Proof of Theorem ist1-2
Step | Hyp | Ref
| Expression |
1 | | topontop 21666 |
. . 3
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
2 | | eqid 2738 |
. . . . 5
⊢ ∪ 𝐽 =
∪ 𝐽 |
3 | 2 | ist1 22074 |
. . . 4
⊢ (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ ∪ 𝐽{𝑦} ∈ (Clsd‘𝐽))) |
4 | 3 | baib 539 |
. . 3
⊢ (𝐽 ∈ Top → (𝐽 ∈ Fre ↔ ∀𝑦 ∈ ∪ 𝐽{𝑦} ∈ (Clsd‘𝐽))) |
5 | 1, 4 | syl 17 |
. 2
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Fre ↔ ∀𝑦 ∈ ∪ 𝐽{𝑦} ∈ (Clsd‘𝐽))) |
6 | | toponuni 21667 |
. . 3
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
7 | 6 | raleqdv 3316 |
. 2
⊢ (𝐽 ∈ (TopOn‘𝑋) → (∀𝑦 ∈ 𝑋 {𝑦} ∈ (Clsd‘𝐽) ↔ ∀𝑦 ∈ ∪ 𝐽{𝑦} ∈ (Clsd‘𝐽))) |
8 | 1 | adantr 484 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝑋) → 𝐽 ∈ Top) |
9 | | eltop2 21728 |
. . . . . 6
⊢ (𝐽 ∈ Top → ((∪ 𝐽
∖ {𝑦}) ∈ 𝐽 ↔ ∀𝑥 ∈ (∪ 𝐽
∖ {𝑦})∃𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ (∪ 𝐽 ∖ {𝑦})))) |
10 | 8, 9 | syl 17 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝑋) → ((∪
𝐽 ∖ {𝑦}) ∈ 𝐽 ↔ ∀𝑥 ∈ (∪ 𝐽 ∖ {𝑦})∃𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ (∪ 𝐽 ∖ {𝑦})))) |
11 | 6 | eleq2d 2818 |
. . . . . . . 8
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝑦 ∈ 𝑋 ↔ 𝑦 ∈ ∪ 𝐽)) |
12 | 11 | biimpa 480 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝑋) → 𝑦 ∈ ∪ 𝐽) |
13 | 12 | snssd 4697 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝑋) → {𝑦} ⊆ ∪ 𝐽) |
14 | 2 | iscld2 21781 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ {𝑦} ⊆ ∪ 𝐽)
→ ({𝑦} ∈
(Clsd‘𝐽) ↔
(∪ 𝐽 ∖ {𝑦}) ∈ 𝐽)) |
15 | 8, 13, 14 | syl2anc 587 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝑋) → ({𝑦} ∈ (Clsd‘𝐽) ↔ (∪ 𝐽 ∖ {𝑦}) ∈ 𝐽)) |
16 | 6 | adantr 484 |
. . . . . . . . 9
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝑋) → 𝑋 = ∪ 𝐽) |
17 | 16 | eleq2d 2818 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝑋) → (𝑥 ∈ 𝑋 ↔ 𝑥 ∈ ∪ 𝐽)) |
18 | 17 | imbi1d 345 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝑋) → ((𝑥 ∈ 𝑋 → (𝑥 ≠ 𝑦 → ∃𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ (∪ 𝐽 ∖ {𝑦})))) ↔ (𝑥 ∈ ∪ 𝐽 → (𝑥 ≠ 𝑦 → ∃𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ (∪ 𝐽 ∖ {𝑦})))))) |
19 | | con1b 362 |
. . . . . . . . 9
⊢ ((¬
𝑥 = 𝑦 → ∃𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ (∪ 𝐽 ∖ {𝑦}))) ↔ (¬ ∃𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ (∪ 𝐽 ∖ {𝑦})) → 𝑥 = 𝑦)) |
20 | | df-ne 2935 |
. . . . . . . . . 10
⊢ (𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦) |
21 | 20 | imbi1i 353 |
. . . . . . . . 9
⊢ ((𝑥 ≠ 𝑦 → ∃𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ (∪ 𝐽 ∖ {𝑦}))) ↔ (¬ 𝑥 = 𝑦 → ∃𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ (∪ 𝐽 ∖ {𝑦})))) |
22 | | disjsn 4602 |
. . . . . . . . . . . . . . 15
⊢ ((𝑜 ∩ {𝑦}) = ∅ ↔ ¬ 𝑦 ∈ 𝑜) |
23 | | elssuni 4828 |
. . . . . . . . . . . . . . . 16
⊢ (𝑜 ∈ 𝐽 → 𝑜 ⊆ ∪ 𝐽) |
24 | | reldisj 4341 |
. . . . . . . . . . . . . . . 16
⊢ (𝑜 ⊆ ∪ 𝐽
→ ((𝑜 ∩ {𝑦}) = ∅ ↔ 𝑜 ⊆ (∪ 𝐽
∖ {𝑦}))) |
25 | 23, 24 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑜 ∈ 𝐽 → ((𝑜 ∩ {𝑦}) = ∅ ↔ 𝑜 ⊆ (∪ 𝐽 ∖ {𝑦}))) |
26 | 22, 25 | bitr3id 288 |
. . . . . . . . . . . . . 14
⊢ (𝑜 ∈ 𝐽 → (¬ 𝑦 ∈ 𝑜 ↔ 𝑜 ⊆ (∪ 𝐽 ∖ {𝑦}))) |
27 | 26 | anbi2d 632 |
. . . . . . . . . . . . 13
⊢ (𝑜 ∈ 𝐽 → ((𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜) ↔ (𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ (∪ 𝐽 ∖ {𝑦})))) |
28 | 27 | rexbiia 3160 |
. . . . . . . . . . . 12
⊢
(∃𝑜 ∈
𝐽 (𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜) ↔ ∃𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ (∪ 𝐽 ∖ {𝑦}))) |
29 | | rexanali 3175 |
. . . . . . . . . . . 12
⊢
(∃𝑜 ∈
𝐽 (𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜) ↔ ¬ ∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜)) |
30 | 28, 29 | bitr3i 280 |
. . . . . . . . . . 11
⊢
(∃𝑜 ∈
𝐽 (𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ (∪ 𝐽 ∖ {𝑦})) ↔ ¬ ∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜)) |
31 | 30 | con2bii 361 |
. . . . . . . . . 10
⊢
(∀𝑜 ∈
𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) ↔ ¬ ∃𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ (∪ 𝐽 ∖ {𝑦}))) |
32 | 31 | imbi1i 353 |
. . . . . . . . 9
⊢
((∀𝑜 ∈
𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝑥 = 𝑦) ↔ (¬ ∃𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ (∪ 𝐽 ∖ {𝑦})) → 𝑥 = 𝑦)) |
33 | 19, 21, 32 | 3bitr4ri 307 |
. . . . . . . 8
⊢
((∀𝑜 ∈
𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝑥 = 𝑦) ↔ (𝑥 ≠ 𝑦 → ∃𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ (∪ 𝐽 ∖ {𝑦})))) |
34 | 33 | imbi2i 339 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑋 → (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝑥 = 𝑦)) ↔ (𝑥 ∈ 𝑋 → (𝑥 ≠ 𝑦 → ∃𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ (∪ 𝐽 ∖ {𝑦}))))) |
35 | | eldifsn 4675 |
. . . . . . . . 9
⊢ (𝑥 ∈ (∪ 𝐽
∖ {𝑦}) ↔ (𝑥 ∈ ∪ 𝐽
∧ 𝑥 ≠ 𝑦)) |
36 | 35 | imbi1i 353 |
. . . . . . . 8
⊢ ((𝑥 ∈ (∪ 𝐽
∖ {𝑦}) →
∃𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ (∪ 𝐽 ∖ {𝑦}))) ↔ ((𝑥 ∈ ∪ 𝐽 ∧ 𝑥 ≠ 𝑦) → ∃𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ (∪ 𝐽 ∖ {𝑦})))) |
37 | | impexp 454 |
. . . . . . . 8
⊢ (((𝑥 ∈ ∪ 𝐽
∧ 𝑥 ≠ 𝑦) → ∃𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ (∪ 𝐽 ∖ {𝑦}))) ↔ (𝑥 ∈ ∪ 𝐽 → (𝑥 ≠ 𝑦 → ∃𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ (∪ 𝐽 ∖ {𝑦}))))) |
38 | 36, 37 | bitri 278 |
. . . . . . 7
⊢ ((𝑥 ∈ (∪ 𝐽
∖ {𝑦}) →
∃𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ (∪ 𝐽 ∖ {𝑦}))) ↔ (𝑥 ∈ ∪ 𝐽 → (𝑥 ≠ 𝑦 → ∃𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ (∪ 𝐽 ∖ {𝑦}))))) |
39 | 18, 34, 38 | 3bitr4g 317 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝑋) → ((𝑥 ∈ 𝑋 → (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝑥 = 𝑦)) ↔ (𝑥 ∈ (∪ 𝐽 ∖ {𝑦}) → ∃𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ (∪ 𝐽 ∖ {𝑦}))))) |
40 | 39 | ralbidv2 3107 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ (∪ 𝐽 ∖ {𝑦})∃𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ (∪ 𝐽 ∖ {𝑦})))) |
41 | 10, 15, 40 | 3bitr4d 314 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦 ∈ 𝑋) → ({𝑦} ∈ (Clsd‘𝐽) ↔ ∀𝑥 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝑥 = 𝑦))) |
42 | 41 | ralbidva 3108 |
. . 3
⊢ (𝐽 ∈ (TopOn‘𝑋) → (∀𝑦 ∈ 𝑋 {𝑦} ∈ (Clsd‘𝐽) ↔ ∀𝑦 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝑥 = 𝑦))) |
43 | | ralcom 3258 |
. . 3
⊢
(∀𝑦 ∈
𝑋 ∀𝑥 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝑥 = 𝑦)) |
44 | 42, 43 | bitrdi 290 |
. 2
⊢ (𝐽 ∈ (TopOn‘𝑋) → (∀𝑦 ∈ 𝑋 {𝑦} ∈ (Clsd‘𝐽) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝑥 = 𝑦))) |
45 | 5, 7, 44 | 3bitr2d 310 |
1
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Fre ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → 𝑥 = 𝑦))) |