| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > finrusgrfusgr | Structured version Visualization version GIF version | ||
| Description: A finite regular simple graph is a finite simple graph. (Contributed by AV, 3-Jun-2021.) |
| Ref | Expression |
|---|---|
| finrusgrfusgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| finrusgrfusgr | ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rusgrusgr 29492 | . . 3 ⊢ (𝐺 RegUSGraph 𝐾 → 𝐺 ∈ USGraph) | |
| 2 | 1 | anim1i 615 | . 2 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
| 3 | finrusgrfusgr.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 4 | 3 | isfusgr 29245 | . 2 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
| 5 | 2, 4 | sylibr 234 | 1 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 Fincfn 8918 Vtxcvtx 28923 USGraphcusgr 29076 FinUSGraphcfusgr 29243 RegUSGraph crusgr 29484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-iota 6464 df-fv 6519 df-fusgr 29244 df-rusgr 29486 |
| This theorem is referenced by: numclwwlk1 30290 numclwwlk3 30314 numclwwlk5 30317 numclwwlk7lem 30318 numclwwlk6 30319 frgrreggt1 30322 |
| Copyright terms: Public domain | W3C validator |