MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ist1-2 Structured version   Visualization version   GIF version

Theorem ist1-2 21947
Description: An alternate characterization of T1 spaces. (Contributed by Jeff Hankins, 31-Jan-2010.) (Proof shortened by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
ist1-2 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Fre ↔ ∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝑜,𝐽   𝑜,𝑋,𝑥,𝑦

Proof of Theorem ist1-2
StepHypRef Expression
1 topontop 21513 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2 eqid 2819 . . . . 5 𝐽 = 𝐽
32ist1 21921 . . . 4 (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑦 𝐽{𝑦} ∈ (Clsd‘𝐽)))
43baib 538 . . 3 (𝐽 ∈ Top → (𝐽 ∈ Fre ↔ ∀𝑦 𝐽{𝑦} ∈ (Clsd‘𝐽)))
51, 4syl 17 . 2 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Fre ↔ ∀𝑦 𝐽{𝑦} ∈ (Clsd‘𝐽)))
6 toponuni 21514 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
76raleqdv 3414 . 2 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑦𝑋 {𝑦} ∈ (Clsd‘𝐽) ↔ ∀𝑦 𝐽{𝑦} ∈ (Clsd‘𝐽)))
81adantr 483 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → 𝐽 ∈ Top)
9 eltop2 21575 . . . . . 6 (𝐽 ∈ Top → (( 𝐽 ∖ {𝑦}) ∈ 𝐽 ↔ ∀𝑥 ∈ ( 𝐽 ∖ {𝑦})∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))))
108, 9syl 17 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → (( 𝐽 ∖ {𝑦}) ∈ 𝐽 ↔ ∀𝑥 ∈ ( 𝐽 ∖ {𝑦})∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))))
116eleq2d 2896 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → (𝑦𝑋𝑦 𝐽))
1211biimpa 479 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → 𝑦 𝐽)
1312snssd 4734 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → {𝑦} ⊆ 𝐽)
142iscld2 21628 . . . . . 6 ((𝐽 ∈ Top ∧ {𝑦} ⊆ 𝐽) → ({𝑦} ∈ (Clsd‘𝐽) ↔ ( 𝐽 ∖ {𝑦}) ∈ 𝐽))
158, 13, 14syl2anc 586 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → ({𝑦} ∈ (Clsd‘𝐽) ↔ ( 𝐽 ∖ {𝑦}) ∈ 𝐽))
166adantr 483 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → 𝑋 = 𝐽)
1716eleq2d 2896 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → (𝑥𝑋𝑥 𝐽))
1817imbi1d 344 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → ((𝑥𝑋 → (𝑥𝑦 → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦})))) ↔ (𝑥 𝐽 → (𝑥𝑦 → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))))))
19 con1b 361 . . . . . . . . 9 ((¬ 𝑥 = 𝑦 → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))) ↔ (¬ ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦})) → 𝑥 = 𝑦))
20 df-ne 3015 . . . . . . . . . 10 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
2120imbi1i 352 . . . . . . . . 9 ((𝑥𝑦 → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))) ↔ (¬ 𝑥 = 𝑦 → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))))
22 disjsn 4639 . . . . . . . . . . . . . . 15 ((𝑜 ∩ {𝑦}) = ∅ ↔ ¬ 𝑦𝑜)
23 elssuni 4859 . . . . . . . . . . . . . . . 16 (𝑜𝐽𝑜 𝐽)
24 reldisj 4400 . . . . . . . . . . . . . . . 16 (𝑜 𝐽 → ((𝑜 ∩ {𝑦}) = ∅ ↔ 𝑜 ⊆ ( 𝐽 ∖ {𝑦})))
2523, 24syl 17 . . . . . . . . . . . . . . 15 (𝑜𝐽 → ((𝑜 ∩ {𝑦}) = ∅ ↔ 𝑜 ⊆ ( 𝐽 ∖ {𝑦})))
2622, 25syl5bbr 287 . . . . . . . . . . . . . 14 (𝑜𝐽 → (¬ 𝑦𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦})))
2726anbi2d 630 . . . . . . . . . . . . 13 (𝑜𝐽 → ((𝑥𝑜 ∧ ¬ 𝑦𝑜) ↔ (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))))
2827rexbiia 3244 . . . . . . . . . . . 12 (∃𝑜𝐽 (𝑥𝑜 ∧ ¬ 𝑦𝑜) ↔ ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦})))
29 rexanali 3263 . . . . . . . . . . . 12 (∃𝑜𝐽 (𝑥𝑜 ∧ ¬ 𝑦𝑜) ↔ ¬ ∀𝑜𝐽 (𝑥𝑜𝑦𝑜))
3028, 29bitr3i 279 . . . . . . . . . . 11 (∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦})) ↔ ¬ ∀𝑜𝐽 (𝑥𝑜𝑦𝑜))
3130con2bii 360 . . . . . . . . . 10 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) ↔ ¬ ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦})))
3231imbi1i 352 . . . . . . . . 9 ((∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) ↔ (¬ ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦})) → 𝑥 = 𝑦))
3319, 21, 323bitr4ri 306 . . . . . . . 8 ((∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) ↔ (𝑥𝑦 → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))))
3433imbi2i 338 . . . . . . 7 ((𝑥𝑋 → (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)) ↔ (𝑥𝑋 → (𝑥𝑦 → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦})))))
35 eldifsn 4711 . . . . . . . . 9 (𝑥 ∈ ( 𝐽 ∖ {𝑦}) ↔ (𝑥 𝐽𝑥𝑦))
3635imbi1i 352 . . . . . . . 8 ((𝑥 ∈ ( 𝐽 ∖ {𝑦}) → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))) ↔ ((𝑥 𝐽𝑥𝑦) → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))))
37 impexp 453 . . . . . . . 8 (((𝑥 𝐽𝑥𝑦) → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))) ↔ (𝑥 𝐽 → (𝑥𝑦 → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦})))))
3836, 37bitri 277 . . . . . . 7 ((𝑥 ∈ ( 𝐽 ∖ {𝑦}) → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))) ↔ (𝑥 𝐽 → (𝑥𝑦 → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦})))))
3918, 34, 383bitr4g 316 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → ((𝑥𝑋 → (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)) ↔ (𝑥 ∈ ( 𝐽 ∖ {𝑦}) → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦})))))
4039ralbidv2 3193 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → (∀𝑥𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ ( 𝐽 ∖ {𝑦})∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))))
4110, 15, 403bitr4d 313 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → ({𝑦} ∈ (Clsd‘𝐽) ↔ ∀𝑥𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
4241ralbidva 3194 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑦𝑋 {𝑦} ∈ (Clsd‘𝐽) ↔ ∀𝑦𝑋𝑥𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
43 ralcom 3352 . . 3 (∀𝑦𝑋𝑥𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) ↔ ∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦))
4442, 43syl6bb 289 . 2 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑦𝑋 {𝑦} ∈ (Clsd‘𝐽) ↔ ∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
455, 7, 443bitr2d 309 1 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Fre ↔ ∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1530  wcel 2107  wne 3014  wral 3136  wrex 3137  cdif 3931  cin 3933  wss 3934  c0 4289  {csn 4559   cuni 4830  cfv 6348  Topctop 21493  TopOnctopon 21510  Clsdccld 21616  Frect1 21907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-iota 6307  df-fun 6350  df-fv 6356  df-topgen 16709  df-top 21494  df-topon 21511  df-cld 21619  df-t1 21914
This theorem is referenced by:  t1t0  21948  ist1-3  21949  haust1  21952  t1sep2  21969  isr0  22337  tgpt0  22719
  Copyright terms: Public domain W3C validator