MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqnrmlem2 Structured version   Visualization version   GIF version

Theorem kqnrmlem2 23773
Description: If the Kolmogorov quotient of a space is normal then so is the original space. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqnrmlem2 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) → 𝐽 ∈ Nrm)
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem kqnrmlem2
Dummy variables 𝑚 𝑤 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topontop 22940 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
21adantr 480 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) → 𝐽 ∈ Top)
3 simplr 768 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → (KQ‘𝐽) ∈ Nrm)
4 simpll 766 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → 𝐽 ∈ (TopOn‘𝑋))
5 simprl 770 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → 𝑧𝐽)
6 kqval.2 . . . . . . 7 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
76kqopn 23763 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝐽) → (𝐹𝑧) ∈ (KQ‘𝐽))
84, 5, 7syl2anc 583 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → (𝐹𝑧) ∈ (KQ‘𝐽))
9 simprr 772 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))
109elin1d 4227 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → 𝑤 ∈ (Clsd‘𝐽))
116kqcld 23764 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤 ∈ (Clsd‘𝐽)) → (𝐹𝑤) ∈ (Clsd‘(KQ‘𝐽)))
124, 10, 11syl2anc 583 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → (𝐹𝑤) ∈ (Clsd‘(KQ‘𝐽)))
139elin2d 4228 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → 𝑤 ∈ 𝒫 𝑧)
14 elpwi 4629 . . . . . 6 (𝑤 ∈ 𝒫 𝑧𝑤𝑧)
15 imass2 6132 . . . . . 6 (𝑤𝑧 → (𝐹𝑤) ⊆ (𝐹𝑧))
1613, 14, 153syl 18 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → (𝐹𝑤) ⊆ (𝐹𝑧))
17 nrmsep3 23384 . . . . 5 (((KQ‘𝐽) ∈ Nrm ∧ ((𝐹𝑧) ∈ (KQ‘𝐽) ∧ (𝐹𝑤) ∈ (Clsd‘(KQ‘𝐽)) ∧ (𝐹𝑤) ⊆ (𝐹𝑧))) → ∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))
183, 8, 12, 16, 17syl13anc 1372 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → ∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))
19 simplll 774 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → 𝐽 ∈ (TopOn‘𝑋))
206kqid 23757 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽)))
2119, 20syl 17 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽)))
22 simprl 770 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → 𝑚 ∈ (KQ‘𝐽))
23 cnima 23294 . . . . . 6 ((𝐹 ∈ (𝐽 Cn (KQ‘𝐽)) ∧ 𝑚 ∈ (KQ‘𝐽)) → (𝐹𝑚) ∈ 𝐽)
2421, 22, 23syl2anc 583 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → (𝐹𝑚) ∈ 𝐽)
25 simprrl 780 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → (𝐹𝑤) ⊆ 𝑚)
266kqffn 23754 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
27 fnfun 6679 . . . . . . . 8 (𝐹 Fn 𝑋 → Fun 𝐹)
2819, 26, 273syl 18 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → Fun 𝐹)
2910adantr 480 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → 𝑤 ∈ (Clsd‘𝐽))
30 eqid 2740 . . . . . . . . . 10 𝐽 = 𝐽
3130cldss 23058 . . . . . . . . 9 (𝑤 ∈ (Clsd‘𝐽) → 𝑤 𝐽)
3229, 31syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → 𝑤 𝐽)
33 fndm 6682 . . . . . . . . . 10 (𝐹 Fn 𝑋 → dom 𝐹 = 𝑋)
3419, 26, 333syl 18 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → dom 𝐹 = 𝑋)
35 toponuni 22941 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
3619, 35syl 17 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → 𝑋 = 𝐽)
3734, 36eqtrd 2780 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → dom 𝐹 = 𝐽)
3832, 37sseqtrrd 4050 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → 𝑤 ⊆ dom 𝐹)
39 funimass3 7087 . . . . . . 7 ((Fun 𝐹𝑤 ⊆ dom 𝐹) → ((𝐹𝑤) ⊆ 𝑚𝑤 ⊆ (𝐹𝑚)))
4028, 38, 39syl2anc 583 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → ((𝐹𝑤) ⊆ 𝑚𝑤 ⊆ (𝐹𝑚)))
4125, 40mpbid 232 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → 𝑤 ⊆ (𝐹𝑚))
426kqtopon 23756 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
43 topontop 22940 . . . . . . . . . 10 ((KQ‘𝐽) ∈ (TopOn‘ran 𝐹) → (KQ‘𝐽) ∈ Top)
4419, 42, 433syl 18 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → (KQ‘𝐽) ∈ Top)
45 elssuni 4961 . . . . . . . . . 10 (𝑚 ∈ (KQ‘𝐽) → 𝑚 (KQ‘𝐽))
4645ad2antrl 727 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → 𝑚 (KQ‘𝐽))
47 eqid 2740 . . . . . . . . . 10 (KQ‘𝐽) = (KQ‘𝐽)
4847clscld 23076 . . . . . . . . 9 (((KQ‘𝐽) ∈ Top ∧ 𝑚 (KQ‘𝐽)) → ((cls‘(KQ‘𝐽))‘𝑚) ∈ (Clsd‘(KQ‘𝐽)))
4944, 46, 48syl2anc 583 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → ((cls‘(KQ‘𝐽))‘𝑚) ∈ (Clsd‘(KQ‘𝐽)))
50 cnclima 23297 . . . . . . . 8 ((𝐹 ∈ (𝐽 Cn (KQ‘𝐽)) ∧ ((cls‘(KQ‘𝐽))‘𝑚) ∈ (Clsd‘(KQ‘𝐽))) → (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)) ∈ (Clsd‘𝐽))
5121, 49, 50syl2anc 583 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)) ∈ (Clsd‘𝐽))
5247sscls 23085 . . . . . . . . 9 (((KQ‘𝐽) ∈ Top ∧ 𝑚 (KQ‘𝐽)) → 𝑚 ⊆ ((cls‘(KQ‘𝐽))‘𝑚))
5344, 46, 52syl2anc 583 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → 𝑚 ⊆ ((cls‘(KQ‘𝐽))‘𝑚))
54 imass2 6132 . . . . . . . 8 (𝑚 ⊆ ((cls‘(KQ‘𝐽))‘𝑚) → (𝐹𝑚) ⊆ (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)))
5553, 54syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → (𝐹𝑚) ⊆ (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)))
5630clsss2 23101 . . . . . . 7 (((𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)) ∈ (Clsd‘𝐽) ∧ (𝐹𝑚) ⊆ (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚))) → ((cls‘𝐽)‘(𝐹𝑚)) ⊆ (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)))
5751, 55, 56syl2anc 583 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → ((cls‘𝐽)‘(𝐹𝑚)) ⊆ (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)))
58 simprrr 781 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧))
59 imass2 6132 . . . . . . . 8 (((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧) → (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)) ⊆ (𝐹 “ (𝐹𝑧)))
6058, 59syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)) ⊆ (𝐹 “ (𝐹𝑧)))
615adantr 480 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → 𝑧𝐽)
626kqsat 23760 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝐽) → (𝐹 “ (𝐹𝑧)) = 𝑧)
6319, 61, 62syl2anc 583 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → (𝐹 “ (𝐹𝑧)) = 𝑧)
6460, 63sseqtrd 4049 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)) ⊆ 𝑧)
6557, 64sstrd 4019 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → ((cls‘𝐽)‘(𝐹𝑚)) ⊆ 𝑧)
66 sseq2 4035 . . . . . . 7 (𝑢 = (𝐹𝑚) → (𝑤𝑢𝑤 ⊆ (𝐹𝑚)))
67 fveq2 6920 . . . . . . . 8 (𝑢 = (𝐹𝑚) → ((cls‘𝐽)‘𝑢) = ((cls‘𝐽)‘(𝐹𝑚)))
6867sseq1d 4040 . . . . . . 7 (𝑢 = (𝐹𝑚) → (((cls‘𝐽)‘𝑢) ⊆ 𝑧 ↔ ((cls‘𝐽)‘(𝐹𝑚)) ⊆ 𝑧))
6966, 68anbi12d 631 . . . . . 6 (𝑢 = (𝐹𝑚) → ((𝑤𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑧) ↔ (𝑤 ⊆ (𝐹𝑚) ∧ ((cls‘𝐽)‘(𝐹𝑚)) ⊆ 𝑧)))
7069rspcev 3635 . . . . 5 (((𝐹𝑚) ∈ 𝐽 ∧ (𝑤 ⊆ (𝐹𝑚) ∧ ((cls‘𝐽)‘(𝐹𝑚)) ⊆ 𝑧)) → ∃𝑢𝐽 (𝑤𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑧))
7124, 41, 65, 70syl12anc 836 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → ∃𝑢𝐽 (𝑤𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑧))
7218, 71rexlimddv 3167 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → ∃𝑢𝐽 (𝑤𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑧))
7372ralrimivva 3208 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) → ∀𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧)∃𝑢𝐽 (𝑤𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑧))
74 isnrm 23364 . 2 (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧)∃𝑢𝐽 (𝑤𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑧)))
752, 73, 74sylanbrc 582 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) → 𝐽 ∈ Nrm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  {crab 3443  cin 3975  wss 3976  𝒫 cpw 4622   cuni 4931  cmpt 5249  ccnv 5699  dom cdm 5700  ran crn 5701  cima 5703  Fun wfun 6567   Fn wfn 6568  cfv 6573  (class class class)co 7448  Topctop 22920  TopOnctopon 22937  Clsdccld 23045  clsccl 23047   Cn ccn 23253  Nrmcnrm 23339  KQckq 23722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-qtop 17567  df-top 22921  df-topon 22938  df-cld 23048  df-cls 23050  df-cn 23256  df-nrm 23346  df-kq 23723
This theorem is referenced by:  kqnrm  23781
  Copyright terms: Public domain W3C validator