![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > finrusgrfusgr | Structured version Visualization version GIF version |
Description: A finite regular simple graph is a finite simple graph. (Contributed by AV, 3-Jun-2021.) |
Ref | Expression |
---|---|
finrusgrfusgr.v | ⢠ð = (Vtxâðº) |
Ref | Expression |
---|---|
finrusgrfusgr | ⢠((ðº RegUSGraph ðŸ â§ ð â Fin) â ðº â FinUSGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rusgrusgr 29290 | . . 3 ⢠(ðº RegUSGraph ðŸ â ðº â USGraph) | |
2 | 1 | anim1i 614 | . 2 ⢠((ðº RegUSGraph ðŸ â§ ð â Fin) â (ðº â USGraph â§ ð â Fin)) |
3 | finrusgrfusgr.v | . . 3 ⢠ð = (Vtxâðº) | |
4 | 3 | isfusgr 29044 | . 2 ⢠(ðº â FinUSGraph â (ðº â USGraph â§ ð â Fin)) |
5 | 2, 4 | sylibr 233 | 1 ⢠((ðº RegUSGraph ðŸ â§ ð â Fin) â ðº â FinUSGraph) |
Colors of variables: wff setvar class |
Syntax hints: â wi 4 â§ wa 395 = wceq 1533 â wcel 2098 class class class wbr 5138 âcfv 6533 Fincfn 8935 Vtxcvtx 28725 USGraphcusgr 28878 FinUSGraphcfusgr 29042 RegUSGraph crusgr 29282 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-xp 5672 df-iota 6485 df-fv 6541 df-fusgr 29043 df-rusgr 29284 |
This theorem is referenced by: numclwwlk1 30083 numclwwlk3 30107 numclwwlk5 30110 numclwwlk7lem 30111 numclwwlk6 30112 frgrreggt1 30115 |
Copyright terms: Public domain | W3C validator |