Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qtopt1 Structured version   Visualization version   GIF version

Theorem qtopt1 31094
Description: If every equivalence class is closed, then the quotient space is T1 . (Contributed by Thierry Arnoux, 5-Jan-2020.)
Hypotheses
Ref Expression
qtopt1.x 𝑋 = 𝐽
qtopt1.1 (𝜑𝐽 ∈ Fre)
qtopt1.2 (𝜑𝐹:𝑋onto𝑌)
qtopt1.3 ((𝜑𝑥𝑌) → (𝐹 “ {𝑥}) ∈ (Clsd‘𝐽))
Assertion
Ref Expression
qtopt1 (𝜑 → (𝐽 qTop 𝐹) ∈ Fre)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝜑,𝑥
Allowed substitution hints:   𝑋(𝑥)   𝑌(𝑥)

Proof of Theorem qtopt1
StepHypRef Expression
1 qtopt1.1 . . . 4 (𝜑𝐽 ∈ Fre)
2 t1top 21932 . . . 4 (𝐽 ∈ Fre → 𝐽 ∈ Top)
31, 2syl 17 . . 3 (𝜑𝐽 ∈ Top)
4 qtopt1.2 . . . 4 (𝜑𝐹:𝑋onto𝑌)
5 fofn 6587 . . . 4 (𝐹:𝑋onto𝑌𝐹 Fn 𝑋)
64, 5syl 17 . . 3 (𝜑𝐹 Fn 𝑋)
7 qtopt1.x . . . 4 𝑋 = 𝐽
87qtoptop 22302 . . 3 ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ Top)
93, 6, 8syl2anc 586 . 2 (𝜑 → (𝐽 qTop 𝐹) ∈ Top)
10 simpr 487 . . . . . 6 ((𝜑𝑥 (𝐽 qTop 𝐹)) → 𝑥 (𝐽 qTop 𝐹))
117qtopuni 22304 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto𝑌) → 𝑌 = (𝐽 qTop 𝐹))
123, 4, 11syl2anc 586 . . . . . . 7 (𝜑𝑌 = (𝐽 qTop 𝐹))
1312adantr 483 . . . . . 6 ((𝜑𝑥 (𝐽 qTop 𝐹)) → 𝑌 = (𝐽 qTop 𝐹))
1410, 13eleqtrrd 2916 . . . . 5 ((𝜑𝑥 (𝐽 qTop 𝐹)) → 𝑥𝑌)
1514snssd 4736 . . . 4 ((𝜑𝑥 (𝐽 qTop 𝐹)) → {𝑥} ⊆ 𝑌)
16 qtopt1.3 . . . . 5 ((𝜑𝑥𝑌) → (𝐹 “ {𝑥}) ∈ (Clsd‘𝐽))
1714, 16syldan 593 . . . 4 ((𝜑𝑥 (𝐽 qTop 𝐹)) → (𝐹 “ {𝑥}) ∈ (Clsd‘𝐽))
183, 7jctir 523 . . . . . . 7 (𝜑 → (𝐽 ∈ Top ∧ 𝑋 = 𝐽))
19 istopon 21514 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝐽))
2018, 19sylibr 236 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
21 qtopcld 22315 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → ({𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ({𝑥} ⊆ 𝑌 ∧ (𝐹 “ {𝑥}) ∈ (Clsd‘𝐽))))
2220, 4, 21syl2anc 586 . . . . 5 (𝜑 → ({𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ({𝑥} ⊆ 𝑌 ∧ (𝐹 “ {𝑥}) ∈ (Clsd‘𝐽))))
2322adantr 483 . . . 4 ((𝜑𝑥 (𝐽 qTop 𝐹)) → ({𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ({𝑥} ⊆ 𝑌 ∧ (𝐹 “ {𝑥}) ∈ (Clsd‘𝐽))))
2415, 17, 23mpbir2and 711 . . 3 ((𝜑𝑥 (𝐽 qTop 𝐹)) → {𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹)))
2524ralrimiva 3182 . 2 (𝜑 → ∀𝑥 (𝐽 qTop 𝐹){𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹)))
26 eqid 2821 . . 3 (𝐽 qTop 𝐹) = (𝐽 qTop 𝐹)
2726ist1 21923 . 2 ((𝐽 qTop 𝐹) ∈ Fre ↔ ((𝐽 qTop 𝐹) ∈ Top ∧ ∀𝑥 (𝐽 qTop 𝐹){𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹))))
289, 25, 27sylanbrc 585 1 (𝜑 → (𝐽 qTop 𝐹) ∈ Fre)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  wss 3936  {csn 4561   cuni 4832  ccnv 5549  cima 5553   Fn wfn 6345  ontowfo 6348  cfv 6350  (class class class)co 7150   qTop cqtop 16770  Topctop 21495  TopOnctopon 21512  Clsdccld 21618  Frect1 21909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-ov 7153  df-oprab 7154  df-mpo 7155  df-qtop 16774  df-top 21496  df-topon 21513  df-cld 21621  df-t1 21916
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator