MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmstrkgc Structured version   Visualization version   GIF version

Theorem xmstrkgc 27234
Description: Any metric space fulfills Tarski's geometry axioms of congruence. (Contributed by Thierry Arnoux, 13-Mar-2019.)
Assertion
Ref Expression
xmstrkgc (𝐺 ∈ ∞MetSp → 𝐺 ∈ TarskiGC)

Proof of Theorem xmstrkgc
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3448 . 2 (𝐺 ∈ ∞MetSp → 𝐺 ∈ V)
2 eqid 2739 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
3 eqid 2739 . . . . . 6 (dist‘𝐺) = (dist‘𝐺)
42, 3xmssym 23599 . . . . 5 ((𝐺 ∈ ∞MetSp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(dist‘𝐺)𝑦) = (𝑦(dist‘𝐺)𝑥))
543expb 1118 . . . 4 ((𝐺 ∈ ∞MetSp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥(dist‘𝐺)𝑦) = (𝑦(dist‘𝐺)𝑥))
65ralrimivva 3116 . . 3 (𝐺 ∈ ∞MetSp → ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(dist‘𝐺)𝑦) = (𝑦(dist‘𝐺)𝑥))
7 simpl 482 . . . . . . . 8 ((𝐺 ∈ ∞MetSp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝐺 ∈ ∞MetSp)
8 simpr3 1194 . . . . . . . 8 ((𝐺 ∈ ∞MetSp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑧 ∈ (Base‘𝐺))
9 equid 2018 . . . . . . . . 9 𝑧 = 𝑧
102, 3xmseq0 23598 . . . . . . . . 9 ((𝐺 ∈ ∞MetSp ∧ 𝑧 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → ((𝑧(dist‘𝐺)𝑧) = 0 ↔ 𝑧 = 𝑧))
119, 10mpbiri 257 . . . . . . . 8 ((𝐺 ∈ ∞MetSp ∧ 𝑧 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝑧(dist‘𝐺)𝑧) = 0)
127, 8, 8, 11syl3anc 1369 . . . . . . 7 ((𝐺 ∈ ∞MetSp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑧(dist‘𝐺)𝑧) = 0)
1312eqeq2d 2750 . . . . . 6 ((𝐺 ∈ ∞MetSp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(dist‘𝐺)𝑦) = (𝑧(dist‘𝐺)𝑧) ↔ (𝑥(dist‘𝐺)𝑦) = 0))
142, 3xmseq0 23598 . . . . . . 7 ((𝐺 ∈ ∞MetSp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → ((𝑥(dist‘𝐺)𝑦) = 0 ↔ 𝑥 = 𝑦))
15143adant3r3 1182 . . . . . 6 ((𝐺 ∈ ∞MetSp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(dist‘𝐺)𝑦) = 0 ↔ 𝑥 = 𝑦))
1613, 15bitrd 278 . . . . 5 ((𝐺 ∈ ∞MetSp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(dist‘𝐺)𝑦) = (𝑧(dist‘𝐺)𝑧) ↔ 𝑥 = 𝑦))
1716biimpd 228 . . . 4 ((𝐺 ∈ ∞MetSp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(dist‘𝐺)𝑦) = (𝑧(dist‘𝐺)𝑧) → 𝑥 = 𝑦))
1817ralrimivvva 3117 . . 3 (𝐺 ∈ ∞MetSp → ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑥(dist‘𝐺)𝑦) = (𝑧(dist‘𝐺)𝑧) → 𝑥 = 𝑦))
196, 18jca 511 . 2 (𝐺 ∈ ∞MetSp → (∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(dist‘𝐺)𝑦) = (𝑦(dist‘𝐺)𝑥) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑥(dist‘𝐺)𝑦) = (𝑧(dist‘𝐺)𝑧) → 𝑥 = 𝑦)))
20 eqid 2739 . . 3 (Itv‘𝐺) = (Itv‘𝐺)
212, 3, 20istrkgc 26796 . 2 (𝐺 ∈ TarskiGC ↔ (𝐺 ∈ V ∧ (∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(dist‘𝐺)𝑦) = (𝑦(dist‘𝐺)𝑥) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑥(dist‘𝐺)𝑦) = (𝑧(dist‘𝐺)𝑧) → 𝑥 = 𝑦))))
221, 19, 21sylanbrc 582 1 (𝐺 ∈ ∞MetSp → 𝐺 ∈ TarskiGC)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1541  wcel 2109  wral 3065  Vcvv 3430  cfv 6430  (class class class)co 7268  0cc0 10855  Basecbs 16893  distcds 16952  ∞MetSpcxms 23451  TarskiGCcstrkgc 26770  Itvcitv 26775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-er 8472  df-map 8591  df-en 8708  df-dom 8709  df-sdom 8710  df-sup 9162  df-inf 9163  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-2 12019  df-n0 12217  df-z 12303  df-uz 12565  df-q 12671  df-rp 12713  df-xneg 12830  df-xadd 12831  df-xmul 12832  df-topgen 17135  df-psmet 20570  df-xmet 20571  df-bl 20573  df-mopn 20574  df-top 22024  df-topon 22041  df-topsp 22063  df-bases 22077  df-xms 23454  df-trkgc 26790
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator