Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > finrusgrfusgr | Structured version Visualization version GIF version |
Description: A finite regular simple graph is a finite simple graph. (Contributed by AV, 3-Jun-2021.) |
Ref | Expression |
---|---|
finrusgrfusgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
finrusgrfusgr | ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rusgrusgr 27453 | . . 3 ⊢ (𝐺 RegUSGraph 𝐾 → 𝐺 ∈ USGraph) | |
2 | 1 | anim1i 617 | . 2 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
3 | finrusgrfusgr.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
4 | 3 | isfusgr 27207 | . 2 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
5 | 2, 4 | sylibr 237 | 1 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 class class class wbr 5032 ‘cfv 6335 Fincfn 8527 Vtxcvtx 26888 USGraphcusgr 27041 FinUSGraphcfusgr 27205 RegUSGraph crusgr 27445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-xp 5530 df-iota 6294 df-fv 6343 df-fusgr 27206 df-rusgr 27447 |
This theorem is referenced by: numclwwlk1 28245 numclwwlk3 28269 numclwwlk5 28272 numclwwlk7lem 28273 numclwwlk6 28274 frgrreggt1 28277 |
Copyright terms: Public domain | W3C validator |