Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qtopt1 Structured version   Visualization version   GIF version

Theorem qtopt1 33848
Description: If every equivalence class is closed, then the quotient space is T1 . (Contributed by Thierry Arnoux, 5-Jan-2020.)
Hypotheses
Ref Expression
qtopt1.x 𝑋 = 𝐽
qtopt1.1 (𝜑𝐽 ∈ Fre)
qtopt1.2 (𝜑𝐹:𝑋onto𝑌)
qtopt1.3 ((𝜑𝑥𝑌) → (𝐹 “ {𝑥}) ∈ (Clsd‘𝐽))
Assertion
Ref Expression
qtopt1 (𝜑 → (𝐽 qTop 𝐹) ∈ Fre)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝜑,𝑥
Allowed substitution hints:   𝑋(𝑥)   𝑌(𝑥)

Proof of Theorem qtopt1
StepHypRef Expression
1 qtopt1.1 . . . 4 (𝜑𝐽 ∈ Fre)
2 t1top 23245 . . . 4 (𝐽 ∈ Fre → 𝐽 ∈ Top)
31, 2syl 17 . . 3 (𝜑𝐽 ∈ Top)
4 qtopt1.2 . . . 4 (𝜑𝐹:𝑋onto𝑌)
5 fofn 6737 . . . 4 (𝐹:𝑋onto𝑌𝐹 Fn 𝑋)
64, 5syl 17 . . 3 (𝜑𝐹 Fn 𝑋)
7 qtopt1.x . . . 4 𝑋 = 𝐽
87qtoptop 23615 . . 3 ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ Top)
93, 6, 8syl2anc 584 . 2 (𝜑 → (𝐽 qTop 𝐹) ∈ Top)
10 simpr 484 . . . . . 6 ((𝜑𝑥 (𝐽 qTop 𝐹)) → 𝑥 (𝐽 qTop 𝐹))
117qtopuni 23617 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → 𝑌 = (𝐽 qTop 𝐹))
123, 4, 11syl2anc 584 . . . . . . 7 (𝜑𝑌 = (𝐽 qTop 𝐹))
1312adantr 480 . . . . . 6 ((𝜑𝑥 (𝐽 qTop 𝐹)) → 𝑌 = (𝐽 qTop 𝐹))
1410, 13eleqtrrd 2834 . . . . 5 ((𝜑𝑥 (𝐽 qTop 𝐹)) → 𝑥𝑌)
1514snssd 4758 . . . 4 ((𝜑𝑥 (𝐽 qTop 𝐹)) → {𝑥} ⊆ 𝑌)
16 qtopt1.3 . . . . 5 ((𝜑𝑥𝑌) → (𝐹 “ {𝑥}) ∈ (Clsd‘𝐽))
1714, 16syldan 591 . . . 4 ((𝜑𝑥 (𝐽 qTop 𝐹)) → (𝐹 “ {𝑥}) ∈ (Clsd‘𝐽))
183, 7jctir 520 . . . . . . 7 (𝜑 → (𝐽 ∈ Top ∧ 𝑋 = 𝐽))
19 istopon 22827 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝐽))
2018, 19sylibr 234 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
21 qtopcld 23628 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → ({𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ({𝑥} ⊆ 𝑌 ∧ (𝐹 “ {𝑥}) ∈ (Clsd‘𝐽))))
2220, 4, 21syl2anc 584 . . . . 5 (𝜑 → ({𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ({𝑥} ⊆ 𝑌 ∧ (𝐹 “ {𝑥}) ∈ (Clsd‘𝐽))))
2322adantr 480 . . . 4 ((𝜑𝑥 (𝐽 qTop 𝐹)) → ({𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ({𝑥} ⊆ 𝑌 ∧ (𝐹 “ {𝑥}) ∈ (Clsd‘𝐽))))
2415, 17, 23mpbir2and 713 . . 3 ((𝜑𝑥 (𝐽 qTop 𝐹)) → {𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹)))
2524ralrimiva 3124 . 2 (𝜑 → ∀𝑥 (𝐽 qTop 𝐹){𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹)))
26 eqid 2731 . . 3 (𝐽 qTop 𝐹) = (𝐽 qTop 𝐹)
2726ist1 23236 . 2 ((𝐽 qTop 𝐹) ∈ Fre ↔ ((𝐽 qTop 𝐹) ∈ Top ∧ ∀𝑥 (𝐽 qTop 𝐹){𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹))))
289, 25, 27sylanbrc 583 1 (𝜑 → (𝐽 qTop 𝐹) ∈ Fre)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wss 3897  {csn 4573   cuni 4856  ccnv 5613  cima 5617   Fn wfn 6476  ontowfo 6479  cfv 6481  (class class class)co 7346   qTop cqtop 17407  Topctop 22808  TopOnctopon 22825  Clsdccld 22931  Frect1 23222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-qtop 17411  df-top 22809  df-topon 22826  df-cld 22934  df-t1 23229
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator