| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > qtopt1 | Structured version Visualization version GIF version | ||
| Description: If every equivalence class is closed, then the quotient space is T1 . (Contributed by Thierry Arnoux, 5-Jan-2020.) |
| Ref | Expression |
|---|---|
| qtopt1.x | ⊢ 𝑋 = ∪ 𝐽 |
| qtopt1.1 | ⊢ (𝜑 → 𝐽 ∈ Fre) |
| qtopt1.2 | ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) |
| qtopt1.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (◡𝐹 “ {𝑥}) ∈ (Clsd‘𝐽)) |
| Ref | Expression |
|---|---|
| qtopt1 | ⊢ (𝜑 → (𝐽 qTop 𝐹) ∈ Fre) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qtopt1.1 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Fre) | |
| 2 | t1top 23245 | . . . 4 ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Top) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) |
| 4 | qtopt1.2 | . . . 4 ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) | |
| 5 | fofn 6737 | . . . 4 ⊢ (𝐹:𝑋–onto→𝑌 → 𝐹 Fn 𝑋) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝑋) |
| 7 | qtopt1.x | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 8 | 7 | qtoptop 23615 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ Top) |
| 9 | 3, 6, 8 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐽 qTop 𝐹) ∈ Top) |
| 10 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝐽 qTop 𝐹)) → 𝑥 ∈ ∪ (𝐽 qTop 𝐹)) | |
| 11 | 7 | qtopuni 23617 | . . . . . . . 8 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→𝑌) → 𝑌 = ∪ (𝐽 qTop 𝐹)) |
| 12 | 3, 4, 11 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → 𝑌 = ∪ (𝐽 qTop 𝐹)) |
| 13 | 12 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝐽 qTop 𝐹)) → 𝑌 = ∪ (𝐽 qTop 𝐹)) |
| 14 | 10, 13 | eleqtrrd 2834 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝐽 qTop 𝐹)) → 𝑥 ∈ 𝑌) |
| 15 | 14 | snssd 4758 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝐽 qTop 𝐹)) → {𝑥} ⊆ 𝑌) |
| 16 | qtopt1.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (◡𝐹 “ {𝑥}) ∈ (Clsd‘𝐽)) | |
| 17 | 14, 16 | syldan 591 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝐽 qTop 𝐹)) → (◡𝐹 “ {𝑥}) ∈ (Clsd‘𝐽)) |
| 18 | 3, 7 | jctir 520 | . . . . . . 7 ⊢ (𝜑 → (𝐽 ∈ Top ∧ 𝑋 = ∪ 𝐽)) |
| 19 | istopon 22827 | . . . . . . 7 ⊢ (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = ∪ 𝐽)) | |
| 20 | 18, 19 | sylibr 234 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 21 | qtopcld 23628 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → ({𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ({𝑥} ⊆ 𝑌 ∧ (◡𝐹 “ {𝑥}) ∈ (Clsd‘𝐽)))) | |
| 22 | 20, 4, 21 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ({𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ({𝑥} ⊆ 𝑌 ∧ (◡𝐹 “ {𝑥}) ∈ (Clsd‘𝐽)))) |
| 23 | 22 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝐽 qTop 𝐹)) → ({𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ({𝑥} ⊆ 𝑌 ∧ (◡𝐹 “ {𝑥}) ∈ (Clsd‘𝐽)))) |
| 24 | 15, 17, 23 | mpbir2and 713 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝐽 qTop 𝐹)) → {𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹))) |
| 25 | 24 | ralrimiva 3124 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ ∪ (𝐽 qTop 𝐹){𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹))) |
| 26 | eqid 2731 | . . 3 ⊢ ∪ (𝐽 qTop 𝐹) = ∪ (𝐽 qTop 𝐹) | |
| 27 | 26 | ist1 23236 | . 2 ⊢ ((𝐽 qTop 𝐹) ∈ Fre ↔ ((𝐽 qTop 𝐹) ∈ Top ∧ ∀𝑥 ∈ ∪ (𝐽 qTop 𝐹){𝑥} ∈ (Clsd‘(𝐽 qTop 𝐹)))) |
| 28 | 9, 25, 27 | sylanbrc 583 | 1 ⊢ (𝜑 → (𝐽 qTop 𝐹) ∈ Fre) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ⊆ wss 3897 {csn 4573 ∪ cuni 4856 ◡ccnv 5613 “ cima 5617 Fn wfn 6476 –onto→wfo 6479 ‘cfv 6481 (class class class)co 7346 qTop cqtop 17407 Topctop 22808 TopOnctopon 22825 Clsdccld 22931 Frect1 23222 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-qtop 17411 df-top 22809 df-topon 22826 df-cld 22934 df-t1 23229 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |