| Step | Hyp | Ref
| Expression |
| 1 | | topontop 22856 |
. . 3
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
| 2 | 1 | adantr 480 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) → 𝐽 ∈ Top) |
| 3 | | simplr 768 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → (KQ‘𝐽) ∈ Nrm) |
| 4 | | simpll 766 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → 𝐽 ∈ (TopOn‘𝑋)) |
| 5 | | simprl 770 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → 𝑧 ∈ 𝐽) |
| 6 | | kqval.2 |
. . . . . . 7
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) |
| 7 | 6 | kqopn 23677 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝐽) → (𝐹 “ 𝑧) ∈ (KQ‘𝐽)) |
| 8 | 4, 5, 7 | syl2anc 584 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → (𝐹 “ 𝑧) ∈ (KQ‘𝐽)) |
| 9 | | simprr 772 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧)) |
| 10 | 9 | elin1d 4184 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → 𝑤 ∈ (Clsd‘𝐽)) |
| 11 | 6 | kqcld 23678 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑤 ∈ (Clsd‘𝐽)) → (𝐹 “ 𝑤) ∈ (Clsd‘(KQ‘𝐽))) |
| 12 | 4, 10, 11 | syl2anc 584 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → (𝐹 “ 𝑤) ∈ (Clsd‘(KQ‘𝐽))) |
| 13 | 9 | elin2d 4185 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → 𝑤 ∈ 𝒫 𝑧) |
| 14 | | elpwi 4587 |
. . . . . 6
⊢ (𝑤 ∈ 𝒫 𝑧 → 𝑤 ⊆ 𝑧) |
| 15 | | imass2 6094 |
. . . . . 6
⊢ (𝑤 ⊆ 𝑧 → (𝐹 “ 𝑤) ⊆ (𝐹 “ 𝑧)) |
| 16 | 13, 14, 15 | 3syl 18 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → (𝐹 “ 𝑤) ⊆ (𝐹 “ 𝑧)) |
| 17 | | nrmsep3 23298 |
. . . . 5
⊢
(((KQ‘𝐽)
∈ Nrm ∧ ((𝐹
“ 𝑧) ∈
(KQ‘𝐽) ∧ (𝐹 “ 𝑤) ∈ (Clsd‘(KQ‘𝐽)) ∧ (𝐹 “ 𝑤) ⊆ (𝐹 “ 𝑧))) → ∃𝑚 ∈ (KQ‘𝐽)((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧))) |
| 18 | 3, 8, 12, 16, 17 | syl13anc 1374 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → ∃𝑚 ∈ (KQ‘𝐽)((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧))) |
| 19 | | simplll 774 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → 𝐽 ∈ (TopOn‘𝑋)) |
| 20 | 6 | kqid 23671 |
. . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽))) |
| 21 | 19, 20 | syl 17 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽))) |
| 22 | | simprl 770 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → 𝑚 ∈ (KQ‘𝐽)) |
| 23 | | cnima 23208 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐽 Cn (KQ‘𝐽)) ∧ 𝑚 ∈ (KQ‘𝐽)) → (◡𝐹 “ 𝑚) ∈ 𝐽) |
| 24 | 21, 22, 23 | syl2anc 584 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → (◡𝐹 “ 𝑚) ∈ 𝐽) |
| 25 | | simprrl 780 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → (𝐹 “ 𝑤) ⊆ 𝑚) |
| 26 | 6 | kqffn 23668 |
. . . . . . . 8
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋) |
| 27 | | fnfun 6643 |
. . . . . . . 8
⊢ (𝐹 Fn 𝑋 → Fun 𝐹) |
| 28 | 19, 26, 27 | 3syl 18 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → Fun 𝐹) |
| 29 | 10 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → 𝑤 ∈ (Clsd‘𝐽)) |
| 30 | | eqid 2736 |
. . . . . . . . . 10
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 31 | 30 | cldss 22972 |
. . . . . . . . 9
⊢ (𝑤 ∈ (Clsd‘𝐽) → 𝑤 ⊆ ∪ 𝐽) |
| 32 | 29, 31 | syl 17 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → 𝑤 ⊆ ∪ 𝐽) |
| 33 | | fndm 6646 |
. . . . . . . . . 10
⊢ (𝐹 Fn 𝑋 → dom 𝐹 = 𝑋) |
| 34 | 19, 26, 33 | 3syl 18 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → dom 𝐹 = 𝑋) |
| 35 | | toponuni 22857 |
. . . . . . . . . 10
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
| 36 | 19, 35 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → 𝑋 = ∪ 𝐽) |
| 37 | 34, 36 | eqtrd 2771 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → dom 𝐹 = ∪ 𝐽) |
| 38 | 32, 37 | sseqtrrd 4001 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → 𝑤 ⊆ dom 𝐹) |
| 39 | | funimass3 7049 |
. . . . . . 7
⊢ ((Fun
𝐹 ∧ 𝑤 ⊆ dom 𝐹) → ((𝐹 “ 𝑤) ⊆ 𝑚 ↔ 𝑤 ⊆ (◡𝐹 “ 𝑚))) |
| 40 | 28, 38, 39 | syl2anc 584 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → ((𝐹 “ 𝑤) ⊆ 𝑚 ↔ 𝑤 ⊆ (◡𝐹 “ 𝑚))) |
| 41 | 25, 40 | mpbid 232 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → 𝑤 ⊆ (◡𝐹 “ 𝑚)) |
| 42 | 6 | kqtopon 23670 |
. . . . . . . . . 10
⊢ (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹)) |
| 43 | | topontop 22856 |
. . . . . . . . . 10
⊢
((KQ‘𝐽) ∈
(TopOn‘ran 𝐹) →
(KQ‘𝐽) ∈
Top) |
| 44 | 19, 42, 43 | 3syl 18 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → (KQ‘𝐽) ∈ Top) |
| 45 | | elssuni 4918 |
. . . . . . . . . 10
⊢ (𝑚 ∈ (KQ‘𝐽) → 𝑚 ⊆ ∪
(KQ‘𝐽)) |
| 46 | 45 | ad2antrl 728 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → 𝑚 ⊆ ∪
(KQ‘𝐽)) |
| 47 | | eqid 2736 |
. . . . . . . . . 10
⊢ ∪ (KQ‘𝐽) = ∪
(KQ‘𝐽) |
| 48 | 47 | clscld 22990 |
. . . . . . . . 9
⊢
(((KQ‘𝐽)
∈ Top ∧ 𝑚 ⊆
∪ (KQ‘𝐽)) → ((cls‘(KQ‘𝐽))‘𝑚) ∈ (Clsd‘(KQ‘𝐽))) |
| 49 | 44, 46, 48 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → ((cls‘(KQ‘𝐽))‘𝑚) ∈ (Clsd‘(KQ‘𝐽))) |
| 50 | | cnclima 23211 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝐽 Cn (KQ‘𝐽)) ∧ ((cls‘(KQ‘𝐽))‘𝑚) ∈ (Clsd‘(KQ‘𝐽))) → (◡𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)) ∈ (Clsd‘𝐽)) |
| 51 | 21, 49, 50 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → (◡𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)) ∈ (Clsd‘𝐽)) |
| 52 | 47 | sscls 22999 |
. . . . . . . . 9
⊢
(((KQ‘𝐽)
∈ Top ∧ 𝑚 ⊆
∪ (KQ‘𝐽)) → 𝑚 ⊆ ((cls‘(KQ‘𝐽))‘𝑚)) |
| 53 | 44, 46, 52 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → 𝑚 ⊆ ((cls‘(KQ‘𝐽))‘𝑚)) |
| 54 | | imass2 6094 |
. . . . . . . 8
⊢ (𝑚 ⊆
((cls‘(KQ‘𝐽))‘𝑚) → (◡𝐹 “ 𝑚) ⊆ (◡𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚))) |
| 55 | 53, 54 | syl 17 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → (◡𝐹 “ 𝑚) ⊆ (◡𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚))) |
| 56 | 30 | clsss2 23015 |
. . . . . . 7
⊢ (((◡𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)) ∈ (Clsd‘𝐽) ∧ (◡𝐹 “ 𝑚) ⊆ (◡𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚))) → ((cls‘𝐽)‘(◡𝐹 “ 𝑚)) ⊆ (◡𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚))) |
| 57 | 51, 55, 56 | syl2anc 584 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → ((cls‘𝐽)‘(◡𝐹 “ 𝑚)) ⊆ (◡𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚))) |
| 58 | | simprrr 781 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)) |
| 59 | | imass2 6094 |
. . . . . . . 8
⊢
(((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧) → (◡𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)) ⊆ (◡𝐹 “ (𝐹 “ 𝑧))) |
| 60 | 58, 59 | syl 17 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → (◡𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)) ⊆ (◡𝐹 “ (𝐹 “ 𝑧))) |
| 61 | 5 | adantr 480 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → 𝑧 ∈ 𝐽) |
| 62 | 6 | kqsat 23674 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝐽) → (◡𝐹 “ (𝐹 “ 𝑧)) = 𝑧) |
| 63 | 19, 61, 62 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → (◡𝐹 “ (𝐹 “ 𝑧)) = 𝑧) |
| 64 | 60, 63 | sseqtrd 4000 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → (◡𝐹 “ ((cls‘(KQ‘𝐽))‘𝑚)) ⊆ 𝑧) |
| 65 | 57, 64 | sstrd 3974 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → ((cls‘𝐽)‘(◡𝐹 “ 𝑚)) ⊆ 𝑧) |
| 66 | | sseq2 3990 |
. . . . . . 7
⊢ (𝑢 = (◡𝐹 “ 𝑚) → (𝑤 ⊆ 𝑢 ↔ 𝑤 ⊆ (◡𝐹 “ 𝑚))) |
| 67 | | fveq2 6881 |
. . . . . . . 8
⊢ (𝑢 = (◡𝐹 “ 𝑚) → ((cls‘𝐽)‘𝑢) = ((cls‘𝐽)‘(◡𝐹 “ 𝑚))) |
| 68 | 67 | sseq1d 3995 |
. . . . . . 7
⊢ (𝑢 = (◡𝐹 “ 𝑚) → (((cls‘𝐽)‘𝑢) ⊆ 𝑧 ↔ ((cls‘𝐽)‘(◡𝐹 “ 𝑚)) ⊆ 𝑧)) |
| 69 | 66, 68 | anbi12d 632 |
. . . . . 6
⊢ (𝑢 = (◡𝐹 “ 𝑚) → ((𝑤 ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑧) ↔ (𝑤 ⊆ (◡𝐹 “ 𝑚) ∧ ((cls‘𝐽)‘(◡𝐹 “ 𝑚)) ⊆ 𝑧))) |
| 70 | 69 | rspcev 3606 |
. . . . 5
⊢ (((◡𝐹 “ 𝑚) ∈ 𝐽 ∧ (𝑤 ⊆ (◡𝐹 “ 𝑚) ∧ ((cls‘𝐽)‘(◡𝐹 “ 𝑚)) ⊆ 𝑧)) → ∃𝑢 ∈ 𝐽 (𝑤 ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑧)) |
| 71 | 24, 41, 65, 70 | syl12anc 836 |
. . . 4
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) ∧ (𝑚 ∈ (KQ‘𝐽) ∧ ((𝐹 “ 𝑤) ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ (𝐹 “ 𝑧)))) → ∃𝑢 ∈ 𝐽 (𝑤 ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑧)) |
| 72 | 18, 71 | rexlimddv 3148 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) ∧ (𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧))) → ∃𝑢 ∈ 𝐽 (𝑤 ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑧)) |
| 73 | 72 | ralrimivva 3188 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) →
∀𝑧 ∈ 𝐽 ∀𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧)∃𝑢 ∈ 𝐽 (𝑤 ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑧)) |
| 74 | | isnrm 23278 |
. 2
⊢ (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑧 ∈ 𝐽 ∀𝑤 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑧)∃𝑢 ∈ 𝐽 (𝑤 ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑧))) |
| 75 | 2, 73, 74 | sylanbrc 583 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Nrm) → 𝐽 ∈ Nrm) |