Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > qtopt1 | Structured version Visualization version GIF version |
Description: If every equivalence class is closed, then the quotient space is T1 . (Contributed by Thierry Arnoux, 5-Jan-2020.) |
Ref | Expression |
---|---|
qtopt1.x | ⊢ 𝑋 = ∪ 𝐽 |
qtopt1.1 | ⊢ (𝜑 → 𝐽 ∈ Fre) |
qtopt1.2 | ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) |
qtopt1.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (◡𝐹 “ {𝑥}) ∈ (Clsd‘𝐽)) |
Ref | Expression |
---|---|
qtopt1 | ⊢ (𝜑 → (𝐽 qTop 𝐹) ∈ Fre) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qtopt1.1 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Fre) | |
2 | t1top 22389 | . . . 4 ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Top) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) |
4 | qtopt1.2 | . . . 4 ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) | |
5 | fofn 6674 | . . . 4 ⊢ (𝐹:𝑋–onto→𝑌 → 𝐹 Fn 𝑋) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝑋) |
7 | qtopt1.x | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
8 | 7 | qtoptop 22759 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ Top) |
9 | 3, 6, 8 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝐽 qTop 𝐹) ∈ Top) |
10 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝐽 qTop 𝐹)) → 𝑥 ∈ ∪ (𝐽 qTop 𝐹)) | |
11 | 7 | qtopuni 22761 | . . . . . . . 8 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → 𝑌 = ∪ (𝐽 qTop 𝐹)) |
12 | 3, 4, 11 | syl2anc 583 | . . . . . . 7 ⊢ (𝜑 → 𝑌 = ∪ (𝐽 qTop 𝐹)) |
13 | 12 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝐽 qTop 𝐹)) → 𝑌 = ∪ (𝐽 qTop 𝐹)) |
14 | 10, 13 | eleqtrrd 2842 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝐽 qTop 𝐹)) → 𝑥 ∈ 𝑌) |
15 | 14 | snssd 4739 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝐽 qTop 𝐹)) → {𝑥} ⊆ 𝑌) |
16 | qtopt1.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (◡𝐹 “ {𝑥}) ∈ (Clsd‘𝐽)) | |
17 | 14, 16 | syldan 590 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝐽 qTop 𝐹)) → (◡𝐹 “ {𝑥}) ∈ (Clsd‘𝐽)) |
18 | 3, 7 | jctir 520 | . . . . . . 7 ⊢ (𝜑 → (𝐽 ∈ Top ∧ 𝑋 = ∪ 𝐽)) |
19 | istopon 21969 | . . . . . . 7 ⊢ (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = ∪ 𝐽)) | |
20 | 18, 19 | sylibr 233 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
21 | qtopcld 22772 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → ({𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ({𝑥} ⊆ 𝑌 ∧ (◡𝐹 “ {𝑥}) ∈ (Clsd‘𝐽)))) | |
22 | 20, 4, 21 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → ({𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ({𝑥} ⊆ 𝑌 ∧ (◡𝐹 “ {𝑥}) ∈ (Clsd‘𝐽)))) |
23 | 22 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝐽 qTop 𝐹)) → ({𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ({𝑥} ⊆ 𝑌 ∧ (◡𝐹 “ {𝑥}) ∈ (Clsd‘𝐽)))) |
24 | 15, 17, 23 | mpbir2and 709 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝐽 qTop 𝐹)) → {𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹))) |
25 | 24 | ralrimiva 3107 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ ∪ (𝐽 qTop 𝐹){𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹))) |
26 | eqid 2738 | . . 3 ⊢ ∪ (𝐽 qTop 𝐹) = ∪ (𝐽 qTop 𝐹) | |
27 | 26 | ist1 22380 | . 2 ⊢ ((𝐽 qTop 𝐹) ∈ Fre ↔ ((𝐽 qTop 𝐹) ∈ Top ∧ ∀𝑥 ∈ ∪ (𝐽 qTop 𝐹){𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹)))) |
28 | 9, 25, 27 | sylanbrc 582 | 1 ⊢ (𝜑 → (𝐽 qTop 𝐹) ∈ Fre) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ⊆ wss 3883 {csn 4558 ∪ cuni 4836 ◡ccnv 5579 “ cima 5583 Fn wfn 6413 –onto→wfo 6416 ‘cfv 6418 (class class class)co 7255 qTop cqtop 17131 Topctop 21950 TopOnctopon 21967 Clsdccld 22075 Frect1 22366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-qtop 17135 df-top 21951 df-topon 21968 df-cld 22078 df-t1 22373 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |