Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zarmxt1 Structured version   Visualization version   GIF version

Theorem zarmxt1 31732
Description: The Zariski topology restricted to maximal ideals is T1 . (Contributed by Thierry Arnoux, 16-Jun-2024.)
Hypotheses
Ref Expression
zartop.1 𝑆 = (Spec‘𝑅)
zartop.2 𝐽 = (TopOpen‘𝑆)
zarmxt1.1 𝑀 = (MaxIdeal‘𝑅)
zarmxt1.2 𝑇 = (𝐽t 𝑀)
Assertion
Ref Expression
zarmxt1 (𝑅 ∈ CRing → 𝑇 ∈ Fre)

Proof of Theorem zarmxt1
Dummy variables 𝑖 𝑗 𝑘 𝑙 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zartop.1 . . . 4 𝑆 = (Spec‘𝑅)
2 zartop.2 . . . 4 𝐽 = (TopOpen‘𝑆)
31, 2zartop 31728 . . 3 (𝑅 ∈ CRing → 𝐽 ∈ Top)
4 zarmxt1.1 . . . 4 𝑀 = (MaxIdeal‘𝑅)
54fvexi 6770 . . 3 𝑀 ∈ V
6 zarmxt1.2 . . . 4 𝑇 = (𝐽t 𝑀)
7 resttop 22219 . . . 4 ((𝐽 ∈ Top ∧ 𝑀 ∈ V) → (𝐽t 𝑀) ∈ Top)
86, 7eqeltrid 2843 . . 3 ((𝐽 ∈ Top ∧ 𝑀 ∈ V) → 𝑇 ∈ Top)
93, 5, 8sylancl 585 . 2 (𝑅 ∈ CRing → 𝑇 ∈ Top)
10 eqid 2738 . . . . . . . . . . 11 (LSSum‘(mulGrp‘𝑅)) = (LSSum‘(mulGrp‘𝑅))
1110mxidlprm 31542 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) → 𝑚 ∈ (PrmIdeal‘𝑅))
1211ex 412 . . . . . . . . 9 (𝑅 ∈ CRing → (𝑚 ∈ (MaxIdeal‘𝑅) → 𝑚 ∈ (PrmIdeal‘𝑅)))
1312ssrdv 3923 . . . . . . . 8 (𝑅 ∈ CRing → (MaxIdeal‘𝑅) ⊆ (PrmIdeal‘𝑅))
1413adantr 480 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑚 𝑇) → (MaxIdeal‘𝑅) ⊆ (PrmIdeal‘𝑅))
15 eqid 2738 . . . . . . 7 (PrmIdeal‘𝑅) = (PrmIdeal‘𝑅)
1614, 4, 153sstr4g 3962 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑚 𝑇) → 𝑀 ⊆ (PrmIdeal‘𝑅))
17 sseq2 3943 . . . . . . . . . . . . 13 (𝑗 = 𝑙 → (𝑖𝑗𝑖𝑙))
1817cbvrabv 3416 . . . . . . . . . . . 12 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑙 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑙}
19 sseq1 3942 . . . . . . . . . . . . 13 (𝑖 = 𝑘 → (𝑖𝑙𝑘𝑙))
2019rabbidv 3404 . . . . . . . . . . . 12 (𝑖 = 𝑘 → {𝑙 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑙} = {𝑙 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑙})
2118, 20syl5eq 2791 . . . . . . . . . . 11 (𝑖 = 𝑘 → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑙 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑙})
2221cbvmptv 5183 . . . . . . . . . 10 (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}) = (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑙 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑙})
231, 2, 15, 22zartopn 31727 . . . . . . . . 9 (𝑅 ∈ CRing → (𝐽 ∈ (TopOn‘(PrmIdeal‘𝑅)) ∧ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}) = (Clsd‘𝐽)))
2423adantr 480 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑚 𝑇) → (𝐽 ∈ (TopOn‘(PrmIdeal‘𝑅)) ∧ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}) = (Clsd‘𝐽)))
2524simpld 494 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑚 𝑇) → 𝐽 ∈ (TopOn‘(PrmIdeal‘𝑅)))
26 toponuni 21971 . . . . . . 7 (𝐽 ∈ (TopOn‘(PrmIdeal‘𝑅)) → (PrmIdeal‘𝑅) = 𝐽)
2725, 26syl 17 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑚 𝑇) → (PrmIdeal‘𝑅) = 𝐽)
2816, 27sseqtrd 3957 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑚 𝑇) → 𝑀 𝐽)
29 simpl 482 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑚 𝑇) → 𝑅 ∈ CRing)
3029crngringd 19711 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝑚 𝑇) → 𝑅 ∈ Ring)
31 simpr 484 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝑚 𝑇) → 𝑚 𝑇)
326unieqi 4849 . . . . . . . . . . . 12 𝑇 = (𝐽t 𝑀)
3331, 32eleqtrdi 2849 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑚 𝑇) → 𝑚 (𝐽t 𝑀))
343adantr 480 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝑚 𝑇) → 𝐽 ∈ Top)
35 eqid 2738 . . . . . . . . . . . . 13 𝐽 = 𝐽
3635restuni 22221 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝑀 𝐽) → 𝑀 = (𝐽t 𝑀))
3734, 28, 36syl2anc 583 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑚 𝑇) → 𝑀 = (𝐽t 𝑀))
3833, 37eleqtrrd 2842 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑚 𝑇) → 𝑚𝑀)
3938, 4eleqtrdi 2849 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝑚 𝑇) → 𝑚 ∈ (MaxIdeal‘𝑅))
40 eqid 2738 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
4140mxidlidl 31537 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) → 𝑚 ∈ (LIdeal‘𝑅))
4230, 39, 41syl2anc 583 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑚 𝑇) → 𝑚 ∈ (LIdeal‘𝑅))
43 eqid 2738 . . . . . . . . . 10 (LIdeal‘𝑅) = (LIdeal‘𝑅)
4422, 43zarclssn 31725 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝑚 ∈ (LIdeal‘𝑅)) → ({𝑚} = ((𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})‘𝑚) ↔ 𝑚 ∈ (MaxIdeal‘𝑅)))
4544biimpar 477 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑚 ∈ (LIdeal‘𝑅)) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) → {𝑚} = ((𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})‘𝑚))
4629, 42, 39, 45syl21anc 834 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑚 𝑇) → {𝑚} = ((𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})‘𝑚))
4722funmpt2 6457 . . . . . . . 8 Fun (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
48 fvex 6769 . . . . . . . . . . 11 (PrmIdeal‘𝑅) ∈ V
4948rabex 5251 . . . . . . . . . 10 {𝑙 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑙} ∈ V
5049, 22dmmpti 6561 . . . . . . . . 9 dom (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}) = (LIdeal‘𝑅)
5142, 50eleqtrrdi 2850 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑚 𝑇) → 𝑚 ∈ dom (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
52 fvelrn 6936 . . . . . . . 8 ((Fun (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}) ∧ 𝑚 ∈ dom (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})) → ((𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})‘𝑚) ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
5347, 51, 52sylancr 586 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑚 𝑇) → ((𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})‘𝑚) ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
5446, 53eqeltrd 2839 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑚 𝑇) → {𝑚} ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
5524simprd 495 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑚 𝑇) → ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}) = (Clsd‘𝐽))
5654, 55eleqtrd 2841 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑚 𝑇) → {𝑚} ∈ (Clsd‘𝐽))
5738snssd 4739 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑚 𝑇) → {𝑚} ⊆ 𝑀)
5835restcldi 22232 . . . . 5 ((𝑀 𝐽 ∧ {𝑚} ∈ (Clsd‘𝐽) ∧ {𝑚} ⊆ 𝑀) → {𝑚} ∈ (Clsd‘(𝐽t 𝑀)))
5928, 56, 57, 58syl3anc 1369 . . . 4 ((𝑅 ∈ CRing ∧ 𝑚 𝑇) → {𝑚} ∈ (Clsd‘(𝐽t 𝑀)))
606fveq2i 6759 . . . 4 (Clsd‘𝑇) = (Clsd‘(𝐽t 𝑀))
6159, 60eleqtrrdi 2850 . . 3 ((𝑅 ∈ CRing ∧ 𝑚 𝑇) → {𝑚} ∈ (Clsd‘𝑇))
6261ralrimiva 3107 . 2 (𝑅 ∈ CRing → ∀𝑚 𝑇{𝑚} ∈ (Clsd‘𝑇))
63 eqid 2738 . . 3 𝑇 = 𝑇
6463ist1 22380 . 2 (𝑇 ∈ Fre ↔ (𝑇 ∈ Top ∧ ∀𝑚 𝑇{𝑚} ∈ (Clsd‘𝑇)))
659, 62, 64sylanbrc 582 1 (𝑅 ∈ CRing → 𝑇 ∈ Fre)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  {crab 3067  Vcvv 3422  wss 3883  {csn 4558   cuni 4836  cmpt 5153  dom cdm 5580  ran crn 5581  Fun wfun 6412  cfv 6418  (class class class)co 7255  Basecbs 16840  t crest 17048  TopOpenctopn 17049  LSSumclsm 19154  mulGrpcmgp 19635  Ringcrg 19698  CRingccrg 19699  LIdealclidl 20347  Topctop 21950  TopOnctopon 21967  Clsdccld 22075  Frect1 22366  PrmIdealcprmidl 31512  MaxIdealcmxidl 31533  Speccrspec 31714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-ac2 10150  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-rpss 7554  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-dju 9590  df-card 9628  df-ac 9803  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-rest 17050  df-topn 17051  df-0g 17069  df-topgen 17071  df-mre 17212  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-cntz 18838  df-lsm 19156  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-subrg 19937  df-lmod 20040  df-lss 20109  df-lsp 20149  df-sra 20349  df-rgmod 20350  df-lidl 20351  df-rsp 20352  df-lpidl 20427  df-top 21951  df-topon 21968  df-bases 22004  df-cld 22078  df-t1 22373  df-prmidl 31513  df-mxidl 31534  df-idlsrg 31548  df-rspec 31715
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator