Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qtopt1 Structured version   Visualization version   GIF version

Theorem qtopt1 31687
Description: If every equivalence class is closed, then the quotient space is T1 . (Contributed by Thierry Arnoux, 5-Jan-2020.)
Hypotheses
Ref Expression
qtopt1.x 𝑋 = 𝐽
qtopt1.1 (𝜑𝐽 ∈ Fre)
qtopt1.2 (𝜑𝐹:𝑋onto𝑌)
qtopt1.3 ((𝜑𝑥𝑌) → (𝐹 “ {𝑥}) ∈ (Clsd‘𝐽))
Assertion
Ref Expression
qtopt1 (𝜑 → (𝐽 qTop 𝐹) ∈ Fre)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝜑,𝑥
Allowed substitution hints:   𝑋(𝑥)   𝑌(𝑥)

Proof of Theorem qtopt1
StepHypRef Expression
1 qtopt1.1 . . . 4 (𝜑𝐽 ∈ Fre)
2 t1top 22389 . . . 4 (𝐽 ∈ Fre → 𝐽 ∈ Top)
31, 2syl 17 . . 3 (𝜑𝐽 ∈ Top)
4 qtopt1.2 . . . 4 (𝜑𝐹:𝑋onto𝑌)
5 fofn 6674 . . . 4 (𝐹:𝑋onto𝑌𝐹 Fn 𝑋)
64, 5syl 17 . . 3 (𝜑𝐹 Fn 𝑋)
7 qtopt1.x . . . 4 𝑋 = 𝐽
87qtoptop 22759 . . 3 ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ Top)
93, 6, 8syl2anc 583 . 2 (𝜑 → (𝐽 qTop 𝐹) ∈ Top)
10 simpr 484 . . . . . 6 ((𝜑𝑥 (𝐽 qTop 𝐹)) → 𝑥 (𝐽 qTop 𝐹))
117qtopuni 22761 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → 𝑌 = (𝐽 qTop 𝐹))
123, 4, 11syl2anc 583 . . . . . . 7 (𝜑𝑌 = (𝐽 qTop 𝐹))
1312adantr 480 . . . . . 6 ((𝜑𝑥 (𝐽 qTop 𝐹)) → 𝑌 = (𝐽 qTop 𝐹))
1410, 13eleqtrrd 2842 . . . . 5 ((𝜑𝑥 (𝐽 qTop 𝐹)) → 𝑥𝑌)
1514snssd 4739 . . . 4 ((𝜑𝑥 (𝐽 qTop 𝐹)) → {𝑥} ⊆ 𝑌)
16 qtopt1.3 . . . . 5 ((𝜑𝑥𝑌) → (𝐹 “ {𝑥}) ∈ (Clsd‘𝐽))
1714, 16syldan 590 . . . 4 ((𝜑𝑥 (𝐽 qTop 𝐹)) → (𝐹 “ {𝑥}) ∈ (Clsd‘𝐽))
183, 7jctir 520 . . . . . . 7 (𝜑 → (𝐽 ∈ Top ∧ 𝑋 = 𝐽))
19 istopon 21969 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝐽))
2018, 19sylibr 233 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
21 qtopcld 22772 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → ({𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ({𝑥} ⊆ 𝑌 ∧ (𝐹 “ {𝑥}) ∈ (Clsd‘𝐽))))
2220, 4, 21syl2anc 583 . . . . 5 (𝜑 → ({𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ({𝑥} ⊆ 𝑌 ∧ (𝐹 “ {𝑥}) ∈ (Clsd‘𝐽))))
2322adantr 480 . . . 4 ((𝜑𝑥 (𝐽 qTop 𝐹)) → ({𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ({𝑥} ⊆ 𝑌 ∧ (𝐹 “ {𝑥}) ∈ (Clsd‘𝐽))))
2415, 17, 23mpbir2and 709 . . 3 ((𝜑𝑥 (𝐽 qTop 𝐹)) → {𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹)))
2524ralrimiva 3107 . 2 (𝜑 → ∀𝑥 (𝐽 qTop 𝐹){𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹)))
26 eqid 2738 . . 3 (𝐽 qTop 𝐹) = (𝐽 qTop 𝐹)
2726ist1 22380 . 2 ((𝐽 qTop 𝐹) ∈ Fre ↔ ((𝐽 qTop 𝐹) ∈ Top ∧ ∀𝑥 (𝐽 qTop 𝐹){𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹))))
289, 25, 27sylanbrc 582 1 (𝜑 → (𝐽 qTop 𝐹) ∈ Fre)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wss 3883  {csn 4558   cuni 4836  ccnv 5579  cima 5583   Fn wfn 6413  ontowfo 6416  cfv 6418  (class class class)co 7255   qTop cqtop 17131  Topctop 21950  TopOnctopon 21967  Clsdccld 22075  Frect1 22366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-qtop 17135  df-top 21951  df-topon 21968  df-cld 22078  df-t1 22373
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator