| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > qtopt1 | Structured version Visualization version GIF version | ||
| Description: If every equivalence class is closed, then the quotient space is T1 . (Contributed by Thierry Arnoux, 5-Jan-2020.) |
| Ref | Expression |
|---|---|
| qtopt1.x | ⊢ 𝑋 = ∪ 𝐽 |
| qtopt1.1 | ⊢ (𝜑 → 𝐽 ∈ Fre) |
| qtopt1.2 | ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) |
| qtopt1.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (◡𝐹 “ {𝑥}) ∈ (Clsd‘𝐽)) |
| Ref | Expression |
|---|---|
| qtopt1 | ⊢ (𝜑 → (𝐽 qTop 𝐹) ∈ Fre) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qtopt1.1 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Fre) | |
| 2 | t1top 23268 | . . . 4 ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Top) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) |
| 4 | qtopt1.2 | . . . 4 ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) | |
| 5 | fofn 6792 | . . . 4 ⊢ (𝐹:𝑋–onto→𝑌 → 𝐹 Fn 𝑋) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝑋) |
| 7 | qtopt1.x | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 8 | 7 | qtoptop 23638 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ Top) |
| 9 | 3, 6, 8 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐽 qTop 𝐹) ∈ Top) |
| 10 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝐽 qTop 𝐹)) → 𝑥 ∈ ∪ (𝐽 qTop 𝐹)) | |
| 11 | 7 | qtopuni 23640 | . . . . . . . 8 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → 𝑌 = ∪ (𝐽 qTop 𝐹)) |
| 12 | 3, 4, 11 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → 𝑌 = ∪ (𝐽 qTop 𝐹)) |
| 13 | 12 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝐽 qTop 𝐹)) → 𝑌 = ∪ (𝐽 qTop 𝐹)) |
| 14 | 10, 13 | eleqtrrd 2837 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝐽 qTop 𝐹)) → 𝑥 ∈ 𝑌) |
| 15 | 14 | snssd 4785 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝐽 qTop 𝐹)) → {𝑥} ⊆ 𝑌) |
| 16 | qtopt1.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (◡𝐹 “ {𝑥}) ∈ (Clsd‘𝐽)) | |
| 17 | 14, 16 | syldan 591 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝐽 qTop 𝐹)) → (◡𝐹 “ {𝑥}) ∈ (Clsd‘𝐽)) |
| 18 | 3, 7 | jctir 520 | . . . . . . 7 ⊢ (𝜑 → (𝐽 ∈ Top ∧ 𝑋 = ∪ 𝐽)) |
| 19 | istopon 22850 | . . . . . . 7 ⊢ (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = ∪ 𝐽)) | |
| 20 | 18, 19 | sylibr 234 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 21 | qtopcld 23651 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → ({𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ({𝑥} ⊆ 𝑌 ∧ (◡𝐹 “ {𝑥}) ∈ (Clsd‘𝐽)))) | |
| 22 | 20, 4, 21 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ({𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ({𝑥} ⊆ 𝑌 ∧ (◡𝐹 “ {𝑥}) ∈ (Clsd‘𝐽)))) |
| 23 | 22 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝐽 qTop 𝐹)) → ({𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ({𝑥} ⊆ 𝑌 ∧ (◡𝐹 “ {𝑥}) ∈ (Clsd‘𝐽)))) |
| 24 | 15, 17, 23 | mpbir2and 713 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝐽 qTop 𝐹)) → {𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹))) |
| 25 | 24 | ralrimiva 3132 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ ∪ (𝐽 qTop 𝐹){𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹))) |
| 26 | eqid 2735 | . . 3 ⊢ ∪ (𝐽 qTop 𝐹) = ∪ (𝐽 qTop 𝐹) | |
| 27 | 26 | ist1 23259 | . 2 ⊢ ((𝐽 qTop 𝐹) ∈ Fre ↔ ((𝐽 qTop 𝐹) ∈ Top ∧ ∀𝑥 ∈ ∪ (𝐽 qTop 𝐹){𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹)))) |
| 28 | 9, 25, 27 | sylanbrc 583 | 1 ⊢ (𝜑 → (𝐽 qTop 𝐹) ∈ Fre) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ⊆ wss 3926 {csn 4601 ∪ cuni 4883 ◡ccnv 5653 “ cima 5657 Fn wfn 6526 –onto→wfo 6529 ‘cfv 6531 (class class class)co 7405 qTop cqtop 17517 Topctop 22831 TopOnctopon 22848 Clsdccld 22954 Frect1 23245 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-qtop 17521 df-top 22832 df-topon 22849 df-cld 22957 df-t1 23252 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |