![]() |
Metamath
Proof Explorer Theorem List (p. 256 of 479) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30158) |
![]() (30159-31681) |
![]() (31682-47805) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | dvlip 25501* | A function with derivative bounded by π is π-Lipschitz continuous. (Contributed by Mario Carneiro, 3-Mar-2015.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΉ β ((π΄[,]π΅)βcnββ)) & β’ (π β dom (β D πΉ) = (π΄(,)π΅)) & β’ (π β π β β) & β’ ((π β§ π₯ β (π΄(,)π΅)) β (absβ((β D πΉ)βπ₯)) β€ π) β β’ ((π β§ (π β (π΄[,]π΅) β§ π β (π΄[,]π΅))) β (absβ((πΉβπ) β (πΉβπ))) β€ (π Β· (absβ(π β π)))) | ||
Theorem | dvlipcn 25502* | A complex function with derivative bounded by π on an open ball is π-Lipschitz continuous. (Contributed by Mario Carneiro, 18-Mar-2015.) |
β’ (π β π β β) & β’ (π β πΉ:πβΆβ) & β’ (π β π΄ β β) & β’ (π β π β β*) & β’ π΅ = (π΄(ballβ(abs β β ))π ) & β’ (π β π΅ β dom (β D πΉ)) & β’ (π β π β β) & β’ ((π β§ π₯ β π΅) β (absβ((β D πΉ)βπ₯)) β€ π) β β’ ((π β§ (π β π΅ β§ π β π΅)) β (absβ((πΉβπ) β (πΉβπ))) β€ (π Β· (absβ(π β π)))) | ||
Theorem | dvlip2 25503* | Combine the results of dvlip 25501 and dvlipcn 25502 into one. (Contributed by Mario Carneiro, 18-Mar-2015.) (Revised by Mario Carneiro, 8-Sep-2015.) |
β’ (π β π β {β, β}) & β’ π½ = ((abs β β ) βΎ (π Γ π)) & β’ (π β π β π) & β’ (π β πΉ:πβΆβ) & β’ (π β π΄ β π) & β’ (π β π β β*) & β’ π΅ = (π΄(ballβπ½)π ) & β’ (π β π΅ β dom (π D πΉ)) & β’ (π β π β β) & β’ ((π β§ π₯ β π΅) β (absβ((π D πΉ)βπ₯)) β€ π) β β’ ((π β§ (π β π΅ β§ π β π΅)) β (absβ((πΉβπ) β (πΉβπ))) β€ (π Β· (absβ(π β π)))) | ||
Theorem | c1liplem1 25504* | Lemma for c1lip1 25505. (Contributed by Stefan O'Rear, 15-Nov-2014.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ β€ π΅) & β’ (π β πΉ β (β βpm β)) & β’ (π β ((β D πΉ) βΎ (π΄[,]π΅)) β ((π΄[,]π΅)βcnββ)) & β’ (π β (πΉ βΎ (π΄[,]π΅)) β ((π΄[,]π΅)βcnββ)) & β’ πΎ = sup((abs β ((β D πΉ) β (π΄[,]π΅))), β, < ) β β’ (π β (πΎ β β β§ βπ₯ β (π΄[,]π΅)βπ¦ β (π΄[,]π΅)(π₯ < π¦ β (absβ((πΉβπ¦) β (πΉβπ₯))) β€ (πΎ Β· (absβ(π¦ β π₯)))))) | ||
Theorem | c1lip1 25505* | C^1 functions are Lipschitz continuous on closed intervals. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΉ β (β βpm β)) & β’ (π β ((β D πΉ) βΎ (π΄[,]π΅)) β ((π΄[,]π΅)βcnββ)) & β’ (π β (πΉ βΎ (π΄[,]π΅)) β ((π΄[,]π΅)βcnββ)) β β’ (π β βπ β β βπ₯ β (π΄[,]π΅)βπ¦ β (π΄[,]π΅)(absβ((πΉβπ¦) β (πΉβπ₯))) β€ (π Β· (absβ(π¦ β π₯)))) | ||
Theorem | c1lip2 25506* | C^1 functions are Lipschitz continuous on closed intervals. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΉ β ((πCπββ)β1)) & β’ (π β ran πΉ β β) & β’ (π β (π΄[,]π΅) β dom πΉ) β β’ (π β βπ β β βπ₯ β (π΄[,]π΅)βπ¦ β (π΄[,]π΅)(absβ((πΉβπ¦) β (πΉβπ₯))) β€ (π Β· (absβ(π¦ β π₯)))) | ||
Theorem | c1lip3 25507* | C^1 functions are Lipschitz continuous on closed intervals. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β (πΉ βΎ β) β ((πCπββ)β1)) & β’ (π β (πΉ β β) β β) & β’ (π β (π΄[,]π΅) β dom πΉ) β β’ (π β βπ β β βπ₯ β (π΄[,]π΅)βπ¦ β (π΄[,]π΅)(absβ((πΉβπ¦) β (πΉβπ₯))) β€ (π Β· (absβ(π¦ β π₯)))) | ||
Theorem | dveq0 25508 | If a continuous function has zero derivative at all points on the interior of a closed interval, then it must be a constant function. (Contributed by Mario Carneiro, 2-Sep-2014.) (Proof shortened by Mario Carneiro, 3-Mar-2015.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΉ β ((π΄[,]π΅)βcnββ)) & β’ (π β (β D πΉ) = ((π΄(,)π΅) Γ {0})) β β’ (π β πΉ = ((π΄[,]π΅) Γ {(πΉβπ΄)})) | ||
Theorem | dv11cn 25509 | Two functions defined on a ball whose derivatives are the same and which are equal at any given point πΆ in the ball must be equal everywhere. (Contributed by Mario Carneiro, 31-Mar-2015.) |
β’ π = (π΄(ballβ(abs β β ))π ) & β’ (π β π΄ β β) & β’ (π β π β β*) & β’ (π β πΉ:πβΆβ) & β’ (π β πΊ:πβΆβ) & β’ (π β dom (β D πΉ) = π) & β’ (π β (β D πΉ) = (β D πΊ)) & β’ (π β πΆ β π) & β’ (π β (πΉβπΆ) = (πΊβπΆ)) β β’ (π β πΉ = πΊ) | ||
Theorem | dvgt0lem1 25510 | Lemma for dvgt0 25512 and dvlt0 25513. (Contributed by Mario Carneiro, 19-Feb-2015.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΉ β ((π΄[,]π΅)βcnββ)) & β’ (π β (β D πΉ):(π΄(,)π΅)βΆπ) β β’ (((π β§ (π β (π΄[,]π΅) β§ π β (π΄[,]π΅))) β§ π < π) β (((πΉβπ) β (πΉβπ)) / (π β π)) β π) | ||
Theorem | dvgt0lem2 25511* | Lemma for dvgt0 25512 and dvlt0 25513. (Contributed by Mario Carneiro, 19-Feb-2015.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΉ β ((π΄[,]π΅)βcnββ)) & β’ (π β (β D πΉ):(π΄(,)π΅)βΆπ) & β’ π Or β & β’ (((π β§ (π₯ β (π΄[,]π΅) β§ π¦ β (π΄[,]π΅))) β§ π₯ < π¦) β (πΉβπ₯)π(πΉβπ¦)) β β’ (π β πΉ Isom < , π ((π΄[,]π΅), ran πΉ)) | ||
Theorem | dvgt0 25512 | A function on a closed interval with positive derivative is increasing. (Contributed by Mario Carneiro, 19-Feb-2015.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΉ β ((π΄[,]π΅)βcnββ)) & β’ (π β (β D πΉ):(π΄(,)π΅)βΆβ+) β β’ (π β πΉ Isom < , < ((π΄[,]π΅), ran πΉ)) | ||
Theorem | dvlt0 25513 | A function on a closed interval with negative derivative is decreasing. (Contributed by Mario Carneiro, 19-Feb-2015.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΉ β ((π΄[,]π΅)βcnββ)) & β’ (π β (β D πΉ):(π΄(,)π΅)βΆ(-β(,)0)) β β’ (π β πΉ Isom < , β‘ < ((π΄[,]π΅), ran πΉ)) | ||
Theorem | dvge0 25514 | A function on a closed interval with nonnegative derivative is weakly increasing. (Contributed by Mario Carneiro, 30-Apr-2016.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΉ β ((π΄[,]π΅)βcnββ)) & β’ (π β (β D πΉ):(π΄(,)π΅)βΆ(0[,)+β)) & β’ (π β π β (π΄[,]π΅)) & β’ (π β π β (π΄[,]π΅)) & β’ (π β π β€ π) β β’ (π β (πΉβπ) β€ (πΉβπ)) | ||
Theorem | dvle 25515* | If π΄(π₯), πΆ(π₯) are differentiable functions and π΄β β€ πΆβ, then for π₯ β€ π¦, π΄(π¦) β π΄(π₯) β€ πΆ(π¦) β πΆ(π₯). (Contributed by Mario Carneiro, 16-May-2016.) |
β’ (π β π β β) & β’ (π β π β β) & β’ (π β (π₯ β (π[,]π) β¦ π΄) β ((π[,]π)βcnββ)) & β’ (π β (β D (π₯ β (π(,)π) β¦ π΄)) = (π₯ β (π(,)π) β¦ π΅)) & β’ (π β (π₯ β (π[,]π) β¦ πΆ) β ((π[,]π)βcnββ)) & β’ (π β (β D (π₯ β (π(,)π) β¦ πΆ)) = (π₯ β (π(,)π) β¦ π·)) & β’ ((π β§ π₯ β (π(,)π)) β π΅ β€ π·) & β’ (π β π β (π[,]π)) & β’ (π β π β (π[,]π)) & β’ (π β π β€ π) & β’ (π₯ = π β π΄ = π) & β’ (π₯ = π β πΆ = π) & β’ (π₯ = π β π΄ = π ) & β’ (π₯ = π β πΆ = π) β β’ (π β (π β π) β€ (π β π)) | ||
Theorem | dvivthlem1 25516* | Lemma for dvivth 25518. (Contributed by Mario Carneiro, 24-Feb-2015.) |
β’ (π β π β (π΄(,)π΅)) & β’ (π β π β (π΄(,)π΅)) & β’ (π β πΉ β ((π΄(,)π΅)βcnββ)) & β’ (π β dom (β D πΉ) = (π΄(,)π΅)) & β’ (π β π < π) & β’ (π β πΆ β (((β D πΉ)βπ)[,]((β D πΉ)βπ))) & β’ πΊ = (π¦ β (π΄(,)π΅) β¦ ((πΉβπ¦) β (πΆ Β· π¦))) β β’ (π β βπ₯ β (π[,]π)((β D πΉ)βπ₯) = πΆ) | ||
Theorem | dvivthlem2 25517* | Lemma for dvivth 25518. (Contributed by Mario Carneiro, 20-Feb-2015.) |
β’ (π β π β (π΄(,)π΅)) & β’ (π β π β (π΄(,)π΅)) & β’ (π β πΉ β ((π΄(,)π΅)βcnββ)) & β’ (π β dom (β D πΉ) = (π΄(,)π΅)) & β’ (π β π < π) & β’ (π β πΆ β (((β D πΉ)βπ)[,]((β D πΉ)βπ))) & β’ πΊ = (π¦ β (π΄(,)π΅) β¦ ((πΉβπ¦) β (πΆ Β· π¦))) β β’ (π β πΆ β ran (β D πΉ)) | ||
Theorem | dvivth 25518 | Darboux' theorem, or the intermediate value theorem for derivatives. A differentiable function's derivative satisfies the intermediate value property, even though it may not be continuous (so that ivthicc 24966 does not directly apply). (Contributed by Mario Carneiro, 24-Feb-2015.) |
β’ (π β π β (π΄(,)π΅)) & β’ (π β π β (π΄(,)π΅)) & β’ (π β πΉ β ((π΄(,)π΅)βcnββ)) & β’ (π β dom (β D πΉ) = (π΄(,)π΅)) β β’ (π β (((β D πΉ)βπ)[,]((β D πΉ)βπ)) β ran (β D πΉ)) | ||
Theorem | dvne0 25519 | A function on a closed interval with nonzero derivative is either monotone increasing or monotone decreasing. (Contributed by Mario Carneiro, 19-Feb-2015.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΉ β ((π΄[,]π΅)βcnββ)) & β’ (π β dom (β D πΉ) = (π΄(,)π΅)) & β’ (π β Β¬ 0 β ran (β D πΉ)) β β’ (π β (πΉ Isom < , < ((π΄[,]π΅), ran πΉ) β¨ πΉ Isom < , β‘ < ((π΄[,]π΅), ran πΉ))) | ||
Theorem | dvne0f1 25520 | A function on a closed interval with nonzero derivative is one-to-one. (Contributed by Mario Carneiro, 19-Feb-2015.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΉ β ((π΄[,]π΅)βcnββ)) & β’ (π β dom (β D πΉ) = (π΄(,)π΅)) & β’ (π β Β¬ 0 β ran (β D πΉ)) β β’ (π β πΉ:(π΄[,]π΅)β1-1ββ) | ||
Theorem | lhop1lem 25521* | Lemma for lhop1 25522. (Contributed by Mario Carneiro, 29-Dec-2016.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β*) & β’ (π β π΄ < π΅) & β’ (π β πΉ:(π΄(,)π΅)βΆβ) & β’ (π β πΊ:(π΄(,)π΅)βΆβ) & β’ (π β dom (β D πΉ) = (π΄(,)π΅)) & β’ (π β dom (β D πΊ) = (π΄(,)π΅)) & β’ (π β 0 β (πΉ limβ π΄)) & β’ (π β 0 β (πΊ limβ π΄)) & β’ (π β Β¬ 0 β ran πΊ) & β’ (π β Β¬ 0 β ran (β D πΊ)) & β’ (π β πΆ β ((π§ β (π΄(,)π΅) β¦ (((β D πΉ)βπ§) / ((β D πΊ)βπ§))) limβ π΄)) & β’ (π β πΈ β β+) & β’ (π β π· β β) & β’ (π β π· β€ π΅) & β’ (π β π β (π΄(,)π·)) & β’ (π β βπ‘ β (π΄(,)π·)(absβ((((β D πΉ)βπ‘) / ((β D πΊ)βπ‘)) β πΆ)) < πΈ) & β’ π = (π΄ + (π / 2)) β β’ (π β (absβ(((πΉβπ) / (πΊβπ)) β πΆ)) < (2 Β· πΈ)) | ||
Theorem | lhop1 25522* | L'HΓ΄pital's Rule for limits from the right. If πΉ and πΊ are differentiable real functions on (π΄, π΅), and πΉ and πΊ both approach 0 at π΄, and πΊ(π₯) and πΊ' (π₯) are not zero on (π΄, π΅), and the limit of πΉ' (π₯) / πΊ' (π₯) at π΄ is πΆ, then the limit πΉ(π₯) / πΊ(π₯) at π΄ also exists and equals πΆ. (Contributed by Mario Carneiro, 29-Dec-2016.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β*) & β’ (π β π΄ < π΅) & β’ (π β πΉ:(π΄(,)π΅)βΆβ) & β’ (π β πΊ:(π΄(,)π΅)βΆβ) & β’ (π β dom (β D πΉ) = (π΄(,)π΅)) & β’ (π β dom (β D πΊ) = (π΄(,)π΅)) & β’ (π β 0 β (πΉ limβ π΄)) & β’ (π β 0 β (πΊ limβ π΄)) & β’ (π β Β¬ 0 β ran πΊ) & β’ (π β Β¬ 0 β ran (β D πΊ)) & β’ (π β πΆ β ((π§ β (π΄(,)π΅) β¦ (((β D πΉ)βπ§) / ((β D πΊ)βπ§))) limβ π΄)) β β’ (π β πΆ β ((π§ β (π΄(,)π΅) β¦ ((πΉβπ§) / (πΊβπ§))) limβ π΄)) | ||
Theorem | lhop2 25523* | L'HΓ΄pital's Rule for limits from the left. If πΉ and πΊ are differentiable real functions on (π΄, π΅), and πΉ and πΊ both approach 0 at π΅, and πΊ(π₯) and πΊ' (π₯) are not zero on (π΄, π΅), and the limit of πΉ' (π₯) / πΊ' (π₯) at π΅ is πΆ, then the limit πΉ(π₯) / πΊ(π₯) at π΅ also exists and equals πΆ. (Contributed by Mario Carneiro, 29-Dec-2016.) |
β’ (π β π΄ β β*) & β’ (π β π΅ β β) & β’ (π β π΄ < π΅) & β’ (π β πΉ:(π΄(,)π΅)βΆβ) & β’ (π β πΊ:(π΄(,)π΅)βΆβ) & β’ (π β dom (β D πΉ) = (π΄(,)π΅)) & β’ (π β dom (β D πΊ) = (π΄(,)π΅)) & β’ (π β 0 β (πΉ limβ π΅)) & β’ (π β 0 β (πΊ limβ π΅)) & β’ (π β Β¬ 0 β ran πΊ) & β’ (π β Β¬ 0 β ran (β D πΊ)) & β’ (π β πΆ β ((π§ β (π΄(,)π΅) β¦ (((β D πΉ)βπ§) / ((β D πΊ)βπ§))) limβ π΅)) β β’ (π β πΆ β ((π§ β (π΄(,)π΅) β¦ ((πΉβπ§) / (πΊβπ§))) limβ π΅)) | ||
Theorem | lhop 25524* | L'HΓ΄pital's Rule. If πΌ is an open set of the reals, πΉ and πΊ are real functions on π΄ containing all of πΌ except possibly π΅, which are differentiable everywhere on πΌ β {π΅}, πΉ and πΊ both approach 0, and the limit of πΉ' (π₯) / πΊ' (π₯) at π΅ is πΆ, then the limit πΉ(π₯) / πΊ(π₯) at π΅ also exists and equals πΆ. This is Metamath 100 proof #64. (Contributed by Mario Carneiro, 30-Dec-2016.) |
β’ (π β π΄ β β) & β’ (π β πΉ:π΄βΆβ) & β’ (π β πΊ:π΄βΆβ) & β’ (π β πΌ β (topGenβran (,))) & β’ (π β π΅ β πΌ) & β’ π· = (πΌ β {π΅}) & β’ (π β π· β dom (β D πΉ)) & β’ (π β π· β dom (β D πΊ)) & β’ (π β 0 β (πΉ limβ π΅)) & β’ (π β 0 β (πΊ limβ π΅)) & β’ (π β Β¬ 0 β (πΊ β π·)) & β’ (π β Β¬ 0 β ((β D πΊ) β π·)) & β’ (π β πΆ β ((π§ β π· β¦ (((β D πΉ)βπ§) / ((β D πΊ)βπ§))) limβ π΅)) β β’ (π β πΆ β ((π§ β π· β¦ ((πΉβπ§) / (πΊβπ§))) limβ π΅)) | ||
Theorem | dvcnvrelem1 25525 | Lemma for dvcnvre 25527. (Contributed by Mario Carneiro, 24-Feb-2015.) |
β’ (π β πΉ β (πβcnββ)) & β’ (π β dom (β D πΉ) = π) & β’ (π β Β¬ 0 β ran (β D πΉ)) & β’ (π β πΉ:πβ1-1-ontoβπ) & β’ (π β πΆ β π) & β’ (π β π β β+) & β’ (π β ((πΆ β π )[,](πΆ + π )) β π) β β’ (π β (πΉβπΆ) β ((intβ(topGenβran (,)))β(πΉ β ((πΆ β π )[,](πΆ + π ))))) | ||
Theorem | dvcnvrelem2 25526 | Lemma for dvcnvre 25527. (Contributed by Mario Carneiro, 19-Feb-2015.) (Revised by Mario Carneiro, 8-Sep-2015.) |
β’ (π β πΉ β (πβcnββ)) & β’ (π β dom (β D πΉ) = π) & β’ (π β Β¬ 0 β ran (β D πΉ)) & β’ (π β πΉ:πβ1-1-ontoβπ) & β’ (π β πΆ β π) & β’ (π β π β β+) & β’ (π β ((πΆ β π )[,](πΆ + π )) β π) & β’ π = (topGenβran (,)) & β’ π½ = (TopOpenββfld) & β’ π = (π½ βΎt π) & β’ π = (π½ βΎt π) β β’ (π β ((πΉβπΆ) β ((intβπ)βπ) β§ β‘πΉ β ((π CnP π)β(πΉβπΆ)))) | ||
Theorem | dvcnvre 25527* | The derivative rule for inverse functions. If πΉ is a continuous and differentiable bijective function from π to π which never has derivative 0, then β‘πΉ is also differentiable, and its derivative is the reciprocal of the derivative of πΉ. (Contributed by Mario Carneiro, 24-Feb-2015.) |
β’ (π β πΉ β (πβcnββ)) & β’ (π β dom (β D πΉ) = π) & β’ (π β Β¬ 0 β ran (β D πΉ)) & β’ (π β πΉ:πβ1-1-ontoβπ) β β’ (π β (β D β‘πΉ) = (π₯ β π β¦ (1 / ((β D πΉ)β(β‘πΉβπ₯))))) | ||
Theorem | dvcvx 25528 | A real function with strictly increasing derivative is strictly convex. (Contributed by Mario Carneiro, 20-Jun-2015.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ < π΅) & β’ (π β πΉ β ((π΄[,]π΅)βcnββ)) & β’ (π β (β D πΉ) Isom < , < ((π΄(,)π΅), π)) & β’ (π β π β (0(,)1)) & β’ πΆ = ((π Β· π΄) + ((1 β π) Β· π΅)) β β’ (π β (πΉβπΆ) < ((π Β· (πΉβπ΄)) + ((1 β π) Β· (πΉβπ΅)))) | ||
Theorem | dvfsumle 25529* | Compare a finite sum to an integral (the integral here is given as a function with a known derivative). (Contributed by Mario Carneiro, 14-May-2016.) |
β’ (π β π β (β€β₯βπ)) & β’ (π β (π₯ β (π[,]π) β¦ π΄) β ((π[,]π)βcnββ)) & β’ ((π β§ π₯ β (π(,)π)) β π΅ β π) & β’ (π β (β D (π₯ β (π(,)π) β¦ π΄)) = (π₯ β (π(,)π) β¦ π΅)) & β’ (π₯ = π β π΄ = πΆ) & β’ (π₯ = π β π΄ = π·) & β’ ((π β§ π β (π..^π)) β π β β) & β’ ((π β§ (π β (π..^π) β§ π₯ β (π(,)(π + 1)))) β π β€ π΅) β β’ (π β Ξ£π β (π..^π)π β€ (π· β πΆ)) | ||
Theorem | dvfsumge 25530* | Compare a finite sum to an integral (the integral here is given as a function with a known derivative). (Contributed by Mario Carneiro, 14-May-2016.) |
β’ (π β π β (β€β₯βπ)) & β’ (π β (π₯ β (π[,]π) β¦ π΄) β ((π[,]π)βcnββ)) & β’ ((π β§ π₯ β (π(,)π)) β π΅ β π) & β’ (π β (β D (π₯ β (π(,)π) β¦ π΄)) = (π₯ β (π(,)π) β¦ π΅)) & β’ (π₯ = π β π΄ = πΆ) & β’ (π₯ = π β π΄ = π·) & β’ ((π β§ π β (π..^π)) β π β β) & β’ ((π β§ (π β (π..^π) β§ π₯ β (π(,)(π + 1)))) β π΅ β€ π) β β’ (π β (π· β πΆ) β€ Ξ£π β (π..^π)π) | ||
Theorem | dvfsumabs 25531* | Compare a finite sum to an integral (the integral here is given as a function with a known derivative). (Contributed by Mario Carneiro, 14-May-2016.) |
β’ (π β π β (β€β₯βπ)) & β’ (π β (π₯ β (π[,]π) β¦ π΄) β ((π[,]π)βcnββ)) & β’ ((π β§ π₯ β (π(,)π)) β π΅ β π) & β’ (π β (β D (π₯ β (π(,)π) β¦ π΄)) = (π₯ β (π(,)π) β¦ π΅)) & β’ (π₯ = π β π΄ = πΆ) & β’ (π₯ = π β π΄ = π·) & β’ ((π β§ π β (π..^π)) β π β β) & β’ ((π β§ π β (π..^π)) β π β β) & β’ ((π β§ (π β (π..^π) β§ π₯ β (π(,)(π + 1)))) β (absβ(π β π΅)) β€ π) β β’ (π β (absβ(Ξ£π β (π..^π)π β (π· β πΆ))) β€ Ξ£π β (π..^π)π) | ||
Theorem | dvmptrecl 25532* | Real closure of a derivative. (Contributed by Mario Carneiro, 18-May-2016.) |
β’ (π β π β β) & β’ ((π β§ π₯ β π) β π΄ β β) & β’ ((π β§ π₯ β π) β π΅ β π) & β’ (π β (β D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) β β’ ((π β§ π₯ β π) β π΅ β β) | ||
Theorem | dvfsumrlimf 25533* | Lemma for dvfsumrlim 25539. (Contributed by Mario Carneiro, 18-May-2016.) |
β’ π = (π(,)+β) & β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β π· β β) & β’ (π β π β€ (π· + 1)) & β’ (π β π β β) & β’ ((π β§ π₯ β π) β π΄ β β) & β’ ((π β§ π₯ β π) β π΅ β π) & β’ ((π β§ π₯ β π) β π΅ β β) & β’ (π β (β D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) & β’ (π₯ = π β π΅ = πΆ) & β’ πΊ = (π₯ β π β¦ (Ξ£π β (π...(ββπ₯))πΆ β π΄)) β β’ (π β πΊ:πβΆβ) | ||
Theorem | dvfsumlem1 25534* | Lemma for dvfsumrlim 25539. (Contributed by Mario Carneiro, 17-May-2016.) |
β’ π = (π(,)+β) & β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β π· β β) & β’ (π β π β€ (π· + 1)) & β’ (π β π β β) & β’ ((π β§ π₯ β π) β π΄ β β) & β’ ((π β§ π₯ β π) β π΅ β π) & β’ ((π β§ π₯ β π) β π΅ β β) & β’ (π β (β D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) & β’ (π₯ = π β π΅ = πΆ) & β’ (π β π β β*) & β’ ((π β§ (π₯ β π β§ π β π) β§ (π· β€ π₯ β§ π₯ β€ π β§ π β€ π)) β πΆ β€ π΅) & β’ π» = (π₯ β π β¦ (((π₯ β (ββπ₯)) Β· π΅) + (Ξ£π β (π...(ββπ₯))πΆ β π΄))) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π· β€ π) & β’ (π β π β€ π) & β’ (π β π β€ π) & β’ (π β π β€ ((ββπ) + 1)) β β’ (π β (π»βπ) = ((((π β (ββπ)) Β· β¦π / π₯β¦π΅) β β¦π / π₯β¦π΄) + Ξ£π β (π...(ββπ))πΆ)) | ||
Theorem | dvfsumlem2 25535* | Lemma for dvfsumrlim 25539. (Contributed by Mario Carneiro, 17-May-2016.) |
β’ π = (π(,)+β) & β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β π· β β) & β’ (π β π β€ (π· + 1)) & β’ (π β π β β) & β’ ((π β§ π₯ β π) β π΄ β β) & β’ ((π β§ π₯ β π) β π΅ β π) & β’ ((π β§ π₯ β π) β π΅ β β) & β’ (π β (β D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) & β’ (π₯ = π β π΅ = πΆ) & β’ (π β π β β*) & β’ ((π β§ (π₯ β π β§ π β π) β§ (π· β€ π₯ β§ π₯ β€ π β§ π β€ π)) β πΆ β€ π΅) & β’ π» = (π₯ β π β¦ (((π₯ β (ββπ₯)) Β· π΅) + (Ξ£π β (π...(ββπ₯))πΆ β π΄))) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π· β€ π) & β’ (π β π β€ π) & β’ (π β π β€ π) & β’ (π β π β€ ((ββπ) + 1)) β β’ (π β ((π»βπ) β€ (π»βπ) β§ ((π»βπ) β β¦π / π₯β¦π΅) β€ ((π»βπ) β β¦π / π₯β¦π΅))) | ||
Theorem | dvfsumlem3 25536* | Lemma for dvfsumrlim 25539. (Contributed by Mario Carneiro, 17-May-2016.) |
β’ π = (π(,)+β) & β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β π· β β) & β’ (π β π β€ (π· + 1)) & β’ (π β π β β) & β’ ((π β§ π₯ β π) β π΄ β β) & β’ ((π β§ π₯ β π) β π΅ β π) & β’ ((π β§ π₯ β π) β π΅ β β) & β’ (π β (β D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) & β’ (π₯ = π β π΅ = πΆ) & β’ (π β π β β*) & β’ ((π β§ (π₯ β π β§ π β π) β§ (π· β€ π₯ β§ π₯ β€ π β§ π β€ π)) β πΆ β€ π΅) & β’ π» = (π₯ β π β¦ (((π₯ β (ββπ₯)) Β· π΅) + (Ξ£π β (π...(ββπ₯))πΆ β π΄))) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π· β€ π) & β’ (π β π β€ π) & β’ (π β π β€ π) β β’ (π β ((π»βπ) β€ (π»βπ) β§ ((π»βπ) β β¦π / π₯β¦π΅) β€ ((π»βπ) β β¦π / π₯β¦π΅))) | ||
Theorem | dvfsumlem4 25537* | Lemma for dvfsumrlim 25539. (Contributed by Mario Carneiro, 18-May-2016.) |
β’ π = (π(,)+β) & β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β π· β β) & β’ (π β π β€ (π· + 1)) & β’ (π β π β β) & β’ ((π β§ π₯ β π) β π΄ β β) & β’ ((π β§ π₯ β π) β π΅ β π) & β’ ((π β§ π₯ β π) β π΅ β β) & β’ (π β (β D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) & β’ (π₯ = π β π΅ = πΆ) & β’ (π β π β β*) & β’ ((π β§ (π₯ β π β§ π β π) β§ (π· β€ π₯ β§ π₯ β€ π β§ π β€ π)) β πΆ β€ π΅) & β’ πΊ = (π₯ β π β¦ (Ξ£π β (π...(ββπ₯))πΆ β π΄)) & β’ ((π β§ (π₯ β π β§ π· β€ π₯ β§ π₯ β€ π)) β 0 β€ π΅) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π· β€ π) & β’ (π β π β€ π) & β’ (π β π β€ π) β β’ (π β (absβ((πΊβπ) β (πΊβπ))) β€ β¦π / π₯β¦π΅) | ||
Theorem | dvfsumrlimge0 25538* | Lemma for dvfsumrlim 25539. Satisfy the assumption of dvfsumlem4 25537. (Contributed by Mario Carneiro, 18-May-2016.) |
β’ π = (π(,)+β) & β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β π· β β) & β’ (π β π β€ (π· + 1)) & β’ (π β π β β) & β’ ((π β§ π₯ β π) β π΄ β β) & β’ ((π β§ π₯ β π) β π΅ β π) & β’ ((π β§ π₯ β π) β π΅ β β) & β’ (π β (β D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) & β’ (π₯ = π β π΅ = πΆ) & β’ ((π β§ (π₯ β π β§ π β π) β§ (π· β€ π₯ β§ π₯ β€ π)) β πΆ β€ π΅) & β’ πΊ = (π₯ β π β¦ (Ξ£π β (π...(ββπ₯))πΆ β π΄)) & β’ (π β (π₯ β π β¦ π΅) βπ 0) β β’ ((π β§ (π₯ β π β§ π· β€ π₯)) β 0 β€ π΅) | ||
Theorem | dvfsumrlim 25539* | Compare a finite sum to an integral (the integral here is given as a function with a known derivative). The statement here says that if π₯ β π β¦ π΅ is a decreasing function with antiderivative π΄ converging to zero, then the difference between Ξ£π β (π...(ββπ₯))π΅(π) and π΄(π₯) = β«π’ β (π[,]π₯)π΅(π’) dπ’ converges to a constant limit value, with the remainder term bounded by π΅(π₯). (Contributed by Mario Carneiro, 18-May-2016.) |
β’ π = (π(,)+β) & β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β π· β β) & β’ (π β π β€ (π· + 1)) & β’ (π β π β β) & β’ ((π β§ π₯ β π) β π΄ β β) & β’ ((π β§ π₯ β π) β π΅ β π) & β’ ((π β§ π₯ β π) β π΅ β β) & β’ (π β (β D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) & β’ (π₯ = π β π΅ = πΆ) & β’ ((π β§ (π₯ β π β§ π β π) β§ (π· β€ π₯ β§ π₯ β€ π)) β πΆ β€ π΅) & β’ πΊ = (π₯ β π β¦ (Ξ£π β (π...(ββπ₯))πΆ β π΄)) & β’ (π β (π₯ β π β¦ π΅) βπ 0) β β’ (π β πΊ β dom βπ ) | ||
Theorem | dvfsumrlim2 25540* | Compare a finite sum to an integral (the integral here is given as a function with a known derivative). The statement here says that if π₯ β π β¦ π΅ is a decreasing function with antiderivative π΄ converging to zero, then the difference between Ξ£π β (π...(ββπ₯))π΅(π) and β«π’ β (π[,]π₯)π΅(π’) dπ’ = π΄(π₯) converges to a constant limit value, with the remainder term bounded by π΅(π₯). (Contributed by Mario Carneiro, 18-May-2016.) |
β’ π = (π(,)+β) & β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β π· β β) & β’ (π β π β€ (π· + 1)) & β’ (π β π β β) & β’ ((π β§ π₯ β π) β π΄ β β) & β’ ((π β§ π₯ β π) β π΅ β π) & β’ ((π β§ π₯ β π) β π΅ β β) & β’ (π β (β D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) & β’ (π₯ = π β π΅ = πΆ) & β’ ((π β§ (π₯ β π β§ π β π) β§ (π· β€ π₯ β§ π₯ β€ π)) β πΆ β€ π΅) & β’ πΊ = (π₯ β π β¦ (Ξ£π β (π...(ββπ₯))πΆ β π΄)) & β’ (π β (π₯ β π β¦ π΅) βπ 0) & β’ (π β π β π) & β’ (π β π· β€ π) β β’ ((π β§ πΊ βπ πΏ) β (absβ((πΊβπ) β πΏ)) β€ β¦π / π₯β¦π΅) | ||
Theorem | dvfsumrlim3 25541* | Conjoin the statements of dvfsumrlim 25539 and dvfsumrlim2 25540. (This is useful as a target for lemmas, because the hypotheses to this theorem are complex, and we don't want to repeat ourselves.) (Contributed by Mario Carneiro, 18-May-2016.) |
β’ π = (π(,)+β) & β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β π· β β) & β’ (π β π β€ (π· + 1)) & β’ (π β π β β) & β’ ((π β§ π₯ β π) β π΄ β β) & β’ ((π β§ π₯ β π) β π΅ β π) & β’ ((π β§ π₯ β π) β π΅ β β) & β’ (π β (β D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) & β’ (π₯ = π β π΅ = πΆ) & β’ ((π β§ (π₯ β π β§ π β π) β§ (π· β€ π₯ β§ π₯ β€ π)) β πΆ β€ π΅) & β’ πΊ = (π₯ β π β¦ (Ξ£π β (π...(ββπ₯))πΆ β π΄)) & β’ (π β (π₯ β π β¦ π΅) βπ 0) & β’ (π₯ = π β π΅ = πΈ) β β’ (π β (πΊ:πβΆβ β§ πΊ β dom βπ β§ ((πΊ βπ πΏ β§ π β π β§ π· β€ π) β (absβ((πΊβπ) β πΏ)) β€ πΈ))) | ||
Theorem | dvfsum2 25542* | The reverse of dvfsumrlim 25539, when comparing a finite sum of increasing terms to an integral. In this case there is no point in stating the limit properties, because the terms of the sum aren't approaching zero, but there is nevertheless still a natural asymptotic statement that can be made. (Contributed by Mario Carneiro, 20-May-2016.) |
β’ π = (π(,)+β) & β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β π· β β) & β’ (π β π β β*) & β’ (π β π β€ (π· + 1)) & β’ (π β π β β) & β’ ((π β§ π₯ β π) β π΄ β β) & β’ ((π β§ π₯ β π) β π΅ β π) & β’ ((π β§ π₯ β π) β π΅ β β) & β’ (π β (β D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) & β’ (π₯ = π β π΅ = πΆ) & β’ ((π β§ (π₯ β π β§ π β π) β§ (π· β€ π₯ β§ π₯ β€ π β§ π β€ π)) β π΅ β€ πΆ) & β’ πΊ = (π₯ β π β¦ (Ξ£π β (π...(ββπ₯))πΆ β π΄)) & β’ ((π β§ (π₯ β π β§ π· β€ π₯)) β 0 β€ π΅) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π· β€ π) & β’ (π β π β€ π) & β’ (π β π β€ π) & β’ (π₯ = π β π΅ = πΈ) β β’ (π β (absβ((πΊβπ) β (πΊβπ))) β€ πΈ) | ||
Theorem | ftc1lem1 25543* | Lemma for ftc1a 25545 and ftc1 25550. (Contributed by Mario Carneiro, 31-Aug-2014.) |
β’ πΊ = (π₯ β (π΄[,]π΅) β¦ β«(π΄(,)π₯)(πΉβπ‘) dπ‘) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ β€ π΅) & β’ (π β (π΄(,)π΅) β π·) & β’ (π β π· β β) & β’ (π β πΉ β πΏ1) & β’ (π β πΉ:π·βΆβ) & β’ (π β π β (π΄[,]π΅)) & β’ (π β π β (π΄[,]π΅)) β β’ ((π β§ π β€ π) β ((πΊβπ) β (πΊβπ)) = β«(π(,)π)(πΉβπ‘) dπ‘) | ||
Theorem | ftc1lem2 25544* | Lemma for ftc1 25550. (Contributed by Mario Carneiro, 12-Aug-2014.) |
β’ πΊ = (π₯ β (π΄[,]π΅) β¦ β«(π΄(,)π₯)(πΉβπ‘) dπ‘) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ β€ π΅) & β’ (π β (π΄(,)π΅) β π·) & β’ (π β π· β β) & β’ (π β πΉ β πΏ1) & β’ (π β πΉ:π·βΆβ) β β’ (π β πΊ:(π΄[,]π΅)βΆβ) | ||
Theorem | ftc1a 25545* | The Fundamental Theorem of Calculus, part one. The function πΊ formed by varying the right endpoint of an integral of πΉ is continuous if πΉ is integrable. (Contributed by Mario Carneiro, 1-Sep-2014.) |
β’ πΊ = (π₯ β (π΄[,]π΅) β¦ β«(π΄(,)π₯)(πΉβπ‘) dπ‘) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ β€ π΅) & β’ (π β (π΄(,)π΅) β π·) & β’ (π β π· β β) & β’ (π β πΉ β πΏ1) & β’ (π β πΉ:π·βΆβ) β β’ (π β πΊ β ((π΄[,]π΅)βcnββ)) | ||
Theorem | ftc1lem3 25546* | Lemma for ftc1 25550. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 8-Sep-2015.) |
β’ πΊ = (π₯ β (π΄[,]π΅) β¦ β«(π΄(,)π₯)(πΉβπ‘) dπ‘) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ β€ π΅) & β’ (π β (π΄(,)π΅) β π·) & β’ (π β π· β β) & β’ (π β πΉ β πΏ1) & β’ (π β πΆ β (π΄(,)π΅)) & β’ (π β πΉ β ((πΎ CnP πΏ)βπΆ)) & β’ π½ = (πΏ βΎt β) & β’ πΎ = (πΏ βΎt π·) & β’ πΏ = (TopOpenββfld) β β’ (π β πΉ:π·βΆβ) | ||
Theorem | ftc1lem4 25547* | Lemma for ftc1 25550. (Contributed by Mario Carneiro, 31-Aug-2014.) |
β’ πΊ = (π₯ β (π΄[,]π΅) β¦ β«(π΄(,)π₯)(πΉβπ‘) dπ‘) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ β€ π΅) & β’ (π β (π΄(,)π΅) β π·) & β’ (π β π· β β) & β’ (π β πΉ β πΏ1) & β’ (π β πΆ β (π΄(,)π΅)) & β’ (π β πΉ β ((πΎ CnP πΏ)βπΆ)) & β’ π½ = (πΏ βΎt β) & β’ πΎ = (πΏ βΎt π·) & β’ πΏ = (TopOpenββfld) & β’ π» = (π§ β ((π΄[,]π΅) β {πΆ}) β¦ (((πΊβπ§) β (πΊβπΆ)) / (π§ β πΆ))) & β’ (π β πΈ β β+) & β’ (π β π β β+) & β’ ((π β§ π¦ β π·) β ((absβ(π¦ β πΆ)) < π β (absβ((πΉβπ¦) β (πΉβπΆ))) < πΈ)) & β’ (π β π β (π΄[,]π΅)) & β’ (π β (absβ(π β πΆ)) < π ) & β’ (π β π β (π΄[,]π΅)) & β’ (π β (absβ(π β πΆ)) < π ) β β’ ((π β§ π < π) β (absβ((((πΊβπ) β (πΊβπ)) / (π β π)) β (πΉβπΆ))) < πΈ) | ||
Theorem | ftc1lem5 25548* | Lemma for ftc1 25550. (Contributed by Mario Carneiro, 14-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.) |
β’ πΊ = (π₯ β (π΄[,]π΅) β¦ β«(π΄(,)π₯)(πΉβπ‘) dπ‘) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ β€ π΅) & β’ (π β (π΄(,)π΅) β π·) & β’ (π β π· β β) & β’ (π β πΉ β πΏ1) & β’ (π β πΆ β (π΄(,)π΅)) & β’ (π β πΉ β ((πΎ CnP πΏ)βπΆ)) & β’ π½ = (πΏ βΎt β) & β’ πΎ = (πΏ βΎt π·) & β’ πΏ = (TopOpenββfld) & β’ π» = (π§ β ((π΄[,]π΅) β {πΆ}) β¦ (((πΊβπ§) β (πΊβπΆ)) / (π§ β πΆ))) & β’ (π β πΈ β β+) & β’ (π β π β β+) & β’ ((π β§ π¦ β π·) β ((absβ(π¦ β πΆ)) < π β (absβ((πΉβπ¦) β (πΉβπΆ))) < πΈ)) & β’ (π β π β (π΄[,]π΅)) & β’ (π β (absβ(π β πΆ)) < π ) β β’ ((π β§ π β πΆ) β (absβ((π»βπ) β (πΉβπΆ))) < πΈ) | ||
Theorem | ftc1lem6 25549* | Lemma for ftc1 25550. (Contributed by Mario Carneiro, 14-Aug-2014.) (Proof shortened by Mario Carneiro, 28-Dec-2016.) |
β’ πΊ = (π₯ β (π΄[,]π΅) β¦ β«(π΄(,)π₯)(πΉβπ‘) dπ‘) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ β€ π΅) & β’ (π β (π΄(,)π΅) β π·) & β’ (π β π· β β) & β’ (π β πΉ β πΏ1) & β’ (π β πΆ β (π΄(,)π΅)) & β’ (π β πΉ β ((πΎ CnP πΏ)βπΆ)) & β’ π½ = (πΏ βΎt β) & β’ πΎ = (πΏ βΎt π·) & β’ πΏ = (TopOpenββfld) & β’ π» = (π§ β ((π΄[,]π΅) β {πΆ}) β¦ (((πΊβπ§) β (πΊβπΆ)) / (π§ β πΆ))) β β’ (π β (πΉβπΆ) β (π» limβ πΆ)) | ||
Theorem | ftc1 25550* | The Fundamental Theorem of Calculus, part one. The function formed by varying the right endpoint of an integral is differentiable at πΆ with derivative πΉ(πΆ) if the original function is continuous at πΆ. This is part of Metamath 100 proof #15. (Contributed by Mario Carneiro, 1-Sep-2014.) |
β’ πΊ = (π₯ β (π΄[,]π΅) β¦ β«(π΄(,)π₯)(πΉβπ‘) dπ‘) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ β€ π΅) & β’ (π β (π΄(,)π΅) β π·) & β’ (π β π· β β) & β’ (π β πΉ β πΏ1) & β’ (π β πΆ β (π΄(,)π΅)) & β’ (π β πΉ β ((πΎ CnP πΏ)βπΆ)) & β’ π½ = (πΏ βΎt β) & β’ πΎ = (πΏ βΎt π·) & β’ πΏ = (TopOpenββfld) β β’ (π β πΆ(β D πΊ)(πΉβπΆ)) | ||
Theorem | ftc1cn 25551* | Strengthen the assumptions of ftc1 25550 to when the function πΉ is continuous on the entire interval (π΄, π΅); in this case we can calculate D πΊ exactly. (Contributed by Mario Carneiro, 1-Sep-2014.) |
β’ πΊ = (π₯ β (π΄[,]π΅) β¦ β«(π΄(,)π₯)(πΉβπ‘) dπ‘) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ β€ π΅) & β’ (π β πΉ β ((π΄(,)π΅)βcnββ)) & β’ (π β πΉ β πΏ1) β β’ (π β (β D πΊ) = πΉ) | ||
Theorem | ftc2 25552* | The Fundamental Theorem of Calculus, part two. If πΉ is a function continuous on [π΄, π΅] and continuously differentiable on (π΄, π΅), then the integral of the derivative of πΉ is equal to πΉ(π΅) β πΉ(π΄). This is part of Metamath 100 proof #15. (Contributed by Mario Carneiro, 2-Sep-2014.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ β€ π΅) & β’ (π β (β D πΉ) β ((π΄(,)π΅)βcnββ)) & β’ (π β (β D πΉ) β πΏ1) & β’ (π β πΉ β ((π΄[,]π΅)βcnββ)) β β’ (π β β«(π΄(,)π΅)((β D πΉ)βπ‘) dπ‘ = ((πΉβπ΅) β (πΉβπ΄))) | ||
Theorem | ftc2ditglem 25553* | Lemma for ftc2ditg 25554. (Contributed by Mario Carneiro, 3-Sep-2014.) |
β’ (π β π β β) & β’ (π β π β β) & β’ (π β π΄ β (π[,]π)) & β’ (π β π΅ β (π[,]π)) & β’ (π β (β D πΉ) β ((π(,)π)βcnββ)) & β’ (π β (β D πΉ) β πΏ1) & β’ (π β πΉ β ((π[,]π)βcnββ)) β β’ ((π β§ π΄ β€ π΅) β β¨[π΄ β π΅]((β D πΉ)βπ‘) dπ‘ = ((πΉβπ΅) β (πΉβπ΄))) | ||
Theorem | ftc2ditg 25554* | Directed integral analogue of ftc2 25552. (Contributed by Mario Carneiro, 3-Sep-2014.) |
β’ (π β π β β) & β’ (π β π β β) & β’ (π β π΄ β (π[,]π)) & β’ (π β π΅ β (π[,]π)) & β’ (π β (β D πΉ) β ((π(,)π)βcnββ)) & β’ (π β (β D πΉ) β πΏ1) & β’ (π β πΉ β ((π[,]π)βcnββ)) β β’ (π β β¨[π΄ β π΅]((β D πΉ)βπ‘) dπ‘ = ((πΉβπ΅) β (πΉβπ΄))) | ||
Theorem | itgparts 25555* | Integration by parts. If π΅(π₯) is the derivative of π΄(π₯) and π·(π₯) is the derivative of πΆ(π₯), and πΈ = (π΄ Β· π΅)(π) and πΉ = (π΄ Β· π΅)(π), then under suitable integrability and differentiability assumptions, the integral of π΄ Β· π· from π to π is equal to πΉ β πΈ minus the integral of π΅ Β· πΆ. (Contributed by Mario Carneiro, 3-Sep-2014.) |
β’ (π β π β β) & β’ (π β π β β) & β’ (π β π β€ π) & β’ (π β (π₯ β (π[,]π) β¦ π΄) β ((π[,]π)βcnββ)) & β’ (π β (π₯ β (π[,]π) β¦ πΆ) β ((π[,]π)βcnββ)) & β’ (π β (π₯ β (π(,)π) β¦ π΅) β ((π(,)π)βcnββ)) & β’ (π β (π₯ β (π(,)π) β¦ π·) β ((π(,)π)βcnββ)) & β’ (π β (π₯ β (π(,)π) β¦ (π΄ Β· π·)) β πΏ1) & β’ (π β (π₯ β (π(,)π) β¦ (π΅ Β· πΆ)) β πΏ1) & β’ (π β (β D (π₯ β (π[,]π) β¦ π΄)) = (π₯ β (π(,)π) β¦ π΅)) & β’ (π β (β D (π₯ β (π[,]π) β¦ πΆ)) = (π₯ β (π(,)π) β¦ π·)) & β’ ((π β§ π₯ = π) β (π΄ Β· πΆ) = πΈ) & β’ ((π β§ π₯ = π) β (π΄ Β· πΆ) = πΉ) β β’ (π β β«(π(,)π)(π΄ Β· π·) dπ₯ = ((πΉ β πΈ) β β«(π(,)π)(π΅ Β· πΆ) dπ₯)) | ||
Theorem | itgsubstlem 25556* | Lemma for itgsubst 25557. (Contributed by Mario Carneiro, 12-Sep-2014.) |
β’ (π β π β β) & β’ (π β π β β) & β’ (π β π β€ π) & β’ (π β π β β*) & β’ (π β π β β*) & β’ (π β (π₯ β (π[,]π) β¦ π΄) β ((π[,]π)βcnβ(π(,)π))) & β’ (π β (π₯ β (π(,)π) β¦ π΅) β (((π(,)π)βcnββ) β© πΏ1)) & β’ (π β (π’ β (π(,)π) β¦ πΆ) β ((π(,)π)βcnββ)) & β’ (π β (β D (π₯ β (π[,]π) β¦ π΄)) = (π₯ β (π(,)π) β¦ π΅)) & β’ (π’ = π΄ β πΆ = πΈ) & β’ (π₯ = π β π΄ = πΎ) & β’ (π₯ = π β π΄ = πΏ) & β’ (π β π β (π(,)π)) & β’ (π β π β (π(,)π)) & β’ ((π β§ π₯ β (π[,]π)) β π΄ β (π(,)π)) β β’ (π β β¨[πΎ β πΏ]πΆ dπ’ = β¨[π β π](πΈ Β· π΅) dπ₯) | ||
Theorem | itgsubst 25557* | Integration by π’-substitution. If π΄(π₯) is a continuous, differentiable function from [π, π] to (π, π), whose derivative is continuous and integrable, and πΆ(π’) is a continuous function on (π, π), then the integral of πΆ(π’) from πΎ = π΄(π) to πΏ = π΄(π) is equal to the integral of πΆ(π΄(π₯)) D π΄(π₯) from π to π. In this part of the proof we discharge the assumptions in itgsubstlem 25556, which use the fact that (π, π) is open to shrink the interval a little to (π, π) where π < π < π < π- this is possible because π΄(π₯) is a continuous function on a closed interval, so its range is in fact a closed interval, and we have some wiggle room on the edges. (Contributed by Mario Carneiro, 7-Sep-2014.) |
β’ (π β π β β) & β’ (π β π β β) & β’ (π β π β€ π) & β’ (π β π β β*) & β’ (π β π β β*) & β’ (π β (π₯ β (π[,]π) β¦ π΄) β ((π[,]π)βcnβ(π(,)π))) & β’ (π β (π₯ β (π(,)π) β¦ π΅) β (((π(,)π)βcnββ) β© πΏ1)) & β’ (π β (π’ β (π(,)π) β¦ πΆ) β ((π(,)π)βcnββ)) & β’ (π β (β D (π₯ β (π[,]π) β¦ π΄)) = (π₯ β (π(,)π) β¦ π΅)) & β’ (π’ = π΄ β πΆ = πΈ) & β’ (π₯ = π β π΄ = πΎ) & β’ (π₯ = π β π΄ = πΏ) β β’ (π β β¨[πΎ β πΏ]πΆ dπ’ = β¨[π β π](πΈ Β· π΅) dπ₯) | ||
Theorem | itgpowd 25558* | The integral of a monomial on a closed bounded interval of the real line. Co-authors TA and MC. (Contributed by Jon Pennant, 31-May-2019.) (Revised by Thierry Arnoux, 14-Jun-2019.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ β€ π΅) & β’ (π β π β β0) β β’ (π β β«(π΄[,]π΅)(π₯βπ) dπ₯ = (((π΅β(π + 1)) β (π΄β(π + 1))) / (π + 1))) | ||
Syntax | cmdg 25559 | Multivariate polynomial degree. |
class mDeg | ||
Syntax | cdg1 25560 | Univariate polynomial degree. |
class deg1 | ||
Definition | df-mdeg 25561* | Define the degree of a polynomial. Note (SO): as an experiment I am using a definition which makes the degree of the zero polynomial -β, contrary to the convention used in df-dgr 25696. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by AV, 25-Jun-2019.) |
β’ mDeg = (π β V, π β V β¦ (π β (Baseβ(π mPoly π)) β¦ sup(ran (β β (π supp (0gβπ)) β¦ (βfld Ξ£g β)), β*, < ))) | ||
Definition | df-deg1 25562 | Define the degree of a univariate polynomial. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
β’ deg1 = (π β V β¦ (1o mDeg π)) | ||
Theorem | reldmmdeg 25563 | Multivariate degree is a binary operation. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
β’ Rel dom mDeg | ||
Theorem | tdeglem1 25564* | Functionality of the total degree helper function. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) Remove sethood antecedent. (Revised by SN, 7-Aug-2024.) |
β’ π΄ = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} & β’ π» = (β β π΄ β¦ (βfld Ξ£g β)) β β’ π»:π΄βΆβ0 | ||
Theorem | tdeglem1OLD 25565* | Obsolete version of tdeglem1 25564 as of 7-Aug-2024. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
β’ π΄ = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} & β’ π» = (β β π΄ β¦ (βfld Ξ£g β)) β β’ (πΌ β π β π»:π΄βΆβ0) | ||
Theorem | tdeglem3 25566* | Additivity of the total degree helper function. (Contributed by Stefan O'Rear, 26-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) Remove a sethood antecedent. (Revised by SN, 7-Aug-2024.) |
β’ π΄ = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} & β’ π» = (β β π΄ β¦ (βfld Ξ£g β)) β β’ ((π β π΄ β§ π β π΄) β (π»β(π βf + π)) = ((π»βπ) + (π»βπ))) | ||
Theorem | tdeglem3OLD 25567* | Obsolete version of tdeglem3 25566 as of 7-Aug-2024. (Contributed by Stefan O'Rear, 26-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
β’ π΄ = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} & β’ π» = (β β π΄ β¦ (βfld Ξ£g β)) β β’ ((πΌ β π β§ π β π΄ β§ π β π΄) β (π»β(π βf + π)) = ((π»βπ) + (π»βπ))) | ||
Theorem | tdeglem4 25568* | There is only one multi-index with total degree 0. (Contributed by Stefan O'Rear, 29-Mar-2015.) Remove a sethood antecedent. (Revised by SN, 7-Aug-2024.) |
β’ π΄ = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} & β’ π» = (β β π΄ β¦ (βfld Ξ£g β)) β β’ (π β π΄ β ((π»βπ) = 0 β π = (πΌ Γ {0}))) | ||
Theorem | tdeglem4OLD 25569* | Obsolete version of tdeglem4 25568 as of 7-Aug-2024. (Contributed by Stefan O'Rear, 29-Mar-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
β’ π΄ = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} & β’ π» = (β β π΄ β¦ (βfld Ξ£g β)) β β’ ((πΌ β π β§ π β π΄) β ((π»βπ) = 0 β π = (πΌ Γ {0}))) | ||
Theorem | tdeglem2 25570 | Simplification of total degree for the univariate case. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
β’ (β β (β0 βm 1o) β¦ (βββ )) = (β β (β0 βm 1o) β¦ (βfld Ξ£g β)) | ||
Theorem | mdegfval 25571* | Value of the multivariate degree function. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by AV, 25-Jun-2019.) |
β’ π· = (πΌ mDeg π ) & β’ π = (πΌ mPoly π ) & β’ π΅ = (Baseβπ) & β’ 0 = (0gβπ ) & β’ π΄ = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} & β’ π» = (β β π΄ β¦ (βfld Ξ£g β)) β β’ π· = (π β π΅ β¦ sup((π» β (π supp 0 )), β*, < )) | ||
Theorem | mdegval 25572* | Value of the multivariate degree function at some particular polynomial. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by AV, 25-Jun-2019.) |
β’ π· = (πΌ mDeg π ) & β’ π = (πΌ mPoly π ) & β’ π΅ = (Baseβπ) & β’ 0 = (0gβπ ) & β’ π΄ = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} & β’ π» = (β β π΄ β¦ (βfld Ξ£g β)) β β’ (πΉ β π΅ β (π·βπΉ) = sup((π» β (πΉ supp 0 )), β*, < )) | ||
Theorem | mdegleb 25573* | Property of being of limited degree. (Contributed by Stefan O'Rear, 19-Mar-2015.) |
β’ π· = (πΌ mDeg π ) & β’ π = (πΌ mPoly π ) & β’ π΅ = (Baseβπ) & β’ 0 = (0gβπ ) & β’ π΄ = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} & β’ π» = (β β π΄ β¦ (βfld Ξ£g β)) β β’ ((πΉ β π΅ β§ πΊ β β*) β ((π·βπΉ) β€ πΊ β βπ₯ β π΄ (πΊ < (π»βπ₯) β (πΉβπ₯) = 0 ))) | ||
Theorem | mdeglt 25574* | If there is an upper limit on the degree of a polynomial that is lower than the degree of some exponent bag, then that exponent bag is unrepresented in the polynomial. (Contributed by Stefan O'Rear, 26-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) |
β’ π· = (πΌ mDeg π ) & β’ π = (πΌ mPoly π ) & β’ π΅ = (Baseβπ) & β’ 0 = (0gβπ ) & β’ π΄ = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} & β’ π» = (β β π΄ β¦ (βfld Ξ£g β)) & β’ (π β πΉ β π΅) & β’ (π β π β π΄) & β’ (π β (π·βπΉ) < (π»βπ)) β β’ (π β (πΉβπ) = 0 ) | ||
Theorem | mdegldg 25575* | A nonzero polynomial has some coefficient which witnesses its degree. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
β’ π· = (πΌ mDeg π ) & β’ π = (πΌ mPoly π ) & β’ π΅ = (Baseβπ) & β’ 0 = (0gβπ ) & β’ π΄ = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} & β’ π» = (β β π΄ β¦ (βfld Ξ£g β)) & β’ π = (0gβπ) β β’ ((π β Ring β§ πΉ β π΅ β§ πΉ β π) β βπ₯ β π΄ ((πΉβπ₯) β 0 β§ (π»βπ₯) = (π·βπΉ))) | ||
Theorem | mdegxrcl 25576 | Closure of polynomial degree in the extended reals. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) |
β’ π· = (πΌ mDeg π ) & β’ π = (πΌ mPoly π ) & β’ π΅ = (Baseβπ) β β’ (πΉ β π΅ β (π·βπΉ) β β*) | ||
Theorem | mdegxrf 25577 | Functionality of polynomial degree in the extended reals. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) |
β’ π· = (πΌ mDeg π ) & β’ π = (πΌ mPoly π ) & β’ π΅ = (Baseβπ) β β’ π·:π΅βΆβ* | ||
Theorem | mdegcl 25578 | Sharp closure for multivariate polynomials. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
β’ π· = (πΌ mDeg π ) & β’ π = (πΌ mPoly π ) & β’ π΅ = (Baseβπ) β β’ (πΉ β π΅ β (π·βπΉ) β (β0 βͺ {-β})) | ||
Theorem | mdeg0 25579 | Degree of the zero polynomial. (Contributed by Stefan O'Rear, 20-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) |
β’ π· = (πΌ mDeg π ) & β’ π = (πΌ mPoly π ) & β’ 0 = (0gβπ) β β’ ((πΌ β π β§ π β Ring) β (π·β 0 ) = -β) | ||
Theorem | mdegnn0cl 25580 | Degree of a nonzero polynomial. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
β’ π· = (πΌ mDeg π ) & β’ π = (πΌ mPoly π ) & β’ 0 = (0gβπ) & β’ π΅ = (Baseβπ) β β’ ((π β Ring β§ πΉ β π΅ β§ πΉ β 0 ) β (π·βπΉ) β β0) | ||
Theorem | degltlem1 25581 | Theorem on arithmetic of extended reals useful for degrees. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
β’ ((π β (β0 βͺ {-β}) β§ π β β€) β (π < π β π β€ (π β 1))) | ||
Theorem | degltp1le 25582 | Theorem on arithmetic of extended reals useful for degrees. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
β’ ((π β (β0 βͺ {-β}) β§ π β β€) β (π < (π + 1) β π β€ π)) | ||
Theorem | mdegaddle 25583 | The degree of a sum is at most the maximum of the degrees of the factors. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
β’ π = (πΌ mPoly π ) & β’ π· = (πΌ mDeg π ) & β’ (π β πΌ β π) & β’ (π β π β Ring) & β’ π΅ = (Baseβπ) & β’ + = (+gβπ) & β’ (π β πΉ β π΅) & β’ (π β πΊ β π΅) β β’ (π β (π·β(πΉ + πΊ)) β€ if((π·βπΉ) β€ (π·βπΊ), (π·βπΊ), (π·βπΉ))) | ||
Theorem | mdegvscale 25584 | The degree of a scalar multiple of a polynomial is at most the degree of the original polynomial. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
β’ π = (πΌ mPoly π ) & β’ π· = (πΌ mDeg π ) & β’ (π β πΌ β π) & β’ (π β π β Ring) & β’ π΅ = (Baseβπ) & β’ πΎ = (Baseβπ ) & β’ Β· = ( Β·π βπ) & β’ (π β πΉ β πΎ) & β’ (π β πΊ β π΅) β β’ (π β (π·β(πΉ Β· πΊ)) β€ (π·βπΊ)) | ||
Theorem | mdegvsca 25585 | The degree of a scalar multiple of a polynomial is exactly the degree of the original polynomial when the multiple is a nonzero-divisor. (Contributed by Stefan O'Rear, 28-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) |
β’ π = (πΌ mPoly π ) & β’ π· = (πΌ mDeg π ) & β’ (π β πΌ β π) & β’ (π β π β Ring) & β’ π΅ = (Baseβπ) & β’ πΈ = (RLRegβπ ) & β’ Β· = ( Β·π βπ) & β’ (π β πΉ β πΈ) & β’ (π β πΊ β π΅) β β’ (π β (π·β(πΉ Β· πΊ)) = (π·βπΊ)) | ||
Theorem | mdegle0 25586 | A polynomial has nonpositive degree iff it is a constant. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
β’ π = (πΌ mPoly π ) & β’ π· = (πΌ mDeg π ) & β’ (π β πΌ β π) & β’ (π β π β Ring) & β’ π΅ = (Baseβπ) & β’ π΄ = (algScβπ) & β’ (π β πΉ β π΅) β β’ (π β ((π·βπΉ) β€ 0 β πΉ = (π΄β(πΉβ(πΌ Γ {0}))))) | ||
Theorem | mdegmullem 25587* | Lemma for mdegmulle2 25588. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
β’ π = (πΌ mPoly π ) & β’ π· = (πΌ mDeg π ) & β’ (π β πΌ β π) & β’ (π β π β Ring) & β’ π΅ = (Baseβπ) & β’ Β· = (.rβπ) & β’ (π β πΉ β π΅) & β’ (π β πΊ β π΅) & β’ (π β π½ β β0) & β’ (π β πΎ β β0) & β’ (π β (π·βπΉ) β€ π½) & β’ (π β (π·βπΊ) β€ πΎ) & β’ π΄ = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} & β’ π» = (π β π΄ β¦ (βfld Ξ£g π)) β β’ (π β (π·β(πΉ Β· πΊ)) β€ (π½ + πΎ)) | ||
Theorem | mdegmulle2 25588 | The multivariate degree of a product of polynomials is at most the sum of the degrees of the polynomials. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
β’ π = (πΌ mPoly π ) & β’ π· = (πΌ mDeg π ) & β’ (π β πΌ β π) & β’ (π β π β Ring) & β’ π΅ = (Baseβπ) & β’ Β· = (.rβπ) & β’ (π β πΉ β π΅) & β’ (π β πΊ β π΅) & β’ (π β π½ β β0) & β’ (π β πΎ β β0) & β’ (π β (π·βπΉ) β€ π½) & β’ (π β (π·βπΊ) β€ πΎ) β β’ (π β (π·β(πΉ Β· πΊ)) β€ (π½ + πΎ)) | ||
Theorem | deg1fval 25589 | Relate univariate polynomial degree to multivariate. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 7-Oct-2015.) |
β’ π· = ( deg1 βπ ) β β’ π· = (1o mDeg π ) | ||
Theorem | deg1xrf 25590 | Functionality of univariate polynomial degree, weak range. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
β’ π· = ( deg1 βπ ) & β’ π = (Poly1βπ ) & β’ π΅ = (Baseβπ) β β’ π·:π΅βΆβ* | ||
Theorem | deg1xrcl 25591 | Closure of univariate polynomial degree in extended reals. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
β’ π· = ( deg1 βπ ) & β’ π = (Poly1βπ ) & β’ π΅ = (Baseβπ) β β’ (πΉ β π΅ β (π·βπΉ) β β*) | ||
Theorem | deg1cl 25592 | Sharp closure of univariate polynomial degree. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
β’ π· = ( deg1 βπ ) & β’ π = (Poly1βπ ) & β’ π΅ = (Baseβπ) β β’ (πΉ β π΅ β (π·βπΉ) β (β0 βͺ {-β})) | ||
Theorem | mdegpropd 25593* | Property deduction for polynomial degree. (Contributed by Stefan O'Rear, 28-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) |
β’ (π β π΅ = (Baseβπ )) & β’ (π β π΅ = (Baseβπ)) & β’ ((π β§ (π₯ β π΅ β§ π¦ β π΅)) β (π₯(+gβπ )π¦) = (π₯(+gβπ)π¦)) β β’ (π β (πΌ mDeg π ) = (πΌ mDeg π)) | ||
Theorem | deg1fvi 25594 | Univariate polynomial degree respects protection. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
β’ ( deg1 βπ ) = ( deg1 β( I βπ )) | ||
Theorem | deg1propd 25595* | Property deduction for polynomial degree. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
β’ (π β π΅ = (Baseβπ )) & β’ (π β π΅ = (Baseβπ)) & β’ ((π β§ (π₯ β π΅ β§ π¦ β π΅)) β (π₯(+gβπ )π¦) = (π₯(+gβπ)π¦)) β β’ (π β ( deg1 βπ ) = ( deg1 βπ)) | ||
Theorem | deg1z 25596 | Degree of the zero univariate polynomial. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
β’ π· = ( deg1 βπ ) & β’ π = (Poly1βπ ) & β’ 0 = (0gβπ) β β’ (π β Ring β (π·β 0 ) = -β) | ||
Theorem | deg1nn0cl 25597 | Degree of a nonzero univariate polynomial. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 7-Oct-2015.) |
β’ π· = ( deg1 βπ ) & β’ π = (Poly1βπ ) & β’ 0 = (0gβπ) & β’ π΅ = (Baseβπ) β β’ ((π β Ring β§ πΉ β π΅ β§ πΉ β 0 ) β (π·βπΉ) β β0) | ||
Theorem | deg1n0ima 25598 | Degree image of a set of polynomials which does not include zero. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
β’ π· = ( deg1 βπ ) & β’ π = (Poly1βπ ) & β’ 0 = (0gβπ) & β’ π΅ = (Baseβπ) β β’ (π β Ring β (π· β (π΅ β { 0 })) β β0) | ||
Theorem | deg1nn0clb 25599 | A polynomial is nonzero iff it has definite degree. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
β’ π· = ( deg1 βπ ) & β’ π = (Poly1βπ ) & β’ 0 = (0gβπ) & β’ π΅ = (Baseβπ) β β’ ((π β Ring β§ πΉ β π΅) β (πΉ β 0 β (π·βπΉ) β β0)) | ||
Theorem | deg1lt0 25600 | A polynomial is zero iff it has negative degree. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
β’ π· = ( deg1 βπ ) & β’ π = (Poly1βπ ) & β’ 0 = (0gβπ) & β’ π΅ = (Baseβπ) β β’ ((π β Ring β§ πΉ β π΅) β ((π·βπΉ) < 0 β πΉ = 0 )) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |