MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finrusgrfusgr Structured version   Visualization version   GIF version

Theorem finrusgrfusgr 29545
Description: A finite regular simple graph is a finite simple graph. (Contributed by AV, 3-Jun-2021.)
Hypothesis
Ref Expression
finrusgrfusgr.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
finrusgrfusgr ((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph)

Proof of Theorem finrusgrfusgr
StepHypRef Expression
1 rusgrusgr 29544 . . 3 (𝐺 RegUSGraph 𝐾𝐺 ∈ USGraph)
21anim1i 615 . 2 ((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
3 finrusgrfusgr.v . . 3 𝑉 = (Vtx‘𝐺)
43isfusgr 29297 . 2 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
52, 4sylibr 234 1 ((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111   class class class wbr 5091  cfv 6481  Fincfn 8869  Vtxcvtx 28975  USGraphcusgr 29128  FinUSGraphcfusgr 29295   RegUSGraph crusgr 29536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-xp 5622  df-iota 6437  df-fv 6489  df-fusgr 29296  df-rusgr 29538
This theorem is referenced by:  numclwwlk1  30339  numclwwlk3  30363  numclwwlk5  30366  numclwwlk7lem  30367  numclwwlk6  30368  frgrreggt1  30371
  Copyright terms: Public domain W3C validator