Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > finrusgrfusgr | Structured version Visualization version GIF version |
Description: A finite regular simple graph is a finite simple graph. (Contributed by AV, 3-Jun-2021.) |
Ref | Expression |
---|---|
finrusgrfusgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
finrusgrfusgr | ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rusgrusgr 27931 | . . 3 ⊢ (𝐺 RegUSGraph 𝐾 → 𝐺 ∈ USGraph) | |
2 | 1 | anim1i 615 | . 2 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
3 | finrusgrfusgr.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
4 | 3 | isfusgr 27685 | . 2 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
5 | 2, 4 | sylibr 233 | 1 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 ‘cfv 6433 Fincfn 8733 Vtxcvtx 27366 USGraphcusgr 27519 FinUSGraphcfusgr 27683 RegUSGraph crusgr 27923 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-iota 6391 df-fv 6441 df-fusgr 27684 df-rusgr 27925 |
This theorem is referenced by: numclwwlk1 28725 numclwwlk3 28749 numclwwlk5 28752 numclwwlk7lem 28753 numclwwlk6 28754 frgrreggt1 28757 |
Copyright terms: Public domain | W3C validator |