Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > finrusgrfusgr | Structured version Visualization version GIF version |
Description: A finite regular simple graph is a finite simple graph. (Contributed by AV, 3-Jun-2021.) |
Ref | Expression |
---|---|
finrusgrfusgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
finrusgrfusgr | ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rusgrusgr 27834 | . . 3 ⊢ (𝐺 RegUSGraph 𝐾 → 𝐺 ∈ USGraph) | |
2 | 1 | anim1i 614 | . 2 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
3 | finrusgrfusgr.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
4 | 3 | isfusgr 27588 | . 2 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
5 | 2, 4 | sylibr 233 | 1 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 Fincfn 8691 Vtxcvtx 27269 USGraphcusgr 27422 FinUSGraphcfusgr 27586 RegUSGraph crusgr 27826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-iota 6376 df-fv 6426 df-fusgr 27587 df-rusgr 27828 |
This theorem is referenced by: numclwwlk1 28626 numclwwlk3 28650 numclwwlk5 28653 numclwwlk7lem 28654 numclwwlk6 28655 frgrreggt1 28658 |
Copyright terms: Public domain | W3C validator |