| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xmstrkgc | Structured version Visualization version GIF version | ||
| Description: Any metric space fulfills Tarski's geometry axioms of congruence. (Contributed by Thierry Arnoux, 13-Mar-2019.) |
| Ref | Expression |
|---|---|
| xmstrkgc | ⊢ (𝐺 ∈ ∞MetSp → 𝐺 ∈ TarskiGC) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3468 | . 2 ⊢ (𝐺 ∈ ∞MetSp → 𝐺 ∈ V) | |
| 2 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 3 | eqid 2729 | . . . . . 6 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 4 | 2, 3 | xmssym 24353 | . . . . 5 ⊢ ((𝐺 ∈ ∞MetSp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(dist‘𝐺)𝑦) = (𝑦(dist‘𝐺)𝑥)) |
| 5 | 4 | 3expb 1120 | . . . 4 ⊢ ((𝐺 ∈ ∞MetSp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥(dist‘𝐺)𝑦) = (𝑦(dist‘𝐺)𝑥)) |
| 6 | 5 | ralrimivva 3180 | . . 3 ⊢ (𝐺 ∈ ∞MetSp → ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(dist‘𝐺)𝑦) = (𝑦(dist‘𝐺)𝑥)) |
| 7 | simpl 482 | . . . . . . . 8 ⊢ ((𝐺 ∈ ∞MetSp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝐺 ∈ ∞MetSp) | |
| 8 | simpr3 1197 | . . . . . . . 8 ⊢ ((𝐺 ∈ ∞MetSp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑧 ∈ (Base‘𝐺)) | |
| 9 | equid 2012 | . . . . . . . . 9 ⊢ 𝑧 = 𝑧 | |
| 10 | 2, 3 | xmseq0 24352 | . . . . . . . . 9 ⊢ ((𝐺 ∈ ∞MetSp ∧ 𝑧 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → ((𝑧(dist‘𝐺)𝑧) = 0 ↔ 𝑧 = 𝑧)) |
| 11 | 9, 10 | mpbiri 258 | . . . . . . . 8 ⊢ ((𝐺 ∈ ∞MetSp ∧ 𝑧 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝑧(dist‘𝐺)𝑧) = 0) |
| 12 | 7, 8, 8, 11 | syl3anc 1373 | . . . . . . 7 ⊢ ((𝐺 ∈ ∞MetSp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑧(dist‘𝐺)𝑧) = 0) |
| 13 | 12 | eqeq2d 2740 | . . . . . 6 ⊢ ((𝐺 ∈ ∞MetSp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(dist‘𝐺)𝑦) = (𝑧(dist‘𝐺)𝑧) ↔ (𝑥(dist‘𝐺)𝑦) = 0)) |
| 14 | 2, 3 | xmseq0 24352 | . . . . . . 7 ⊢ ((𝐺 ∈ ∞MetSp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → ((𝑥(dist‘𝐺)𝑦) = 0 ↔ 𝑥 = 𝑦)) |
| 15 | 14 | 3adant3r3 1185 | . . . . . 6 ⊢ ((𝐺 ∈ ∞MetSp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(dist‘𝐺)𝑦) = 0 ↔ 𝑥 = 𝑦)) |
| 16 | 13, 15 | bitrd 279 | . . . . 5 ⊢ ((𝐺 ∈ ∞MetSp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(dist‘𝐺)𝑦) = (𝑧(dist‘𝐺)𝑧) ↔ 𝑥 = 𝑦)) |
| 17 | 16 | biimpd 229 | . . . 4 ⊢ ((𝐺 ∈ ∞MetSp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(dist‘𝐺)𝑦) = (𝑧(dist‘𝐺)𝑧) → 𝑥 = 𝑦)) |
| 18 | 17 | ralrimivvva 3183 | . . 3 ⊢ (𝐺 ∈ ∞MetSp → ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑥(dist‘𝐺)𝑦) = (𝑧(dist‘𝐺)𝑧) → 𝑥 = 𝑦)) |
| 19 | 6, 18 | jca 511 | . 2 ⊢ (𝐺 ∈ ∞MetSp → (∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(dist‘𝐺)𝑦) = (𝑦(dist‘𝐺)𝑥) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑥(dist‘𝐺)𝑦) = (𝑧(dist‘𝐺)𝑧) → 𝑥 = 𝑦))) |
| 20 | eqid 2729 | . . 3 ⊢ (Itv‘𝐺) = (Itv‘𝐺) | |
| 21 | 2, 3, 20 | istrkgc 28381 | . 2 ⊢ (𝐺 ∈ TarskiGC ↔ (𝐺 ∈ V ∧ (∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(dist‘𝐺)𝑦) = (𝑦(dist‘𝐺)𝑥) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑥(dist‘𝐺)𝑦) = (𝑧(dist‘𝐺)𝑧) → 𝑥 = 𝑦)))) |
| 22 | 1, 19, 21 | sylanbrc 583 | 1 ⊢ (𝐺 ∈ ∞MetSp → 𝐺 ∈ TarskiGC) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 ‘cfv 6511 (class class class)co 7387 0cc0 11068 Basecbs 17179 distcds 17229 ∞MetSpcxms 24205 TarskiGCcstrkgc 28355 Itvcitv 28360 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-topgen 17406 df-psmet 21256 df-xmet 21257 df-bl 21259 df-mopn 21260 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-xms 24208 df-trkgc 28375 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |