| Step | Hyp | Ref
| Expression |
| 1 | | zartop.1 |
. . . 4
⊢ 𝑆 = (Spec‘𝑅) |
| 2 | | zartop.2 |
. . . 4
⊢ 𝐽 = (TopOpen‘𝑆) |
| 3 | 1, 2 | zartop 33875 |
. . 3
⊢ (𝑅 ∈ CRing → 𝐽 ∈ Top) |
| 4 | | zarmxt1.1 |
. . . 4
⊢ 𝑀 = (MaxIdeal‘𝑅) |
| 5 | 4 | fvexi 6920 |
. . 3
⊢ 𝑀 ∈ V |
| 6 | | zarmxt1.2 |
. . . 4
⊢ 𝑇 = (𝐽 ↾t 𝑀) |
| 7 | | resttop 23168 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑀 ∈ V) → (𝐽 ↾t 𝑀) ∈ Top) |
| 8 | 6, 7 | eqeltrid 2845 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑀 ∈ V) → 𝑇 ∈ Top) |
| 9 | 3, 5, 8 | sylancl 586 |
. 2
⊢ (𝑅 ∈ CRing → 𝑇 ∈ Top) |
| 10 | | eqid 2737 |
. . . . . . . . . . 11
⊢
(LSSum‘(mulGrp‘𝑅)) = (LSSum‘(mulGrp‘𝑅)) |
| 11 | 10 | mxidlprm 33498 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) → 𝑚 ∈ (PrmIdeal‘𝑅)) |
| 12 | 11 | ex 412 |
. . . . . . . . 9
⊢ (𝑅 ∈ CRing → (𝑚 ∈ (MaxIdeal‘𝑅) → 𝑚 ∈ (PrmIdeal‘𝑅))) |
| 13 | 12 | ssrdv 3989 |
. . . . . . . 8
⊢ (𝑅 ∈ CRing →
(MaxIdeal‘𝑅) ⊆
(PrmIdeal‘𝑅)) |
| 14 | 13 | adantr 480 |
. . . . . . 7
⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇)
→ (MaxIdeal‘𝑅)
⊆ (PrmIdeal‘𝑅)) |
| 15 | | eqid 2737 |
. . . . . . 7
⊢
(PrmIdeal‘𝑅) =
(PrmIdeal‘𝑅) |
| 16 | 14, 4, 15 | 3sstr4g 4037 |
. . . . . 6
⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇)
→ 𝑀 ⊆
(PrmIdeal‘𝑅)) |
| 17 | | sseq2 4010 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑙 → (𝑖 ⊆ 𝑗 ↔ 𝑖 ⊆ 𝑙)) |
| 18 | 17 | cbvrabv 3447 |
. . . . . . . . . . . 12
⊢ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗} = {𝑙 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑙} |
| 19 | | sseq1 4009 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑘 → (𝑖 ⊆ 𝑙 ↔ 𝑘 ⊆ 𝑙)) |
| 20 | 19 | rabbidv 3444 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑘 → {𝑙 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑙} = {𝑙 ∈ (PrmIdeal‘𝑅) ∣ 𝑘 ⊆ 𝑙}) |
| 21 | 18, 20 | eqtrid 2789 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑘 → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗} = {𝑙 ∈ (PrmIdeal‘𝑅) ∣ 𝑘 ⊆ 𝑙}) |
| 22 | 21 | cbvmptv 5255 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗}) = (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑙 ∈ (PrmIdeal‘𝑅) ∣ 𝑘 ⊆ 𝑙}) |
| 23 | 1, 2, 15, 22 | zartopn 33874 |
. . . . . . . . 9
⊢ (𝑅 ∈ CRing → (𝐽 ∈
(TopOn‘(PrmIdeal‘𝑅)) ∧ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗}) = (Clsd‘𝐽))) |
| 24 | 23 | adantr 480 |
. . . . . . . 8
⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇)
→ (𝐽 ∈
(TopOn‘(PrmIdeal‘𝑅)) ∧ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗}) = (Clsd‘𝐽))) |
| 25 | 24 | simpld 494 |
. . . . . . 7
⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇)
→ 𝐽 ∈
(TopOn‘(PrmIdeal‘𝑅))) |
| 26 | | toponuni 22920 |
. . . . . . 7
⊢ (𝐽 ∈
(TopOn‘(PrmIdeal‘𝑅)) → (PrmIdeal‘𝑅) = ∪ 𝐽) |
| 27 | 25, 26 | syl 17 |
. . . . . 6
⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇)
→ (PrmIdeal‘𝑅) =
∪ 𝐽) |
| 28 | 16, 27 | sseqtrd 4020 |
. . . . 5
⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇)
→ 𝑀 ⊆ ∪ 𝐽) |
| 29 | | simpl 482 |
. . . . . . . 8
⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇)
→ 𝑅 ∈
CRing) |
| 30 | 29 | crngringd 20243 |
. . . . . . . . 9
⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇)
→ 𝑅 ∈
Ring) |
| 31 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇)
→ 𝑚 ∈ ∪ 𝑇) |
| 32 | 6 | unieqi 4919 |
. . . . . . . . . . . 12
⊢ ∪ 𝑇 =
∪ (𝐽 ↾t 𝑀) |
| 33 | 31, 32 | eleqtrdi 2851 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇)
→ 𝑚 ∈ ∪ (𝐽
↾t 𝑀)) |
| 34 | 3 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇)
→ 𝐽 ∈
Top) |
| 35 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 36 | 35 | restuni 23170 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ 𝑀 ⊆ ∪ 𝐽)
→ 𝑀 = ∪ (𝐽
↾t 𝑀)) |
| 37 | 34, 28, 36 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇)
→ 𝑀 = ∪ (𝐽
↾t 𝑀)) |
| 38 | 33, 37 | eleqtrrd 2844 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇)
→ 𝑚 ∈ 𝑀) |
| 39 | 38, 4 | eleqtrdi 2851 |
. . . . . . . . 9
⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇)
→ 𝑚 ∈
(MaxIdeal‘𝑅)) |
| 40 | | eqid 2737 |
. . . . . . . . . 10
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 41 | 40 | mxidlidl 33491 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) → 𝑚 ∈ (LIdeal‘𝑅)) |
| 42 | 30, 39, 41 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇)
→ 𝑚 ∈
(LIdeal‘𝑅)) |
| 43 | | eqid 2737 |
. . . . . . . . . 10
⊢
(LIdeal‘𝑅) =
(LIdeal‘𝑅) |
| 44 | 22, 43 | zarclssn 33872 |
. . . . . . . . 9
⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ (LIdeal‘𝑅)) → ({𝑚} = ((𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗})‘𝑚) ↔ 𝑚 ∈ (MaxIdeal‘𝑅))) |
| 45 | 44 | biimpar 477 |
. . . . . . . 8
⊢ (((𝑅 ∈ CRing ∧ 𝑚 ∈ (LIdeal‘𝑅)) ∧ 𝑚 ∈ (MaxIdeal‘𝑅)) → {𝑚} = ((𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗})‘𝑚)) |
| 46 | 29, 42, 39, 45 | syl21anc 838 |
. . . . . . 7
⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇)
→ {𝑚} = ((𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗})‘𝑚)) |
| 47 | 22 | funmpt2 6605 |
. . . . . . . 8
⊢ Fun
(𝑖 ∈
(LIdeal‘𝑅) ↦
{𝑗 ∈
(PrmIdeal‘𝑅) ∣
𝑖 ⊆ 𝑗}) |
| 48 | | fvex 6919 |
. . . . . . . . . . 11
⊢
(PrmIdeal‘𝑅)
∈ V |
| 49 | 48 | rabex 5339 |
. . . . . . . . . 10
⊢ {𝑙 ∈ (PrmIdeal‘𝑅) ∣ 𝑘 ⊆ 𝑙} ∈ V |
| 50 | 49, 22 | dmmpti 6712 |
. . . . . . . . 9
⊢ dom
(𝑖 ∈
(LIdeal‘𝑅) ↦
{𝑗 ∈
(PrmIdeal‘𝑅) ∣
𝑖 ⊆ 𝑗}) = (LIdeal‘𝑅) |
| 51 | 42, 50 | eleqtrrdi 2852 |
. . . . . . . 8
⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇)
→ 𝑚 ∈ dom (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗})) |
| 52 | | fvelrn 7096 |
. . . . . . . 8
⊢ ((Fun
(𝑖 ∈
(LIdeal‘𝑅) ↦
{𝑗 ∈
(PrmIdeal‘𝑅) ∣
𝑖 ⊆ 𝑗}) ∧ 𝑚 ∈ dom (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗})) → ((𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗})‘𝑚) ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗})) |
| 53 | 47, 51, 52 | sylancr 587 |
. . . . . . 7
⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇)
→ ((𝑖 ∈
(LIdeal‘𝑅) ↦
{𝑗 ∈
(PrmIdeal‘𝑅) ∣
𝑖 ⊆ 𝑗})‘𝑚) ∈ ran (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗})) |
| 54 | 46, 53 | eqeltrd 2841 |
. . . . . 6
⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇)
→ {𝑚} ∈ ran
(𝑖 ∈
(LIdeal‘𝑅) ↦
{𝑗 ∈
(PrmIdeal‘𝑅) ∣
𝑖 ⊆ 𝑗})) |
| 55 | 24 | simprd 495 |
. . . . . 6
⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇)
→ ran (𝑖 ∈
(LIdeal‘𝑅) ↦
{𝑗 ∈
(PrmIdeal‘𝑅) ∣
𝑖 ⊆ 𝑗}) = (Clsd‘𝐽)) |
| 56 | 54, 55 | eleqtrd 2843 |
. . . . 5
⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇)
→ {𝑚} ∈
(Clsd‘𝐽)) |
| 57 | 38 | snssd 4809 |
. . . . 5
⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇)
→ {𝑚} ⊆ 𝑀) |
| 58 | 35 | restcldi 23181 |
. . . . 5
⊢ ((𝑀 ⊆ ∪ 𝐽
∧ {𝑚} ∈
(Clsd‘𝐽) ∧ {𝑚} ⊆ 𝑀) → {𝑚} ∈ (Clsd‘(𝐽 ↾t 𝑀))) |
| 59 | 28, 56, 57, 58 | syl3anc 1373 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇)
→ {𝑚} ∈
(Clsd‘(𝐽
↾t 𝑀))) |
| 60 | 6 | fveq2i 6909 |
. . . 4
⊢
(Clsd‘𝑇) =
(Clsd‘(𝐽
↾t 𝑀)) |
| 61 | 59, 60 | eleqtrrdi 2852 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ ∪ 𝑇)
→ {𝑚} ∈
(Clsd‘𝑇)) |
| 62 | 61 | ralrimiva 3146 |
. 2
⊢ (𝑅 ∈ CRing →
∀𝑚 ∈ ∪ 𝑇{𝑚} ∈ (Clsd‘𝑇)) |
| 63 | | eqid 2737 |
. . 3
⊢ ∪ 𝑇 =
∪ 𝑇 |
| 64 | 63 | ist1 23329 |
. 2
⊢ (𝑇 ∈ Fre ↔ (𝑇 ∈ Top ∧ ∀𝑚 ∈ ∪ 𝑇{𝑚} ∈ (Clsd‘𝑇))) |
| 65 | 9, 62, 64 | sylanbrc 583 |
1
⊢ (𝑅 ∈ CRing → 𝑇 ∈ Fre) |