽 ∀𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧)∃𝑢 ∈ 𝐽 (𝑤 ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑧)) |
74 | | isnrm 22394 |
. 2
⊢ (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑧 ∈ 𝐽 ∀𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧)∃𝑢 ∈ 𝐽 (𝑤 ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑧))) |
75 | 2, 73, 74 | sylanbrc 582 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) → 𝐽 ∈ Nrm) |