MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqnrmlem2 Structured version   Visualization version   GIF version

Theorem kqnrmlem2 23659
Description: If the Kolmogorov quotient of a space is normal then so is the original space. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqnrmlem2 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) → 𝐽 ∈ Nrm)
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem kqnrmlem2
Dummy variables 𝑚 𝑤 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topontop 22828 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
21adantr 480 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) → 𝐽 ∈ Top)
3 simplr 768 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → (KQ‘𝐽) ∈ Nrm)
4 simpll 766 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → 𝐽 ∈ (TopOn‘𝑋))
5 simprl 770 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → 𝑧𝐽)
6 kqval.2 . . . . . . 7 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
76kqopn 23649 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝐽) → (𝐹𝑧) ∈ (KQ‘𝐽))
84, 5, 7syl2anc 584 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → (𝐹𝑧) ∈ (KQ‘𝐽))
9 simprr 772 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))
109elin1d 4151 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → 𝑤 ∈ (Clsd‘𝐽))
116kqcld 23650 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤 ∈ (Clsd‘𝐽)) → (𝐹𝑤) ∈ (Clsd‘(KQ‘𝐽)))
124, 10, 11syl2anc 584 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → (𝐹𝑤) ∈ (Clsd‘(KQ‘𝐽)))
139elin2d 4152 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → 𝑤 ∈ 𝒫 𝑧)
14 elpwi 4554 . . . . . 6 (𝑤 ∈ 𝒫 𝑧𝑤𝑧)
15 imass2 6050 . . . . . 6 (𝑤𝑧 → (𝐹𝑤) ⊆ (𝐹𝑧))
1613, 14, 153syl 18 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → (𝐹𝑤) ⊆ (𝐹𝑧))
17 nrmsep3 23270 . . . . 5 (((KQ‘𝐽) ∈ Nrm ∧ ((𝐹𝑧) ∈ (KQ‘𝐽) ∧ (𝐹𝑤) ∈ (Clsd‘(KQ‘𝐽)) ∧ (𝐹𝑤) ⊆ (𝐹𝑧))) → ∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))
183, 8, 12, 16, 17syl13anc 1374 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → ∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))
19 simplll 774 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → 𝐽 ∈ (TopOn‘𝑋))
206kqid 23643 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽)))
2119, 20syl 17 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽)))
22 simprl 770 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → 𝑚 ∈ (KQ‘𝐽))
23 cnima 23180 . . . . . 6 ((𝐹 ∈ (𝐽 Cn (KQ‘𝐽)) ∧ 𝑚 ∈ (KQ‘𝐽)) → (𝐹𝑚) ∈ 𝐽)
2421, 22, 23syl2anc 584 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → (𝐹𝑚) ∈ 𝐽)
25 simprrl 780 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → (𝐹𝑤) ⊆ 𝑚)
266kqffn 23640 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
27 fnfun 6581 . . . . . . . 8 (𝐹 Fn 𝑋 → Fun 𝐹)
2819, 26, 273syl 18 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → Fun 𝐹)
2910adantr 480 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → 𝑤 ∈ (Clsd‘𝐽))
30 eqid 2731 . . . . . . . . . 10 𝐽 = 𝐽
3130cldss 22944 . . . . . . . . 9 (𝑤 ∈ (Clsd‘𝐽) → 𝑤 𝐽)
3229, 31syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → 𝑤 𝐽)
33 fndm 6584 . . . . . . . . . 10 (𝐹 Fn 𝑋 → dom 𝐹 = 𝑋)
3419, 26, 333syl 18 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → dom 𝐹 = 𝑋)
35 toponuni 22829 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
3619, 35syl 17 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → 𝑋 = 𝐽)
3734, 36eqtrd 2766 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → dom 𝐹 = 𝐽)
3832, 37sseqtrrd 3967 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → 𝑤 ⊆ dom 𝐹)
39 funimass3 6987 . . . . . . 7 ((Fun 𝐹𝑤 ⊆ dom 𝐹) → ((𝐹𝑤) ⊆ 𝑚𝑤 ⊆ (𝐹𝑚)))
4028, 38, 39syl2anc 584 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → ((𝐹𝑤) ⊆ 𝑚𝑤 ⊆ (𝐹𝑚)))
4125, 40mpbid 232 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → 𝑤 ⊆ (𝐹𝑚))
426kqtopon 23642 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
43 topontop 22828 . . . . . . . . . 10 ((KQ‘𝐽) ∈ (TopOn‘ran 𝐹) → (KQ‘𝐽) ∈ Top)
4419, 42, 433syl 18 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → (KQ‘𝐽) ∈ Top)
45 elssuni 4887 . . . . . . . . . 10 (𝑚 ∈ (KQ‘𝐽) → 𝑚 (KQ‘𝐽))
4645ad2antrl 728 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → 𝑚 (KQ‘𝐽))
47 eqid 2731 . . . . . . . . . 10 (KQ‘𝐽) = (KQ‘𝐽)
4847clscld 22962 . . . . . . . . 9 (((KQ‘𝐽) ∈ Top ∧ 𝑚 (KQ‘𝐽)) → ((cls‘(KQ‘𝐽))‘𝑚) ∈ (Clsd‘(KQ‘𝐽)))
4944, 46, 48syl2anc 584 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → ((cls‘(KQ‘𝐽))‘𝑚) ∈ (Clsd‘(KQ‘𝐽)))
50 cnclima 23183 . . . . . . . 8 ((𝐹 ∈ (𝐽 Cn (KQ‘𝐽)) ∧ ((cls‘(KQ‘𝐽))‘𝑚) ∈ (Clsd‘(KQ‘𝐽))) → (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)) ∈ (Clsd‘𝐽))
5121, 49, 50syl2anc 584 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)) ∈ (Clsd‘𝐽))
5247sscls 22971 . . . . . . . . 9 (((KQ‘𝐽) ∈ Top ∧ 𝑚 (KQ‘𝐽)) → 𝑚 ⊆ ((cls‘(KQ‘𝐽))‘𝑚))
5344, 46, 52syl2anc 584 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → 𝑚 ⊆ ((cls‘(KQ‘𝐽))‘𝑚))
54 imass2 6050 . . . . . . . 8 (𝑚 ⊆ ((cls‘(KQ‘𝐽))‘𝑚) → (𝐹𝑚) ⊆ (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)))
5553, 54syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → (𝐹𝑚) ⊆ (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)))
5630clsss2 22987 . . . . . . 7 (((𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)) ∈ (Clsd‘𝐽) ∧ (𝐹𝑚) ⊆ (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚))) → ((cls‘𝐽)‘(𝐹𝑚)) ⊆ (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)))
5751, 55, 56syl2anc 584 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → ((cls‘𝐽)‘(𝐹𝑚)) ⊆ (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)))
58 simprrr 781 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧))
59 imass2 6050 . . . . . . . 8 (((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧) → (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)) ⊆ (𝐹 “ (𝐹𝑧)))
6058, 59syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)) ⊆ (𝐹 “ (𝐹𝑧)))
615adantr 480 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → 𝑧𝐽)
626kqsat 23646 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝐽) → (𝐹 “ (𝐹𝑧)) = 𝑧)
6319, 61, 62syl2anc 584 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → (𝐹 “ (𝐹𝑧)) = 𝑧)
6460, 63sseqtrd 3966 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → (𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)) ⊆ 𝑧)
6557, 64sstrd 3940 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → ((cls‘𝐽)‘(𝐹𝑚)) ⊆ 𝑧)
66 sseq2 3956 . . . . . . 7 (𝑢 = (𝐹𝑚) → (𝑤𝑢𝑤 ⊆ (𝐹𝑚)))
67 fveq2 6822 . . . . . . . 8 (𝑢 = (𝐹𝑚) → ((cls‘𝐽)‘𝑢) = ((cls‘𝐽)‘(𝐹𝑚)))
6867sseq1d 3961 . . . . . . 7 (𝑢 = (𝐹𝑚) → (((cls‘𝐽)‘𝑢) ⊆ 𝑧 ↔ ((cls‘𝐽)‘(𝐹𝑚)) ⊆ 𝑧))
6966, 68anbi12d 632 . . . . . 6 (𝑢 = (𝐹𝑚) → ((𝑤𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑧) ↔ (𝑤 ⊆ (𝐹𝑚) ∧ ((cls‘𝐽)‘(𝐹𝑚)) ⊆ 𝑧)))
7069rspcev 3572 . . . . 5 (((𝐹𝑚) ∈ 𝐽 ∧ (𝑤 ⊆ (𝐹𝑚) ∧ ((cls‘𝐽)‘(𝐹𝑚)) ⊆ 𝑧)) → ∃𝑢𝐽 (𝑤𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑧))
7124, 41, 65, 70syl12anc 836 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹𝑧)))) → ∃𝑢𝐽 (𝑤𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑧))
7218, 71rexlimddv 3139 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → ∃𝑢𝐽 (𝑤𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑧))
7372ralrimivva 3175 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) → ∀𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧)∃𝑢𝐽 (𝑤𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑧))
74 isnrm 23250 . 2 (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑧𝐽𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧)∃𝑢𝐽 (𝑤𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑧)))
752, 73, 74sylanbrc 583 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) → 𝐽 ∈ Nrm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  {crab 3395  cin 3896  wss 3897  𝒫 cpw 4547   cuni 4856  cmpt 5170  ccnv 5613  dom cdm 5614  ran crn 5615  cima 5617  Fun wfun 6475   Fn wfn 6476  cfv 6481  (class class class)co 7346  Topctop 22808  TopOnctopon 22825  Clsdccld 22931  clsccl 22933   Cn ccn 23139  Nrmcnrm 23225  KQckq 23608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-qtop 17411  df-top 22809  df-topon 22826  df-cld 22934  df-cls 22936  df-cn 23142  df-nrm 23232  df-kq 23609
This theorem is referenced by:  kqnrm  23667
  Copyright terms: Public domain W3C validator