MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqnrmlem1 Structured version   Visualization version   GIF version

Theorem kqnrmlem1 23686
Description: A Kolmogorov quotient of a normal space is normal. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqnrmlem1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) → (KQ‘𝐽) ∈ Nrm)
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem kqnrmlem1
Dummy variables 𝑚 𝑤 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kqval.2 . . . . 5 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
21kqtopon 23670 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
32adantr 480 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
4 topontop 22856 . . 3 ((KQ‘𝐽) ∈ (TopOn‘ran 𝐹) → (KQ‘𝐽) ∈ Top)
53, 4syl 17 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) → (KQ‘𝐽) ∈ Top)
6 simplr 768 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → 𝐽 ∈ Nrm)
71kqid 23671 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽)))
87ad2antrr 726 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽)))
9 simprl 770 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → 𝑧 ∈ (KQ‘𝐽))
10 cnima 23208 . . . . . 6 ((𝐹 ∈ (𝐽 Cn (KQ‘𝐽)) ∧ 𝑧 ∈ (KQ‘𝐽)) → (𝐹𝑧) ∈ 𝐽)
118, 9, 10syl2anc 584 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → (𝐹𝑧) ∈ 𝐽)
12 simprr 772 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))
1312elin1d 4184 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → 𝑤 ∈ (Clsd‘(KQ‘𝐽)))
14 cnclima 23211 . . . . . 6 ((𝐹 ∈ (𝐽 Cn (KQ‘𝐽)) ∧ 𝑤 ∈ (Clsd‘(KQ‘𝐽))) → (𝐹𝑤) ∈ (Clsd‘𝐽))
158, 13, 14syl2anc 584 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → (𝐹𝑤) ∈ (Clsd‘𝐽))
1612elin2d 4185 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → 𝑤 ∈ 𝒫 𝑧)
17 elpwi 4587 . . . . . 6 (𝑤 ∈ 𝒫 𝑧𝑤𝑧)
18 imass2 6094 . . . . . 6 (𝑤𝑧 → (𝐹𝑤) ⊆ (𝐹𝑧))
1916, 17, 183syl 18 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → (𝐹𝑤) ⊆ (𝐹𝑧))
20 nrmsep3 23298 . . . . 5 ((𝐽 ∈ Nrm ∧ ((𝐹𝑧) ∈ 𝐽 ∧ (𝐹𝑤) ∈ (Clsd‘𝐽) ∧ (𝐹𝑤) ⊆ (𝐹𝑧))) → ∃𝑢𝐽 ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))
216, 11, 15, 19, 20syl13anc 1374 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → ∃𝑢𝐽 ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))
22 simplll 774 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → 𝐽 ∈ (TopOn‘𝑋))
23 simprl 770 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → 𝑢𝐽)
241kqopn 23677 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑢𝐽) → (𝐹𝑢) ∈ (KQ‘𝐽))
2522, 23, 24syl2anc 584 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → (𝐹𝑢) ∈ (KQ‘𝐽))
26 simprrl 780 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → (𝐹𝑤) ⊆ 𝑢)
271kqffn 23668 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
28 fnfun 6643 . . . . . . . 8 (𝐹 Fn 𝑋 → Fun 𝐹)
2922, 27, 283syl 18 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → Fun 𝐹)
3013adantr 480 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → 𝑤 ∈ (Clsd‘(KQ‘𝐽)))
31 eqid 2736 . . . . . . . . . 10 (KQ‘𝐽) = (KQ‘𝐽)
3231cldss 22972 . . . . . . . . 9 (𝑤 ∈ (Clsd‘(KQ‘𝐽)) → 𝑤 (KQ‘𝐽))
3330, 32syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → 𝑤 (KQ‘𝐽))
34 toponuni 22857 . . . . . . . . 9 ((KQ‘𝐽) ∈ (TopOn‘ran 𝐹) → ran 𝐹 = (KQ‘𝐽))
3522, 2, 343syl 18 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → ran 𝐹 = (KQ‘𝐽))
3633, 35sseqtrrd 4001 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → 𝑤 ⊆ ran 𝐹)
37 funimass1 6623 . . . . . . 7 ((Fun 𝐹𝑤 ⊆ ran 𝐹) → ((𝐹𝑤) ⊆ 𝑢𝑤 ⊆ (𝐹𝑢)))
3829, 36, 37syl2anc 584 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → ((𝐹𝑤) ⊆ 𝑢𝑤 ⊆ (𝐹𝑢)))
3926, 38mpd 15 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → 𝑤 ⊆ (𝐹𝑢))
40 topontop 22856 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
4122, 40syl 17 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → 𝐽 ∈ Top)
42 elssuni 4918 . . . . . . . . . 10 (𝑢𝐽𝑢 𝐽)
4342ad2antrl 728 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → 𝑢 𝐽)
44 eqid 2736 . . . . . . . . . 10 𝐽 = 𝐽
4544clscld 22990 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑢 𝐽) → ((cls‘𝐽)‘𝑢) ∈ (Clsd‘𝐽))
4641, 43, 45syl2anc 584 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → ((cls‘𝐽)‘𝑢) ∈ (Clsd‘𝐽))
471kqcld 23678 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ ((cls‘𝐽)‘𝑢) ∈ (Clsd‘𝐽)) → (𝐹 “ ((cls‘𝐽)‘𝑢)) ∈ (Clsd‘(KQ‘𝐽)))
4822, 46, 47syl2anc 584 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → (𝐹 “ ((cls‘𝐽)‘𝑢)) ∈ (Clsd‘(KQ‘𝐽)))
4944sscls 22999 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑢 𝐽) → 𝑢 ⊆ ((cls‘𝐽)‘𝑢))
5041, 43, 49syl2anc 584 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → 𝑢 ⊆ ((cls‘𝐽)‘𝑢))
51 imass2 6094 . . . . . . . 8 (𝑢 ⊆ ((cls‘𝐽)‘𝑢) → (𝐹𝑢) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑢)))
5250, 51syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → (𝐹𝑢) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑢)))
5331clsss2 23015 . . . . . . 7 (((𝐹 “ ((cls‘𝐽)‘𝑢)) ∈ (Clsd‘(KQ‘𝐽)) ∧ (𝐹𝑢) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑢))) → ((cls‘(KQ‘𝐽))‘(𝐹𝑢)) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑢)))
5448, 52, 53syl2anc 584 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → ((cls‘(KQ‘𝐽))‘(𝐹𝑢)) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑢)))
55 simprrr 781 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧))
5644clsss3 23002 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑢 𝐽) → ((cls‘𝐽)‘𝑢) ⊆ 𝐽)
5741, 43, 56syl2anc 584 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → ((cls‘𝐽)‘𝑢) ⊆ 𝐽)
58 fndm 6646 . . . . . . . . . . 11 (𝐹 Fn 𝑋 → dom 𝐹 = 𝑋)
5922, 27, 583syl 18 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → dom 𝐹 = 𝑋)
60 toponuni 22857 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
6122, 60syl 17 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → 𝑋 = 𝐽)
6259, 61eqtrd 2771 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → dom 𝐹 = 𝐽)
6357, 62sseqtrrd 4001 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → ((cls‘𝐽)‘𝑢) ⊆ dom 𝐹)
64 funimass3 7049 . . . . . . . 8 ((Fun 𝐹 ∧ ((cls‘𝐽)‘𝑢) ⊆ dom 𝐹) → ((𝐹 “ ((cls‘𝐽)‘𝑢)) ⊆ 𝑧 ↔ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))
6529, 63, 64syl2anc 584 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → ((𝐹 “ ((cls‘𝐽)‘𝑢)) ⊆ 𝑧 ↔ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))
6655, 65mpbird 257 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → (𝐹 “ ((cls‘𝐽)‘𝑢)) ⊆ 𝑧)
6754, 66sstrd 3974 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → ((cls‘(KQ‘𝐽))‘(𝐹𝑢)) ⊆ 𝑧)
68 sseq2 3990 . . . . . . 7 (𝑚 = (𝐹𝑢) → (𝑤𝑚𝑤 ⊆ (𝐹𝑢)))
69 fveq2 6881 . . . . . . . 8 (𝑚 = (𝐹𝑢) → ((cls‘(KQ‘𝐽))‘𝑚) = ((cls‘(KQ‘𝐽))‘(𝐹𝑢)))
7069sseq1d 3995 . . . . . . 7 (𝑚 = (𝐹𝑢) → (((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑧 ↔ ((cls‘(KQ‘𝐽))‘(𝐹𝑢)) ⊆ 𝑧))
7168, 70anbi12d 632 . . . . . 6 (𝑚 = (𝐹𝑢) → ((𝑤𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑧) ↔ (𝑤 ⊆ (𝐹𝑢) ∧ ((cls‘(KQ‘𝐽))‘(𝐹𝑢)) ⊆ 𝑧)))
7271rspcev 3606 . . . . 5 (((𝐹𝑢) ∈ (KQ‘𝐽) ∧ (𝑤 ⊆ (𝐹𝑢) ∧ ((cls‘(KQ‘𝐽))‘(𝐹𝑢)) ⊆ 𝑧)) → ∃𝑚 ∈ (KQ‘𝐽)(𝑤𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑧))
7325, 39, 67, 72syl12anc 836 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢𝐽 ∧ ((𝐹𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (𝐹𝑧)))) → ∃𝑚 ∈ (KQ‘𝐽)(𝑤𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑧))
7421, 73rexlimddv 3148 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → ∃𝑚 ∈ (KQ‘𝐽)(𝑤𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑧))
7574ralrimivva 3188 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) → ∀𝑧 ∈ (KQ‘𝐽)∀𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧)∃𝑚 ∈ (KQ‘𝐽)(𝑤𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑧))
76 isnrm 23278 . 2 ((KQ‘𝐽) ∈ Nrm ↔ ((KQ‘𝐽) ∈ Top ∧ ∀𝑧 ∈ (KQ‘𝐽)∀𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧)∃𝑚 ∈ (KQ‘𝐽)(𝑤𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑧)))
775, 75, 76sylanbrc 583 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) → (KQ‘𝐽) ∈ Nrm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  wrex 3061  {crab 3420  cin 3930  wss 3931  𝒫 cpw 4580   cuni 4888  cmpt 5206  ccnv 5658  dom cdm 5659  ran crn 5660  cima 5662  Fun wfun 6530   Fn wfn 6531  cfv 6536  (class class class)co 7410  Topctop 22836  TopOnctopon 22853  Clsdccld 22959  clsccl 22961   Cn ccn 23167  Nrmcnrm 23253  KQckq 23636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-map 8847  df-qtop 17526  df-top 22837  df-topon 22854  df-cld 22962  df-cls 22964  df-cn 23170  df-nrm 23260  df-kq 23637
This theorem is referenced by:  kqnrm  23695
  Copyright terms: Public domain W3C validator