MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmstrkgc Structured version   Visualization version   GIF version

Theorem xmstrkgc 28712
Description: Any metric space fulfills Tarski's geometry axioms of congruence. (Contributed by Thierry Arnoux, 13-Mar-2019.)
Assertion
Ref Expression
xmstrkgc (𝐺 ∈ ∞MetSp → 𝐺 ∈ TarskiGC)

Proof of Theorem xmstrkgc
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3482 . 2 (𝐺 ∈ ∞MetSp → 𝐺 ∈ V)
2 eqid 2725 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
3 eqid 2725 . . . . . 6 (dist‘𝐺) = (dist‘𝐺)
42, 3xmssym 24387 . . . . 5 ((𝐺 ∈ ∞MetSp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(dist‘𝐺)𝑦) = (𝑦(dist‘𝐺)𝑥))
543expb 1117 . . . 4 ((𝐺 ∈ ∞MetSp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥(dist‘𝐺)𝑦) = (𝑦(dist‘𝐺)𝑥))
65ralrimivva 3191 . . 3 (𝐺 ∈ ∞MetSp → ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(dist‘𝐺)𝑦) = (𝑦(dist‘𝐺)𝑥))
7 simpl 481 . . . . . . . 8 ((𝐺 ∈ ∞MetSp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝐺 ∈ ∞MetSp)
8 simpr3 1193 . . . . . . . 8 ((𝐺 ∈ ∞MetSp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑧 ∈ (Base‘𝐺))
9 equid 2007 . . . . . . . . 9 𝑧 = 𝑧
102, 3xmseq0 24386 . . . . . . . . 9 ((𝐺 ∈ ∞MetSp ∧ 𝑧 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → ((𝑧(dist‘𝐺)𝑧) = 0 ↔ 𝑧 = 𝑧))
119, 10mpbiri 257 . . . . . . . 8 ((𝐺 ∈ ∞MetSp ∧ 𝑧 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝑧(dist‘𝐺)𝑧) = 0)
127, 8, 8, 11syl3anc 1368 . . . . . . 7 ((𝐺 ∈ ∞MetSp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑧(dist‘𝐺)𝑧) = 0)
1312eqeq2d 2736 . . . . . 6 ((𝐺 ∈ ∞MetSp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(dist‘𝐺)𝑦) = (𝑧(dist‘𝐺)𝑧) ↔ (𝑥(dist‘𝐺)𝑦) = 0))
142, 3xmseq0 24386 . . . . . . 7 ((𝐺 ∈ ∞MetSp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → ((𝑥(dist‘𝐺)𝑦) = 0 ↔ 𝑥 = 𝑦))
15143adant3r3 1181 . . . . . 6 ((𝐺 ∈ ∞MetSp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(dist‘𝐺)𝑦) = 0 ↔ 𝑥 = 𝑦))
1613, 15bitrd 278 . . . . 5 ((𝐺 ∈ ∞MetSp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(dist‘𝐺)𝑦) = (𝑧(dist‘𝐺)𝑧) ↔ 𝑥 = 𝑦))
1716biimpd 228 . . . 4 ((𝐺 ∈ ∞MetSp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(dist‘𝐺)𝑦) = (𝑧(dist‘𝐺)𝑧) → 𝑥 = 𝑦))
1817ralrimivvva 3194 . . 3 (𝐺 ∈ ∞MetSp → ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑥(dist‘𝐺)𝑦) = (𝑧(dist‘𝐺)𝑧) → 𝑥 = 𝑦))
196, 18jca 510 . 2 (𝐺 ∈ ∞MetSp → (∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(dist‘𝐺)𝑦) = (𝑦(dist‘𝐺)𝑥) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑥(dist‘𝐺)𝑦) = (𝑧(dist‘𝐺)𝑧) → 𝑥 = 𝑦)))
20 eqid 2725 . . 3 (Itv‘𝐺) = (Itv‘𝐺)
212, 3, 20istrkgc 28274 . 2 (𝐺 ∈ TarskiGC ↔ (𝐺 ∈ V ∧ (∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(dist‘𝐺)𝑦) = (𝑦(dist‘𝐺)𝑥) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑥(dist‘𝐺)𝑦) = (𝑧(dist‘𝐺)𝑧) → 𝑥 = 𝑦))))
221, 19, 21sylanbrc 581 1 (𝐺 ∈ ∞MetSp → 𝐺 ∈ TarskiGC)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3051  Vcvv 3463  cfv 6541  (class class class)co 7414  0cc0 11136  Basecbs 17177  distcds 17239  ∞MetSpcxms 24239  TarskiGCcstrkgc 28248  Itvcitv 28253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5292  ax-nul 5299  ax-pow 5357  ax-pr 5421  ax-un 7736  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213  ax-pre-sup 11214
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3958  df-nul 4317  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7867  df-1st 7989  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-er 8721  df-map 8843  df-en 8961  df-dom 8962  df-sdom 8963  df-sup 9463  df-inf 9464  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-div 11900  df-nn 12241  df-2 12303  df-n0 12501  df-z 12587  df-uz 12851  df-q 12961  df-rp 13005  df-xneg 13122  df-xadd 13123  df-xmul 13124  df-topgen 17422  df-psmet 21273  df-xmet 21274  df-bl 21276  df-mopn 21277  df-top 22812  df-topon 22829  df-topsp 22851  df-bases 22865  df-xms 24242  df-trkgc 28268
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator