![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > finrusgrfusgr | Structured version Visualization version GIF version |
Description: A finite regular simple graph is a finite simple graph. (Contributed by AV, 3-Jun-2021.) |
Ref | Expression |
---|---|
finrusgrfusgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
finrusgrfusgr | ⊢ ((𝐺RegUSGraph𝐾 ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rusgrusgr 26814 | . . 3 ⊢ (𝐺RegUSGraph𝐾 → 𝐺 ∈ USGraph) | |
2 | 1 | anim1i 609 | . 2 ⊢ ((𝐺RegUSGraph𝐾 ∧ 𝑉 ∈ Fin) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
3 | finrusgrfusgr.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
4 | 3 | isfusgr 26552 | . 2 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
5 | 2, 4 | sylibr 226 | 1 ⊢ ((𝐺RegUSGraph𝐾 ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 class class class wbr 4843 ‘cfv 6101 Fincfn 8195 Vtxcvtx 26231 USGraphcusgr 26385 FinUSGraphcfusgr 26550 RegUSGraphcrusgr 26806 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-rex 3095 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-iota 6064 df-fv 6109 df-fusgr 26551 df-rusgr 26808 |
This theorem is referenced by: numclwwlk1 27729 numclwwlk3 27770 numclwwlk5 27773 numclwwlk7lem 27774 numclwwlk6 27775 frgrreggt1 27778 |
Copyright terms: Public domain | W3C validator |