MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqnrmlem1 Structured version   Visualization version   GIF version

Theorem kqnrmlem1 23752
Description: A Kolmogorov quotient of a normal space is normal. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqnrmlem1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) → (KQ‘𝐽) ∈ Nrm)
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem kqnrmlem1
Dummy variables 𝑚 𝑤 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kqval.2 . . . . 5 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
21kqtopon 23736 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
32adantr 480 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
4 topontop 22920 . . 3 ((KQ‘𝐽) ∈ (TopOn‘ran 𝐹) → (KQ‘𝐽) ∈ Top)
53, 4syl 17 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) → (KQ‘𝐽) ∈ Top)
6 simplr 768 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → 𝐽 ∈ Nrm)
71kqid 23737 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽)))
87ad2antrr 726 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽)))
9 simprl 770 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → 𝑧 ∈ (KQ‘𝐽))
10 cnima 23274 . . . . . 6 ((𝐹 ∈ (𝐽 Cn (KQ‘𝐽)) ∧ 𝑧 ∈ (KQ‘𝐽)) → (𝐹𝑧) ∈ 𝐽)
118, 9, 10syl2anc 584 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → (𝐹𝑧) ∈ 𝐽)
12 simprr 772 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))
1312elin1d 4203 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → 𝑤 ∈ (Clsd‘(KQ‘𝐽)))
14 cnclima 23277 . . . . . 6 ((𝐹 ∈ (𝐽 Cn (KQ‘𝐽)) ∧ 𝑤 ∈ (Clsd‘(KQ‘𝐽))) → (𝐹𝑤) ∈ (Clsd‘𝐽))
158, 13, 14syl2anc 584 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → (𝐹𝑤) ∈ (Clsd‘𝐽))
1612elin2d 4204 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → 𝑤 ∈ 𝒫 𝑧)
17 elpwi 4606 . . . . . 6 (𝑤 ∈ 𝒫 𝑧𝑤𝑧)
18 imass2 6119 . . . . . 6 (𝑤𝑧 → (𝐹𝑤) ⊆ (𝐹𝑧))
1916, 17, 183syl 18 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → (𝐹𝑤) ⊆ (𝐹𝑧))
20 nrmsep3 23364 . . . . 5 ((𝐽 ∈ Nrm ∧ ((𝐹𝑧) ∈ 𝐽 ∧ (𝐹𝑤) ∈ (Clsd‘𝐽) ∧ (𝐹𝑤) ⊆ (𝐹𝑧))) → ∃𝑢𝐽 ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))
216, 11, 15, 19, 20syl13anc 1373 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → ∃𝑢𝐽 ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))
22 simplll 774 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → 𝐽 ∈ (TopOn‘𝑋))
23 simprl 770 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → 𝑢𝐽)
241kqopn 23743 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑢𝐽) → (𝐹𝑢) ∈ (KQ‘𝐽))
2522, 23, 24syl2anc 584 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → (𝐹𝑢) ∈ (KQ‘𝐽))
26 simprrl 780 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → (𝐹𝑤) ⊆ 𝑢)
271kqffn 23734 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
28 fnfun 6667 . . . . . . . 8 (𝐹 Fn 𝑋 → Fun 𝐹)
2922, 27, 283syl 18 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → Fun 𝐹)
3013adantr 480 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → 𝑤 ∈ (Clsd‘(KQ‘𝐽)))
31 eqid 2736 . . . . . . . . . 10 (KQ‘𝐽) = (KQ‘𝐽)
3231cldss 23038 . . . . . . . . 9 (𝑤 ∈ (Clsd‘(KQ‘𝐽)) → 𝑤 (KQ‘𝐽))
3330, 32syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → 𝑤 (KQ‘𝐽))
34 toponuni 22921 . . . . . . . . 9 ((KQ‘𝐽) ∈ (TopOn‘ran 𝐹) → ran 𝐹 = (KQ‘𝐽))
3522, 2, 343syl 18 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → ran 𝐹 = (KQ‘𝐽))
3633, 35sseqtrrd 4020 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → 𝑤 ⊆ ran 𝐹)
37 funimass1 6647 . . . . . . 7 ((Fun 𝐹𝑤 ⊆ ran 𝐹) → ((𝐹𝑤) ⊆ 𝑢𝑤 ⊆ (𝐹𝑢)))
3829, 36, 37syl2anc 584 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → ((𝐹𝑤) ⊆ 𝑢𝑤 ⊆ (𝐹𝑢)))
3926, 38mpd 15 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → 𝑤 ⊆ (𝐹𝑢))
40 topontop 22920 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
4122, 40syl 17 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → 𝐽 ∈ Top)
42 elssuni 4936 . . . . . . . . . 10 (𝑢𝐽𝑢 𝐽)
4342ad2antrl 728 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → 𝑢 𝐽)
44 eqid 2736 . . . . . . . . . 10 𝐽 = 𝐽
4544clscld 23056 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑢 𝐽) → ((cls‘𝐽)‘𝑢) ∈ (Clsd‘𝐽))
4641, 43, 45syl2anc 584 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → ((cls‘𝐽)‘𝑢) ∈ (Clsd‘𝐽))
471kqcld 23744 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ ((cls‘𝐽)‘𝑢) ∈ (Clsd‘𝐽)) → (𝐹 “ ((cls‘𝐽)‘𝑢)) ∈ (Clsd‘(KQ‘𝐽)))
4822, 46, 47syl2anc 584 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → (𝐹 “ ((cls‘𝐽)‘𝑢)) ∈ (Clsd‘(KQ‘𝐽)))
4944sscls 23065 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑢 𝐽) → 𝑢 ⊆ ((cls‘𝐽)‘𝑢))
5041, 43, 49syl2anc 584 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → 𝑢 ⊆ ((cls‘𝐽)‘𝑢))
51 imass2 6119 . . . . . . . 8 (𝑢 ⊆ ((cls‘𝐽)‘𝑢) → (𝐹𝑢) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑢)))
5250, 51syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → (𝐹𝑢) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑢)))
5331clsss2 23081 . . . . . . 7 (((𝐹 “ ((cls‘𝐽)‘𝑢)) ∈ (Clsd‘(KQ‘𝐽)) ∧ (𝐹𝑢) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑢))) → ((cls‘(KQ‘𝐽))‘(𝐹𝑢)) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑢)))
5448, 52, 53syl2anc 584 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → ((cls‘(KQ‘𝐽))‘(𝐹𝑢)) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑢)))
55 simprrr 781 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧))
5644clsss3 23068 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑢 𝐽) → ((cls‘𝐽)‘𝑢) ⊆ 𝐽)
5741, 43, 56syl2anc 584 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → ((cls‘𝐽)‘𝑢) ⊆ 𝐽)
58 fndm 6670 . . . . . . . . . . 11 (𝐹 Fn 𝑋 → dom 𝐹 = 𝑋)
5922, 27, 583syl 18 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → dom 𝐹 = 𝑋)
60 toponuni 22921 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
6122, 60syl 17 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → 𝑋 = 𝐽)
6259, 61eqtrd 2776 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → dom 𝐹 = 𝐽)
6357, 62sseqtrrd 4020 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → ((cls‘𝐽)‘𝑢) ⊆ dom 𝐹)
64 funimass3 7073 . . . . . . . 8 ((Fun 𝐹 ∧ ((cls‘𝐽)‘𝑢) ⊆ dom 𝐹) → ((𝐹 “ ((cls‘𝐽)‘𝑢)) ⊆ 𝑧 ↔ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))
6529, 63, 64syl2anc 584 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → ((𝐹 “ ((cls‘𝐽)‘𝑢)) ⊆ 𝑧 ↔ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))
6655, 65mpbird 257 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → (𝐹 “ ((cls‘𝐽)‘𝑢)) ⊆ 𝑧)
6754, 66sstrd 3993 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → ((cls‘(KQ‘𝐽))‘(𝐹𝑢)) ⊆ 𝑧)
68 sseq2 4009 . . . . . . 7 (𝑚 = (𝐹𝑢) → (𝑤𝑚𝑤 ⊆ (𝐹𝑢)))
69 fveq2 6905 . . . . . . . 8 (𝑚 = (𝐹𝑢) → ((cls‘(KQ‘𝐽))‘𝑚) = ((cls‘(KQ‘𝐽))‘(𝐹𝑢)))
7069sseq1d 4014 . . . . . . 7 (𝑚 = (𝐹𝑢) → (((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑧 ↔ ((cls‘(KQ‘𝐽))‘(𝐹𝑢)) ⊆ 𝑧))
7168, 70anbi12d 632 . . . . . 6 (𝑚 = (𝐹𝑢) → ((𝑤𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑧) ↔ (𝑤 ⊆ (𝐹𝑢) ∧ ((cls‘(KQ‘𝐽))‘(𝐹𝑢)) ⊆ 𝑧)))
7271rspcev 3621 . . . . 5 (((𝐹𝑢) ∈ (KQ‘𝐽) ∧ (𝑤 ⊆ (𝐹𝑢) ∧ ((cls‘(KQ‘𝐽))‘(𝐹𝑢)) ⊆ 𝑧)) → ∃𝑚 ∈ (KQ‘𝐽)(𝑤𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑧))
7325, 39, 67, 72syl12anc 836 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → ∃𝑚 ∈ (KQ‘𝐽)(𝑤𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑧))
7421, 73rexlimddv 3160 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → ∃𝑚 ∈ (KQ‘𝐽)(𝑤𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑧))
7574ralrimivva 3201 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) → ∀𝑧 ∈ (KQ‘𝐽)∀𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧)∃𝑚 ∈ (KQ‘𝐽)(𝑤𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑧))
76 isnrm 23344 . 2 ((KQ‘𝐽) ∈ Nrm ↔ ((KQ‘𝐽) ∈ Top ∧ ∀𝑧 ∈ (KQ‘𝐽)∀𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧)∃𝑚 ∈ (KQ‘𝐽)(𝑤𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑧)))
775, 75, 76sylanbrc 583 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) → (KQ‘𝐽) ∈ Nrm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3060  wrex 3069  {crab 3435  cin 3949  wss 3950  𝒫 cpw 4599   cuni 4906  cmpt 5224  ccnv 5683  dom cdm 5684  ran crn 5685  cima 5687  Fun wfun 6554   Fn wfn 6555  cfv 6560  (class class class)co 7432  Topctop 22900  TopOnctopon 22917  Clsdccld 23025  clsccl 23027   Cn ccn 23233  Nrmcnrm 23319  KQckq 23702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-map 8869  df-qtop 17553  df-top 22901  df-topon 22918  df-cld 23028  df-cls 23030  df-cn 23236  df-nrm 23326  df-kq 23703
This theorem is referenced by:  kqnrm  23761
  Copyright terms: Public domain W3C validator