Home | Metamath
Proof Explorer Theorem List (p. 256 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | aalioulem1 25501 | Lemma for aaliou 25507. An integer polynomial cannot inflate the denominator of a rational by more than its degree. (Contributed by Stefan O'Rear, 12-Nov-2014.) |
⊢ (𝜑 → 𝐹 ∈ (Poly‘ℤ)) & ⊢ (𝜑 → 𝑋 ∈ ℤ) & ⊢ (𝜑 → 𝑌 ∈ ℕ) ⇒ ⊢ (𝜑 → ((𝐹‘(𝑋 / 𝑌)) · (𝑌↑(deg‘𝐹))) ∈ ℤ) | ||
Theorem | aalioulem2 25502* | Lemma for aaliou 25507. (Contributed by Stefan O'Rear, 15-Nov-2014.) (Proof shortened by AV, 28-Sep-2020.) |
⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘ℤ)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) | ||
Theorem | aalioulem3 25503* | Lemma for aaliou 25507. (Contributed by Stefan O'Rear, 15-Nov-2014.) |
⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘ℤ)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (𝐹‘𝐴) = 0) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑟 ∈ ℝ ((abs‘(𝐴 − 𝑟)) ≤ 1 → (𝑥 · (abs‘(𝐹‘𝑟))) ≤ (abs‘(𝐴 − 𝑟)))) | ||
Theorem | aalioulem4 25504* | Lemma for aaliou 25507. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘ℤ)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (𝐹‘𝐴) = 0) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) | ||
Theorem | aalioulem5 25505* | Lemma for aaliou 25507. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘ℤ)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (𝐹‘𝐴) = 0) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) | ||
Theorem | aalioulem6 25506* | Lemma for aaliou 25507. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘ℤ)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (𝐹‘𝐴) = 0) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) | ||
Theorem | aaliou 25507* | Liouville's theorem on diophantine approximation: Any algebraic number, being a root of a polynomial 𝐹 in integer coefficients, is not approximable beyond order 𝑁 = deg(𝐹) by rational numbers. In this form, it also applies to rational numbers themselves, which are not well approximable by other rational numbers. This is Metamath 100 proof #18. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘ℤ)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (𝐹‘𝐴) = 0) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) | ||
Theorem | geolim3 25508* | Geometric series convergence with arbitrary shift, radix, and multiplicative constant. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐵) < 1) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ 𝐹 = (𝑘 ∈ (ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴)))) ⇒ ⊢ (𝜑 → seq𝐴( + , 𝐹) ⇝ (𝐶 / (1 − 𝐵))) | ||
Theorem | aaliou2 25509* | Liouville's approximation theorem for algebraic numbers per se. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
⊢ (𝐴 ∈ (𝔸 ∩ ℝ) → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) | ||
Theorem | aaliou2b 25510* | Liouville's approximation theorem extended to complex 𝐴. (Contributed by Stefan O'Rear, 20-Nov-2014.) |
⊢ (𝐴 ∈ 𝔸 → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) | ||
Theorem | aaliou3lem1 25511* | Lemma for aaliou3 25520. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
⊢ 𝐺 = (𝑐 ∈ (ℤ≥‘𝐴) ↦ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐 − 𝐴)))) ⇒ ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (𝐺‘𝐵) ∈ ℝ) | ||
Theorem | aaliou3lem2 25512* | Lemma for aaliou3 25520. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
⊢ 𝐺 = (𝑐 ∈ (ℤ≥‘𝐴) ↦ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐 − 𝐴)))) & ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎))) ⇒ ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (𝐹‘𝐵) ∈ (0(,](𝐺‘𝐵))) | ||
Theorem | aaliou3lem3 25513* | Lemma for aaliou3 25520. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
⊢ 𝐺 = (𝑐 ∈ (ℤ≥‘𝐴) ↦ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐 − 𝐴)))) & ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎))) ⇒ ⊢ (𝐴 ∈ ℕ → (seq𝐴( + , 𝐹) ∈ dom ⇝ ∧ Σ𝑏 ∈ (ℤ≥‘𝐴)(𝐹‘𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ≥‘𝐴)(𝐹‘𝑏) ≤ (2 · (2↑-(!‘𝐴))))) | ||
Theorem | aaliou3lem8 25514* | Lemma for aaliou3 25520. (Contributed by Stefan O'Rear, 20-Nov-2014.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℕ (2 · (2↑-(!‘(𝑥 + 1)))) ≤ (𝐵 / ((2↑(!‘𝑥))↑𝐴))) | ||
Theorem | aaliou3lem4 25515* | Lemma for aaliou3 25520. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
⊢ 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎))) & ⊢ 𝐿 = Σ𝑏 ∈ ℕ (𝐹‘𝑏) & ⊢ 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹‘𝑏)) ⇒ ⊢ 𝐿 ∈ ℝ | ||
Theorem | aaliou3lem5 25516* | Lemma for aaliou3 25520. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
⊢ 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎))) & ⊢ 𝐿 = Σ𝑏 ∈ ℕ (𝐹‘𝑏) & ⊢ 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹‘𝑏)) ⇒ ⊢ (𝐴 ∈ ℕ → (𝐻‘𝐴) ∈ ℝ) | ||
Theorem | aaliou3lem6 25517* | Lemma for aaliou3 25520. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
⊢ 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎))) & ⊢ 𝐿 = Σ𝑏 ∈ ℕ (𝐹‘𝑏) & ⊢ 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹‘𝑏)) ⇒ ⊢ (𝐴 ∈ ℕ → ((𝐻‘𝐴) · (2↑(!‘𝐴))) ∈ ℤ) | ||
Theorem | aaliou3lem7 25518* | Lemma for aaliou3 25520. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
⊢ 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎))) & ⊢ 𝐿 = Σ𝑏 ∈ ℕ (𝐹‘𝑏) & ⊢ 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹‘𝑏)) ⇒ ⊢ (𝐴 ∈ ℕ → ((𝐻‘𝐴) ≠ 𝐿 ∧ (abs‘(𝐿 − (𝐻‘𝐴))) ≤ (2 · (2↑-(!‘(𝐴 + 1)))))) | ||
Theorem | aaliou3lem9 25519* | Example of a "Liouville number", a very simple definable transcendental real. (Contributed by Stefan O'Rear, 20-Nov-2014.) |
⊢ 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎))) & ⊢ 𝐿 = Σ𝑏 ∈ ℕ (𝐹‘𝑏) & ⊢ 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹‘𝑏)) ⇒ ⊢ ¬ 𝐿 ∈ 𝔸 | ||
Theorem | aaliou3 25520 | Example of a "Liouville number", a very simple definable transcendental real. (Contributed by Stefan O'Rear, 23-Nov-2014.) |
⊢ Σ𝑘 ∈ ℕ (2↑-(!‘𝑘)) ∉ 𝔸 | ||
Syntax | ctayl 25521 | Taylor polynomial of a function. |
class Tayl | ||
Syntax | cana 25522 | The class of analytic functions. |
class Ana | ||
Definition | df-tayl 25523* | Define the Taylor polynomial or Taylor series of a function. TODO-AV: 𝑛 ∈ (ℕ0 ∪ {+∞}) should be replaced by 𝑛 ∈ ℕ0*. (Contributed by Mario Carneiro, 30-Dec-2016.) |
⊢ Tayl = (𝑠 ∈ {ℝ, ℂ}, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 ∈ ∩ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑠 D𝑛 𝑓)‘𝑘) ↦ ∪ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥 − 𝑎)↑𝑘))))))) | ||
Definition | df-ana 25524* | Define the set of analytic functions, which are functions such that the Taylor series of the function at each point converges to the function in some neighborhood of the point. (Contributed by Mario Carneiro, 31-Dec-2016.) |
⊢ Ana = (𝑠 ∈ {ℝ, ℂ} ↦ {𝑓 ∈ (ℂ ↑pm 𝑠) ∣ ∀𝑥 ∈ dom 𝑓 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))}) | ||
Theorem | taylfvallem1 25525* | Lemma for taylfval 25527. (Contributed by Mario Carneiro, 30-Dec-2016.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) ⇒ ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋 − 𝐵)↑𝑘)) ∈ ℂ) | ||
Theorem | taylfvallem 25526* | Lemma for taylfval 25527. (Contributed by Mario Carneiro, 30-Dec-2016.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ ℂ) → (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋 − 𝐵)↑𝑘)))) ⊆ ℂ) | ||
Theorem | taylfval 25527* |
Define the Taylor polynomial of a function. The constant Tayl is a
function of five arguments: 𝑆 is the base set with respect to
evaluate the derivatives (generally ℝ or
ℂ), 𝐹 is the
function we are approximating, at point 𝐵, to order 𝑁. The
result is a polynomial function of 𝑥.
This "extended" version of taylpfval 25533 additionally handles the case 𝑁 = +∞, in which case this is not a polynomial but an infinite series, the Taylor series of the function. (Contributed by Mario Carneiro, 30-Dec-2016.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) ⇒ ⊢ (𝜑 → 𝑇 = ∪ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)))))) | ||
Theorem | eltayl 25528* | Value of the Taylor series as a relation (elementhood in the domain here expresses that the series is convergent). (Contributed by Mario Carneiro, 30-Dec-2016.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) ⇒ ⊢ (𝜑 → (𝑋𝑇𝑌 ↔ (𝑋 ∈ ℂ ∧ 𝑌 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋 − 𝐵)↑𝑘))))))) | ||
Theorem | taylf 25529* | The Taylor series defines a function on a subset of the complex numbers. (Contributed by Mario Carneiro, 30-Dec-2016.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) ⇒ ⊢ (𝜑 → 𝑇:dom 𝑇⟶ℂ) | ||
Theorem | tayl0 25530* | The Taylor series is always defined at the basepoint, with value equal to the value of the function. (Contributed by Mario Carneiro, 30-Dec-2016.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) ⇒ ⊢ (𝜑 → (𝐵 ∈ dom 𝑇 ∧ (𝑇‘𝐵) = (𝐹‘𝐵))) | ||
Theorem | taylplem1 25531* | Lemma for taylpfval 25533 and similar theorems. (Contributed by Mario Carneiro, 31-Dec-2016.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) ⇒ ⊢ ((𝜑 ∧ 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) | ||
Theorem | taylplem2 25532* | Lemma for taylpfval 25533 and similar theorems. (Contributed by Mario Carneiro, 31-Dec-2016.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) ⇒ ⊢ (((𝜑 ∧ 𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋 − 𝐵)↑𝑘)) ∈ ℂ) | ||
Theorem | taylpfval 25533* | Define the Taylor polynomial of a function. The constant Tayl is a function of five arguments: 𝑆 is the base set with respect to evaluate the derivatives (generally ℝ or ℂ), 𝐹 is the function we are approximating, at point 𝐵, to order 𝑁. The result is a polynomial function of 𝑥. (Contributed by Mario Carneiro, 31-Dec-2016.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) ⇒ ⊢ (𝜑 → 𝑇 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥 − 𝐵)↑𝑘)))) | ||
Theorem | taylpf 25534 | The Taylor polynomial is a function on the complex numbers (even if the base set of the original function is the reals). (Contributed by Mario Carneiro, 31-Dec-2016.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) ⇒ ⊢ (𝜑 → 𝑇:ℂ⟶ℂ) | ||
Theorem | taylpval 25535* | Value of the Taylor polynomial. (Contributed by Mario Carneiro, 31-Dec-2016.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) & ⊢ (𝜑 → 𝑋 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝑇‘𝑋) = Σ𝑘 ∈ (0...𝑁)(((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋 − 𝐵)↑𝑘))) | ||
Theorem | taylply2 25536* | The Taylor polynomial is a polynomial of degree (at most) 𝑁. This version of taylply 25537 shows that the coefficients of 𝑇 are in a subring of the complex numbers. (Contributed by Mario Carneiro, 1-Jan-2017.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) & ⊢ (𝜑 → 𝐷 ∈ (SubRing‘ℂfld)) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) & ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝑇 ∈ (Poly‘𝐷) ∧ (deg‘𝑇) ≤ 𝑁)) | ||
Theorem | taylply 25537 | The Taylor polynomial is a polynomial of degree (at most) 𝑁. (Contributed by Mario Carneiro, 31-Dec-2016.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) ⇒ ⊢ (𝜑 → (𝑇 ∈ (Poly‘ℂ) ∧ (deg‘𝑇) ≤ 𝑁)) | ||
Theorem | dvtaylp 25538 | The derivative of the Taylor polynomial is the Taylor polynomial of the derivative of the function. (Contributed by Mario Carneiro, 31-Dec-2016.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 1))) ⇒ ⊢ (𝜑 → (ℂ D ((𝑁 + 1)(𝑆 Tayl 𝐹)𝐵)) = (𝑁(𝑆 Tayl (𝑆 D 𝐹))𝐵)) | ||
Theorem | dvntaylp 25539 | The 𝑀-th derivative of the Taylor polynomial is the Taylor polynomial of the 𝑀-th derivative of the function. (Contributed by Mario Carneiro, 1-Jan-2017.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 𝑀))) ⇒ ⊢ (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = (𝑁(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)) | ||
Theorem | dvntaylp0 25540 | The first 𝑁 derivatives of the Taylor polynomial at 𝐵 match the derivatives of the function from which it is derived. (Contributed by Mario Carneiro, 1-Jan-2017.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝑀 ∈ (0...𝑁)) & ⊢ (𝜑 → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑁)) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) ⇒ ⊢ (𝜑 → (((ℂ D𝑛 𝑇)‘𝑀)‘𝐵) = (((𝑆 D𝑛 𝐹)‘𝑀)‘𝐵)) | ||
Theorem | taylthlem1 25541* | Lemma for taylth 25543. This is the main part of Taylor's theorem, except for the induction step, which is supposed to be proven using L'Hôpital's rule. However, since our proof of L'Hôpital assumes that 𝑆 = ℝ, we can only do this part generically, and for taylth 25543 itself we must restrict to ℝ. (Contributed by Mario Carneiro, 1-Jan-2017.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → dom ((𝑆 D𝑛 𝐹)‘𝑁) = 𝐴) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵) & ⊢ 𝑅 = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹‘𝑥) − (𝑇‘𝑥)) / ((𝑥 − 𝐵)↑𝑁))) & ⊢ ((𝜑 ∧ (𝑛 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − 𝑛))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑛))‘𝑦)) / ((𝑦 − 𝐵)↑𝑛))) limℂ 𝐵))) → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((𝑆 D𝑛 𝐹)‘(𝑁 − (𝑛 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑛 + 1)))‘𝑥)) / ((𝑥 − 𝐵)↑(𝑛 + 1)))) limℂ 𝐵)) ⇒ ⊢ (𝜑 → 0 ∈ (𝑅 limℂ 𝐵)) | ||
Theorem | taylthlem2 25542* | Lemma for taylth 25543. (Contributed by Mario Carneiro, 1-Jan-2017.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → dom ((ℝ D𝑛 𝐹)‘𝑁) = 𝐴) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ 𝑇 = (𝑁(ℝ Tayl 𝐹)𝐵) & ⊢ (𝜑 → 𝑀 ∈ (1..^𝑁)) & ⊢ (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀))) limℂ 𝐵)) ⇒ ⊢ (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) / ((𝑥 − 𝐵)↑(𝑀 + 1)))) limℂ 𝐵)) | ||
Theorem | taylth 25543* | Taylor's theorem. The Taylor polynomial of a 𝑁-times differentiable function is such that the error term goes to zero faster than (𝑥 − 𝐵)↑𝑁. This is Metamath 100 proof #35. (Contributed by Mario Carneiro, 1-Jan-2017.) |
⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → dom ((ℝ D𝑛 𝐹)‘𝑁) = 𝐴) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ 𝑇 = (𝑁(ℝ Tayl 𝐹)𝐵) & ⊢ 𝑅 = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹‘𝑥) − (𝑇‘𝑥)) / ((𝑥 − 𝐵)↑𝑁))) ⇒ ⊢ (𝜑 → 0 ∈ (𝑅 limℂ 𝐵)) | ||
Syntax | culm 25544 | Extend class notation to include the uniform convergence predicate. |
class ⇝𝑢 | ||
Definition | df-ulm 25545* | Define the uniform convergence of a sequence of functions. Here 𝐹(⇝𝑢‘𝑆)𝐺 if 𝐹 is a sequence of functions 𝐹(𝑛), 𝑛 ∈ ℕ defined on 𝑆 and 𝐺 is a function on 𝑆, and for every 0 < 𝑥 there is a 𝑗 such that the functions 𝐹(𝑘) for 𝑗 ≤ 𝑘 are all uniformly within 𝑥 of 𝐺 on the domain 𝑆. Compare with df-clim 15206. (Contributed by Mario Carneiro, 26-Feb-2015.) |
⊢ ⇝𝑢 = (𝑠 ∈ V ↦ {〈𝑓, 𝑦〉 ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑠) ∧ 𝑦:𝑠⟶ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ (ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑠 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥)}) | ||
Theorem | ulmrel 25546 | The uniform limit relation is a relation. (Contributed by Mario Carneiro, 26-Feb-2015.) |
⊢ Rel (⇝𝑢‘𝑆) | ||
Theorem | ulmscl 25547 | Closure of the base set in a uniform limit. (Contributed by Mario Carneiro, 26-Feb-2015.) |
⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝑆 ∈ V) | ||
Theorem | ulmval 25548* | Express the predicate: The sequence of functions 𝐹 converges uniformly to 𝐺 on 𝑆. (Contributed by Mario Carneiro, 26-Feb-2015.) |
⊢ (𝑆 ∈ 𝑉 → (𝐹(⇝𝑢‘𝑆)𝐺 ↔ ∃𝑛 ∈ ℤ (𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ (ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − (𝐺‘𝑧))) < 𝑥))) | ||
Theorem | ulmcl 25549 | Closure of a uniform limit of functions. (Contributed by Mario Carneiro, 26-Feb-2015.) |
⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝐺:𝑆⟶ℂ) | ||
Theorem | ulmf 25550* | Closure of a uniform limit of functions. (Contributed by Mario Carneiro, 26-Feb-2015.) |
⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → ∃𝑛 ∈ ℤ 𝐹:(ℤ≥‘𝑛)⟶(ℂ ↑m 𝑆)) | ||
Theorem | ulmpm 25551 | Closure of a uniform limit of functions. (Contributed by Mario Carneiro, 26-Feb-2015.) |
⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝐹 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ)) | ||
Theorem | ulmf2 25552 | Closure of a uniform limit of functions. (Contributed by Mario Carneiro, 18-Mar-2015.) |
⊢ ((𝐹 Fn 𝑍 ∧ 𝐹(⇝𝑢‘𝑆)𝐺) → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) | ||
Theorem | ulm2 25553* | Simplify ulmval 25548 when 𝐹 and 𝐺 are known to be functions. (Contributed by Mario Carneiro, 26-Feb-2015.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) & ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆)) → ((𝐹‘𝑘)‘𝑧) = 𝐵) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (𝐺‘𝑧) = 𝐴) & ⊢ (𝜑 → 𝐺:𝑆⟶ℂ) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑢‘𝑆)𝐺 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(𝐵 − 𝐴)) < 𝑥)) | ||
Theorem | ulmi 25554* | The uniform limit property. (Contributed by Mario Carneiro, 27-Feb-2015.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) & ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆)) → ((𝐹‘𝑘)‘𝑧) = 𝐵) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (𝐺‘𝑧) = 𝐴) & ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(𝐵 − 𝐴)) < 𝐶) | ||
Theorem | ulmclm 25555* | A uniform limit of functions converges pointwise. (Contributed by Mario Carneiro, 27-Feb-2015.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐻 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘)‘𝐴) = (𝐻‘𝑘)) & ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) ⇒ ⊢ (𝜑 → 𝐻 ⇝ (𝐺‘𝐴)) | ||
Theorem | ulmres 25556 | A sequence of functions converges iff the tail of the sequence converges (for any finite cutoff). (Contributed by Mario Carneiro, 24-Mar-2015.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑢‘𝑆)𝐺 ↔ (𝐹 ↾ 𝑊)(⇝𝑢‘𝑆)𝐺)) | ||
Theorem | ulmshftlem 25557* | Lemma for ulmshft 25558. (Contributed by Mario Carneiro, 24-Mar-2015.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 = (ℤ≥‘(𝑀 + 𝐾)) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) & ⊢ (𝜑 → 𝐻 = (𝑛 ∈ 𝑊 ↦ (𝐹‘(𝑛 − 𝐾)))) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑢‘𝑆)𝐺 → 𝐻(⇝𝑢‘𝑆)𝐺)) | ||
Theorem | ulmshft 25558* | A sequence of functions converges iff the shifted sequence converges. (Contributed by Mario Carneiro, 24-Mar-2015.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 = (ℤ≥‘(𝑀 + 𝐾)) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) & ⊢ (𝜑 → 𝐻 = (𝑛 ∈ 𝑊 ↦ (𝐹‘(𝑛 − 𝐾)))) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑢‘𝑆)𝐺 ↔ 𝐻(⇝𝑢‘𝑆)𝐺)) | ||
Theorem | ulm0 25559 | Every function converges uniformly on the empty set. (Contributed by Mario Carneiro, 3-Mar-2015.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) & ⊢ (𝜑 → 𝐺:𝑆⟶ℂ) ⇒ ⊢ ((𝜑 ∧ 𝑆 = ∅) → 𝐹(⇝𝑢‘𝑆)𝐺) | ||
Theorem | ulmuni 25560 | A sequence of functions uniformly converges to at most one limit. (Contributed by Mario Carneiro, 5-Jul-2017.) |
⊢ ((𝐹(⇝𝑢‘𝑆)𝐺 ∧ 𝐹(⇝𝑢‘𝑆)𝐻) → 𝐺 = 𝐻) | ||
Theorem | ulmdm 25561 | Two ways to express that a function has a limit. (The expression ((⇝𝑢‘𝑆)‘𝐹) is sometimes useful as a shorthand for "the unique limit of the function 𝐹"). (Contributed by Mario Carneiro, 5-Jul-2017.) |
⊢ (𝐹 ∈ dom (⇝𝑢‘𝑆) ↔ 𝐹(⇝𝑢‘𝑆)((⇝𝑢‘𝑆)‘𝐹)) | ||
Theorem | ulmcaulem 25562* | Lemma for ulmcau 25563 and ulmcau2 25564: show the equivalence of the four- and five-quantifier forms of the Cauchy convergence condition. Compare cau3 15076. (Contributed by Mario Carneiro, 1-Mar-2015.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < 𝑥 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < 𝑥)) | ||
Theorem | ulmcau 25563* | A sequence of functions converges uniformly iff it is uniformly Cauchy, which is to say that for every 0 < 𝑥 there is a 𝑗 such that for all 𝑗 ≤ 𝑘 the functions 𝐹(𝑘) and 𝐹(𝑗) are uniformly within 𝑥 of each other on 𝑆. This is the four-quantifier version, see ulmcau2 25564 for the more conventional five-quantifier version. (Contributed by Mario Carneiro, 1-Mar-2015.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) ⇒ ⊢ (𝜑 → (𝐹 ∈ dom (⇝𝑢‘𝑆) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < 𝑥)) | ||
Theorem | ulmcau2 25564* | A sequence of functions converges uniformly iff it is uniformly Cauchy, which is to say that for every 0 < 𝑥 there is a 𝑗 such that for all 𝑗 ≤ 𝑘, 𝑚 the functions 𝐹(𝑘) and 𝐹(𝑚) are uniformly within 𝑥 of each other on 𝑆. (Contributed by Mario Carneiro, 1-Mar-2015.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) ⇒ ⊢ (𝜑 → (𝐹 ∈ dom (⇝𝑢‘𝑆) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < 𝑥)) | ||
Theorem | ulmss 25565* | A uniform limit of functions is still a uniform limit if restricted to a subset. (Contributed by Mario Carneiro, 3-Mar-2015.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑇 ⊆ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐴 ∈ 𝑊) & ⊢ (𝜑 → (𝑥 ∈ 𝑍 ↦ 𝐴)(⇝𝑢‘𝑆)𝐺) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑍 ↦ (𝐴 ↾ 𝑇))(⇝𝑢‘𝑇)(𝐺 ↾ 𝑇)) | ||
Theorem | ulmbdd 25566* | A uniform limit of bounded functions is bounded. (Contributed by Mario Carneiro, 27-Feb-2015.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ 𝑆 (abs‘((𝐹‘𝑘)‘𝑧)) ≤ 𝑥) & ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧 ∈ 𝑆 (abs‘(𝐺‘𝑧)) ≤ 𝑥) | ||
Theorem | ulmcn 25567 | A uniform limit of continuous functions is continuous. (Contributed by Mario Carneiro, 27-Feb-2015.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(𝑆–cn→ℂ)) & ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) ⇒ ⊢ (𝜑 → 𝐺 ∈ (𝑆–cn→ℂ)) | ||
Theorem | ulmdvlem1 25568* | Lemma for ulmdv 25571. (Contributed by Mario Carneiro, 3-Mar-2015.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑋)) & ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) ⇝ (𝐺‘𝑧)) & ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻) & ⊢ ((𝜑 ∧ 𝜓) → 𝐶 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝜓) → 𝑅 ∈ ℝ+) & ⊢ ((𝜑 ∧ 𝜓) → 𝑈 ∈ ℝ+) & ⊢ ((𝜑 ∧ 𝜓) → 𝑊 ∈ ℝ+) & ⊢ ((𝜑 ∧ 𝜓) → 𝑈 < 𝑊) & ⊢ ((𝜑 ∧ 𝜓) → (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈) ⊆ 𝑋) & ⊢ ((𝜑 ∧ 𝜓) → (abs‘(𝑌 − 𝐶)) < 𝑈) & ⊢ ((𝜑 ∧ 𝜓) → 𝑁 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝜓) → ∀𝑚 ∈ (ℤ≥‘𝑁)∀𝑥 ∈ 𝑋 (abs‘(((𝑆 D (𝐹‘𝑁))‘𝑥) − ((𝑆 D (𝐹‘𝑚))‘𝑥))) < ((𝑅 / 2) / 2)) & ⊢ ((𝜑 ∧ 𝜓) → (abs‘(((𝑆 D (𝐹‘𝑁))‘𝐶) − (𝐻‘𝐶))) < (𝑅 / 2)) & ⊢ ((𝜑 ∧ 𝜓) → 𝑌 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝜓) → 𝑌 ≠ 𝐶) & ⊢ ((𝜑 ∧ 𝜓) → ((abs‘(𝑌 − 𝐶)) < 𝑊 → (abs‘(((((𝐹‘𝑁)‘𝑌) − ((𝐹‘𝑁)‘𝐶)) / (𝑌 − 𝐶)) − ((𝑆 D (𝐹‘𝑁))‘𝐶))) < ((𝑅 / 2) / 2))) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (abs‘((((𝐺‘𝑌) − (𝐺‘𝐶)) / (𝑌 − 𝐶)) − (𝐻‘𝐶))) < 𝑅) | ||
Theorem | ulmdvlem2 25569* | Lemma for ulmdv 25571. (Contributed by Mario Carneiro, 8-May-2015.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑋)) & ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) ⇝ (𝐺‘𝑧)) & ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻) ⇒ ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → dom (𝑆 D (𝐹‘𝑘)) = 𝑋) | ||
Theorem | ulmdvlem3 25570* | Lemma for ulmdv 25571. (Contributed by Mario Carneiro, 8-May-2015.) (Proof shortened by Mario Carneiro, 28-Dec-2016.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑋)) & ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) ⇝ (𝐺‘𝑧)) & ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻) ⇒ ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 𝑧(𝑆 D 𝐺)(𝐻‘𝑧)) | ||
Theorem | ulmdv 25571* | If 𝐹 is a sequence of differentiable functions on 𝑋 which converge pointwise to 𝐺, and the derivatives of 𝐹(𝑛) converge uniformly to 𝐻, then 𝐺 is differentiable with derivative 𝐻. (Contributed by Mario Carneiro, 27-Feb-2015.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑋)) & ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) ⇝ (𝐺‘𝑧)) & ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑆 D (𝐹‘𝑘)))(⇝𝑢‘𝑋)𝐻) ⇒ ⊢ (𝜑 → (𝑆 D 𝐺) = 𝐻) | ||
Theorem | mtest 25572* | The Weierstrass M-test. If 𝐹 is a sequence of functions which are uniformly bounded by the convergent sequence 𝑀(𝑘), then the series generated by the sequence 𝐹 converges uniformly. (Contributed by Mario Carneiro, 3-Mar-2015.) |
⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑀‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆)) → (abs‘((𝐹‘𝑘)‘𝑧)) ≤ (𝑀‘𝑘)) & ⊢ (𝜑 → seq𝑁( + , 𝑀) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → seq𝑁( ∘f + , 𝐹) ∈ dom (⇝𝑢‘𝑆)) | ||
Theorem | mtestbdd 25573* | Given the hypotheses of the Weierstrass M-test, the convergent function of the sequence is uniformly bounded. (Contributed by Mario Carneiro, 9-Jul-2017.) |
⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑀‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆)) → (abs‘((𝐹‘𝑘)‘𝑧)) ≤ (𝑀‘𝑘)) & ⊢ (𝜑 → seq𝑁( + , 𝑀) ∈ dom ⇝ ) & ⊢ (𝜑 → seq𝑁( ∘f + , 𝐹)(⇝𝑢‘𝑆)𝑇) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧 ∈ 𝑆 (abs‘(𝑇‘𝑧)) ≤ 𝑥) | ||
Theorem | mbfulm 25574 | A uniform limit of measurable functions is measurable. (This is just a corollary of the fact that a pointwise limit of measurable functions is measurable, see mbflim 24841.) (Contributed by Mario Carneiro, 18-Mar-2015.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶MblFn) & ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) ⇒ ⊢ (𝜑 → 𝐺 ∈ MblFn) | ||
Theorem | iblulm 25575 | A uniform limit of integrable functions is integrable. (Contributed by Mario Carneiro, 3-Mar-2015.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶𝐿1) & ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) & ⊢ (𝜑 → (vol‘𝑆) ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐺 ∈ 𝐿1) | ||
Theorem | itgulm 25576* | A uniform limit of integrals of integrable functions converges to the integral of the limit function. (Contributed by Mario Carneiro, 18-Mar-2015.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶𝐿1) & ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) & ⊢ (𝜑 → (vol‘𝑆) ∈ ℝ) ⇒ ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ ∫𝑆((𝐹‘𝑘)‘𝑥) d𝑥) ⇝ ∫𝑆(𝐺‘𝑥) d𝑥) | ||
Theorem | itgulm2 25577* | A uniform limit of integrals of integrable functions converges to the integral of the limit function. (Contributed by Mario Carneiro, 18-Mar-2015.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑥 ∈ 𝑆 ↦ 𝐴) ∈ 𝐿1) & ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝑥 ∈ 𝑆 ↦ 𝐴))(⇝𝑢‘𝑆)(𝑥 ∈ 𝑆 ↦ 𝐵)) & ⊢ (𝜑 → (vol‘𝑆) ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝑆 ↦ 𝐵) ∈ 𝐿1 ∧ (𝑘 ∈ 𝑍 ↦ ∫𝑆𝐴 d𝑥) ⇝ ∫𝑆𝐵 d𝑥)) | ||
Theorem | pserval 25578* | Value of the function 𝐺 that gives the sequence of monomials of a power series. (Contributed by Mario Carneiro, 26-Feb-2015.) |
⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) ⇒ ⊢ (𝑋 ∈ ℂ → (𝐺‘𝑋) = (𝑚 ∈ ℕ0 ↦ ((𝐴‘𝑚) · (𝑋↑𝑚)))) | ||
Theorem | pserval2 25579* | Value of the function 𝐺 that gives the sequence of monomials of a power series. (Contributed by Mario Carneiro, 26-Feb-2015.) |
⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) ⇒ ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐺‘𝑋)‘𝑁) = ((𝐴‘𝑁) · (𝑋↑𝑁))) | ||
Theorem | psergf 25580* | The sequence of terms in the infinite sequence defining a power series for fixed 𝑋. (Contributed by Mario Carneiro, 26-Feb-2015.) |
⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐺‘𝑋):ℕ0⟶ℂ) | ||
Theorem | radcnvlem1 25581* | Lemma for radcnvlt1 25586, radcnvle 25588. If 𝑋 is a point closer to zero than 𝑌 and the power series converges at 𝑌, then it converges absolutely at 𝑋, even if the terms in the sequence are multiplied by 𝑛. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑌 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝑋) < (abs‘𝑌)) & ⊢ (𝜑 → seq0( + , (𝐺‘𝑌)) ∈ dom ⇝ ) & ⊢ 𝐻 = (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺‘𝑋)‘𝑚)))) ⇒ ⊢ (𝜑 → seq0( + , 𝐻) ∈ dom ⇝ ) | ||
Theorem | radcnvlem2 25582* | Lemma for radcnvlt1 25586, radcnvle 25588. If 𝑋 is a point closer to zero than 𝑌 and the power series converges at 𝑌, then it converges absolutely at 𝑋. (Contributed by Mario Carneiro, 26-Feb-2015.) |
⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑌 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝑋) < (abs‘𝑌)) & ⊢ (𝜑 → seq0( + , (𝐺‘𝑌)) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → seq0( + , (abs ∘ (𝐺‘𝑋))) ∈ dom ⇝ ) | ||
Theorem | radcnvlem3 25583* | Lemma for radcnvlt1 25586, radcnvle 25588. If 𝑋 is a point closer to zero than 𝑌 and the power series converges at 𝑌, then it converges at 𝑋. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑌 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝑋) < (abs‘𝑌)) & ⊢ (𝜑 → seq0( + , (𝐺‘𝑌)) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → seq0( + , (𝐺‘𝑋)) ∈ dom ⇝ ) | ||
Theorem | radcnv0 25584* | Zero is always a convergent point for any power series. (Contributed by Mario Carneiro, 26-Feb-2015.) |
⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) ⇒ ⊢ (𝜑 → 0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }) | ||
Theorem | radcnvcl 25585* | The radius of convergence 𝑅 of an infinite series is a nonnegative extended real number. (Contributed by Mario Carneiro, 26-Feb-2015.) |
⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ⇒ ⊢ (𝜑 → 𝑅 ∈ (0[,]+∞)) | ||
Theorem | radcnvlt1 25586* | If 𝑋 is within the open disk of radius 𝑅 centered at zero, then the infinite series converges absolutely at 𝑋, and also converges when the series is multiplied by 𝑛. (Contributed by Mario Carneiro, 26-Feb-2015.) |
⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝑋) < 𝑅) & ⊢ 𝐻 = (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺‘𝑋)‘𝑚)))) ⇒ ⊢ (𝜑 → (seq0( + , 𝐻) ∈ dom ⇝ ∧ seq0( + , (abs ∘ (𝐺‘𝑋))) ∈ dom ⇝ )) | ||
Theorem | radcnvlt2 25587* | If 𝑋 is within the open disk of radius 𝑅 centered at zero, then the infinite series converges at 𝑋. (Contributed by Mario Carneiro, 26-Feb-2015.) |
⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝑋) < 𝑅) ⇒ ⊢ (𝜑 → seq0( + , (𝐺‘𝑋)) ∈ dom ⇝ ) | ||
Theorem | radcnvle 25588* | If 𝑋 is a convergent point of the infinite series, then 𝑋 is within the closed disk of radius 𝑅 centered at zero. Or, by contraposition, the series diverges at any point strictly more than 𝑅 from the origin. (Contributed by Mario Carneiro, 26-Feb-2015.) |
⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → seq0( + , (𝐺‘𝑋)) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → (abs‘𝑋) ≤ 𝑅) | ||
Theorem | dvradcnv 25589* | The radius of convergence of the (formal) derivative 𝐻 of the power series 𝐺 is at least as large as the radius of convergence of 𝐺. (In fact they are equal, but we don't have as much use for the negative side of this claim.) (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝐻 = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 1) · (𝐴‘(𝑛 + 1))) · (𝑋↑𝑛))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝑋) < 𝑅) ⇒ ⊢ (𝜑 → seq0( + , 𝐻) ∈ dom ⇝ ) | ||
Theorem | pserulm 25590* | If 𝑆 is a region contained in a circle of radius 𝑀 < 𝑅, then the sequence of partial sums of the infinite series converges uniformly on 𝑆. (Contributed by Mario Carneiro, 26-Feb-2015.) |
⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝐻 = (𝑖 ∈ ℕ0 ↦ (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖))) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 𝑀 < 𝑅) & ⊢ (𝜑 → 𝑆 ⊆ (◡abs “ (0[,]𝑀))) ⇒ ⊢ (𝜑 → 𝐻(⇝𝑢‘𝑆)𝐹) | ||
Theorem | psercn2 25591* | Since by pserulm 25590 the series converges uniformly, it is also continuous by ulmcn 25567. (Contributed by Mario Carneiro, 3-Mar-2015.) |
⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝐻 = (𝑖 ∈ ℕ0 ↦ (𝑦 ∈ 𝑆 ↦ (seq0( + , (𝐺‘𝑦))‘𝑖))) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 𝑀 < 𝑅) & ⊢ (𝜑 → 𝑆 ⊆ (◡abs “ (0[,]𝑀))) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑆–cn→ℂ)) | ||
Theorem | psercnlem2 25592* | Lemma for psercn 25594. (Contributed by Mario Carneiro, 18-Mar-2015.) |
⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) & ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀 ∧ 𝑀 < 𝑅)) ⇒ ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀) ∧ (0(ball‘(abs ∘ − ))𝑀) ⊆ (◡abs “ (0[,]𝑀)) ∧ (◡abs “ (0[,]𝑀)) ⊆ 𝑆)) | ||
Theorem | psercnlem1 25593* | Lemma for psercn 25594. (Contributed by Mario Carneiro, 18-Mar-2015.) |
⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) & ⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) ⇒ ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀 ∧ 𝑀 < 𝑅)) | ||
Theorem | psercn 25594* | An infinite series converges to a continuous function on the open disk of radius 𝑅, where 𝑅 is the radius of convergence of the series. (Contributed by Mario Carneiro, 4-Mar-2015.) |
⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) & ⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑆–cn→ℂ)) | ||
Theorem | pserdvlem1 25595* | Lemma for pserdv 25597. (Contributed by Mario Carneiro, 7-May-2015.) |
⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) & ⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) ⇒ ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+ ∧ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2) ∧ (((abs‘𝑎) + 𝑀) / 2) < 𝑅)) | ||
Theorem | pserdvlem2 25596* | Lemma for pserdv 25597. (Contributed by Mario Carneiro, 7-May-2015.) |
⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) & ⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) & ⊢ 𝐵 = (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ⇒ ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (ℂ D (𝐹 ↾ 𝐵)) = (𝑦 ∈ 𝐵 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘)))) | ||
Theorem | pserdv 25597* | The derivative of a power series on its region of convergence. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) & ⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) & ⊢ 𝐵 = (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ⇒ ⊢ (𝜑 → (ℂ D 𝐹) = (𝑦 ∈ 𝑆 ↦ Σ𝑘 ∈ ℕ0 (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑦↑𝑘)))) | ||
Theorem | pserdv2 25598* | The derivative of a power series on its region of convergence. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) & ⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) & ⊢ 𝐵 = (0(ball‘(abs ∘ − ))(((abs‘𝑎) + 𝑀) / 2)) ⇒ ⊢ (𝜑 → (ℂ D 𝐹) = (𝑦 ∈ 𝑆 ↦ Σ𝑘 ∈ ℕ ((𝑘 · (𝐴‘𝑘)) · (𝑦↑(𝑘 − 1))))) | ||
Theorem | abelthlem1 25599* | Lemma for abelth 25609. (Contributed by Mario Carneiro, 1-Apr-2015.) |
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → 1 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )) | ||
Theorem | abelthlem2 25600* | Lemma for abelth 25609. The peculiar region 𝑆, known as a Stolz angle , is a teardrop-shaped subset of the closed unit ball containing 1. Indeed, except for 1 itself, the rest of the Stolz angle is enclosed in the open unit ball. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝑀) & ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} ⇒ ⊢ (𝜑 → (1 ∈ 𝑆 ∧ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |