![]() |
Metamath
Proof Explorer Theorem List (p. 256 of 484) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30767) |
![]() (30768-32290) |
![]() (32291-48346) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ioombl1lem2 25501* | Lemma for ioombl1 25504. (Contributed by Mario Carneiro, 18-Aug-2014.) |
β’ π΅ = (π΄(,)+β) & β’ (π β π΄ β β) & β’ (π β πΈ β β) & β’ (π β (vol*βπΈ) β β) & β’ (π β πΆ β β+) & β’ π = seq1( + , ((abs β β ) β πΉ)) & β’ π = seq1( + , ((abs β β ) β πΊ)) & β’ π = seq1( + , ((abs β β ) β π»)) & β’ (π β πΉ:ββΆ( β€ β© (β Γ β))) & β’ (π β πΈ β βͺ ran ((,) β πΉ)) & β’ (π β sup(ran π, β*, < ) β€ ((vol*βπΈ) + πΆ)) & β’ π = (1st β(πΉβπ)) & β’ π = (2nd β(πΉβπ)) & β’ πΊ = (π β β β¦ β¨if(if(π β€ π΄, π΄, π) β€ π, if(π β€ π΄, π΄, π), π), πβ©) & β’ π» = (π β β β¦ β¨π, if(if(π β€ π΄, π΄, π) β€ π, if(π β€ π΄, π΄, π), π)β©) β β’ (π β sup(ran π, β*, < ) β β) | ||
Theorem | ioombl1lem3 25502* | Lemma for ioombl1 25504. (Contributed by Mario Carneiro, 18-Aug-2014.) |
β’ π΅ = (π΄(,)+β) & β’ (π β π΄ β β) & β’ (π β πΈ β β) & β’ (π β (vol*βπΈ) β β) & β’ (π β πΆ β β+) & β’ π = seq1( + , ((abs β β ) β πΉ)) & β’ π = seq1( + , ((abs β β ) β πΊ)) & β’ π = seq1( + , ((abs β β ) β π»)) & β’ (π β πΉ:ββΆ( β€ β© (β Γ β))) & β’ (π β πΈ β βͺ ran ((,) β πΉ)) & β’ (π β sup(ran π, β*, < ) β€ ((vol*βπΈ) + πΆ)) & β’ π = (1st β(πΉβπ)) & β’ π = (2nd β(πΉβπ)) & β’ πΊ = (π β β β¦ β¨if(if(π β€ π΄, π΄, π) β€ π, if(π β€ π΄, π΄, π), π), πβ©) & β’ π» = (π β β β¦ β¨π, if(if(π β€ π΄, π΄, π) β€ π, if(π β€ π΄, π΄, π), π)β©) β β’ ((π β§ π β β) β ((((abs β β ) β πΊ)βπ) + (((abs β β ) β π»)βπ)) = (((abs β β ) β πΉ)βπ)) | ||
Theorem | ioombl1lem4 25503* | Lemma for ioombl1 25504. (Contributed by Mario Carneiro, 16-Jun-2014.) |
β’ π΅ = (π΄(,)+β) & β’ (π β π΄ β β) & β’ (π β πΈ β β) & β’ (π β (vol*βπΈ) β β) & β’ (π β πΆ β β+) & β’ π = seq1( + , ((abs β β ) β πΉ)) & β’ π = seq1( + , ((abs β β ) β πΊ)) & β’ π = seq1( + , ((abs β β ) β π»)) & β’ (π β πΉ:ββΆ( β€ β© (β Γ β))) & β’ (π β πΈ β βͺ ran ((,) β πΉ)) & β’ (π β sup(ran π, β*, < ) β€ ((vol*βπΈ) + πΆ)) & β’ π = (1st β(πΉβπ)) & β’ π = (2nd β(πΉβπ)) & β’ πΊ = (π β β β¦ β¨if(if(π β€ π΄, π΄, π) β€ π, if(π β€ π΄, π΄, π), π), πβ©) & β’ π» = (π β β β¦ β¨π, if(if(π β€ π΄, π΄, π) β€ π, if(π β€ π΄, π΄, π), π)β©) β β’ (π β ((vol*β(πΈ β© π΅)) + (vol*β(πΈ β π΅))) β€ ((vol*βπΈ) + πΆ)) | ||
Theorem | ioombl1 25504 | An open right-unbounded interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014.) (Proof shortened by Mario Carneiro, 25-Mar-2015.) |
β’ (π΄ β β* β (π΄(,)+β) β dom vol) | ||
Theorem | icombl1 25505 | A closed unbounded-above interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014.) |
β’ (π΄ β β β (π΄[,)+β) β dom vol) | ||
Theorem | icombl 25506 | A closed-below, open-above real interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014.) |
β’ ((π΄ β β β§ π΅ β β*) β (π΄[,)π΅) β dom vol) | ||
Theorem | ioombl 25507 | An open real interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014.) |
β’ (π΄(,)π΅) β dom vol | ||
Theorem | iccmbl 25508 | A closed real interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014.) |
β’ ((π΄ β β β§ π΅ β β) β (π΄[,]π΅) β dom vol) | ||
Theorem | iccvolcl 25509 | A closed real interval has finite volume. (Contributed by Mario Carneiro, 25-Aug-2014.) |
β’ ((π΄ β β β§ π΅ β β) β (volβ(π΄[,]π΅)) β β) | ||
Theorem | ovolioo 25510 | The measure of an open interval. (Contributed by Mario Carneiro, 2-Sep-2014.) |
β’ ((π΄ β β β§ π΅ β β β§ π΄ β€ π΅) β (vol*β(π΄(,)π΅)) = (π΅ β π΄)) | ||
Theorem | volioo 25511 | The measure of an open interval. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
β’ ((π΄ β β β§ π΅ β β β§ π΄ β€ π΅) β (volβ(π΄(,)π΅)) = (π΅ β π΄)) | ||
Theorem | ioovolcl 25512 | An open real interval has finite volume. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
β’ ((π΄ β β β§ π΅ β β) β (volβ(π΄(,)π΅)) β β) | ||
Theorem | ovolfs2 25513 | Alternative expression for the interval length function. (Contributed by Mario Carneiro, 26-Mar-2015.) |
β’ πΊ = ((abs β β ) β πΉ) β β’ (πΉ:ββΆ( β€ β© (β Γ β)) β πΊ = ((vol* β (,)) β πΉ)) | ||
Theorem | ioorcl2 25514 | An open interval with finite volume has real endpoints. (Contributed by Mario Carneiro, 26-Mar-2015.) |
β’ (((π΄(,)π΅) β β β§ (vol*β(π΄(,)π΅)) β β) β (π΄ β β β§ π΅ β β)) | ||
Theorem | ioorf 25515 | Define a function from open intervals to their endpoints. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.) |
β’ πΉ = (π₯ β ran (,) β¦ if(π₯ = β , β¨0, 0β©, β¨inf(π₯, β*, < ), sup(π₯, β*, < )β©)) β β’ πΉ:ran (,)βΆ( β€ β© (β* Γ β*)) | ||
Theorem | ioorval 25516* | Define a function from open intervals to their endpoints. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.) |
β’ πΉ = (π₯ β ran (,) β¦ if(π₯ = β , β¨0, 0β©, β¨inf(π₯, β*, < ), sup(π₯, β*, < )β©)) β β’ (π΄ β ran (,) β (πΉβπ΄) = if(π΄ = β , β¨0, 0β©, β¨inf(π΄, β*, < ), sup(π΄, β*, < )β©)) | ||
Theorem | ioorinv2 25517* | The function πΉ is an "inverse" of sorts to the open interval function. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.) |
β’ πΉ = (π₯ β ran (,) β¦ if(π₯ = β , β¨0, 0β©, β¨inf(π₯, β*, < ), sup(π₯, β*, < )β©)) β β’ ((π΄(,)π΅) β β β (πΉβ(π΄(,)π΅)) = β¨π΄, π΅β©) | ||
Theorem | ioorinv 25518* | The function πΉ is an "inverse" of sorts to the open interval function. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.) |
β’ πΉ = (π₯ β ran (,) β¦ if(π₯ = β , β¨0, 0β©, β¨inf(π₯, β*, < ), sup(π₯, β*, < )β©)) β β’ (π΄ β ran (,) β ((,)β(πΉβπ΄)) = π΄) | ||
Theorem | ioorcl 25519* | The function πΉ does not always return real numbers, but it does on intervals of finite volume. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.) |
β’ πΉ = (π₯ β ran (,) β¦ if(π₯ = β , β¨0, 0β©, β¨inf(π₯, β*, < ), sup(π₯, β*, < )β©)) β β’ ((π΄ β ran (,) β§ (vol*βπ΄) β β) β (πΉβπ΄) β ( β€ β© (β Γ β))) | ||
Theorem | uniiccdif 25520 | A union of closed intervals differs from the equivalent union of open intervals by a nullset. (Contributed by Mario Carneiro, 25-Mar-2015.) |
β’ (π β πΉ:ββΆ( β€ β© (β Γ β))) β β’ (π β (βͺ ran ((,) β πΉ) β βͺ ran ([,] β πΉ) β§ (vol*β(βͺ ran ([,] β πΉ) β βͺ ran ((,) β πΉ))) = 0)) | ||
Theorem | uniioovol 25521* | A disjoint union of open intervals has volume equal to the sum of the volume of the intervals. (This proof does not use countable choice, unlike voliun 25496.) Lemma 565Ca of [Fremlin5] p. 213. (Contributed by Mario Carneiro, 26-Mar-2015.) |
β’ (π β πΉ:ββΆ( β€ β© (β Γ β))) & β’ (π β Disj π₯ β β ((,)β(πΉβπ₯))) & β’ π = seq1( + , ((abs β β ) β πΉ)) β β’ (π β (vol*ββͺ ran ((,) β πΉ)) = sup(ran π, β*, < )) | ||
Theorem | uniiccvol 25522* | An almost-disjoint union of closed intervals (disjoint interiors) has volume equal to the sum of the volume of the intervals. (This proof does not use countable choice, unlike voliun 25496.) (Contributed by Mario Carneiro, 25-Mar-2015.) |
β’ (π β πΉ:ββΆ( β€ β© (β Γ β))) & β’ (π β Disj π₯ β β ((,)β(πΉβπ₯))) & β’ π = seq1( + , ((abs β β ) β πΉ)) β β’ (π β (vol*ββͺ ran ([,] β πΉ)) = sup(ran π, β*, < )) | ||
Theorem | uniioombllem1 25523* | Lemma for uniioombl 25531. (Contributed by Mario Carneiro, 25-Mar-2015.) |
β’ (π β πΉ:ββΆ( β€ β© (β Γ β))) & β’ (π β Disj π₯ β β ((,)β(πΉβπ₯))) & β’ π = seq1( + , ((abs β β ) β πΉ)) & β’ π΄ = βͺ ran ((,) β πΉ) & β’ (π β (vol*βπΈ) β β) & β’ (π β πΆ β β+) & β’ (π β πΊ:ββΆ( β€ β© (β Γ β))) & β’ (π β πΈ β βͺ ran ((,) β πΊ)) & β’ π = seq1( + , ((abs β β ) β πΊ)) & β’ (π β sup(ran π, β*, < ) β€ ((vol*βπΈ) + πΆ)) β β’ (π β sup(ran π, β*, < ) β β) | ||
Theorem | uniioombllem2a 25524* | Lemma for uniioombl 25531. (Contributed by Mario Carneiro, 7-May-2015.) |
β’ (π β πΉ:ββΆ( β€ β© (β Γ β))) & β’ (π β Disj π₯ β β ((,)β(πΉβπ₯))) & β’ π = seq1( + , ((abs β β ) β πΉ)) & β’ π΄ = βͺ ran ((,) β πΉ) & β’ (π β (vol*βπΈ) β β) & β’ (π β πΆ β β+) & β’ (π β πΊ:ββΆ( β€ β© (β Γ β))) & β’ (π β πΈ β βͺ ran ((,) β πΊ)) & β’ π = seq1( + , ((abs β β ) β πΊ)) & β’ (π β sup(ran π, β*, < ) β€ ((vol*βπΈ) + πΆ)) β β’ (((π β§ π½ β β) β§ π§ β β) β (((,)β(πΉβπ§)) β© ((,)β(πΊβπ½))) β ran (,)) | ||
Theorem | uniioombllem2 25525* | Lemma for uniioombl 25531. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by Mario Carneiro, 11-Dec-2016.) (Revised by AV, 13-Sep-2020.) |
β’ (π β πΉ:ββΆ( β€ β© (β Γ β))) & β’ (π β Disj π₯ β β ((,)β(πΉβπ₯))) & β’ π = seq1( + , ((abs β β ) β πΉ)) & β’ π΄ = βͺ ran ((,) β πΉ) & β’ (π β (vol*βπΈ) β β) & β’ (π β πΆ β β+) & β’ (π β πΊ:ββΆ( β€ β© (β Γ β))) & β’ (π β πΈ β βͺ ran ((,) β πΊ)) & β’ π = seq1( + , ((abs β β ) β πΊ)) & β’ (π β sup(ran π, β*, < ) β€ ((vol*βπΈ) + πΆ)) & β’ π» = (π§ β β β¦ (((,)β(πΉβπ§)) β© ((,)β(πΊβπ½)))) & β’ πΎ = (π₯ β ran (,) β¦ if(π₯ = β , β¨0, 0β©, β¨inf(π₯, β*, < ), sup(π₯, β*, < )β©)) β β’ ((π β§ π½ β β) β seq1( + , (vol* β π»)) β (vol*β(((,)β(πΊβπ½)) β© π΄))) | ||
Theorem | uniioombllem3a 25526* | Lemma for uniioombl 25531. (Contributed by Mario Carneiro, 8-May-2015.) |
β’ (π β πΉ:ββΆ( β€ β© (β Γ β))) & β’ (π β Disj π₯ β β ((,)β(πΉβπ₯))) & β’ π = seq1( + , ((abs β β ) β πΉ)) & β’ π΄ = βͺ ran ((,) β πΉ) & β’ (π β (vol*βπΈ) β β) & β’ (π β πΆ β β+) & β’ (π β πΊ:ββΆ( β€ β© (β Γ β))) & β’ (π β πΈ β βͺ ran ((,) β πΊ)) & β’ π = seq1( + , ((abs β β ) β πΊ)) & β’ (π β sup(ran π, β*, < ) β€ ((vol*βπΈ) + πΆ)) & β’ (π β π β β) & β’ (π β (absβ((πβπ) β sup(ran π, β*, < ))) < πΆ) & β’ πΎ = βͺ (((,) β πΊ) β (1...π)) β β’ (π β (πΎ = βͺ π β (1...π)((,)β(πΊβπ)) β§ (vol*βπΎ) β β)) | ||
Theorem | uniioombllem3 25527* | Lemma for uniioombl 25531. (Contributed by Mario Carneiro, 26-Mar-2015.) |
β’ (π β πΉ:ββΆ( β€ β© (β Γ β))) & β’ (π β Disj π₯ β β ((,)β(πΉβπ₯))) & β’ π = seq1( + , ((abs β β ) β πΉ)) & β’ π΄ = βͺ ran ((,) β πΉ) & β’ (π β (vol*βπΈ) β β) & β’ (π β πΆ β β+) & β’ (π β πΊ:ββΆ( β€ β© (β Γ β))) & β’ (π β πΈ β βͺ ran ((,) β πΊ)) & β’ π = seq1( + , ((abs β β ) β πΊ)) & β’ (π β sup(ran π, β*, < ) β€ ((vol*βπΈ) + πΆ)) & β’ (π β π β β) & β’ (π β (absβ((πβπ) β sup(ran π, β*, < ))) < πΆ) & β’ πΎ = βͺ (((,) β πΊ) β (1...π)) β β’ (π β ((vol*β(πΈ β© π΄)) + (vol*β(πΈ β π΄))) < (((vol*β(πΎ β© π΄)) + (vol*β(πΎ β π΄))) + (πΆ + πΆ))) | ||
Theorem | uniioombllem4 25528* | Lemma for uniioombl 25531. (Contributed by Mario Carneiro, 26-Mar-2015.) |
β’ (π β πΉ:ββΆ( β€ β© (β Γ β))) & β’ (π β Disj π₯ β β ((,)β(πΉβπ₯))) & β’ π = seq1( + , ((abs β β ) β πΉ)) & β’ π΄ = βͺ ran ((,) β πΉ) & β’ (π β (vol*βπΈ) β β) & β’ (π β πΆ β β+) & β’ (π β πΊ:ββΆ( β€ β© (β Γ β))) & β’ (π β πΈ β βͺ ran ((,) β πΊ)) & β’ π = seq1( + , ((abs β β ) β πΊ)) & β’ (π β sup(ran π, β*, < ) β€ ((vol*βπΈ) + πΆ)) & β’ (π β π β β) & β’ (π β (absβ((πβπ) β sup(ran π, β*, < ))) < πΆ) & β’ πΎ = βͺ (((,) β πΊ) β (1...π)) & β’ (π β π β β) & β’ (π β βπ β (1...π)(absβ(Ξ£π β (1...π)(vol*β(((,)β(πΉβπ)) β© ((,)β(πΊβπ)))) β (vol*β(((,)β(πΊβπ)) β© π΄)))) < (πΆ / π)) & β’ πΏ = βͺ (((,) β πΉ) β (1...π)) β β’ (π β (vol*β(πΎ β© π΄)) β€ ((vol*β(πΎ β© πΏ)) + πΆ)) | ||
Theorem | uniioombllem5 25529* | Lemma for uniioombl 25531. (Contributed by Mario Carneiro, 25-Aug-2014.) |
β’ (π β πΉ:ββΆ( β€ β© (β Γ β))) & β’ (π β Disj π₯ β β ((,)β(πΉβπ₯))) & β’ π = seq1( + , ((abs β β ) β πΉ)) & β’ π΄ = βͺ ran ((,) β πΉ) & β’ (π β (vol*βπΈ) β β) & β’ (π β πΆ β β+) & β’ (π β πΊ:ββΆ( β€ β© (β Γ β))) & β’ (π β πΈ β βͺ ran ((,) β πΊ)) & β’ π = seq1( + , ((abs β β ) β πΊ)) & β’ (π β sup(ran π, β*, < ) β€ ((vol*βπΈ) + πΆ)) & β’ (π β π β β) & β’ (π β (absβ((πβπ) β sup(ran π, β*, < ))) < πΆ) & β’ πΎ = βͺ (((,) β πΊ) β (1...π)) & β’ (π β π β β) & β’ (π β βπ β (1...π)(absβ(Ξ£π β (1...π)(vol*β(((,)β(πΉβπ)) β© ((,)β(πΊβπ)))) β (vol*β(((,)β(πΊβπ)) β© π΄)))) < (πΆ / π)) & β’ πΏ = βͺ (((,) β πΉ) β (1...π)) β β’ (π β ((vol*β(πΈ β© π΄)) + (vol*β(πΈ β π΄))) β€ ((vol*βπΈ) + (4 Β· πΆ))) | ||
Theorem | uniioombllem6 25530* | Lemma for uniioombl 25531. (Contributed by Mario Carneiro, 26-Mar-2015.) |
β’ (π β πΉ:ββΆ( β€ β© (β Γ β))) & β’ (π β Disj π₯ β β ((,)β(πΉβπ₯))) & β’ π = seq1( + , ((abs β β ) β πΉ)) & β’ π΄ = βͺ ran ((,) β πΉ) & β’ (π β (vol*βπΈ) β β) & β’ (π β πΆ β β+) & β’ (π β πΊ:ββΆ( β€ β© (β Γ β))) & β’ (π β πΈ β βͺ ran ((,) β πΊ)) & β’ π = seq1( + , ((abs β β ) β πΊ)) & β’ (π β sup(ran π, β*, < ) β€ ((vol*βπΈ) + πΆ)) β β’ (π β ((vol*β(πΈ β© π΄)) + (vol*β(πΈ β π΄))) β€ ((vol*βπΈ) + (4 Β· πΆ))) | ||
Theorem | uniioombl 25531* | A disjoint union of open intervals is measurable. (This proof does not use countable choice, unlike iunmbl 25495.) Lemma 565Ca of [Fremlin5] p. 214. (Contributed by Mario Carneiro, 26-Mar-2015.) |
β’ (π β πΉ:ββΆ( β€ β© (β Γ β))) & β’ (π β Disj π₯ β β ((,)β(πΉβπ₯))) & β’ π = seq1( + , ((abs β β ) β πΉ)) β β’ (π β βͺ ran ((,) β πΉ) β dom vol) | ||
Theorem | uniiccmbl 25532* | An almost-disjoint union of closed intervals is measurable. (This proof does not use countable choice, unlike iunmbl 25495.) (Contributed by Mario Carneiro, 25-Mar-2015.) |
β’ (π β πΉ:ββΆ( β€ β© (β Γ β))) & β’ (π β Disj π₯ β β ((,)β(πΉβπ₯))) & β’ π = seq1( + , ((abs β β ) β πΉ)) β β’ (π β βͺ ran ([,] β πΉ) β dom vol) | ||
Theorem | dyadf 25533* | The function πΉ returns the endpoints of a dyadic rational covering of the real line. (Contributed by Mario Carneiro, 26-Mar-2015.) |
β’ πΉ = (π₯ β β€, π¦ β β0 β¦ β¨(π₯ / (2βπ¦)), ((π₯ + 1) / (2βπ¦))β©) β β’ πΉ:(β€ Γ β0)βΆ( β€ β© (β Γ β)) | ||
Theorem | dyadval 25534* | Value of the dyadic rational function πΉ. (Contributed by Mario Carneiro, 26-Mar-2015.) |
β’ πΉ = (π₯ β β€, π¦ β β0 β¦ β¨(π₯ / (2βπ¦)), ((π₯ + 1) / (2βπ¦))β©) β β’ ((π΄ β β€ β§ π΅ β β0) β (π΄πΉπ΅) = β¨(π΄ / (2βπ΅)), ((π΄ + 1) / (2βπ΅))β©) | ||
Theorem | dyadovol 25535* | Volume of a dyadic rational interval. (Contributed by Mario Carneiro, 26-Mar-2015.) |
β’ πΉ = (π₯ β β€, π¦ β β0 β¦ β¨(π₯ / (2βπ¦)), ((π₯ + 1) / (2βπ¦))β©) β β’ ((π΄ β β€ β§ π΅ β β0) β (vol*β([,]β(π΄πΉπ΅))) = (1 / (2βπ΅))) | ||
Theorem | dyadss 25536* | Two closed dyadic rational intervals are either in a subset relationship or are almost disjoint (the interiors are disjoint). (Contributed by Mario Carneiro, 26-Mar-2015.) (Proof shortened by Mario Carneiro, 26-Apr-2016.) |
β’ πΉ = (π₯ β β€, π¦ β β0 β¦ β¨(π₯ / (2βπ¦)), ((π₯ + 1) / (2βπ¦))β©) β β’ (((π΄ β β€ β§ π΅ β β€) β§ (πΆ β β0 β§ π· β β0)) β (([,]β(π΄πΉπΆ)) β ([,]β(π΅πΉπ·)) β π· β€ πΆ)) | ||
Theorem | dyaddisjlem 25537* | Lemma for dyaddisj 25538. (Contributed by Mario Carneiro, 26-Mar-2015.) |
β’ πΉ = (π₯ β β€, π¦ β β0 β¦ β¨(π₯ / (2βπ¦)), ((π₯ + 1) / (2βπ¦))β©) β β’ ((((π΄ β β€ β§ π΅ β β€) β§ (πΆ β β0 β§ π· β β0)) β§ πΆ β€ π·) β (([,]β(π΄πΉπΆ)) β ([,]β(π΅πΉπ·)) β¨ ([,]β(π΅πΉπ·)) β ([,]β(π΄πΉπΆ)) β¨ (((,)β(π΄πΉπΆ)) β© ((,)β(π΅πΉπ·))) = β )) | ||
Theorem | dyaddisj 25538* | Two closed dyadic rational intervals are either in a subset relationship or are almost disjoint (the interiors are disjoint). (Contributed by Mario Carneiro, 26-Mar-2015.) |
β’ πΉ = (π₯ β β€, π¦ β β0 β¦ β¨(π₯ / (2βπ¦)), ((π₯ + 1) / (2βπ¦))β©) β β’ ((π΄ β ran πΉ β§ π΅ β ran πΉ) β (([,]βπ΄) β ([,]βπ΅) β¨ ([,]βπ΅) β ([,]βπ΄) β¨ (((,)βπ΄) β© ((,)βπ΅)) = β )) | ||
Theorem | dyadmaxlem 25539* | Lemma for dyadmax 25540. (Contributed by Mario Carneiro, 26-Mar-2015.) |
β’ πΉ = (π₯ β β€, π¦ β β0 β¦ β¨(π₯ / (2βπ¦)), ((π₯ + 1) / (2βπ¦))β©) & β’ (π β π΄ β β€) & β’ (π β π΅ β β€) & β’ (π β πΆ β β0) & β’ (π β π· β β0) & β’ (π β Β¬ π· < πΆ) & β’ (π β ([,]β(π΄πΉπΆ)) β ([,]β(π΅πΉπ·))) β β’ (π β (π΄ = π΅ β§ πΆ = π·)) | ||
Theorem | dyadmax 25540* | Any nonempty set of dyadic rational intervals has a maximal element. (Contributed by Mario Carneiro, 26-Mar-2015.) |
β’ πΉ = (π₯ β β€, π¦ β β0 β¦ β¨(π₯ / (2βπ¦)), ((π₯ + 1) / (2βπ¦))β©) β β’ ((π΄ β ran πΉ β§ π΄ β β ) β βπ§ β π΄ βπ€ β π΄ (([,]βπ§) β ([,]βπ€) β π§ = π€)) | ||
Theorem | dyadmbllem 25541* | Lemma for dyadmbl 25542. (Contributed by Mario Carneiro, 26-Mar-2015.) |
β’ πΉ = (π₯ β β€, π¦ β β0 β¦ β¨(π₯ / (2βπ¦)), ((π₯ + 1) / (2βπ¦))β©) & β’ πΊ = {π§ β π΄ β£ βπ€ β π΄ (([,]βπ§) β ([,]βπ€) β π§ = π€)} & β’ (π β π΄ β ran πΉ) β β’ (π β βͺ ([,] β π΄) = βͺ ([,] β πΊ)) | ||
Theorem | dyadmbl 25542* | Any union of dyadic rational intervals is measurable. (Contributed by Mario Carneiro, 26-Mar-2015.) |
β’ πΉ = (π₯ β β€, π¦ β β0 β¦ β¨(π₯ / (2βπ¦)), ((π₯ + 1) / (2βπ¦))β©) & β’ πΊ = {π§ β π΄ β£ βπ€ β π΄ (([,]βπ§) β ([,]βπ€) β π§ = π€)} & β’ (π β π΄ β ran πΉ) β β’ (π β βͺ ([,] β π΄) β dom vol) | ||
Theorem | opnmbllem 25543* | Lemma for opnmbl 25544. (Contributed by Mario Carneiro, 26-Mar-2015.) |
β’ πΉ = (π₯ β β€, π¦ β β0 β¦ β¨(π₯ / (2βπ¦)), ((π₯ + 1) / (2βπ¦))β©) β β’ (π΄ β (topGenβran (,)) β π΄ β dom vol) | ||
Theorem | opnmbl 25544 | All open sets are measurable. This proof, via dyadmbl 25542 and uniioombl 25531, shows that it is possible to avoid choice for measurability of open sets and hence continuous functions, which extends the choice-free consequences of Lebesgue measure considerably farther than would otherwise be possible. (Contributed by Mario Carneiro, 26-Mar-2015.) |
β’ (π΄ β (topGenβran (,)) β π΄ β dom vol) | ||
Theorem | opnmblALT 25545 | All open sets are measurable. This alternative proof of opnmbl 25544 is significantly shorter, at the expense of invoking countable choice ax-cc 10453. (This was also the original proof before the current opnmbl 25544 was discovered.) (Contributed by Mario Carneiro, 17-Jun-2014.) (New usage is discouraged.) (Proof modification is discouraged.) |
β’ (π΄ β (topGenβran (,)) β π΄ β dom vol) | ||
Theorem | subopnmbl 25546 | Sets which are open in a measurable subspace are measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
β’ π½ = ((topGenβran (,)) βΎt π΄) β β’ ((π΄ β dom vol β§ π΅ β π½) β π΅ β dom vol) | ||
Theorem | volsup2 25547* | The volume of π΄ is the supremum of the sequence vol*β(π΄ β© (-π[,]π)) of volumes of bounded sets. (Contributed by Mario Carneiro, 30-Aug-2014.) |
β’ ((π΄ β dom vol β§ π΅ β β β§ π΅ < (volβπ΄)) β βπ β β π΅ < (volβ(π΄ β© (-π[,]π)))) | ||
Theorem | volcn 25548* | The function formed by restricting a measurable set to a closed interval with a varying endpoint produces an increasing continuous function on the reals. (Contributed by Mario Carneiro, 30-Aug-2014.) |
β’ πΉ = (π₯ β β β¦ (volβ(π΄ β© (π΅[,]π₯)))) β β’ ((π΄ β dom vol β§ π΅ β β) β πΉ β (ββcnββ)) | ||
Theorem | volivth 25549* | The Intermediate Value Theorem for the Lebesgue volume function. For any positive π΅ β€ (volβπ΄), there is a measurable subset of π΄ whose volume is π΅. (Contributed by Mario Carneiro, 30-Aug-2014.) |
β’ ((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β βπ₯ β dom vol(π₯ β π΄ β§ (volβπ₯) = π΅)) | ||
Theorem | vitalilem1 25550* | Lemma for vitali 25555. (Contributed by Mario Carneiro, 16-Jun-2014.) (Proof shortened by AV, 1-May-2021.) |
β’ βΌ = {β¨π₯, π¦β© β£ ((π₯ β (0[,]1) β§ π¦ β (0[,]1)) β§ (π₯ β π¦) β β)} β β’ βΌ Er (0[,]1) | ||
Theorem | vitalilem2 25551* | Lemma for vitali 25555. (Contributed by Mario Carneiro, 16-Jun-2014.) |
β’ βΌ = {β¨π₯, π¦β© β£ ((π₯ β (0[,]1) β§ π¦ β (0[,]1)) β§ (π₯ β π¦) β β)} & β’ π = ((0[,]1) / βΌ ) & β’ (π β πΉ Fn π) & β’ (π β βπ§ β π (π§ β β β (πΉβπ§) β π§)) & β’ (π β πΊ:ββ1-1-ontoβ(β β© (-1[,]1))) & β’ π = (π β β β¦ {π β β β£ (π β (πΊβπ)) β ran πΉ}) & β’ (π β Β¬ ran πΉ β (π« β β dom vol)) β β’ (π β (ran πΉ β (0[,]1) β§ (0[,]1) β βͺ π β β (πβπ) β§ βͺ π β β (πβπ) β (-1[,]2))) | ||
Theorem | vitalilem3 25552* | Lemma for vitali 25555. (Contributed by Mario Carneiro, 16-Jun-2014.) |
β’ βΌ = {β¨π₯, π¦β© β£ ((π₯ β (0[,]1) β§ π¦ β (0[,]1)) β§ (π₯ β π¦) β β)} & β’ π = ((0[,]1) / βΌ ) & β’ (π β πΉ Fn π) & β’ (π β βπ§ β π (π§ β β β (πΉβπ§) β π§)) & β’ (π β πΊ:ββ1-1-ontoβ(β β© (-1[,]1))) & β’ π = (π β β β¦ {π β β β£ (π β (πΊβπ)) β ran πΉ}) & β’ (π β Β¬ ran πΉ β (π« β β dom vol)) β β’ (π β Disj π β β (πβπ)) | ||
Theorem | vitalilem4 25553* | Lemma for vitali 25555. (Contributed by Mario Carneiro, 16-Jun-2014.) |
β’ βΌ = {β¨π₯, π¦β© β£ ((π₯ β (0[,]1) β§ π¦ β (0[,]1)) β§ (π₯ β π¦) β β)} & β’ π = ((0[,]1) / βΌ ) & β’ (π β πΉ Fn π) & β’ (π β βπ§ β π (π§ β β β (πΉβπ§) β π§)) & β’ (π β πΊ:ββ1-1-ontoβ(β β© (-1[,]1))) & β’ π = (π β β β¦ {π β β β£ (π β (πΊβπ)) β ran πΉ}) & β’ (π β Β¬ ran πΉ β (π« β β dom vol)) β β’ ((π β§ π β β) β (vol*β(πβπ)) = 0) | ||
Theorem | vitalilem5 25554* | Lemma for vitali 25555. (Contributed by Mario Carneiro, 16-Jun-2014.) |
β’ βΌ = {β¨π₯, π¦β© β£ ((π₯ β (0[,]1) β§ π¦ β (0[,]1)) β§ (π₯ β π¦) β β)} & β’ π = ((0[,]1) / βΌ ) & β’ (π β πΉ Fn π) & β’ (π β βπ§ β π (π§ β β β (πΉβπ§) β π§)) & β’ (π β πΊ:ββ1-1-ontoβ(β β© (-1[,]1))) & β’ π = (π β β β¦ {π β β β£ (π β (πΊβπ)) β ran πΉ}) & β’ (π β Β¬ ran πΉ β (π« β β dom vol)) β β’ Β¬ π | ||
Theorem | vitali 25555 | If the reals can be well-ordered, then there are non-measurable sets. The proof uses "Vitali sets", named for Giuseppe Vitali (1905). (Contributed by Mario Carneiro, 16-Jun-2014.) |
β’ ( < We β β dom vol β π« β) | ||
Syntax | cmbf 25556 | Extend class notation with the class of measurable functions. |
class MblFn | ||
Syntax | citg1 25557 | Extend class notation with the Lebesgue integral for simple functions. |
class β«1 | ||
Syntax | citg2 25558 | Extend class notation with the Lebesgue integral for nonnegative functions. |
class β«2 | ||
Syntax | cibl 25559 | Extend class notation with the class of integrable functions. |
class πΏ1 | ||
Syntax | citg 25560 | Extend class notation with the general Lebesgue integral. |
class β«π΄π΅ dπ₯ | ||
Definition | df-mbf 25561* | Define the class of measurable functions on the reals. A real function is measurable if the preimage of every open interval is a measurable set (see ismbl 25468) and a complex function is measurable if the real and imaginary parts of the function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
β’ MblFn = {π β (β βpm β) β£ βπ₯ β ran (,)((β‘(β β π) β π₯) β dom vol β§ (β‘(β β π) β π₯) β dom vol)} | ||
Definition | df-itg1 25562* | Define the Lebesgue integral for simple functions. A simple function is a finite linear combination of indicator functions for finitely measurable sets, whose assigned value is the sum of the measures of the sets times their respective weights. (Contributed by Mario Carneiro, 18-Jun-2014.) |
β’ β«1 = (π β {π β MblFn β£ (π:ββΆβ β§ ran π β Fin β§ (volβ(β‘π β (β β {0}))) β β)} β¦ Ξ£π₯ β (ran π β {0})(π₯ Β· (volβ(β‘π β {π₯})))) | ||
Definition | df-itg2 25563* | Define the Lebesgue integral for nonnegative functions. A nonnegative function's integral is the supremum of the integrals of all simple functions that are less than the input function. Note that this may be +β for functions that take the value +β on a set of positive measure or functions that are bounded below by a positive number on a set of infinite measure. (Contributed by Mario Carneiro, 28-Jun-2014.) |
β’ β«2 = (π β ((0[,]+β) βm β) β¦ sup({π₯ β£ βπ β dom β«1(π βr β€ π β§ π₯ = (β«1βπ))}, β*, < )) | ||
Definition | df-ibl 25564* | Define the class of integrable functions on the reals. A function is integrable if it is measurable and the integrals of the pieces of the function are all finite. (Contributed by Mario Carneiro, 28-Jun-2014.) |
β’ πΏ1 = {π β MblFn β£ βπ β (0...3)(β«2β(π₯ β β β¦ β¦(ββ((πβπ₯) / (iβπ))) / π¦β¦if((π₯ β dom π β§ 0 β€ π¦), π¦, 0))) β β} | ||
Definition | df-itg 25565* | Define the full Lebesgue integral, for complex-valued functions to β. The syntax is designed to be suggestive of the standard notation for integrals. For example, our notation for the integral of π₯β2 from 0 to 1 is β«(0[,]1)(π₯β2) dπ₯ = (1 / 3). The only real function of this definition is to break the integral up into nonnegative real parts and send it off to df-itg2 25563 for further processing. Note that this definition cannot handle integrals which evaluate to infinity, because addition and multiplication are not currently defined on extended reals. (You can use df-itg2 25563 directly for this use-case.) (Contributed by Mario Carneiro, 28-Jun-2014.) |
β’ β«π΄π΅ dπ₯ = Ξ£π β (0...3)((iβπ) Β· (β«2β(π₯ β β β¦ β¦(ββ(π΅ / (iβπ))) / π¦β¦if((π₯ β π΄ β§ 0 β€ π¦), π¦, 0)))) | ||
Theorem | ismbf1 25566* | The predicate "πΉ is a measurable function". This is more naturally stated for functions on the reals, see ismbf 25570 and ismbfcn 25571 for the decomposition of the real and imaginary parts. (Contributed by Mario Carneiro, 17-Jun-2014.) |
β’ (πΉ β MblFn β (πΉ β (β βpm β) β§ βπ₯ β ran (,)((β‘(β β πΉ) β π₯) β dom vol β§ (β‘(β β πΉ) β π₯) β dom vol))) | ||
Theorem | mbff 25567 | A measurable function is a function into the complex numbers. (Contributed by Mario Carneiro, 17-Jun-2014.) |
β’ (πΉ β MblFn β πΉ:dom πΉβΆβ) | ||
Theorem | mbfdm 25568 | The domain of a measurable function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
β’ (πΉ β MblFn β dom πΉ β dom vol) | ||
Theorem | mbfconstlem 25569 | Lemma for mbfconst 25575 and related theorems. (Contributed by Mario Carneiro, 17-Jun-2014.) |
β’ ((π΄ β dom vol β§ πΆ β β) β (β‘(π΄ Γ {πΆ}) β π΅) β dom vol) | ||
Theorem | ismbf 25570* | The predicate "πΉ is a measurable function". A function is measurable iff the preimages of all open intervals are measurable sets in the sense of ismbl 25468. (Contributed by Mario Carneiro, 17-Jun-2014.) |
β’ (πΉ:π΄βΆβ β (πΉ β MblFn β βπ₯ β ran (,)(β‘πΉ β π₯) β dom vol)) | ||
Theorem | ismbfcn 25571 | A complex function is measurable iff the real and imaginary components of the function are measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
β’ (πΉ:π΄βΆβ β (πΉ β MblFn β ((β β πΉ) β MblFn β§ (β β πΉ) β MblFn))) | ||
Theorem | mbfima 25572 | Definitional property of a measurable function: the preimage of an open right-unbounded interval is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
β’ ((πΉ β MblFn β§ πΉ:π΄βΆβ) β (β‘πΉ β (π΅(,)πΆ)) β dom vol) | ||
Theorem | mbfimaicc 25573 | The preimage of any closed interval under a measurable function is measurable. (Contributed by Mario Carneiro, 18-Jun-2014.) |
β’ (((πΉ β MblFn β§ πΉ:π΄βΆβ) β§ (π΅ β β β§ πΆ β β)) β (β‘πΉ β (π΅[,]πΆ)) β dom vol) | ||
Theorem | mbfimasn 25574 | The preimage of a point under a measurable function is measurable. (Contributed by Mario Carneiro, 18-Jun-2014.) |
β’ ((πΉ β MblFn β§ πΉ:π΄βΆβ β§ π΅ β β) β (β‘πΉ β {π΅}) β dom vol) | ||
Theorem | mbfconst 25575 | A constant function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
β’ ((π΄ β dom vol β§ π΅ β β) β (π΄ Γ {π΅}) β MblFn) | ||
Theorem | mbf0 25576 | The empty function is measurable. (Contributed by Brendan Leahy, 28-Mar-2018.) |
β’ β β MblFn | ||
Theorem | mbfid 25577 | The identity function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
β’ (π΄ β dom vol β ( I βΎ π΄) β MblFn) | ||
Theorem | mbfmptcl 25578* | Lemma for the MblFn predicate applied to a mapping operation. (Contributed by Mario Carneiro, 11-Aug-2014.) |
β’ (π β (π₯ β π΄ β¦ π΅) β MblFn) & β’ ((π β§ π₯ β π΄) β π΅ β π) β β’ ((π β§ π₯ β π΄) β π΅ β β) | ||
Theorem | mbfdm2 25579* | The domain of a measurable function is measurable. (Contributed by Mario Carneiro, 31-Aug-2014.) |
β’ (π β (π₯ β π΄ β¦ π΅) β MblFn) & β’ ((π β§ π₯ β π΄) β π΅ β π) β β’ (π β π΄ β dom vol) | ||
Theorem | ismbfcn2 25580* | A complex function is measurable iff the real and imaginary components of the function are measurable. (Contributed by Mario Carneiro, 13-Aug-2014.) |
β’ ((π β§ π₯ β π΄) β π΅ β β) β β’ (π β ((π₯ β π΄ β¦ π΅) β MblFn β ((π₯ β π΄ β¦ (ββπ΅)) β MblFn β§ (π₯ β π΄ β¦ (ββπ΅)) β MblFn))) | ||
Theorem | ismbfd 25581* | Deduction to prove measurability of a real function. The third hypothesis is not necessary, but the proof of this requires countable choice, so we derive this separately as ismbf3d 25596. (Contributed by Mario Carneiro, 18-Jun-2014.) |
β’ (π β πΉ:π΄βΆβ) & β’ ((π β§ π₯ β β*) β (β‘πΉ β (π₯(,)+β)) β dom vol) & β’ ((π β§ π₯ β β*) β (β‘πΉ β (-β(,)π₯)) β dom vol) β β’ (π β πΉ β MblFn) | ||
Theorem | ismbf2d 25582* | Deduction to prove measurability of a real function. (Contributed by Mario Carneiro, 18-Jun-2014.) |
β’ (π β πΉ:π΄βΆβ) & β’ (π β π΄ β dom vol) & β’ ((π β§ π₯ β β) β (β‘πΉ β (π₯(,)+β)) β dom vol) & β’ ((π β§ π₯ β β) β (β‘πΉ β (-β(,)π₯)) β dom vol) β β’ (π β πΉ β MblFn) | ||
Theorem | mbfeqalem1 25583* | Lemma for mbfeqalem2 25584. (Contributed by Mario Carneiro, 2-Sep-2014.) (Revised by AV, 19-Aug-2022.) |
β’ (π β π΄ β β) & β’ (π β (vol*βπ΄) = 0) & β’ ((π β§ π₯ β (π΅ β π΄)) β πΆ = π·) & β’ ((π β§ π₯ β π΅) β πΆ β β) & β’ ((π β§ π₯ β π΅) β π· β β) β β’ (π β ((β‘(π₯ β π΅ β¦ πΆ) β π¦) β (β‘(π₯ β π΅ β¦ π·) β π¦)) β dom vol) | ||
Theorem | mbfeqalem2 25584* | Lemma for mbfeqa 25585. (Contributed by Mario Carneiro, 2-Sep-2014.) (Proof shortened by AV, 19-Aug-2022.) |
β’ (π β π΄ β β) & β’ (π β (vol*βπ΄) = 0) & β’ ((π β§ π₯ β (π΅ β π΄)) β πΆ = π·) & β’ ((π β§ π₯ β π΅) β πΆ β β) & β’ ((π β§ π₯ β π΅) β π· β β) β β’ (π β ((π₯ β π΅ β¦ πΆ) β MblFn β (π₯ β π΅ β¦ π·) β MblFn)) | ||
Theorem | mbfeqa 25585* | If two functions are equal almost everywhere, then one is measurable iff the other is. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by Mario Carneiro, 2-Sep-2014.) |
β’ (π β π΄ β β) & β’ (π β (vol*βπ΄) = 0) & β’ ((π β§ π₯ β (π΅ β π΄)) β πΆ = π·) & β’ ((π β§ π₯ β π΅) β πΆ β β) & β’ ((π β§ π₯ β π΅) β π· β β) β β’ (π β ((π₯ β π΅ β¦ πΆ) β MblFn β (π₯ β π΅ β¦ π·) β MblFn)) | ||
Theorem | mbfres 25586 | The restriction of a measurable function is measurable. (Contributed by Mario Carneiro, 18-Jun-2014.) |
β’ ((πΉ β MblFn β§ π΄ β dom vol) β (πΉ βΎ π΄) β MblFn) | ||
Theorem | mbfres2 25587 | Measurability of a piecewise function: if πΉ is measurable on subsets π΅ and πΆ of its domain, and these pieces make up all of π΄, then πΉ is measurable on the whole domain. (Contributed by Mario Carneiro, 18-Jun-2014.) |
β’ (π β πΉ:π΄βΆβ) & β’ (π β (πΉ βΎ π΅) β MblFn) & β’ (π β (πΉ βΎ πΆ) β MblFn) & β’ (π β (π΅ βͺ πΆ) = π΄) β β’ (π β πΉ β MblFn) | ||
Theorem | mbfss 25588* | Change the domain of a measurability predicate. (Contributed by Mario Carneiro, 17-Aug-2014.) |
β’ (π β π΄ β π΅) & β’ (π β π΅ β dom vol) & β’ ((π β§ π₯ β π΄) β πΆ β π) & β’ ((π β§ π₯ β (π΅ β π΄)) β πΆ = 0) & β’ (π β (π₯ β π΄ β¦ πΆ) β MblFn) β β’ (π β (π₯ β π΅ β¦ πΆ) β MblFn) | ||
Theorem | mbfmulc2lem 25589 | Multiplication by a constant preserves measurability. (Contributed by Mario Carneiro, 18-Jun-2014.) |
β’ (π β πΉ β MblFn) & β’ (π β π΅ β β) & β’ (π β πΉ:π΄βΆβ) β β’ (π β ((π΄ Γ {π΅}) βf Β· πΉ) β MblFn) | ||
Theorem | mbfmulc2re 25590 | Multiplication by a constant preserves measurability. (Contributed by Mario Carneiro, 15-Aug-2014.) |
β’ (π β πΉ β MblFn) & β’ (π β π΅ β β) & β’ (π β πΉ:π΄βΆβ) β β’ (π β ((π΄ Γ {π΅}) βf Β· πΉ) β MblFn) | ||
Theorem | mbfmax 25591* | The maximum of two functions is measurable. (Contributed by Mario Carneiro, 18-Jun-2014.) |
β’ (π β πΉ:π΄βΆβ) & β’ (π β πΉ β MblFn) & β’ (π β πΊ:π΄βΆβ) & β’ (π β πΊ β MblFn) & β’ π» = (π₯ β π΄ β¦ if((πΉβπ₯) β€ (πΊβπ₯), (πΊβπ₯), (πΉβπ₯))) β β’ (π β π» β MblFn) | ||
Theorem | mbfneg 25592* | The negative of a measurable function is measurable. (Contributed by Mario Carneiro, 31-Jul-2014.) |
β’ ((π β§ π₯ β π΄) β π΅ β π) & β’ (π β (π₯ β π΄ β¦ π΅) β MblFn) β β’ (π β (π₯ β π΄ β¦ -π΅) β MblFn) | ||
Theorem | mbfpos 25593* | The positive part of a measurable function is measurable. (Contributed by Mario Carneiro, 31-Jul-2014.) |
β’ ((π β§ π₯ β π΄) β π΅ β β) & β’ (π β (π₯ β π΄ β¦ π΅) β MblFn) β β’ (π β (π₯ β π΄ β¦ if(0 β€ π΅, π΅, 0)) β MblFn) | ||
Theorem | mbfposr 25594* | Converse to mbfpos 25593. (Contributed by Mario Carneiro, 11-Aug-2014.) |
β’ ((π β§ π₯ β π΄) β π΅ β β) & β’ (π β (π₯ β π΄ β¦ if(0 β€ π΅, π΅, 0)) β MblFn) & β’ (π β (π₯ β π΄ β¦ if(0 β€ -π΅, -π΅, 0)) β MblFn) β β’ (π β (π₯ β π΄ β¦ π΅) β MblFn) | ||
Theorem | mbfposb 25595* | A function is measurable iff its positive and negative parts are measurable. (Contributed by Mario Carneiro, 11-Aug-2014.) |
β’ ((π β§ π₯ β π΄) β π΅ β β) β β’ (π β ((π₯ β π΄ β¦ π΅) β MblFn β ((π₯ β π΄ β¦ if(0 β€ π΅, π΅, 0)) β MblFn β§ (π₯ β π΄ β¦ if(0 β€ -π΅, -π΅, 0)) β MblFn))) | ||
Theorem | ismbf3d 25596* | Simplified form of ismbfd 25581. (Contributed by Mario Carneiro, 18-Jun-2014.) |
β’ (π β πΉ:π΄βΆβ) & β’ ((π β§ π₯ β β) β (β‘πΉ β (π₯(,)+β)) β dom vol) β β’ (π β πΉ β MblFn) | ||
Theorem | mbfimaopnlem 25597* | Lemma for mbfimaopn 25598. (Contributed by Mario Carneiro, 25-Aug-2014.) |
β’ π½ = (TopOpenββfld) & β’ πΊ = (π₯ β β, π¦ β β β¦ (π₯ + (i Β· π¦))) & β’ π΅ = ((,) β (β Γ β)) & β’ πΎ = ran (π₯ β π΅, π¦ β π΅ β¦ (π₯ Γ π¦)) β β’ ((πΉ β MblFn β§ π΄ β π½) β (β‘πΉ β π΄) β dom vol) | ||
Theorem | mbfimaopn 25598 | The preimage of any open set (in the complex topology) under a measurable function is measurable. (See also cncombf 25600, which explains why π΄ β dom vol is too weak a condition for this theorem.) (Contributed by Mario Carneiro, 25-Aug-2014.) |
β’ π½ = (TopOpenββfld) β β’ ((πΉ β MblFn β§ π΄ β π½) β (β‘πΉ β π΄) β dom vol) | ||
Theorem | mbfimaopn2 25599 | The preimage of any set open in the subspace topology of the range of the function is measurable. (Contributed by Mario Carneiro, 25-Aug-2014.) |
β’ π½ = (TopOpenββfld) & β’ πΎ = (π½ βΎt π΅) β β’ (((πΉ β MblFn β§ πΉ:π΄βΆπ΅ β§ π΅ β β) β§ πΆ β πΎ) β (β‘πΉ β πΆ) β dom vol) | ||
Theorem | cncombf 25600 | The composition of a continuous function with a measurable function is measurable. (More generally, πΊ can be a Borel-measurable function, but notably the condition that πΊ be only measurable is too weak, the usual counterexample taking πΊ to be the Cantor function and πΉ the indicator function of the πΊ-image of a nonmeasurable set, which is a subset of the Cantor set and hence null and measurable.) (Contributed by Mario Carneiro, 25-Aug-2014.) |
β’ ((πΉ β MblFn β§ πΉ:π΄βΆπ΅ β§ πΊ β (π΅βcnββ)) β (πΊ β πΉ) β MblFn) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |