![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > qtopt1 | Structured version Visualization version GIF version |
Description: If every equivalence class is closed, then the quotient space is T1 . (Contributed by Thierry Arnoux, 5-Jan-2020.) |
Ref | Expression |
---|---|
qtopt1.x | ⊢ 𝑋 = ∪ 𝐽 |
qtopt1.1 | ⊢ (𝜑 → 𝐽 ∈ Fre) |
qtopt1.2 | ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) |
qtopt1.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (◡𝐹 “ {𝑥}) ∈ (Clsd‘𝐽)) |
Ref | Expression |
---|---|
qtopt1 | ⊢ (𝜑 → (𝐽 qTop 𝐹) ∈ Fre) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qtopt1.1 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Fre) | |
2 | t1top 23359 | . . . 4 ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Top) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) |
4 | qtopt1.2 | . . . 4 ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) | |
5 | fofn 6836 | . . . 4 ⊢ (𝐹:𝑋–onto→𝑌 → 𝐹 Fn 𝑋) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝑋) |
7 | qtopt1.x | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
8 | 7 | qtoptop 23729 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ Top) |
9 | 3, 6, 8 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝐽 qTop 𝐹) ∈ Top) |
10 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝐽 qTop 𝐹)) → 𝑥 ∈ ∪ (𝐽 qTop 𝐹)) | |
11 | 7 | qtopuni 23731 | . . . . . . . 8 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → 𝑌 = ∪ (𝐽 qTop 𝐹)) |
12 | 3, 4, 11 | syl2anc 583 | . . . . . . 7 ⊢ (𝜑 → 𝑌 = ∪ (𝐽 qTop 𝐹)) |
13 | 12 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝐽 qTop 𝐹)) → 𝑌 = ∪ (𝐽 qTop 𝐹)) |
14 | 10, 13 | eleqtrrd 2847 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝐽 qTop 𝐹)) → 𝑥 ∈ 𝑌) |
15 | 14 | snssd 4834 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝐽 qTop 𝐹)) → {𝑥} ⊆ 𝑌) |
16 | qtopt1.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (◡𝐹 “ {𝑥}) ∈ (Clsd‘𝐽)) | |
17 | 14, 16 | syldan 590 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝐽 qTop 𝐹)) → (◡𝐹 “ {𝑥}) ∈ (Clsd‘𝐽)) |
18 | 3, 7 | jctir 520 | . . . . . . 7 ⊢ (𝜑 → (𝐽 ∈ Top ∧ 𝑋 = ∪ 𝐽)) |
19 | istopon 22939 | . . . . . . 7 ⊢ (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = ∪ 𝐽)) | |
20 | 18, 19 | sylibr 234 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
21 | qtopcld 23742 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → ({𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ({𝑥} ⊆ 𝑌 ∧ (◡𝐹 “ {𝑥}) ∈ (Clsd‘𝐽)))) | |
22 | 20, 4, 21 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → ({𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ({𝑥} ⊆ 𝑌 ∧ (◡𝐹 “ {𝑥}) ∈ (Clsd‘𝐽)))) |
23 | 22 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝐽 qTop 𝐹)) → ({𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ({𝑥} ⊆ 𝑌 ∧ (◡𝐹 “ {𝑥}) ∈ (Clsd‘𝐽)))) |
24 | 15, 17, 23 | mpbir2and 712 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝐽 qTop 𝐹)) → {𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹))) |
25 | 24 | ralrimiva 3152 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ ∪ (𝐽 qTop 𝐹){𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹))) |
26 | eqid 2740 | . . 3 ⊢ ∪ (𝐽 qTop 𝐹) = ∪ (𝐽 qTop 𝐹) | |
27 | 26 | ist1 23350 | . 2 ⊢ ((𝐽 qTop 𝐹) ∈ Fre ↔ ((𝐽 qTop 𝐹) ∈ Top ∧ ∀𝑥 ∈ ∪ (𝐽 qTop 𝐹){𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹)))) |
28 | 9, 25, 27 | sylanbrc 582 | 1 ⊢ (𝜑 → (𝐽 qTop 𝐹) ∈ Fre) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ⊆ wss 3976 {csn 4648 ∪ cuni 4931 ◡ccnv 5699 “ cima 5703 Fn wfn 6568 –onto→wfo 6571 ‘cfv 6573 (class class class)co 7448 qTop cqtop 17563 Topctop 22920 TopOnctopon 22937 Clsdccld 23045 Frect1 23336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-qtop 17567 df-top 22921 df-topon 22938 df-cld 23048 df-t1 23343 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |