| Step | Hyp | Ref
| Expression |
| 1 | | kqval.2 |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) |
| 2 | 1 | kqtopon 23670 |
. . . 4
⊢ (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹)) |
| 3 | 2 | adantr 480 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹)) |
| 4 | | topontop 22856 |
. . 3
⊢
((KQ‘𝐽) ∈
(TopOn‘ran 𝐹) →
(KQ‘𝐽) ∈
Top) |
| 5 | 3, 4 | syl 17 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) → (KQ‘𝐽) ∈ Top) |
| 6 | | simplr 768 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → 𝐽 ∈ Nrm) |
| 7 | 1 | kqid 23671 |
. . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽))) |
| 8 | 7 | ad2antrr 726 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽))) |
| 9 | | simprl 770 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → 𝑧 ∈ (KQ‘𝐽)) |
| 10 | | cnima 23208 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐽 Cn (KQ‘𝐽)) ∧ 𝑧 ∈ (KQ‘𝐽)) → (◡𝐹 “ 𝑧) ∈ 𝐽) |
| 11 | 8, 9, 10 | syl2anc 584 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → (◡𝐹 “ 𝑧) ∈ 𝐽) |
| 12 | | simprr 772 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧)) |
| 13 | 12 | elin1d 4184 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → 𝑤 ∈ (Clsd‘(KQ‘𝐽))) |
| 14 | | cnclima 23211 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐽 Cn (KQ‘𝐽)) ∧ 𝑤 ∈ (Clsd‘(KQ‘𝐽))) → (◡𝐹 “ 𝑤) ∈ (Clsd‘𝐽)) |
| 15 | 8, 13, 14 | syl2anc 584 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → (◡𝐹 “ 𝑤) ∈ (Clsd‘𝐽)) |
| 16 | 12 | elin2d 4185 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → 𝑤 ∈ 𝒫 𝑧) |
| 17 | | elpwi 4587 |
. . . . . 6
⊢ (𝑤 ∈ 𝒫 𝑧 → 𝑤 ⊆ 𝑧) |
| 18 | | imass2 6094 |
. . . . . 6
⊢ (𝑤 ⊆ 𝑧 → (◡𝐹 “ 𝑤) ⊆ (◡𝐹 “ 𝑧)) |
| 19 | 16, 17, 18 | 3syl 18 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → (◡𝐹 “ 𝑤) ⊆ (◡𝐹 “ 𝑧)) |
| 20 | | nrmsep3 23298 |
. . . . 5
⊢ ((𝐽 ∈ Nrm ∧ ((◡𝐹 “ 𝑧) ∈ 𝐽 ∧ (◡𝐹 “ 𝑤) ∈ (Clsd‘𝐽) ∧ (◡𝐹 “ 𝑤) ⊆ (◡𝐹 “ 𝑧))) → ∃𝑢 ∈ 𝐽 ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧))) |
| 21 | 6, 11, 15, 19, 20 | syl13anc 1374 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → ∃𝑢 ∈ 𝐽 ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧))) |
| 22 | | simplll 774 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → 𝐽 ∈ (TopOn‘𝑋)) |
| 23 | | simprl 770 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → 𝑢 ∈ 𝐽) |
| 24 | 1 | kqopn 23677 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑢 ∈ 𝐽) → (𝐹 “ 𝑢) ∈ (KQ‘𝐽)) |
| 25 | 22, 23, 24 | syl2anc 584 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → (𝐹 “ 𝑢) ∈ (KQ‘𝐽)) |
| 26 | | simprrl 780 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → (◡𝐹 “ 𝑤) ⊆ 𝑢) |
| 27 | 1 | kqffn 23668 |
. . . . . . . 8
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋) |
| 28 | | fnfun 6643 |
. . . . . . . 8
⊢ (𝐹 Fn 𝑋 → Fun 𝐹) |
| 29 | 22, 27, 28 | 3syl 18 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → Fun 𝐹) |
| 30 | 13 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → 𝑤 ∈ (Clsd‘(KQ‘𝐽))) |
| 31 | | eqid 2736 |
. . . . . . . . . 10
⊢ ∪ (KQ‘𝐽) = ∪
(KQ‘𝐽) |
| 32 | 31 | cldss 22972 |
. . . . . . . . 9
⊢ (𝑤 ∈
(Clsd‘(KQ‘𝐽))
→ 𝑤 ⊆ ∪ (KQ‘𝐽)) |
| 33 | 30, 32 | syl 17 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → 𝑤 ⊆ ∪
(KQ‘𝐽)) |
| 34 | | toponuni 22857 |
. . . . . . . . 9
⊢
((KQ‘𝐽) ∈
(TopOn‘ran 𝐹) →
ran 𝐹 = ∪ (KQ‘𝐽)) |
| 35 | 22, 2, 34 | 3syl 18 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → ran 𝐹 = ∪
(KQ‘𝐽)) |
| 36 | 33, 35 | sseqtrrd 4001 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → 𝑤 ⊆ ran 𝐹) |
| 37 | | funimass1 6623 |
. . . . . . 7
⊢ ((Fun
𝐹 ∧ 𝑤 ⊆ ran 𝐹) → ((◡𝐹 “ 𝑤) ⊆ 𝑢 → 𝑤 ⊆ (𝐹 “ 𝑢))) |
| 38 | 29, 36, 37 | syl2anc 584 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → ((◡𝐹 “ 𝑤) ⊆ 𝑢 → 𝑤 ⊆ (𝐹 “ 𝑢))) |
| 39 | 26, 38 | mpd 15 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → 𝑤 ⊆ (𝐹 “ 𝑢)) |
| 40 | | topontop 22856 |
. . . . . . . . . 10
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
| 41 | 22, 40 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → 𝐽 ∈ Top) |
| 42 | | elssuni 4918 |
. . . . . . . . . 10
⊢ (𝑢 ∈ 𝐽 → 𝑢 ⊆ ∪ 𝐽) |
| 43 | 42 | ad2antrl 728 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → 𝑢 ⊆ ∪ 𝐽) |
| 44 | | eqid 2736 |
. . . . . . . . . 10
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 45 | 44 | clscld 22990 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝑢 ⊆ ∪ 𝐽)
→ ((cls‘𝐽)‘𝑢) ∈ (Clsd‘𝐽)) |
| 46 | 41, 43, 45 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → ((cls‘𝐽)‘𝑢) ∈ (Clsd‘𝐽)) |
| 47 | 1 | kqcld 23678 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ ((cls‘𝐽)‘𝑢) ∈ (Clsd‘𝐽)) → (𝐹 “ ((cls‘𝐽)‘𝑢)) ∈ (Clsd‘(KQ‘𝐽))) |
| 48 | 22, 46, 47 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → (𝐹 “ ((cls‘𝐽)‘𝑢)) ∈ (Clsd‘(KQ‘𝐽))) |
| 49 | 44 | sscls 22999 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝑢 ⊆ ∪ 𝐽)
→ 𝑢 ⊆
((cls‘𝐽)‘𝑢)) |
| 50 | 41, 43, 49 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → 𝑢 ⊆ ((cls‘𝐽)‘𝑢)) |
| 51 | | imass2 6094 |
. . . . . . . 8
⊢ (𝑢 ⊆ ((cls‘𝐽)‘𝑢) → (𝐹 “ 𝑢) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑢))) |
| 52 | 50, 51 | syl 17 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → (𝐹 “ 𝑢) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑢))) |
| 53 | 31 | clsss2 23015 |
. . . . . . 7
⊢ (((𝐹 “ ((cls‘𝐽)‘𝑢)) ∈ (Clsd‘(KQ‘𝐽)) ∧ (𝐹 “ 𝑢) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑢))) → ((cls‘(KQ‘𝐽))‘(𝐹 “ 𝑢)) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑢))) |
| 54 | 48, 52, 53 | syl2anc 584 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → ((cls‘(KQ‘𝐽))‘(𝐹 “ 𝑢)) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑢))) |
| 55 | | simprrr 781 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)) |
| 56 | 44 | clsss3 23002 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝑢 ⊆ ∪ 𝐽)
→ ((cls‘𝐽)‘𝑢) ⊆ ∪ 𝐽) |
| 57 | 41, 43, 56 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → ((cls‘𝐽)‘𝑢) ⊆ ∪ 𝐽) |
| 58 | | fndm 6646 |
. . . . . . . . . . 11
⊢ (𝐹 Fn 𝑋 → dom 𝐹 = 𝑋) |
| 59 | 22, 27, 58 | 3syl 18 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → dom 𝐹 = 𝑋) |
| 60 | | toponuni 22857 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
| 61 | 22, 60 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → 𝑋 = ∪ 𝐽) |
| 62 | 59, 61 | eqtrd 2771 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → dom 𝐹 = ∪ 𝐽) |
| 63 | 57, 62 | sseqtrrd 4001 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → ((cls‘𝐽)‘𝑢) ⊆ dom 𝐹) |
| 64 | | funimass3 7049 |
. . . . . . . 8
⊢ ((Fun
𝐹 ∧ ((cls‘𝐽)‘𝑢) ⊆ dom 𝐹) → ((𝐹 “ ((cls‘𝐽)‘𝑢)) ⊆ 𝑧 ↔ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧))) |
| 65 | 29, 63, 64 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → ((𝐹 “ ((cls‘𝐽)‘𝑢)) ⊆ 𝑧 ↔ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧))) |
| 66 | 55, 65 | mpbird 257 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → (𝐹 “ ((cls‘𝐽)‘𝑢)) ⊆ 𝑧) |
| 67 | 54, 66 | sstrd 3974 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → ((cls‘(KQ‘𝐽))‘(𝐹 “ 𝑢)) ⊆ 𝑧) |
| 68 | | sseq2 3990 |
. . . . . . 7
⊢ (𝑚 = (𝐹 “ 𝑢) → (𝑤 ⊆ 𝑚 ↔ 𝑤 ⊆ (𝐹 “ 𝑢))) |
| 69 | | fveq2 6881 |
. . . . . . . 8
⊢ (𝑚 = (𝐹 “ 𝑢) → ((cls‘(KQ‘𝐽))‘𝑚) = ((cls‘(KQ‘𝐽))‘(𝐹 “ 𝑢))) |
| 70 | 69 | sseq1d 3995 |
. . . . . . 7
⊢ (𝑚 = (𝐹 “ 𝑢) → (((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑧 ↔ ((cls‘(KQ‘𝐽))‘(𝐹 “ 𝑢)) ⊆ 𝑧)) |
| 71 | 68, 70 | anbi12d 632 |
. . . . . 6
⊢ (𝑚 = (𝐹 “ 𝑢) → ((𝑤 ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑧) ↔ (𝑤 ⊆ (𝐹 “ 𝑢) ∧ ((cls‘(KQ‘𝐽))‘(𝐹 “ 𝑢)) ⊆ 𝑧))) |
| 72 | 71 | rspcev 3606 |
. . . . 5
⊢ (((𝐹 “ 𝑢) ∈ (KQ‘𝐽) ∧ (𝑤 ⊆ (𝐹 “ 𝑢) ∧ ((cls‘(KQ‘𝐽))‘(𝐹 “ 𝑢)) ⊆ 𝑧)) → ∃𝑚 ∈ (KQ‘𝐽)(𝑤 ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑧)) |
| 73 | 25, 39, 67, 72 | syl12anc 836 |
. . . 4
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → ∃𝑚 ∈ (KQ‘𝐽)(𝑤 ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑧)) |
| 74 | 21, 73 | rexlimddv 3148 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → ∃𝑚 ∈ (KQ‘𝐽)(𝑤 ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑧)) |
| 75 | 74 | ralrimivva 3188 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) → ∀𝑧 ∈ (KQ‘𝐽)∀𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧)∃𝑚 ∈ (KQ‘𝐽)(𝑤 ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑧)) |
| 76 | | isnrm 23278 |
. 2
⊢
((KQ‘𝐽) ∈
Nrm ↔ ((KQ‘𝐽)
∈ Top ∧ ∀𝑧
∈ (KQ‘𝐽)∀𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧)∃𝑚 ∈ (KQ‘𝐽)(𝑤 ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑧))) |
| 77 | 5, 75, 76 | sylanbrc 583 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) → (KQ‘𝐽) ∈ Nrm) |