MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqnrmlem1 Structured version   Visualization version   GIF version

Theorem kqnrmlem1 22802
Description: A Kolmogorov quotient of a normal space is normal. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqnrmlem1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) → (KQ‘𝐽) ∈ Nrm)
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem kqnrmlem1
Dummy variables 𝑚 𝑤 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kqval.2 . . . . 5 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
21kqtopon 22786 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
32adantr 480 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
4 topontop 21970 . . 3 ((KQ‘𝐽) ∈ (TopOn‘ran 𝐹) → (KQ‘𝐽) ∈ Top)
53, 4syl 17 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) → (KQ‘𝐽) ∈ Top)
6 simplr 765 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → 𝐽 ∈ Nrm)
71kqid 22787 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽)))
87ad2antrr 722 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽)))
9 simprl 767 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → 𝑧 ∈ (KQ‘𝐽))
10 cnima 22324 . . . . . 6 ((𝐹 ∈ (𝐽 Cn (KQ‘𝐽)) ∧ 𝑧 ∈ (KQ‘𝐽)) → (𝐹𝑧) ∈ 𝐽)
118, 9, 10syl2anc 583 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → (𝐹𝑧) ∈ 𝐽)
12 simprr 769 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))
1312elin1d 4128 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → 𝑤 ∈ (Clsd‘(KQ‘𝐽)))
14 cnclima 22327 . . . . . 6 ((𝐹 ∈ (𝐽 Cn (KQ‘𝐽)) ∧ 𝑤 ∈ (Clsd‘(KQ‘𝐽))) → (𝐹𝑤) ∈ (Clsd‘𝐽))
158, 13, 14syl2anc 583 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → (𝐹𝑤) ∈ (Clsd‘𝐽))
1612elin2d 4129 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → 𝑤 ∈ 𝒫 𝑧)
17 elpwi 4539 . . . . . 6 (𝑤 ∈ 𝒫 𝑧𝑤𝑧)
18 imass2 5999 . . . . . 6 (𝑤𝑧 → (𝐹𝑤) ⊆ (𝐹𝑧))
1916, 17, 183syl 18 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → (𝐹𝑤) ⊆ (𝐹𝑧))
20 nrmsep3 22414 . . . . 5 ((𝐽 ∈ Nrm ∧ ((𝐹𝑧) ∈ 𝐽 ∧ (𝐹𝑤) ∈ (Clsd‘𝐽) ∧ (𝐹𝑤) ⊆ (𝐹𝑧))) → ∃𝑢𝐽 ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))
216, 11, 15, 19, 20syl13anc 1370 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → ∃𝑢𝐽 ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))
22 simplll 771 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → 𝐽 ∈ (TopOn‘𝑋))
23 simprl 767 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → 𝑢𝐽)
241kqopn 22793 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑢𝐽) → (𝐹𝑢) ∈ (KQ‘𝐽))
2522, 23, 24syl2anc 583 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → (𝐹𝑢) ∈ (KQ‘𝐽))
26 simprrl 777 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → (𝐹𝑤) ⊆ 𝑢)
271kqffn 22784 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
28 fnfun 6517 . . . . . . . 8 (𝐹 Fn 𝑋 → Fun 𝐹)
2922, 27, 283syl 18 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → Fun 𝐹)
3013adantr 480 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → 𝑤 ∈ (Clsd‘(KQ‘𝐽)))
31 eqid 2738 . . . . . . . . . 10 (KQ‘𝐽) = (KQ‘𝐽)
3231cldss 22088 . . . . . . . . 9 (𝑤 ∈ (Clsd‘(KQ‘𝐽)) → 𝑤 (KQ‘𝐽))
3330, 32syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → 𝑤 (KQ‘𝐽))
34 toponuni 21971 . . . . . . . . 9 ((KQ‘𝐽) ∈ (TopOn‘ran 𝐹) → ran 𝐹 = (KQ‘𝐽))
3522, 2, 343syl 18 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → ran 𝐹 = (KQ‘𝐽))
3633, 35sseqtrrd 3958 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → 𝑤 ⊆ ran 𝐹)
37 funimass1 6500 . . . . . . 7 ((Fun 𝐹𝑤 ⊆ ran 𝐹) → ((𝐹𝑤) ⊆ 𝑢𝑤 ⊆ (𝐹𝑢)))
3829, 36, 37syl2anc 583 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → ((𝐹𝑤) ⊆ 𝑢𝑤 ⊆ (𝐹𝑢)))
3926, 38mpd 15 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → 𝑤 ⊆ (𝐹𝑢))
40 topontop 21970 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
4122, 40syl 17 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → 𝐽 ∈ Top)
42 elssuni 4868 . . . . . . . . . 10 (𝑢𝐽𝑢 𝐽)
4342ad2antrl 724 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → 𝑢 𝐽)
44 eqid 2738 . . . . . . . . . 10 𝐽 = 𝐽
4544clscld 22106 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑢 𝐽) → ((cls‘𝐽)‘𝑢) ∈ (Clsd‘𝐽))
4641, 43, 45syl2anc 583 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → ((cls‘𝐽)‘𝑢) ∈ (Clsd‘𝐽))
471kqcld 22794 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ ((cls‘𝐽)‘𝑢) ∈ (Clsd‘𝐽)) → (𝐹 “ ((cls‘𝐽)‘𝑢)) ∈ (Clsd‘(KQ‘𝐽)))
4822, 46, 47syl2anc 583 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → (𝐹 “ ((cls‘𝐽)‘𝑢)) ∈ (Clsd‘(KQ‘𝐽)))
4944sscls 22115 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑢 𝐽) → 𝑢 ⊆ ((cls‘𝐽)‘𝑢))
5041, 43, 49syl2anc 583 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → 𝑢 ⊆ ((cls‘𝐽)‘𝑢))
51 imass2 5999 . . . . . . . 8 (𝑢 ⊆ ((cls‘𝐽)‘𝑢) → (𝐹𝑢) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑢)))
5250, 51syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → (𝐹𝑢) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑢)))
5331clsss2 22131 . . . . . . 7 (((𝐹 “ ((cls‘𝐽)‘𝑢)) ∈ (Clsd‘(KQ‘𝐽)) ∧ (𝐹𝑢) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑢))) → ((cls‘(KQ‘𝐽))‘(𝐹𝑢)) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑢)))
5448, 52, 53syl2anc 583 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → ((cls‘(KQ‘𝐽))‘(𝐹𝑢)) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑢)))
55 simprrr 778 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧))
5644clsss3 22118 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑢 𝐽) → ((cls‘𝐽)‘𝑢) ⊆ 𝐽)
5741, 43, 56syl2anc 583 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → ((cls‘𝐽)‘𝑢) ⊆ 𝐽)
58 fndm 6520 . . . . . . . . . . 11 (𝐹 Fn 𝑋 → dom 𝐹 = 𝑋)
5922, 27, 583syl 18 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → dom 𝐹 = 𝑋)
60 toponuni 21971 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
6122, 60syl 17 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → 𝑋 = 𝐽)
6259, 61eqtrd 2778 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → dom 𝐹 = 𝐽)
6357, 62sseqtrrd 3958 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → ((cls‘𝐽)‘𝑢) ⊆ dom 𝐹)
64 funimass3 6913 . . . . . . . 8 ((Fun 𝐹 ∧ ((cls‘𝐽)‘𝑢) ⊆ dom 𝐹) → ((𝐹 “ ((cls‘𝐽)‘𝑢)) ⊆ 𝑧 ↔ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))
6529, 63, 64syl2anc 583 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → ((𝐹 “ ((cls‘𝐽)‘𝑢)) ⊆ 𝑧 ↔ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))
6655, 65mpbird 256 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → (𝐹 “ ((cls‘𝐽)‘𝑢)) ⊆ 𝑧)
6754, 66sstrd 3927 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → ((cls‘(KQ‘𝐽))‘(𝐹𝑢)) ⊆ 𝑧)
68 sseq2 3943 . . . . . . 7 (𝑚 = (𝐹𝑢) → (𝑤𝑚𝑤 ⊆ (𝐹𝑢)))
69 fveq2 6756 . . . . . . . 8 (𝑚 = (𝐹𝑢) → ((cls‘(KQ‘𝐽))‘𝑚) = ((cls‘(KQ‘𝐽))‘(𝐹𝑢)))
7069sseq1d 3948 . . . . . . 7 (𝑚 = (𝐹𝑢) → (((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑧 ↔ ((cls‘(KQ‘𝐽))‘(𝐹𝑢)) ⊆ 𝑧))
7168, 70anbi12d 630 . . . . . 6 (𝑚 = (𝐹𝑢) → ((𝑤𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑧) ↔ (𝑤 ⊆ (𝐹𝑢) ∧ ((cls‘(KQ‘𝐽))‘(𝐹𝑢)) ⊆ 𝑧)))
7271rspcev 3552 . . . . 5 (((𝐹𝑢) ∈ (KQ‘𝐽) ∧ (𝑤 ⊆ (𝐹𝑢) ∧ ((cls‘(KQ‘𝐽))‘(𝐹𝑢)) ⊆ 𝑧)) → ∃𝑚 ∈ (KQ‘𝐽)(𝑤𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑧))
7325, 39, 67, 72syl12anc 833 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → ∃𝑚 ∈ (KQ‘𝐽)(𝑤𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑧))
7421, 73rexlimddv 3219 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → ∃𝑚 ∈ (KQ‘𝐽)(𝑤𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑧))
7574ralrimivva 3114 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) → ∀𝑧 ∈ (KQ‘𝐽)∀𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧)∃𝑚 ∈ (KQ‘𝐽)(𝑤𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑧))
76 isnrm 22394 . 2 ((KQ‘𝐽) ∈ Nrm ↔ ((KQ‘𝐽) ∈ Top ∧ ∀𝑧 ∈ (KQ‘𝐽)∀𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧)∃𝑚 ∈ (KQ‘𝐽)(𝑤𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑧)))
775, 75, 76sylanbrc 582 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) → (KQ‘𝐽) ∈ Nrm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {crab 3067  cin 3882  wss 3883  𝒫 cpw 4530   cuni 4836  cmpt 5153  ccnv 5579  dom cdm 5580  ran crn 5581  cima 5583  Fun wfun 6412   Fn wfn 6413  cfv 6418  (class class class)co 7255  Topctop 21950  TopOnctopon 21967  Clsdccld 22075  clsccl 22077   Cn ccn 22283  Nrmcnrm 22369  KQckq 22752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-qtop 17135  df-top 21951  df-topon 21968  df-cld 22078  df-cls 22080  df-cn 22286  df-nrm 22376  df-kq 22753
This theorem is referenced by:  kqnrm  22811
  Copyright terms: Public domain W3C validator