MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmstrkgc Structured version   Visualization version   GIF version

Theorem xmstrkgc 26365
Description: Any metric space fulfills Tarski's geometry axioms of congruence. (Contributed by Thierry Arnoux, 13-Mar-2019.)
Assertion
Ref Expression
xmstrkgc (𝐺 ∈ ∞MetSp → 𝐺 ∈ TarskiGC)

Proof of Theorem xmstrkgc
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3427 . 2 (𝐺 ∈ ∞MetSp → 𝐺 ∈ V)
2 eqid 2772 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
3 eqid 2772 . . . . . 6 (dist‘𝐺) = (dist‘𝐺)
42, 3xmssym 22768 . . . . 5 ((𝐺 ∈ ∞MetSp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(dist‘𝐺)𝑦) = (𝑦(dist‘𝐺)𝑥))
543expb 1100 . . . 4 ((𝐺 ∈ ∞MetSp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥(dist‘𝐺)𝑦) = (𝑦(dist‘𝐺)𝑥))
65ralrimivva 3135 . . 3 (𝐺 ∈ ∞MetSp → ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(dist‘𝐺)𝑦) = (𝑦(dist‘𝐺)𝑥))
7 simpl 475 . . . . . . . 8 ((𝐺 ∈ ∞MetSp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝐺 ∈ ∞MetSp)
8 simpr3 1176 . . . . . . . 8 ((𝐺 ∈ ∞MetSp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑧 ∈ (Base‘𝐺))
9 equid 1968 . . . . . . . . 9 𝑧 = 𝑧
102, 3xmseq0 22767 . . . . . . . . 9 ((𝐺 ∈ ∞MetSp ∧ 𝑧 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → ((𝑧(dist‘𝐺)𝑧) = 0 ↔ 𝑧 = 𝑧))
119, 10mpbiri 250 . . . . . . . 8 ((𝐺 ∈ ∞MetSp ∧ 𝑧 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝑧(dist‘𝐺)𝑧) = 0)
127, 8, 8, 11syl3anc 1351 . . . . . . 7 ((𝐺 ∈ ∞MetSp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑧(dist‘𝐺)𝑧) = 0)
1312eqeq2d 2782 . . . . . 6 ((𝐺 ∈ ∞MetSp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(dist‘𝐺)𝑦) = (𝑧(dist‘𝐺)𝑧) ↔ (𝑥(dist‘𝐺)𝑦) = 0))
142, 3xmseq0 22767 . . . . . . 7 ((𝐺 ∈ ∞MetSp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → ((𝑥(dist‘𝐺)𝑦) = 0 ↔ 𝑥 = 𝑦))
15143adant3r3 1164 . . . . . 6 ((𝐺 ∈ ∞MetSp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(dist‘𝐺)𝑦) = 0 ↔ 𝑥 = 𝑦))
1613, 15bitrd 271 . . . . 5 ((𝐺 ∈ ∞MetSp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(dist‘𝐺)𝑦) = (𝑧(dist‘𝐺)𝑧) ↔ 𝑥 = 𝑦))
1716biimpd 221 . . . 4 ((𝐺 ∈ ∞MetSp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(dist‘𝐺)𝑦) = (𝑧(dist‘𝐺)𝑧) → 𝑥 = 𝑦))
1817ralrimivvva 3136 . . 3 (𝐺 ∈ ∞MetSp → ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑥(dist‘𝐺)𝑦) = (𝑧(dist‘𝐺)𝑧) → 𝑥 = 𝑦))
196, 18jca 504 . 2 (𝐺 ∈ ∞MetSp → (∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(dist‘𝐺)𝑦) = (𝑦(dist‘𝐺)𝑥) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑥(dist‘𝐺)𝑦) = (𝑧(dist‘𝐺)𝑧) → 𝑥 = 𝑦)))
20 eqid 2772 . . 3 (Itv‘𝐺) = (Itv‘𝐺)
212, 3, 20istrkgc 25932 . 2 (𝐺 ∈ TarskiGC ↔ (𝐺 ∈ V ∧ (∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(dist‘𝐺)𝑦) = (𝑦(dist‘𝐺)𝑥) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑥(dist‘𝐺)𝑦) = (𝑧(dist‘𝐺)𝑧) → 𝑥 = 𝑦))))
221, 19, 21sylanbrc 575 1 (𝐺 ∈ ∞MetSp → 𝐺 ∈ TarskiGC)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2048  wral 3082  Vcvv 3409  cfv 6182  (class class class)co 6970  0cc0 10327  Basecbs 16329  distcds 16420  ∞MetSpcxms 22620  TarskiGCcstrkgc 25909  Itvcitv 25914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404  ax-pre-sup 10405
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7494  df-2nd 7495  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-er 8081  df-map 8200  df-en 8299  df-dom 8300  df-sdom 8301  df-sup 8693  df-inf 8694  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-div 11091  df-nn 11432  df-2 11496  df-n0 11701  df-z 11787  df-uz 12052  df-q 12156  df-rp 12198  df-xneg 12317  df-xadd 12318  df-xmul 12319  df-topgen 16563  df-psmet 20229  df-xmet 20230  df-bl 20232  df-mopn 20233  df-top 21196  df-topon 21213  df-topsp 21235  df-bases 21248  df-xms 22623  df-trkgc 25926
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator