Home | Metamath
Proof Explorer Theorem List (p. 256 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | abelthlem7a 25501* | Lemma for abelth 25505. (Contributed by Mario Carneiro, 8-May-2015.) |
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝑀) & ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) & ⊢ (𝜑 → seq0( + , 𝐴) ⇝ 0) & ⊢ (𝜑 → 𝑋 ∈ (𝑆 ∖ {1})) ⇒ ⊢ (𝜑 → (𝑋 ∈ ℂ ∧ (abs‘(1 − 𝑋)) ≤ (𝑀 · (1 − (abs‘𝑋))))) | ||
Theorem | abelthlem7 25502* | Lemma for abelth 25505. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝑀) & ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) & ⊢ (𝜑 → seq0( + , 𝐴) ⇝ 0) & ⊢ (𝜑 → 𝑋 ∈ (𝑆 ∖ {1})) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → ∀𝑘 ∈ (ℤ≥‘𝑁)(abs‘(seq0( + , 𝐴)‘𝑘)) < 𝑅) & ⊢ (𝜑 → (abs‘(1 − 𝑋)) < (𝑅 / (Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1))) ⇒ ⊢ (𝜑 → (abs‘(𝐹‘𝑋)) < ((𝑀 + 1) · 𝑅)) | ||
Theorem | abelthlem8 25503* | Lemma for abelth 25505. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝑀) & ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) & ⊢ (𝜑 → seq0( + , 𝐴) ⇝ 0) ⇒ ⊢ ((𝜑 ∧ 𝑅 ∈ ℝ+) → ∃𝑤 ∈ ℝ+ ∀𝑦 ∈ 𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹‘𝑦))) < 𝑅)) | ||
Theorem | abelthlem9 25504* | Lemma for abelth 25505. By adjusting the constant term, we can assume that the entire series converges to 0. (Contributed by Mario Carneiro, 1-Apr-2015.) |
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝑀) & ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) ⇒ ⊢ ((𝜑 ∧ 𝑅 ∈ ℝ+) → ∃𝑤 ∈ ℝ+ ∀𝑦 ∈ 𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹‘𝑦))) < 𝑅)) | ||
Theorem | abelth 25505* | Abel's theorem. If the power series Σ𝑛 ∈ ℕ0𝐴(𝑛)(𝑥↑𝑛) is convergent at 1, then it is equal to the limit from "below", along a Stolz angle 𝑆 (note that the 𝑀 = 1 case of a Stolz angle is the real line [0, 1]). (Continuity on 𝑆 ∖ {1} follows more generally from psercn 25490.) (Contributed by Mario Carneiro, 2-Apr-2015.) (Revised by Mario Carneiro, 8-Sep-2015.) |
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝑀) & ⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑆–cn→ℂ)) | ||
Theorem | abelth2 25506* | Abel's theorem, restricted to the [0, 1] interval. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) & ⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) ⇒ ⊢ (𝜑 → 𝐹 ∈ ((0[,]1)–cn→ℂ)) | ||
Theorem | efcn 25507 | The exponential function is continuous. (Contributed by Paul Chapman, 15-Sep-2007.) (Revised by Mario Carneiro, 20-Jun-2015.) |
⊢ exp ∈ (ℂ–cn→ℂ) | ||
Theorem | sincn 25508 | Sine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 3-Sep-2014.) |
⊢ sin ∈ (ℂ–cn→ℂ) | ||
Theorem | coscn 25509 | Cosine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 3-Sep-2014.) |
⊢ cos ∈ (ℂ–cn→ℂ) | ||
Theorem | reeff1olem 25510* | Lemma for reeff1o 25511. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.) |
⊢ ((𝑈 ∈ ℝ ∧ 1 < 𝑈) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑈) | ||
Theorem | reeff1o 25511 | The real exponential function is one-to-one onto. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 10-Nov-2013.) |
⊢ (exp ↾ ℝ):ℝ–1-1-onto→ℝ+ | ||
Theorem | reefiso 25512 | The exponential function on the reals determines an isomorphism from reals onto positive reals. (Contributed by Steve Rodriguez, 25-Nov-2007.) (Revised by Mario Carneiro, 11-Mar-2014.) |
⊢ (exp ↾ ℝ) Isom < , < (ℝ, ℝ+) | ||
Theorem | efcvx 25513 | The exponential function on the reals is a strictly convex function. (Contributed by Mario Carneiro, 20-Jun-2015.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (exp‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) < ((𝑇 · (exp‘𝐴)) + ((1 − 𝑇) · (exp‘𝐵)))) | ||
Theorem | reefgim 25514 | The exponential function is a group isomorphism from the group of reals under addition to the group of positive reals under multiplication. (Contributed by Mario Carneiro, 21-Jun-2015.) (Revised by Thierry Arnoux, 30-Jun-2019.) |
⊢ 𝑃 = ((mulGrp‘ℂfld) ↾s ℝ+) ⇒ ⊢ (exp ↾ ℝ) ∈ (ℝfld GrpIso 𝑃) | ||
Theorem | pilem1 25515 | Lemma for pire 25520, pigt2lt4 25518 and sinpi 25519. (Contributed by Mario Carneiro, 9-May-2014.) |
⊢ (𝐴 ∈ (ℝ+ ∩ (◡sin “ {0})) ↔ (𝐴 ∈ ℝ+ ∧ (sin‘𝐴) = 0)) | ||
Theorem | pilem2 25516 | Lemma for pire 25520, pigt2lt4 25518 and sinpi 25519. (Contributed by Mario Carneiro, 12-Jun-2014.) (Revised by AV, 14-Sep-2020.) |
⊢ (𝜑 → 𝐴 ∈ (2(,)4)) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → (sin‘𝐴) = 0) & ⊢ (𝜑 → (sin‘𝐵) = 0) ⇒ ⊢ (𝜑 → ((π + 𝐴) / 2) ≤ 𝐵) | ||
Theorem | pilem3 25517 | Lemma for pire 25520, pigt2lt4 25518 and sinpi 25519. Existence part. (Contributed by Paul Chapman, 23-Jan-2008.) (Proof shortened by Mario Carneiro, 18-Jun-2014.) (Revised by AV, 14-Sep-2020.) (Proof shortened by BJ, 30-Jun-2022.) |
⊢ (π ∈ (2(,)4) ∧ (sin‘π) = 0) | ||
Theorem | pigt2lt4 25518 | π is between 2 and 4. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.) |
⊢ (2 < π ∧ π < 4) | ||
Theorem | sinpi 25519 | The sine of π is 0. (Contributed by Paul Chapman, 23-Jan-2008.) |
⊢ (sin‘π) = 0 | ||
Theorem | pire 25520 | π is a real number. (Contributed by Paul Chapman, 23-Jan-2008.) |
⊢ π ∈ ℝ | ||
Theorem | picn 25521 | π is a complex number. (Contributed by David A. Wheeler, 6-Dec-2018.) |
⊢ π ∈ ℂ | ||
Theorem | pipos 25522 | π is positive. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.) |
⊢ 0 < π | ||
Theorem | pirp 25523 | π is a positive real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ π ∈ ℝ+ | ||
Theorem | negpicn 25524 | -π is a real number. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ -π ∈ ℂ | ||
Theorem | sinhalfpilem 25525 | Lemma for sinhalfpi 25530 and coshalfpi 25531. (Contributed by Paul Chapman, 23-Jan-2008.) |
⊢ ((sin‘(π / 2)) = 1 ∧ (cos‘(π / 2)) = 0) | ||
Theorem | halfpire 25526 | π / 2 is real. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (π / 2) ∈ ℝ | ||
Theorem | neghalfpire 25527 | -π / 2 is real. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ -(π / 2) ∈ ℝ | ||
Theorem | neghalfpirx 25528 | -π / 2 is an extended real. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ -(π / 2) ∈ ℝ* | ||
Theorem | pidiv2halves 25529 | Adding π / 2 to itself gives π. See 2halves 12131. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ ((π / 2) + (π / 2)) = π | ||
Theorem | sinhalfpi 25530 | The sine of π / 2 is 1. (Contributed by Paul Chapman, 23-Jan-2008.) |
⊢ (sin‘(π / 2)) = 1 | ||
Theorem | coshalfpi 25531 | The cosine of π / 2 is 0. (Contributed by Paul Chapman, 23-Jan-2008.) |
⊢ (cos‘(π / 2)) = 0 | ||
Theorem | cosneghalfpi 25532 | The cosine of -π / 2 is zero. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (cos‘-(π / 2)) = 0 | ||
Theorem | efhalfpi 25533 | The exponential of iπ / 2 is i. (Contributed by Mario Carneiro, 9-May-2014.) |
⊢ (exp‘(i · (π / 2))) = i | ||
Theorem | cospi 25534 | The cosine of π is -1. (Contributed by Paul Chapman, 23-Jan-2008.) |
⊢ (cos‘π) = -1 | ||
Theorem | efipi 25535 | The exponential of i · π is -1. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.) |
⊢ (exp‘(i · π)) = -1 | ||
Theorem | eulerid 25536 | Euler's identity. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.) |
⊢ ((exp‘(i · π)) + 1) = 0 | ||
Theorem | sin2pi 25537 | The sine of 2π is 0. (Contributed by Paul Chapman, 23-Jan-2008.) |
⊢ (sin‘(2 · π)) = 0 | ||
Theorem | cos2pi 25538 | The cosine of 2π is 1. (Contributed by Paul Chapman, 23-Jan-2008.) |
⊢ (cos‘(2 · π)) = 1 | ||
Theorem | ef2pi 25539 | The exponential of 2πi is 1. (Contributed by Mario Carneiro, 9-May-2014.) |
⊢ (exp‘(i · (2 · π))) = 1 | ||
Theorem | ef2kpi 25540 | If 𝐾 is an integer, then the exponential of 2𝐾πi is 1. (Contributed by Mario Carneiro, 9-May-2014.) |
⊢ (𝐾 ∈ ℤ → (exp‘((i · (2 · π)) · 𝐾)) = 1) | ||
Theorem | efper 25541 | The exponential function is periodic. (Contributed by Paul Chapman, 21-Apr-2008.) (Proof shortened by Mario Carneiro, 10-May-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘(𝐴 + ((i · (2 · π)) · 𝐾))) = (exp‘𝐴)) | ||
Theorem | sinperlem 25542 | Lemma for sinper 25543 and cosper 25544. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.) |
⊢ (𝐴 ∈ ℂ → (𝐹‘𝐴) = (((exp‘(i · 𝐴))𝑂(exp‘(-i · 𝐴))) / 𝐷)) & ⊢ ((𝐴 + (𝐾 · (2 · π))) ∈ ℂ → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) = (((exp‘(i · (𝐴 + (𝐾 · (2 · π)))))𝑂(exp‘(-i · (𝐴 + (𝐾 · (2 · π)))))) / 𝐷)) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) = (𝐹‘𝐴)) | ||
Theorem | sinper 25543 | The sine function is periodic. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (sin‘(𝐴 + (𝐾 · (2 · π)))) = (sin‘𝐴)) | ||
Theorem | cosper 25544 | The cosine function is periodic. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (cos‘(𝐴 + (𝐾 · (2 · π)))) = (cos‘𝐴)) | ||
Theorem | sin2kpi 25545 | If 𝐾 is an integer, then the sine of 2𝐾π is 0. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.) |
⊢ (𝐾 ∈ ℤ → (sin‘(𝐾 · (2 · π))) = 0) | ||
Theorem | cos2kpi 25546 | If 𝐾 is an integer, then the cosine of 2𝐾π is 1. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.) |
⊢ (𝐾 ∈ ℤ → (cos‘(𝐾 · (2 · π))) = 1) | ||
Theorem | sin2pim 25547 | Sine of a number subtracted from 2 · π. (Contributed by Paul Chapman, 15-Mar-2008.) |
⊢ (𝐴 ∈ ℂ → (sin‘((2 · π) − 𝐴)) = -(sin‘𝐴)) | ||
Theorem | cos2pim 25548 | Cosine of a number subtracted from 2 · π. (Contributed by Paul Chapman, 15-Mar-2008.) |
⊢ (𝐴 ∈ ℂ → (cos‘((2 · π) − 𝐴)) = (cos‘𝐴)) | ||
Theorem | sinmpi 25549 | Sine of a number less π. (Contributed by Paul Chapman, 15-Mar-2008.) |
⊢ (𝐴 ∈ ℂ → (sin‘(𝐴 − π)) = -(sin‘𝐴)) | ||
Theorem | cosmpi 25550 | Cosine of a number less π. (Contributed by Paul Chapman, 15-Mar-2008.) |
⊢ (𝐴 ∈ ℂ → (cos‘(𝐴 − π)) = -(cos‘𝐴)) | ||
Theorem | sinppi 25551 | Sine of a number plus π. (Contributed by NM, 10-Aug-2008.) |
⊢ (𝐴 ∈ ℂ → (sin‘(𝐴 + π)) = -(sin‘𝐴)) | ||
Theorem | cosppi 25552 | Cosine of a number plus π. (Contributed by NM, 18-Aug-2008.) |
⊢ (𝐴 ∈ ℂ → (cos‘(𝐴 + π)) = -(cos‘𝐴)) | ||
Theorem | efimpi 25553 | The exponential function at i times a real number less π. (Contributed by Paul Chapman, 15-Mar-2008.) |
⊢ (𝐴 ∈ ℂ → (exp‘(i · (𝐴 − π))) = -(exp‘(i · 𝐴))) | ||
Theorem | sinhalfpip 25554 | The sine of π / 2 plus a number. (Contributed by Paul Chapman, 24-Jan-2008.) |
⊢ (𝐴 ∈ ℂ → (sin‘((π / 2) + 𝐴)) = (cos‘𝐴)) | ||
Theorem | sinhalfpim 25555 | The sine of π / 2 minus a number. (Contributed by Paul Chapman, 24-Jan-2008.) |
⊢ (𝐴 ∈ ℂ → (sin‘((π / 2) − 𝐴)) = (cos‘𝐴)) | ||
Theorem | coshalfpip 25556 | The cosine of π / 2 plus a number. (Contributed by Paul Chapman, 24-Jan-2008.) |
⊢ (𝐴 ∈ ℂ → (cos‘((π / 2) + 𝐴)) = -(sin‘𝐴)) | ||
Theorem | coshalfpim 25557 | The cosine of π / 2 minus a number. (Contributed by Paul Chapman, 24-Jan-2008.) |
⊢ (𝐴 ∈ ℂ → (cos‘((π / 2) − 𝐴)) = (sin‘𝐴)) | ||
Theorem | ptolemy 25558 | Ptolemy's Theorem. This theorem is named after the Greek astronomer and mathematician Ptolemy (Claudius Ptolemaeus). This particular version is expressed using the sine function. It is proved by expanding all the multiplication of sines to a product of cosines of differences using sinmul 15809, then using algebraic simplification to show that both sides are equal. This formalization is based on the proof in "Trigonometry" by Gelfand and Saul. This is Metamath 100 proof #95. (Contributed by David A. Wheeler, 31-May-2015.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (((sin‘𝐴) · (sin‘𝐵)) + ((sin‘𝐶) · (sin‘𝐷))) = ((sin‘(𝐵 + 𝐶)) · (sin‘(𝐴 + 𝐶)))) | ||
Theorem | sincosq1lem 25559 | Lemma for sincosq1sgn 25560. (Contributed by Paul Chapman, 24-Jan-2008.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < (π / 2)) → 0 < (sin‘𝐴)) | ||
Theorem | sincosq1sgn 25560 | The signs of the sine and cosine functions in the first quadrant. (Contributed by Paul Chapman, 24-Jan-2008.) |
⊢ (𝐴 ∈ (0(,)(π / 2)) → (0 < (sin‘𝐴) ∧ 0 < (cos‘𝐴))) | ||
Theorem | sincosq2sgn 25561 | The signs of the sine and cosine functions in the second quadrant. (Contributed by Paul Chapman, 24-Jan-2008.) |
⊢ (𝐴 ∈ ((π / 2)(,)π) → (0 < (sin‘𝐴) ∧ (cos‘𝐴) < 0)) | ||
Theorem | sincosq3sgn 25562 | The signs of the sine and cosine functions in the third quadrant. (Contributed by Paul Chapman, 24-Jan-2008.) |
⊢ (𝐴 ∈ (π(,)(3 · (π / 2))) → ((sin‘𝐴) < 0 ∧ (cos‘𝐴) < 0)) | ||
Theorem | sincosq4sgn 25563 | The signs of the sine and cosine functions in the fourth quadrant. (Contributed by Paul Chapman, 24-Jan-2008.) |
⊢ (𝐴 ∈ ((3 · (π / 2))(,)(2 · π)) → ((sin‘𝐴) < 0 ∧ 0 < (cos‘𝐴))) | ||
Theorem | coseq00topi 25564 | Location of the zeroes of cosine in (0[,]π). (Contributed by David Moews, 28-Feb-2017.) |
⊢ (𝐴 ∈ (0[,]π) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2))) | ||
Theorem | coseq0negpitopi 25565 | Location of the zeroes of cosine in (-π(,]π). (Contributed by David Moews, 28-Feb-2017.) |
⊢ (𝐴 ∈ (-π(,]π) → ((cos‘𝐴) = 0 ↔ 𝐴 ∈ {(π / 2), -(π / 2)})) | ||
Theorem | tanrpcl 25566 | Positive real closure of the tangent function. (Contributed by Mario Carneiro, 29-Jul-2014.) |
⊢ (𝐴 ∈ (0(,)(π / 2)) → (tan‘𝐴) ∈ ℝ+) | ||
Theorem | tangtx 25567 | The tangent function is greater than its argument on positive reals in its principal domain. (Contributed by Mario Carneiro, 29-Jul-2014.) |
⊢ (𝐴 ∈ (0(,)(π / 2)) → 𝐴 < (tan‘𝐴)) | ||
Theorem | tanabsge 25568 | The tangent function is greater than or equal to its argument in absolute value. (Contributed by Mario Carneiro, 25-Feb-2015.) |
⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (abs‘𝐴) ≤ (abs‘(tan‘𝐴))) | ||
Theorem | sinq12gt0 25569 | The sine of a number strictly between 0 and π is positive. (Contributed by Paul Chapman, 15-Mar-2008.) |
⊢ (𝐴 ∈ (0(,)π) → 0 < (sin‘𝐴)) | ||
Theorem | sinq12ge0 25570 | The sine of a number between 0 and π is nonnegative. (Contributed by Mario Carneiro, 13-May-2014.) |
⊢ (𝐴 ∈ (0[,]π) → 0 ≤ (sin‘𝐴)) | ||
Theorem | sinq34lt0t 25571 | The sine of a number strictly between π and 2 · π is negative. (Contributed by NM, 17-Aug-2008.) |
⊢ (𝐴 ∈ (π(,)(2 · π)) → (sin‘𝐴) < 0) | ||
Theorem | cosq14gt0 25572 | The cosine of a number strictly between -π / 2 and π / 2 is positive. (Contributed by Mario Carneiro, 25-Feb-2015.) |
⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 0 < (cos‘𝐴)) | ||
Theorem | cosq14ge0 25573 | The cosine of a number between -π / 2 and π / 2 is nonnegative. (Contributed by Mario Carneiro, 13-May-2014.) |
⊢ (𝐴 ∈ (-(π / 2)[,](π / 2)) → 0 ≤ (cos‘𝐴)) | ||
Theorem | sincosq1eq 25574 | Complementarity of the sine and cosine functions in the first quadrant. (Contributed by Paul Chapman, 25-Jan-2008.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 + 𝐵) = 1) → (sin‘(𝐴 · (π / 2))) = (cos‘(𝐵 · (π / 2)))) | ||
Theorem | sincos4thpi 25575 | The sine and cosine of π / 4. (Contributed by Paul Chapman, 25-Jan-2008.) |
⊢ ((sin‘(π / 4)) = (1 / (√‘2)) ∧ (cos‘(π / 4)) = (1 / (√‘2))) | ||
Theorem | tan4thpi 25576 | The tangent of π / 4. (Contributed by Mario Carneiro, 5-Apr-2015.) |
⊢ (tan‘(π / 4)) = 1 | ||
Theorem | sincos6thpi 25577 | The sine and cosine of π / 6. (Contributed by Paul Chapman, 25-Jan-2008.) (Revised by Wolf Lammen, 24-Sep-2020.) |
⊢ ((sin‘(π / 6)) = (1 / 2) ∧ (cos‘(π / 6)) = ((√‘3) / 2)) | ||
Theorem | sincos3rdpi 25578 | The sine and cosine of π / 3. (Contributed by Mario Carneiro, 21-May-2016.) |
⊢ ((sin‘(π / 3)) = ((√‘3) / 2) ∧ (cos‘(π / 3)) = (1 / 2)) | ||
Theorem | pigt3 25579 | π is greater than 3. (Contributed by Brendan Leahy, 21-Aug-2020.) |
⊢ 3 < π | ||
Theorem | pige3 25580 | π is greater than or equal to 3. (Contributed by Mario Carneiro, 21-May-2016.) |
⊢ 3 ≤ π | ||
Theorem | pige3ALT 25581 | Alternate proof of pige3 25580. This proof is based on the geometric observation that a hexagon of unit side length has perimeter 6, which is less than the unit-radius circumcircle, of perimeter 2π. We translate this to algebra by looking at the function e↑(i𝑥) as 𝑥 goes from 0 to π / 3; it moves at unit speed and travels distance 1, hence 1 ≤ π / 3. (Contributed by Mario Carneiro, 21-May-2016.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 3 ≤ π | ||
Theorem | abssinper 25582 | The absolute value of sine has period π. (Contributed by NM, 17-Aug-2008.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (abs‘(sin‘(𝐴 + (𝐾 · π)))) = (abs‘(sin‘𝐴))) | ||
Theorem | sinkpi 25583 | The sine of an integer multiple of π is 0. (Contributed by NM, 11-Aug-2008.) |
⊢ (𝐾 ∈ ℤ → (sin‘(𝐾 · π)) = 0) | ||
Theorem | coskpi 25584 | The absolute value of the cosine of an integer multiple of π is 1. (Contributed by NM, 19-Aug-2008.) |
⊢ (𝐾 ∈ ℤ → (abs‘(cos‘(𝐾 · π))) = 1) | ||
Theorem | sineq0 25585 | A complex number whose sine is zero is an integer multiple of π. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 10-May-2014.) |
⊢ (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 ↔ (𝐴 / π) ∈ ℤ)) | ||
Theorem | coseq1 25586 | A complex number whose cosine is one is an integer multiple of 2π. (Contributed by Mario Carneiro, 12-May-2014.) |
⊢ (𝐴 ∈ ℂ → ((cos‘𝐴) = 1 ↔ (𝐴 / (2 · π)) ∈ ℤ)) | ||
Theorem | cos02pilt1 25587 | Cosine is less than one between zero and 2 · π. (Contributed by Jim Kingdon, 23-Mar-2024.) |
⊢ (𝐴 ∈ (0(,)(2 · π)) → (cos‘𝐴) < 1) | ||
Theorem | cosq34lt1 25588 | Cosine is less than one in the third and fourth quadrants. (Contributed by Jim Kingdon, 23-Mar-2024.) |
⊢ (𝐴 ∈ (π[,)(2 · π)) → (cos‘𝐴) < 1) | ||
Theorem | efeq1 25589 | A complex number whose exponential is one is an integer multiple of 2πi. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 10-May-2014.) |
⊢ (𝐴 ∈ ℂ → ((exp‘𝐴) = 1 ↔ (𝐴 / (i · (2 · π))) ∈ ℤ)) | ||
Theorem | cosne0 25590 | The cosine function has no zeroes within the vertical strip of the complex plane between real part -π / 2 and π / 2. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝐴) ≠ 0) | ||
Theorem | cosordlem 25591 | Lemma for cosord 25592. (Contributed by Mario Carneiro, 10-May-2014.) |
⊢ (𝜑 → 𝐴 ∈ (0[,]π)) & ⊢ (𝜑 → 𝐵 ∈ (0[,]π)) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → (cos‘𝐵) < (cos‘𝐴)) | ||
Theorem | cosord 25592 | Cosine is decreasing over the closed interval from 0 to π. (Contributed by Paul Chapman, 16-Mar-2008.) (Proof shortened by Mario Carneiro, 10-May-2014.) |
⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐴 < 𝐵 ↔ (cos‘𝐵) < (cos‘𝐴))) | ||
Theorem | cos0pilt1 25593 | Cosine is between minus one and one on the open interval between zero and π. (Contributed by Jim Kingdon, 7-May-2024.) |
⊢ (𝐴 ∈ (0(,)π) → (cos‘𝐴) ∈ (-1(,)1)) | ||
Theorem | cos11 25594 | Cosine is one-to-one over the closed interval from 0 to π. (Contributed by Paul Chapman, 16-Mar-2008.) (Proof shortened by Mario Carneiro, 10-May-2014.) |
⊢ ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐴 = 𝐵 ↔ (cos‘𝐴) = (cos‘𝐵))) | ||
Theorem | sinord 25595 | Sine is increasing over the closed interval from -(π / 2) to (π / 2). (Contributed by Mario Carneiro, 29-Jul-2014.) |
⊢ ((𝐴 ∈ (-(π / 2)[,](π / 2)) ∧ 𝐵 ∈ (-(π / 2)[,](π / 2))) → (𝐴 < 𝐵 ↔ (sin‘𝐴) < (sin‘𝐵))) | ||
Theorem | recosf1o 25596 | The cosine function is a bijection when restricted to its principal domain. (Contributed by Mario Carneiro, 12-May-2014.) |
⊢ (cos ↾ (0[,]π)):(0[,]π)–1-1-onto→(-1[,]1) | ||
Theorem | resinf1o 25597 | The sine function is a bijection when restricted to its principal domain. (Contributed by Mario Carneiro, 12-May-2014.) |
⊢ (sin ↾ (-(π / 2)[,](π / 2))):(-(π / 2)[,](π / 2))–1-1-onto→(-1[,]1) | ||
Theorem | tanord1 25598 | The tangent function is strictly increasing on the nonnegative part of its principal domain. (Lemma for tanord 25599.) (Contributed by Mario Carneiro, 29-Jul-2014.) Revised to replace an OLD theorem. (Revised by Wolf Lammen, 20-Sep-2020.) |
⊢ ((𝐴 ∈ (0[,)(π / 2)) ∧ 𝐵 ∈ (0[,)(π / 2))) → (𝐴 < 𝐵 ↔ (tan‘𝐴) < (tan‘𝐵))) | ||
Theorem | tanord 25599 | The tangent function is strictly increasing on its principal domain. (Contributed by Mario Carneiro, 4-Apr-2015.) |
⊢ ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐵 ∈ (-(π / 2)(,)(π / 2))) → (𝐴 < 𝐵 ↔ (tan‘𝐴) < (tan‘𝐵))) | ||
Theorem | tanregt0 25600 | The real part of the tangent of a complex number with real part in the open interval (0(,)(π / 2)) is positive. (Contributed by Mario Carneiro, 5-Apr-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < (ℜ‘(tan‘𝐴))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |