Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > qtopt1 | Structured version Visualization version GIF version |
Description: If every equivalence class is closed, then the quotient space is T1 . (Contributed by Thierry Arnoux, 5-Jan-2020.) |
Ref | Expression |
---|---|
qtopt1.x | ⊢ 𝑋 = ∪ 𝐽 |
qtopt1.1 | ⊢ (𝜑 → 𝐽 ∈ Fre) |
qtopt1.2 | ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) |
qtopt1.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (◡𝐹 “ {𝑥}) ∈ (Clsd‘𝐽)) |
Ref | Expression |
---|---|
qtopt1 | ⊢ (𝜑 → (𝐽 qTop 𝐹) ∈ Fre) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qtopt1.1 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Fre) | |
2 | t1top 22227 | . . . 4 ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Top) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) |
4 | qtopt1.2 | . . . 4 ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) | |
5 | fofn 6635 | . . . 4 ⊢ (𝐹:𝑋–onto→𝑌 → 𝐹 Fn 𝑋) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝑋) |
7 | qtopt1.x | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
8 | 7 | qtoptop 22597 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ Top) |
9 | 3, 6, 8 | syl2anc 587 | . 2 ⊢ (𝜑 → (𝐽 qTop 𝐹) ∈ Top) |
10 | simpr 488 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝐽 qTop 𝐹)) → 𝑥 ∈ ∪ (𝐽 qTop 𝐹)) | |
11 | 7 | qtopuni 22599 | . . . . . . . 8 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → 𝑌 = ∪ (𝐽 qTop 𝐹)) |
12 | 3, 4, 11 | syl2anc 587 | . . . . . . 7 ⊢ (𝜑 → 𝑌 = ∪ (𝐽 qTop 𝐹)) |
13 | 12 | adantr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝐽 qTop 𝐹)) → 𝑌 = ∪ (𝐽 qTop 𝐹)) |
14 | 10, 13 | eleqtrrd 2841 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝐽 qTop 𝐹)) → 𝑥 ∈ 𝑌) |
15 | 14 | snssd 4722 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝐽 qTop 𝐹)) → {𝑥} ⊆ 𝑌) |
16 | qtopt1.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (◡𝐹 “ {𝑥}) ∈ (Clsd‘𝐽)) | |
17 | 14, 16 | syldan 594 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝐽 qTop 𝐹)) → (◡𝐹 “ {𝑥}) ∈ (Clsd‘𝐽)) |
18 | 3, 7 | jctir 524 | . . . . . . 7 ⊢ (𝜑 → (𝐽 ∈ Top ∧ 𝑋 = ∪ 𝐽)) |
19 | istopon 21809 | . . . . . . 7 ⊢ (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = ∪ 𝐽)) | |
20 | 18, 19 | sylibr 237 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
21 | qtopcld 22610 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → ({𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ({𝑥} ⊆ 𝑌 ∧ (◡𝐹 “ {𝑥}) ∈ (Clsd‘𝐽)))) | |
22 | 20, 4, 21 | syl2anc 587 | . . . . 5 ⊢ (𝜑 → ({𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ({𝑥} ⊆ 𝑌 ∧ (◡𝐹 “ {𝑥}) ∈ (Clsd‘𝐽)))) |
23 | 22 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝐽 qTop 𝐹)) → ({𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ({𝑥} ⊆ 𝑌 ∧ (◡𝐹 “ {𝑥}) ∈ (Clsd‘𝐽)))) |
24 | 15, 17, 23 | mpbir2and 713 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝐽 qTop 𝐹)) → {𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹))) |
25 | 24 | ralrimiva 3105 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ ∪ (𝐽 qTop 𝐹){𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹))) |
26 | eqid 2737 | . . 3 ⊢ ∪ (𝐽 qTop 𝐹) = ∪ (𝐽 qTop 𝐹) | |
27 | 26 | ist1 22218 | . 2 ⊢ ((𝐽 qTop 𝐹) ∈ Fre ↔ ((𝐽 qTop 𝐹) ∈ Top ∧ ∀𝑥 ∈ ∪ (𝐽 qTop 𝐹){𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹)))) |
28 | 9, 25, 27 | sylanbrc 586 | 1 ⊢ (𝜑 → (𝐽 qTop 𝐹) ∈ Fre) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∀wral 3061 ⊆ wss 3866 {csn 4541 ∪ cuni 4819 ◡ccnv 5550 “ cima 5554 Fn wfn 6375 –onto→wfo 6378 ‘cfv 6380 (class class class)co 7213 qTop cqtop 17008 Topctop 21790 TopOnctopon 21807 Clsdccld 21913 Frect1 22204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-qtop 17012 df-top 21791 df-topon 21808 df-cld 21916 df-t1 22211 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |