MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ist1-2 Structured version   Visualization version   GIF version

Theorem ist1-2 23257
Description: An alternate characterization of T1 spaces. (Contributed by Jeff Hankins, 31-Jan-2010.) (Proof shortened by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
ist1-2 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Fre ↔ ∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝑜,𝐽   𝑜,𝑋,𝑥,𝑦

Proof of Theorem ist1-2
StepHypRef Expression
1 topontop 22823 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2 eqid 2731 . . . . 5 𝐽 = 𝐽
32ist1 23231 . . . 4 (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑦 𝐽{𝑦} ∈ (Clsd‘𝐽)))
43baib 535 . . 3 (𝐽 ∈ Top → (𝐽 ∈ Fre ↔ ∀𝑦 𝐽{𝑦} ∈ (Clsd‘𝐽)))
51, 4syl 17 . 2 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Fre ↔ ∀𝑦 𝐽{𝑦} ∈ (Clsd‘𝐽)))
6 toponuni 22824 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
76raleqdv 3292 . 2 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑦𝑋 {𝑦} ∈ (Clsd‘𝐽) ↔ ∀𝑦 𝐽{𝑦} ∈ (Clsd‘𝐽)))
81adantr 480 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → 𝐽 ∈ Top)
9 eltop2 22885 . . . . . 6 (𝐽 ∈ Top → (( 𝐽 ∖ {𝑦}) ∈ 𝐽 ↔ ∀𝑥 ∈ ( 𝐽 ∖ {𝑦})∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))))
108, 9syl 17 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → (( 𝐽 ∖ {𝑦}) ∈ 𝐽 ↔ ∀𝑥 ∈ ( 𝐽 ∖ {𝑦})∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))))
116eleq2d 2817 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → (𝑦𝑋𝑦 𝐽))
1211biimpa 476 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → 𝑦 𝐽)
1312snssd 4756 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → {𝑦} ⊆ 𝐽)
142iscld2 22938 . . . . . 6 ((𝐽 ∈ Top ∧ {𝑦} ⊆ 𝐽) → ({𝑦} ∈ (Clsd‘𝐽) ↔ ( 𝐽 ∖ {𝑦}) ∈ 𝐽))
158, 13, 14syl2anc 584 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → ({𝑦} ∈ (Clsd‘𝐽) ↔ ( 𝐽 ∖ {𝑦}) ∈ 𝐽))
166adantr 480 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → 𝑋 = 𝐽)
1716eleq2d 2817 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → (𝑥𝑋𝑥 𝐽))
1817imbi1d 341 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → ((𝑥𝑋 → (𝑥𝑦 → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦})))) ↔ (𝑥 𝐽 → (𝑥𝑦 → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))))))
19 con1b 358 . . . . . . . . 9 ((¬ 𝑥 = 𝑦 → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))) ↔ (¬ ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦})) → 𝑥 = 𝑦))
20 df-ne 2929 . . . . . . . . . 10 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
2120imbi1i 349 . . . . . . . . 9 ((𝑥𝑦 → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))) ↔ (¬ 𝑥 = 𝑦 → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))))
22 disjsn 4659 . . . . . . . . . . . . . . 15 ((𝑜 ∩ {𝑦}) = ∅ ↔ ¬ 𝑦𝑜)
23 elssuni 4884 . . . . . . . . . . . . . . . 16 (𝑜𝐽𝑜 𝐽)
24 reldisj 4398 . . . . . . . . . . . . . . . 16 (𝑜 𝐽 → ((𝑜 ∩ {𝑦}) = ∅ ↔ 𝑜 ⊆ ( 𝐽 ∖ {𝑦})))
2523, 24syl 17 . . . . . . . . . . . . . . 15 (𝑜𝐽 → ((𝑜 ∩ {𝑦}) = ∅ ↔ 𝑜 ⊆ ( 𝐽 ∖ {𝑦})))
2622, 25bitr3id 285 . . . . . . . . . . . . . 14 (𝑜𝐽 → (¬ 𝑦𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦})))
2726anbi2d 630 . . . . . . . . . . . . 13 (𝑜𝐽 → ((𝑥𝑜 ∧ ¬ 𝑦𝑜) ↔ (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))))
2827rexbiia 3077 . . . . . . . . . . . 12 (∃𝑜𝐽 (𝑥𝑜 ∧ ¬ 𝑦𝑜) ↔ ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦})))
29 rexanali 3086 . . . . . . . . . . . 12 (∃𝑜𝐽 (𝑥𝑜 ∧ ¬ 𝑦𝑜) ↔ ¬ ∀𝑜𝐽 (𝑥𝑜𝑦𝑜))
3028, 29bitr3i 277 . . . . . . . . . . 11 (∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦})) ↔ ¬ ∀𝑜𝐽 (𝑥𝑜𝑦𝑜))
3130con2bii 357 . . . . . . . . . 10 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) ↔ ¬ ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦})))
3231imbi1i 349 . . . . . . . . 9 ((∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) ↔ (¬ ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦})) → 𝑥 = 𝑦))
3319, 21, 323bitr4ri 304 . . . . . . . 8 ((∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) ↔ (𝑥𝑦 → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))))
3433imbi2i 336 . . . . . . 7 ((𝑥𝑋 → (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)) ↔ (𝑥𝑋 → (𝑥𝑦 → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦})))))
35 eldifsn 4733 . . . . . . . . 9 (𝑥 ∈ ( 𝐽 ∖ {𝑦}) ↔ (𝑥 𝐽𝑥𝑦))
3635imbi1i 349 . . . . . . . 8 ((𝑥 ∈ ( 𝐽 ∖ {𝑦}) → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))) ↔ ((𝑥 𝐽𝑥𝑦) → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))))
37 impexp 450 . . . . . . . 8 (((𝑥 𝐽𝑥𝑦) → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))) ↔ (𝑥 𝐽 → (𝑥𝑦 → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦})))))
3836, 37bitri 275 . . . . . . 7 ((𝑥 ∈ ( 𝐽 ∖ {𝑦}) → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))) ↔ (𝑥 𝐽 → (𝑥𝑦 → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦})))))
3918, 34, 383bitr4g 314 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → ((𝑥𝑋 → (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)) ↔ (𝑥 ∈ ( 𝐽 ∖ {𝑦}) → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦})))))
4039ralbidv2 3151 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → (∀𝑥𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ ( 𝐽 ∖ {𝑦})∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))))
4110, 15, 403bitr4d 311 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → ({𝑦} ∈ (Clsd‘𝐽) ↔ ∀𝑥𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
4241ralbidva 3153 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑦𝑋 {𝑦} ∈ (Clsd‘𝐽) ↔ ∀𝑦𝑋𝑥𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
43 ralcom 3260 . . 3 (∀𝑦𝑋𝑥𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) ↔ ∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦))
4442, 43bitrdi 287 . 2 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑦𝑋 {𝑦} ∈ (Clsd‘𝐽) ↔ ∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
455, 7, 443bitr2d 307 1 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Fre ↔ ∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  cdif 3894  cin 3896  wss 3897  c0 4278  {csn 4571   cuni 4854  cfv 6476  Topctop 22803  TopOnctopon 22820  Clsdccld 22926  Frect1 23217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-iota 6432  df-fun 6478  df-fv 6484  df-topgen 17342  df-top 22804  df-topon 22821  df-cld 22929  df-t1 23224
This theorem is referenced by:  t1t0  23258  ist1-3  23259  haust1  23262  t1sep2  23279  isr0  23647  tgpt0  24029
  Copyright terms: Public domain W3C validator