| Metamath
Proof Explorer Theorem List (p. 256 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | dyadovol 25501* | Volume of a dyadic rational interval. (Contributed by Mario Carneiro, 26-Mar-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (vol*‘([,]‘(𝐴𝐹𝐵))) = (1 / (2↑𝐵))) | ||
| Theorem | dyadss 25502* | Two closed dyadic rational intervals are either in a subset relationship or are almost disjoint (the interiors are disjoint). (Contributed by Mario Carneiro, 26-Mar-2015.) (Proof shortened by Mario Carneiro, 26-Apr-2016.) |
| ⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ⇒ ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0)) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) → 𝐷 ≤ 𝐶)) | ||
| Theorem | dyaddisjlem 25503* | Lemma for dyaddisj 25504. (Contributed by Mario Carneiro, 26-Mar-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ⇒ ⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0)) ∧ 𝐶 ≤ 𝐷) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) ∨ ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)) ∨ (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅)) | ||
| Theorem | dyaddisj 25504* | Two closed dyadic rational intervals are either in a subset relationship or are almost disjoint (the interiors are disjoint). (Contributed by Mario Carneiro, 26-Mar-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ⇒ ⊢ ((𝐴 ∈ ran 𝐹 ∧ 𝐵 ∈ ran 𝐹) → (([,]‘𝐴) ⊆ ([,]‘𝐵) ∨ ([,]‘𝐵) ⊆ ([,]‘𝐴) ∨ (((,)‘𝐴) ∩ ((,)‘𝐵)) = ∅)) | ||
| Theorem | dyadmaxlem 25505* | Lemma for dyadmax 25506. (Contributed by Mario Carneiro, 26-Mar-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐶 ∈ ℕ0) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) & ⊢ (𝜑 → ¬ 𝐷 < 𝐶) & ⊢ (𝜑 → ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) ⇒ ⊢ (𝜑 → (𝐴 = 𝐵 ∧ 𝐶 = 𝐷)) | ||
| Theorem | dyadmax 25506* | Any nonempty set of dyadic rational intervals has a maximal element. (Contributed by Mario Carneiro, 26-Mar-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ⇒ ⊢ ((𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅) → ∃𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)) | ||
| Theorem | dyadmbllem 25507* | Lemma for dyadmbl 25508. (Contributed by Mario Carneiro, 26-Mar-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) & ⊢ 𝐺 = {𝑧 ∈ 𝐴 ∣ ∀𝑤 ∈ 𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)} & ⊢ (𝜑 → 𝐴 ⊆ ran 𝐹) ⇒ ⊢ (𝜑 → ∪ ([,] “ 𝐴) = ∪ ([,] “ 𝐺)) | ||
| Theorem | dyadmbl 25508* | Any union of dyadic rational intervals is measurable. (Contributed by Mario Carneiro, 26-Mar-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) & ⊢ 𝐺 = {𝑧 ∈ 𝐴 ∣ ∀𝑤 ∈ 𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)} & ⊢ (𝜑 → 𝐴 ⊆ ran 𝐹) ⇒ ⊢ (𝜑 → ∪ ([,] “ 𝐴) ∈ dom vol) | ||
| Theorem | opnmbllem 25509* | Lemma for opnmbl 25510. (Contributed by Mario Carneiro, 26-Mar-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ⇒ ⊢ (𝐴 ∈ (topGen‘ran (,)) → 𝐴 ∈ dom vol) | ||
| Theorem | opnmbl 25510 | All open sets are measurable. This proof, via dyadmbl 25508 and uniioombl 25497, shows that it is possible to avoid choice for measurability of open sets and hence continuous functions, which extends the choice-free consequences of Lebesgue measure considerably farther than would otherwise be possible. (Contributed by Mario Carneiro, 26-Mar-2015.) |
| ⊢ (𝐴 ∈ (topGen‘ran (,)) → 𝐴 ∈ dom vol) | ||
| Theorem | opnmblALT 25511 | All open sets are measurable. This alternative proof of opnmbl 25510 is significantly shorter, at the expense of invoking countable choice ax-cc 10395. (This was also the original proof before the current opnmbl 25510 was discovered.) (Contributed by Mario Carneiro, 17-Jun-2014.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ (𝐴 ∈ (topGen‘ran (,)) → 𝐴 ∈ dom vol) | ||
| Theorem | subopnmbl 25512 | Sets which are open in a measurable subspace are measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
| ⊢ 𝐽 = ((topGen‘ran (,)) ↾t 𝐴) ⇒ ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ 𝐽) → 𝐵 ∈ dom vol) | ||
| Theorem | volsup2 25513* | The volume of 𝐴 is the supremum of the sequence vol*‘(𝐴 ∩ (-𝑛[,]𝑛)) of volumes of bounded sets. (Contributed by Mario Carneiro, 30-Aug-2014.) |
| ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ∃𝑛 ∈ ℕ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛)))) | ||
| Theorem | volcn 25514* | The function formed by restricting a measurable set to a closed interval with a varying endpoint produces an increasing continuous function on the reals. (Contributed by Mario Carneiro, 30-Aug-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (vol‘(𝐴 ∩ (𝐵[,]𝑥)))) ⇒ ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) → 𝐹 ∈ (ℝ–cn→ℝ)) | ||
| Theorem | volivth 25515* | The Intermediate Value Theorem for the Lebesgue volume function. For any positive 𝐵 ≤ (vol‘𝐴), there is a measurable subset of 𝐴 whose volume is 𝐵. (Contributed by Mario Carneiro, 30-Aug-2014.) |
| ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → ∃𝑥 ∈ dom vol(𝑥 ⊆ 𝐴 ∧ (vol‘𝑥) = 𝐵)) | ||
| Theorem | vitalilem1 25516* | Lemma for vitali 25521. (Contributed by Mario Carneiro, 16-Jun-2014.) (Proof shortened by AV, 1-May-2021.) |
| ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥 − 𝑦) ∈ ℚ)} ⇒ ⊢ ∼ Er (0[,]1) | ||
| Theorem | vitalilem2 25517* | Lemma for vitali 25521. (Contributed by Mario Carneiro, 16-Jun-2014.) |
| ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥 − 𝑦) ∈ ℚ)} & ⊢ 𝑆 = ((0[,]1) / ∼ ) & ⊢ (𝜑 → 𝐹 Fn 𝑆) & ⊢ (𝜑 → ∀𝑧 ∈ 𝑆 (𝑧 ≠ ∅ → (𝐹‘𝑧) ∈ 𝑧)) & ⊢ (𝜑 → 𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1))) & ⊢ 𝑇 = (𝑛 ∈ ℕ ↦ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑛)) ∈ ran 𝐹}) & ⊢ (𝜑 → ¬ ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol)) ⇒ ⊢ (𝜑 → (ran 𝐹 ⊆ (0[,]1) ∧ (0[,]1) ⊆ ∪ 𝑚 ∈ ℕ (𝑇‘𝑚) ∧ ∪ 𝑚 ∈ ℕ (𝑇‘𝑚) ⊆ (-1[,]2))) | ||
| Theorem | vitalilem3 25518* | Lemma for vitali 25521. (Contributed by Mario Carneiro, 16-Jun-2014.) |
| ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥 − 𝑦) ∈ ℚ)} & ⊢ 𝑆 = ((0[,]1) / ∼ ) & ⊢ (𝜑 → 𝐹 Fn 𝑆) & ⊢ (𝜑 → ∀𝑧 ∈ 𝑆 (𝑧 ≠ ∅ → (𝐹‘𝑧) ∈ 𝑧)) & ⊢ (𝜑 → 𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1))) & ⊢ 𝑇 = (𝑛 ∈ ℕ ↦ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑛)) ∈ ran 𝐹}) & ⊢ (𝜑 → ¬ ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol)) ⇒ ⊢ (𝜑 → Disj 𝑚 ∈ ℕ (𝑇‘𝑚)) | ||
| Theorem | vitalilem4 25519* | Lemma for vitali 25521. (Contributed by Mario Carneiro, 16-Jun-2014.) |
| ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥 − 𝑦) ∈ ℚ)} & ⊢ 𝑆 = ((0[,]1) / ∼ ) & ⊢ (𝜑 → 𝐹 Fn 𝑆) & ⊢ (𝜑 → ∀𝑧 ∈ 𝑆 (𝑧 ≠ ∅ → (𝐹‘𝑧) ∈ 𝑧)) & ⊢ (𝜑 → 𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1))) & ⊢ 𝑇 = (𝑛 ∈ ℕ ↦ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑛)) ∈ ran 𝐹}) & ⊢ (𝜑 → ¬ ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol)) ⇒ ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (vol*‘(𝑇‘𝑚)) = 0) | ||
| Theorem | vitalilem5 25520* | Lemma for vitali 25521. (Contributed by Mario Carneiro, 16-Jun-2014.) |
| ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥 − 𝑦) ∈ ℚ)} & ⊢ 𝑆 = ((0[,]1) / ∼ ) & ⊢ (𝜑 → 𝐹 Fn 𝑆) & ⊢ (𝜑 → ∀𝑧 ∈ 𝑆 (𝑧 ≠ ∅ → (𝐹‘𝑧) ∈ 𝑧)) & ⊢ (𝜑 → 𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1))) & ⊢ 𝑇 = (𝑛 ∈ ℕ ↦ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑛)) ∈ ran 𝐹}) & ⊢ (𝜑 → ¬ ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol)) ⇒ ⊢ ¬ 𝜑 | ||
| Theorem | vitali 25521 | If the reals can be well-ordered, then there are non-measurable sets. The proof uses "Vitali sets", named for Giuseppe Vitali (1905). (Contributed by Mario Carneiro, 16-Jun-2014.) |
| ⊢ ( < We ℝ → dom vol ⊊ 𝒫 ℝ) | ||
| Syntax | cmbf 25522 | Extend class notation with the class of measurable functions. |
| class MblFn | ||
| Syntax | citg1 25523 | Extend class notation with the Lebesgue integral for simple functions. |
| class ∫1 | ||
| Syntax | citg2 25524 | Extend class notation with the Lebesgue integral for nonnegative functions. |
| class ∫2 | ||
| Syntax | cibl 25525 | Extend class notation with the class of integrable functions. |
| class 𝐿1 | ||
| Syntax | citg 25526 | Extend class notation with the general Lebesgue integral. |
| class ∫𝐴𝐵 d𝑥 | ||
| Definition | df-mbf 25527* | Define the class of measurable functions on the reals. A real function is measurable if the preimage of every open interval is a measurable set (see ismbl 25434) and a complex function is measurable if the real and imaginary parts of the function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
| ⊢ MblFn = {𝑓 ∈ (ℂ ↑pm ℝ) ∣ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol)} | ||
| Definition | df-itg1 25528* | Define the Lebesgue integral for simple functions. A simple function is a finite linear combination of indicator functions for finitely measurable sets, whose assigned value is the sum of the measures of the sets times their respective weights. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| ⊢ ∫1 = (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(◡𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(◡𝑓 “ {𝑥})))) | ||
| Definition | df-itg2 25529* | Define the Lebesgue integral for nonnegative functions. A nonnegative function's integral is the supremum of the integrals of all simple functions that are less than the input function. Note that this may be +∞ for functions that take the value +∞ on a set of positive measure or functions that are bounded below by a positive number on a set of infinite measure. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ ∫2 = (𝑓 ∈ ((0[,]+∞) ↑m ℝ) ↦ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < )) | ||
| Definition | df-ibl 25530* | Define the class of integrable functions on the reals. A function is integrable if it is measurable and the integrals of the pieces of the function are all finite. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ 𝐿1 = {𝑓 ∈ MblFn ∣ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘((𝑓‘𝑥) / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) ∈ ℝ} | ||
| Definition | df-itg 25531* | Define the full Lebesgue integral, for complex-valued functions to ℝ. The syntax is designed to be suggestive of the standard notation for integrals. For example, our notation for the integral of 𝑥↑2 from 0 to 1 is ∫(0[,]1)(𝑥↑2) d𝑥 = (1 / 3). The only real function of this definition is to break the integral up into nonnegative real parts and send it off to df-itg2 25529 for further processing. Note that this definition cannot handle integrals which evaluate to infinity, because addition and multiplication are not currently defined on extended reals. (You can use df-itg2 25529 directly for this use-case.) (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ ∫𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) | ||
| Theorem | ismbf1 25532* | The predicate "𝐹 is a measurable function". This is more naturally stated for functions on the reals, see ismbf 25536 and ismbfcn 25537 for the decomposition of the real and imaginary parts. (Contributed by Mario Carneiro, 17-Jun-2014.) |
| ⊢ (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))) | ||
| Theorem | mbff 25533 | A measurable function is a function into the complex numbers. (Contributed by Mario Carneiro, 17-Jun-2014.) |
| ⊢ (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ) | ||
| Theorem | mbfdm 25534 | The domain of a measurable function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
| ⊢ (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol) | ||
| Theorem | mbfconstlem 25535 | Lemma for mbfconst 25541 and related theorems. (Contributed by Mario Carneiro, 17-Jun-2014.) |
| ⊢ ((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) → (◡(𝐴 × {𝐶}) “ 𝐵) ∈ dom vol) | ||
| Theorem | ismbf 25536* | The predicate "𝐹 is a measurable function". A function is measurable iff the preimages of all open intervals are measurable sets in the sense of ismbl 25434. (Contributed by Mario Carneiro, 17-Jun-2014.) |
| ⊢ (𝐹:𝐴⟶ℝ → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol)) | ||
| Theorem | ismbfcn 25537 | A complex function is measurable iff the real and imaginary components of the function are measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
| ⊢ (𝐹:𝐴⟶ℂ → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn))) | ||
| Theorem | mbfima 25538 | Definitional property of a measurable function: the preimage of an open right-unbounded interval is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
| ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (◡𝐹 “ (𝐵(,)𝐶)) ∈ dom vol) | ||
| Theorem | mbfimaicc 25539 | The preimage of any closed interval under a measurable function is measurable. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (◡𝐹 “ (𝐵[,]𝐶)) ∈ dom vol) | ||
| Theorem | mbfimasn 25540 | The preimage of a point under a measurable function is measurable. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ ∧ 𝐵 ∈ ℝ) → (◡𝐹 “ {𝐵}) ∈ dom vol) | ||
| Theorem | mbfconst 25541 | A constant function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
| ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}) ∈ MblFn) | ||
| Theorem | mbf0 25542 | The empty function is measurable. (Contributed by Brendan Leahy, 28-Mar-2018.) |
| ⊢ ∅ ∈ MblFn | ||
| Theorem | mbfid 25543 | The identity function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
| ⊢ (𝐴 ∈ dom vol → ( I ↾ 𝐴) ∈ MblFn) | ||
| Theorem | mbfmptcl 25544* | Lemma for the MblFn predicate applied to a mapping operation. (Contributed by Mario Carneiro, 11-Aug-2014.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) | ||
| Theorem | mbfdm2 25545* | The domain of a measurable function is measurable. (Contributed by Mario Carneiro, 31-Aug-2014.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐴 ∈ dom vol) | ||
| Theorem | ismbfcn2 25546* | A complex function is measurable iff the real and imaginary components of the function are measurable. (Contributed by Mario Carneiro, 13-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ↔ ((𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn))) | ||
| Theorem | ismbfd 25547* | Deduction to prove measurability of a real function. The third hypothesis is not necessary, but the proof of this requires countable choice, so we derive this separately as ismbf3d 25562. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ*) → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ*) → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) ⇒ ⊢ (𝜑 → 𝐹 ∈ MblFn) | ||
| Theorem | ismbf2d 25548* | Deduction to prove measurability of a real function. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → 𝐴 ∈ dom vol) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) ⇒ ⊢ (𝜑 → 𝐹 ∈ MblFn) | ||
| Theorem | mbfeqalem1 25549* | Lemma for mbfeqalem2 25550. (Contributed by Mario Carneiro, 2-Sep-2014.) (Revised by AV, 19-Aug-2022.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐴) = 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 𝐷) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐷 ∈ ℝ) ⇒ ⊢ (𝜑 → ((◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∖ (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦)) ∈ dom vol) | ||
| Theorem | mbfeqalem2 25550* | Lemma for mbfeqa 25551. (Contributed by Mario Carneiro, 2-Sep-2014.) (Proof shortened by AV, 19-Aug-2022.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐴) = 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 𝐷) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐷 ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ∈ MblFn ↔ (𝑥 ∈ 𝐵 ↦ 𝐷) ∈ MblFn)) | ||
| Theorem | mbfeqa 25551* | If two functions are equal almost everywhere, then one is measurable iff the other is. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by Mario Carneiro, 2-Sep-2014.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐴) = 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 𝐷) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐷 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ∈ MblFn ↔ (𝑥 ∈ 𝐵 ↦ 𝐷) ∈ MblFn)) | ||
| Theorem | mbfres 25552 | The restriction of a measurable function is measurable. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| ⊢ ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (𝐹 ↾ 𝐴) ∈ MblFn) | ||
| Theorem | mbfres2 25553 | Measurability of a piecewise function: if 𝐹 is measurable on subsets 𝐵 and 𝐶 of its domain, and these pieces make up all of 𝐴, then 𝐹 is measurable on the whole domain. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → (𝐹 ↾ 𝐵) ∈ MblFn) & ⊢ (𝜑 → (𝐹 ↾ 𝐶) ∈ MblFn) & ⊢ (𝜑 → (𝐵 ∪ 𝐶) = 𝐴) ⇒ ⊢ (𝜑 → 𝐹 ∈ MblFn) | ||
| Theorem | mbfss 25554* | Change the domain of a measurability predicate. (Contributed by Mario Carneiro, 17-Aug-2014.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐵 ∈ dom vol) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 0) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ MblFn) | ||
| Theorem | mbfmulc2lem 25555 | Multiplication by a constant preserves measurability. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) ⇒ ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘f · 𝐹) ∈ MblFn) | ||
| Theorem | mbfmulc2re 25556 | Multiplication by a constant preserves measurability. (Contributed by Mario Carneiro, 15-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) ⇒ ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘f · 𝐹) ∈ MblFn) | ||
| Theorem | mbfmax 25557* | The maximum of two functions is measurable. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐺:𝐴⟶ℝ) & ⊢ (𝜑 → 𝐺 ∈ MblFn) & ⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ if((𝐹‘𝑥) ≤ (𝐺‘𝑥), (𝐺‘𝑥), (𝐹‘𝑥))) ⇒ ⊢ (𝜑 → 𝐻 ∈ MblFn) | ||
| Theorem | mbfneg 25558* | The negative of a measurable function is measurable. (Contributed by Mario Carneiro, 31-Jul-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ -𝐵) ∈ MblFn) | ||
| Theorem | mbfpos 25559* | The positive part of a measurable function is measurable. (Contributed by Mario Carneiro, 31-Jul-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn) | ||
| Theorem | mbfposr 25560* | Converse to mbfpos 25559. (Contributed by Mario Carneiro, 11-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) | ||
| Theorem | mbfposb 25561* | A function is measurable iff its positive and negative parts are measurable. (Contributed by Mario Carneiro, 11-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ↔ ((𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn))) | ||
| Theorem | ismbf3d 25562* | Simplified form of ismbfd 25547. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol) ⇒ ⊢ (𝜑 → 𝐹 ∈ MblFn) | ||
| Theorem | mbfimaopnlem 25563* | Lemma for mbfimaopn 25564. (Contributed by Mario Carneiro, 25-Aug-2014.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝐺 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) & ⊢ 𝐵 = ((,) “ (ℚ × ℚ)) & ⊢ 𝐾 = ran (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 × 𝑦)) ⇒ ⊢ ((𝐹 ∈ MblFn ∧ 𝐴 ∈ 𝐽) → (◡𝐹 “ 𝐴) ∈ dom vol) | ||
| Theorem | mbfimaopn 25564 | The preimage of any open set (in the complex topology) under a measurable function is measurable. (See also cncombf 25566, which explains why 𝐴 ∈ dom vol is too weak a condition for this theorem.) (Contributed by Mario Carneiro, 25-Aug-2014.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ ((𝐹 ∈ MblFn ∧ 𝐴 ∈ 𝐽) → (◡𝐹 “ 𝐴) ∈ dom vol) | ||
| Theorem | mbfimaopn2 25565 | The preimage of any set open in the subspace topology of the range of the function is measurable. (Contributed by Mario Carneiro, 25-Aug-2014.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝐾 = (𝐽 ↾t 𝐵) ⇒ ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ 𝐶 ∈ 𝐾) → (◡𝐹 “ 𝐶) ∈ dom vol) | ||
| Theorem | cncombf 25566 | The composition of a continuous function with a measurable function is measurable. (More generally, 𝐺 can be a Borel-measurable function, but notably the condition that 𝐺 be only measurable is too weak, the usual counterexample taking 𝐺 to be the Cantor function and 𝐹 the indicator function of the 𝐺-image of a nonmeasurable set, which is a subset of the Cantor set and hence null and measurable.) (Contributed by Mario Carneiro, 25-Aug-2014.) |
| ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺 ∈ (𝐵–cn→ℂ)) → (𝐺 ∘ 𝐹) ∈ MblFn) | ||
| Theorem | cnmbf 25567 | A continuous function is measurable. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Mario Carneiro, 26-Mar-2015.) |
| ⊢ ((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴–cn→ℂ)) → 𝐹 ∈ MblFn) | ||
| Theorem | mbfaddlem 25568 | The sum of two measurable functions is measurable. (Contributed by Mario Carneiro, 15-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐺 ∈ MblFn) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → 𝐺:𝐴⟶ℝ) ⇒ ⊢ (𝜑 → (𝐹 ∘f + 𝐺) ∈ MblFn) | ||
| Theorem | mbfadd 25569 | The sum of two measurable functions is measurable. (Contributed by Mario Carneiro, 15-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐺 ∈ MblFn) ⇒ ⊢ (𝜑 → (𝐹 ∘f + 𝐺) ∈ MblFn) | ||
| Theorem | mbfsub 25570 | The difference of two measurable functions is measurable. (Contributed by Mario Carneiro, 5-Sep-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ MblFn) & ⊢ (𝜑 → 𝐺 ∈ MblFn) ⇒ ⊢ (𝜑 → (𝐹 ∘f − 𝐺) ∈ MblFn) | ||
| Theorem | mbfmulc2 25571* | A complex constant times a measurable function is measurable. (Contributed by Mario Carneiro, 17-Aug-2014.) |
| ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn) | ||
| Theorem | mbfsup 25572* | The supremum of a sequence of measurable, real-valued functions is measurable. Note that in this and related theorems, 𝐵(𝑛, 𝑥) is a function of both 𝑛 and 𝑥, since it is an 𝑛-indexed sequence of functions on 𝑥. (Contributed by Mario Carneiro, 14-Aug-2014.) (Revised by Mario Carneiro, 7-Sep-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ 𝐵), ℝ, < )) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) & ⊢ ((𝜑 ∧ (𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴)) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝐵 ≤ 𝑦) ⇒ ⊢ (𝜑 → 𝐺 ∈ MblFn) | ||
| Theorem | mbfinf 25573* | The infimum of a sequence of measurable, real-valued functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 13-Sep-2020.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ inf(ran (𝑛 ∈ 𝑍 ↦ 𝐵), ℝ, < )) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) & ⊢ ((𝜑 ∧ (𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴)) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ 𝐵) ⇒ ⊢ (𝜑 → 𝐺 ∈ MblFn) | ||
| Theorem | mbflimsup 25574* | The limit supremum of a sequence of measurable real-valued functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵))) & ⊢ 𝐻 = (𝑚 ∈ ℝ ↦ sup((((𝑛 ∈ 𝑍 ↦ 𝐵) “ (𝑚[,)+∞)) ∩ ℝ*), ℝ*, < )) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) & ⊢ ((𝜑 ∧ (𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴)) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐺 ∈ MblFn) | ||
| Theorem | mbflimlem 25575* | The pointwise limit of a sequence of measurable real-valued functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ 𝐵) ⇝ 𝐶) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) & ⊢ ((𝜑 ∧ (𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴)) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) | ||
| Theorem | mbflim 25576* | The pointwise limit of a sequence of measurable functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ 𝐵) ⇝ 𝐶) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) & ⊢ ((𝜑 ∧ (𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴)) → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) | ||
| Syntax | c0p 25577 | Extend class notation to include the zero polynomial. |
| class 0𝑝 | ||
| Definition | df-0p 25578 | Define the zero polynomial. (Contributed by Mario Carneiro, 19-Jun-2014.) |
| ⊢ 0𝑝 = (ℂ × {0}) | ||
| Theorem | 0pval 25579 | The zero function evaluates to zero at every point. (Contributed by Mario Carneiro, 23-Jul-2014.) |
| ⊢ (𝐴 ∈ ℂ → (0𝑝‘𝐴) = 0) | ||
| Theorem | 0plef 25580 | Two ways to say that the function 𝐹 on the reals is nonnegative. (Contributed by Mario Carneiro, 17-Aug-2014.) |
| ⊢ (𝐹:ℝ⟶(0[,)+∞) ↔ (𝐹:ℝ⟶ℝ ∧ 0𝑝 ∘r ≤ 𝐹)) | ||
| Theorem | 0pledm 25581 | Adjust the domain of the left argument to match the right, which works better in our theorems. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐹 Fn 𝐴) ⇒ ⊢ (𝜑 → (0𝑝 ∘r ≤ 𝐹 ↔ (𝐴 × {0}) ∘r ≤ 𝐹)) | ||
| Theorem | isi1f 25582 | The predicate "𝐹 is a simple function". A simple function is a finite nonnegative linear combination of indicator functions for finitely measurable sets. We use the idiom 𝐹 ∈ dom ∫1 to represent this concept because ∫1 is the first preparation function for our final definition ∫ (see df-itg 25531); unlike that operator, which can integrate any function, this operator can only integrate simple functions. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| ⊢ (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))) | ||
| Theorem | i1fmbf 25583 | Simple functions are measurable. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| ⊢ (𝐹 ∈ dom ∫1 → 𝐹 ∈ MblFn) | ||
| Theorem | i1ff 25584 | A simple function is a function on the reals. (Contributed by Mario Carneiro, 26-Jun-2014.) |
| ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) | ||
| Theorem | i1frn 25585 | A simple function has finite range. (Contributed by Mario Carneiro, 26-Jun-2014.) |
| ⊢ (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin) | ||
| Theorem | i1fima 25586 | Any preimage of a simple function is measurable. (Contributed by Mario Carneiro, 26-Jun-2014.) |
| ⊢ (𝐹 ∈ dom ∫1 → (◡𝐹 “ 𝐴) ∈ dom vol) | ||
| Theorem | i1fima2 25587 | Any preimage of a simple function not containing zero has finite measure. (Contributed by Mario Carneiro, 26-Jun-2014.) |
| ⊢ ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ 𝐴) → (vol‘(◡𝐹 “ 𝐴)) ∈ ℝ) | ||
| Theorem | i1fima2sn 25588 | Preimage of a singleton. (Contributed by Mario Carneiro, 26-Jun-2014.) |
| ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ (𝐵 ∖ {0})) → (vol‘(◡𝐹 “ {𝐴})) ∈ ℝ) | ||
| Theorem | i1fd 25589* | A simplified set of assumptions to show that a given function is simple. (Contributed by Mario Carneiro, 26-Jun-2014.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → ran 𝐹 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → (◡𝐹 “ {𝑥}) ∈ dom vol) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → (vol‘(◡𝐹 “ {𝑥})) ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐹 ∈ dom ∫1) | ||
| Theorem | i1f0rn 25590 | Any simple function takes the value zero on a set of unbounded measure, so in particular this set is not empty. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| ⊢ (𝐹 ∈ dom ∫1 → 0 ∈ ran 𝐹) | ||
| Theorem | itg1val 25591* | The value of the integral on simple functions. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| ⊢ (𝐹 ∈ dom ∫1 → (∫1‘𝐹) = Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(◡𝐹 “ {𝑥})))) | ||
| Theorem | itg1val2 25592* | The value of the integral on simple functions. (Contributed by Mario Carneiro, 26-Jun-2014.) |
| ⊢ ((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴 ∧ 𝐴 ⊆ (ℝ ∖ {0}))) → (∫1‘𝐹) = Σ𝑥 ∈ 𝐴 (𝑥 · (vol‘(◡𝐹 “ {𝑥})))) | ||
| Theorem | itg1cl 25593 | Closure of the integral on simple functions. (Contributed by Mario Carneiro, 26-Jun-2014.) |
| ⊢ (𝐹 ∈ dom ∫1 → (∫1‘𝐹) ∈ ℝ) | ||
| Theorem | itg1ge0 25594 | Closure of the integral on positive simple functions. (Contributed by Mario Carneiro, 19-Jun-2014.) |
| ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹) → 0 ≤ (∫1‘𝐹)) | ||
| Theorem | i1f0 25595 | The zero function is simple. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| ⊢ (ℝ × {0}) ∈ dom ∫1 | ||
| Theorem | itg10 25596 | The zero function has zero integral. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| ⊢ (∫1‘(ℝ × {0})) = 0 | ||
| Theorem | i1f1lem 25597* | Lemma for i1f1 25598 and itg11 25599. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 1, 0)) ⇒ ⊢ (𝐹:ℝ⟶{0, 1} ∧ (𝐴 ∈ dom vol → (◡𝐹 “ {1}) = 𝐴)) | ||
| Theorem | i1f1 25598* | Base case simple functions are indicator functions of measurable sets. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 1, 0)) ⇒ ⊢ ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → 𝐹 ∈ dom ∫1) | ||
| Theorem | itg11 25599* | The integral of an indicator function is the volume of the set. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 1, 0)) ⇒ ⊢ ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (∫1‘𝐹) = (vol‘𝐴)) | ||
| Theorem | itg1addlem1 25600* | Decompose a preimage, which is always a disjoint union. (Contributed by Mario Carneiro, 25-Jun-2014.) (Proof shortened by Mario Carneiro, 11-Dec-2016.) |
| ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ (◡𝐹 “ {𝑘})) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ dom vol) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (vol‘𝐵) ∈ ℝ) ⇒ ⊢ (𝜑 → (vol‘∪ 𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (vol‘𝐵)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |