Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgsinexp Structured version   Visualization version   GIF version

Theorem itgsinexp 42289
Description: A recursive formula for the integral of sin^N on the interval (0,π) . (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
itgsinexp.1 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)
itgsinexp.2 (𝜑𝑁 ∈ (ℤ‘2))
Assertion
Ref Expression
itgsinexp (𝜑 → (𝐼𝑁) = (((𝑁 − 1) / 𝑁) · (𝐼‘(𝑁 − 2))))
Distinct variable groups:   𝑥,𝑛,𝑁   𝜑,𝑛,𝑥
Allowed substitution hints:   𝐼(𝑥,𝑛)

Proof of Theorem itgsinexp
StepHypRef Expression
1 itgsinexp.2 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ‘2))
2 eluzelz 12254 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
3 zcn 11987 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
41, 2, 33syl 18 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
5 1cnd 10636 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
64, 5npcand 11001 . . . . . 6 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
76eqcomd 2827 . . . . 5 (𝜑𝑁 = ((𝑁 − 1) + 1))
87oveq1d 7171 . . . 4 (𝜑 → (𝑁 · (𝐼𝑁)) = (((𝑁 − 1) + 1) · (𝐼𝑁)))
9 uz2m1nn 12324 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)
101, 9syl 17 . . . . . 6 (𝜑 → (𝑁 − 1) ∈ ℕ)
1110nncnd 11654 . . . . 5 (𝜑 → (𝑁 − 1) ∈ ℂ)
12 itgsinexp.1 . . . . . . . 8 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)
1312a1i 11 . . . . . . 7 (𝜑𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥))
14 oveq2 7164 . . . . . . . . 9 (𝑛 = 𝑁 → ((sin‘𝑥)↑𝑛) = ((sin‘𝑥)↑𝑁))
1514ad2antlr 725 . . . . . . . 8 (((𝜑𝑛 = 𝑁) ∧ 𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑𝑛) = ((sin‘𝑥)↑𝑁))
1615itgeq2dv 24382 . . . . . . 7 ((𝜑𝑛 = 𝑁) → ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥 = ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥)
17 2cnd 11716 . . . . . . . . 9 (𝜑 → 2 ∈ ℂ)
18 npcan 10895 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ) → ((𝑁 − 2) + 2) = 𝑁)
1918eqcomd 2827 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ) → 𝑁 = ((𝑁 − 2) + 2))
204, 17, 19syl2anc 586 . . . . . . . 8 (𝜑𝑁 = ((𝑁 − 2) + 2))
21 uznn0sub 12278 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (𝑁 − 2) ∈ ℕ0)
221, 21syl 17 . . . . . . . . 9 (𝜑 → (𝑁 − 2) ∈ ℕ0)
23 2nn0 11915 . . . . . . . . . 10 2 ∈ ℕ0
2423a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℕ0)
2522, 24nn0addcld 11960 . . . . . . . 8 (𝜑 → ((𝑁 − 2) + 2) ∈ ℕ0)
2620, 25eqeltrd 2913 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
27 itgex 24371 . . . . . . . 8 ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥 ∈ V
2827a1i 11 . . . . . . 7 (𝜑 → ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥 ∈ V)
2913, 16, 26, 28fvmptd 6775 . . . . . 6 (𝜑 → (𝐼𝑁) = ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥)
30 ioosscn 41818 . . . . . . . . . . 11 (0(,)π) ⊆ ℂ
3130sseli 3963 . . . . . . . . . 10 (𝑥 ∈ (0(,)π) → 𝑥 ∈ ℂ)
3231sincld 15483 . . . . . . . . 9 (𝑥 ∈ (0(,)π) → (sin‘𝑥) ∈ ℂ)
3332adantl 484 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)π)) → (sin‘𝑥) ∈ ℂ)
3426adantr 483 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)π)) → 𝑁 ∈ ℕ0)
3533, 34expcld 13511 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑𝑁) ∈ ℂ)
36 ioossicc 12823 . . . . . . . . 9 (0(,)π) ⊆ (0[,]π)
3736a1i 11 . . . . . . . 8 (𝜑 → (0(,)π) ⊆ (0[,]π))
38 ioombl 24166 . . . . . . . . 9 (0(,)π) ∈ dom vol
3938a1i 11 . . . . . . . 8 (𝜑 → (0(,)π) ∈ dom vol)
40 0re 10643 . . . . . . . . . . . . . 14 0 ∈ ℝ
41 pire 25044 . . . . . . . . . . . . . 14 π ∈ ℝ
42 iccssre 12819 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ π ∈ ℝ) → (0[,]π) ⊆ ℝ)
4340, 41, 42mp2an 690 . . . . . . . . . . . . 13 (0[,]π) ⊆ ℝ
44 ax-resscn 10594 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
4543, 44sstri 3976 . . . . . . . . . . . 12 (0[,]π) ⊆ ℂ
4645sseli 3963 . . . . . . . . . . 11 (𝑥 ∈ (0[,]π) → 𝑥 ∈ ℂ)
4746sincld 15483 . . . . . . . . . 10 (𝑥 ∈ (0[,]π) → (sin‘𝑥) ∈ ℂ)
4847adantl 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]π)) → (sin‘𝑥) ∈ ℂ)
4926adantr 483 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]π)) → 𝑁 ∈ ℕ0)
5048, 49expcld 13511 . . . . . . . 8 ((𝜑𝑥 ∈ (0[,]π)) → ((sin‘𝑥)↑𝑁) ∈ ℂ)
5140a1i 11 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
5241a1i 11 . . . . . . . . 9 (𝜑 → π ∈ ℝ)
5346adantl 484 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (0[,]π)) → 𝑥 ∈ ℂ)
54 eqid 2821 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁)) = (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))
5554fvmpt2 6779 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ ((sin‘𝑥)↑𝑁) ∈ ℂ) → ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))‘𝑥) = ((sin‘𝑥)↑𝑁))
5653, 50, 55syl2anc 586 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (0[,]π)) → ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))‘𝑥) = ((sin‘𝑥)↑𝑁))
5756eqcomd 2827 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (0[,]π)) → ((sin‘𝑥)↑𝑁) = ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))‘𝑥))
5857mpteq2dva 5161 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑𝑁)) = (𝑥 ∈ (0[,]π) ↦ ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))‘𝑥)))
59 nfmpt1 5164 . . . . . . . . . . 11 𝑥(𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))
60 nfcv 2977 . . . . . . . . . . . 12 𝑥sin
61 sincn 25032 . . . . . . . . . . . . 13 sin ∈ (ℂ–cn→ℂ)
6261a1i 11 . . . . . . . . . . . 12 (𝜑 → sin ∈ (ℂ–cn→ℂ))
6360, 62, 26expcnfg 41921 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁)) ∈ (ℂ–cn→ℂ))
6445a1i 11 . . . . . . . . . . 11 (𝜑 → (0[,]π) ⊆ ℂ)
6559, 63, 64cncfmptss 41917 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0[,]π) ↦ ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))‘𝑥)) ∈ ((0[,]π)–cn→ℂ))
6658, 65eqeltrd 2913 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑𝑁)) ∈ ((0[,]π)–cn→ℂ))
67 cniccibl 24441 . . . . . . . . 9 ((0 ∈ ℝ ∧ π ∈ ℝ ∧ (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑𝑁)) ∈ ((0[,]π)–cn→ℂ)) → (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑𝑁)) ∈ 𝐿1)
6851, 52, 66, 67syl3anc 1367 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑𝑁)) ∈ 𝐿1)
6937, 39, 50, 68iblss 24405 . . . . . . 7 (𝜑 → (𝑥 ∈ (0(,)π) ↦ ((sin‘𝑥)↑𝑁)) ∈ 𝐿1)
7035, 69itgcl 24384 . . . . . 6 (𝜑 → ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥 ∈ ℂ)
7129, 70eqeltrd 2913 . . . . 5 (𝜑 → (𝐼𝑁) ∈ ℂ)
7211, 71adddirp1d 10667 . . . 4 (𝜑 → (((𝑁 − 1) + 1) · (𝐼𝑁)) = (((𝑁 − 1) · (𝐼𝑁)) + (𝐼𝑁)))
73 eluz2b2 12322 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁))
741, 73sylib 220 . . . . . . . . . . 11 (𝜑 → (𝑁 ∈ ℕ ∧ 1 < 𝑁))
7574simpld 497 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
76 expm1t 13458 . . . . . . . . . 10 (((sin‘𝑥) ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((sin‘𝑥)↑𝑁) = (((sin‘𝑥)↑(𝑁 − 1)) · (sin‘𝑥)))
7732, 75, 76syl2anr 598 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑𝑁) = (((sin‘𝑥)↑(𝑁 − 1)) · (sin‘𝑥)))
7877itgeq2dv 24382 . . . . . . . 8 (𝜑 → ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥 = ∫(0(,)π)(((sin‘𝑥)↑(𝑁 − 1)) · (sin‘𝑥)) d𝑥)
79 eqid 2821 . . . . . . . . . 10 (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 1))) = (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 1)))
80 eqid 2821 . . . . . . . . . 10 (𝑥 ∈ ℂ ↦ -(cos‘𝑥)) = (𝑥 ∈ ℂ ↦ -(cos‘𝑥))
81 eqid 2821 . . . . . . . . . 10 (𝑥 ∈ ℂ ↦ (((𝑁 − 1) · ((sin‘𝑥)↑((𝑁 − 1) − 1))) · (cos‘𝑥))) = (𝑥 ∈ ℂ ↦ (((𝑁 − 1) · ((sin‘𝑥)↑((𝑁 − 1) − 1))) · (cos‘𝑥)))
82 eqid 2821 . . . . . . . . . 10 (𝑥 ∈ ℂ ↦ (((sin‘𝑥)↑(𝑁 − 1)) · (sin‘𝑥))) = (𝑥 ∈ ℂ ↦ (((sin‘𝑥)↑(𝑁 − 1)) · (sin‘𝑥)))
83 eqid 2821 . . . . . . . . . 10 (𝑥 ∈ ℂ ↦ ((((𝑁 − 1) · ((sin‘𝑥)↑((𝑁 − 1) − 1))) · (cos‘𝑥)) · -(cos‘𝑥))) = (𝑥 ∈ ℂ ↦ ((((𝑁 − 1) · ((sin‘𝑥)↑((𝑁 − 1) − 1))) · (cos‘𝑥)) · -(cos‘𝑥)))
84 eqid 2821 . . . . . . . . . 10 (𝑥 ∈ ℂ ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑((𝑁 − 1) − 1)))) = (𝑥 ∈ ℂ ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑((𝑁 − 1) − 1))))
8579, 80, 81, 82, 83, 84, 10itgsinexplem1 42288 . . . . . . . . 9 (𝜑 → ∫(0(,)π)(((sin‘𝑥)↑(𝑁 − 1)) · (sin‘𝑥)) d𝑥 = ((𝑁 − 1) · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑((𝑁 − 1) − 1))) d𝑥))
864, 5, 5subsub4d 11028 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑁 − 1) − 1) = (𝑁 − (1 + 1)))
87 1p1e2 11763 . . . . . . . . . . . . . . . . 17 (1 + 1) = 2
8887a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → (1 + 1) = 2)
8988oveq2d 7172 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 − (1 + 1)) = (𝑁 − 2))
9086, 89eqtrd 2856 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 − 1) − 1) = (𝑁 − 2))
9190adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (0(,)π)) → ((𝑁 − 1) − 1) = (𝑁 − 2))
9291oveq2d 7172 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑((𝑁 − 1) − 1)) = ((sin‘𝑥)↑(𝑁 − 2)))
9392oveq2d 7172 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (0(,)π)) → (((cos‘𝑥)↑2) · ((sin‘𝑥)↑((𝑁 − 1) − 1))) = (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2))))
9493itgeq2dv 24382 . . . . . . . . . 10 (𝜑 → ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑((𝑁 − 1) − 1))) d𝑥 = ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2))) d𝑥)
9594oveq2d 7172 . . . . . . . . 9 (𝜑 → ((𝑁 − 1) · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑((𝑁 − 1) − 1))) d𝑥) = ((𝑁 − 1) · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2))) d𝑥))
96 sincossq 15529 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℂ → (((sin‘𝑥)↑2) + ((cos‘𝑥)↑2)) = 1)
97 1cnd 10636 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → 1 ∈ ℂ)
98 sincl 15479 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℂ → (sin‘𝑥) ∈ ℂ)
9998sqcld 13509 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → ((sin‘𝑥)↑2) ∈ ℂ)
100 coscl 15480 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℂ → (cos‘𝑥) ∈ ℂ)
101100sqcld 13509 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → ((cos‘𝑥)↑2) ∈ ℂ)
10297, 99, 101subaddd 11015 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℂ → ((1 − ((sin‘𝑥)↑2)) = ((cos‘𝑥)↑2) ↔ (((sin‘𝑥)↑2) + ((cos‘𝑥)↑2)) = 1))
10396, 102mpbird 259 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → (1 − ((sin‘𝑥)↑2)) = ((cos‘𝑥)↑2))
104103eqcomd 2827 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → ((cos‘𝑥)↑2) = (1 − ((sin‘𝑥)↑2)))
10531, 104syl 17 . . . . . . . . . . . . . 14 (𝑥 ∈ (0(,)π) → ((cos‘𝑥)↑2) = (1 − ((sin‘𝑥)↑2)))
106105oveq1d 7171 . . . . . . . . . . . . 13 (𝑥 ∈ (0(,)π) → (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2))) = ((1 − ((sin‘𝑥)↑2)) · ((sin‘𝑥)↑(𝑁 − 2))))
107106adantl 484 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (0(,)π)) → (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2))) = ((1 − ((sin‘𝑥)↑2)) · ((sin‘𝑥)↑(𝑁 − 2))))
108107itgeq2dv 24382 . . . . . . . . . . 11 (𝜑 → ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2))) d𝑥 = ∫(0(,)π)((1 − ((sin‘𝑥)↑2)) · ((sin‘𝑥)↑(𝑁 − 2))) d𝑥)
109 1cnd 10636 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (0(,)π)) → 1 ∈ ℂ)
11032sqcld 13509 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0(,)π) → ((sin‘𝑥)↑2) ∈ ℂ)
111110adantl 484 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑2) ∈ ℂ)
11290eqcomd 2827 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑁 − 2) = ((𝑁 − 1) − 1))
113 nnm1nn0 11939 . . . . . . . . . . . . . . . . . 18 ((𝑁 − 1) ∈ ℕ → ((𝑁 − 1) − 1) ∈ ℕ0)
11410, 113syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑁 − 1) − 1) ∈ ℕ0)
115112, 114eqeltrd 2913 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 − 2) ∈ ℕ0)
116115adantr 483 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (0(,)π)) → (𝑁 − 2) ∈ ℕ0)
11733, 116expcld 13511 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑(𝑁 − 2)) ∈ ℂ)
118109, 111, 117subdird 11097 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (0(,)π)) → ((1 − ((sin‘𝑥)↑2)) · ((sin‘𝑥)↑(𝑁 − 2))) = ((1 · ((sin‘𝑥)↑(𝑁 − 2))) − (((sin‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2)))))
119117mulid2d 10659 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (0(,)π)) → (1 · ((sin‘𝑥)↑(𝑁 − 2))) = ((sin‘𝑥)↑(𝑁 − 2)))
12023a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (0(,)π)) → 2 ∈ ℕ0)
12133, 116, 120expaddd 13513 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑(2 + (𝑁 − 2))) = (((sin‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2))))
12217, 4pncan3d 11000 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 + (𝑁 − 2)) = 𝑁)
123122oveq2d 7172 . . . . . . . . . . . . . . . 16 (𝜑 → ((sin‘𝑥)↑(2 + (𝑁 − 2))) = ((sin‘𝑥)↑𝑁))
124123adantr 483 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑(2 + (𝑁 − 2))) = ((sin‘𝑥)↑𝑁))
125121, 124eqtr3d 2858 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (0(,)π)) → (((sin‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2))) = ((sin‘𝑥)↑𝑁))
126119, 125oveq12d 7174 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (0(,)π)) → ((1 · ((sin‘𝑥)↑(𝑁 − 2))) − (((sin‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2)))) = (((sin‘𝑥)↑(𝑁 − 2)) − ((sin‘𝑥)↑𝑁)))
127118, 126eqtrd 2856 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (0(,)π)) → ((1 − ((sin‘𝑥)↑2)) · ((sin‘𝑥)↑(𝑁 − 2))) = (((sin‘𝑥)↑(𝑁 − 2)) − ((sin‘𝑥)↑𝑁)))
128127itgeq2dv 24382 . . . . . . . . . . 11 (𝜑 → ∫(0(,)π)((1 − ((sin‘𝑥)↑2)) · ((sin‘𝑥)↑(𝑁 − 2))) d𝑥 = ∫(0(,)π)(((sin‘𝑥)↑(𝑁 − 2)) − ((sin‘𝑥)↑𝑁)) d𝑥)
129115adantr 483 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (0[,]π)) → (𝑁 − 2) ∈ ℕ0)
13048, 129expcld 13511 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (0[,]π)) → ((sin‘𝑥)↑(𝑁 − 2)) ∈ ℂ)
131 eqid 2821 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 2))) = (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 2)))
132131fvmpt2 6779 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℂ ∧ ((sin‘𝑥)↑(𝑁 − 2)) ∈ ℂ) → ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 2)))‘𝑥) = ((sin‘𝑥)↑(𝑁 − 2)))
13353, 130, 132syl2anc 586 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (0[,]π)) → ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 2)))‘𝑥) = ((sin‘𝑥)↑(𝑁 − 2)))
134133eqcomd 2827 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (0[,]π)) → ((sin‘𝑥)↑(𝑁 − 2)) = ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 2)))‘𝑥))
135134mpteq2dva 5161 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑(𝑁 − 2))) = (𝑥 ∈ (0[,]π) ↦ ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 2)))‘𝑥)))
136 nfmpt1 5164 . . . . . . . . . . . . . . . 16 𝑥(𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 2)))
13760, 62, 115expcnfg 41921 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 2))) ∈ (ℂ–cn→ℂ))
138136, 137, 64cncfmptss 41917 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 ∈ (0[,]π) ↦ ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 2)))‘𝑥)) ∈ ((0[,]π)–cn→ℂ))
139135, 138eqeltrd 2913 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑(𝑁 − 2))) ∈ ((0[,]π)–cn→ℂ))
140 cniccibl 24441 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ π ∈ ℝ ∧ (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑(𝑁 − 2))) ∈ ((0[,]π)–cn→ℂ)) → (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑(𝑁 − 2))) ∈ 𝐿1)
14151, 52, 139, 140syl3anc 1367 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑(𝑁 − 2))) ∈ 𝐿1)
14237, 39, 130, 141iblss 24405 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (0(,)π) ↦ ((sin‘𝑥)↑(𝑁 − 2))) ∈ 𝐿1)
143117, 142, 35, 69itgsub 24426 . . . . . . . . . . 11 (𝜑 → ∫(0(,)π)(((sin‘𝑥)↑(𝑁 − 2)) − ((sin‘𝑥)↑𝑁)) d𝑥 = (∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥 − ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥))
144108, 128, 1433eqtrd 2860 . . . . . . . . . 10 (𝜑 → ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2))) d𝑥 = (∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥 − ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥))
145144oveq2d 7172 . . . . . . . . 9 (𝜑 → ((𝑁 − 1) · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2))) d𝑥) = ((𝑁 − 1) · (∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥 − ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥)))
14685, 95, 1453eqtrd 2860 . . . . . . . 8 (𝜑 → ∫(0(,)π)(((sin‘𝑥)↑(𝑁 − 1)) · (sin‘𝑥)) d𝑥 = ((𝑁 − 1) · (∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥 − ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥)))
14729, 78, 1463eqtrd 2860 . . . . . . 7 (𝜑 → (𝐼𝑁) = ((𝑁 − 1) · (∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥 − ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥)))
148 oveq2 7164 . . . . . . . . . . . 12 (𝑛 = (𝑁 − 2) → ((sin‘𝑥)↑𝑛) = ((sin‘𝑥)↑(𝑁 − 2)))
149148adantr 483 . . . . . . . . . . 11 ((𝑛 = (𝑁 − 2) ∧ 𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑𝑛) = ((sin‘𝑥)↑(𝑁 − 2)))
150149itgeq2dv 24382 . . . . . . . . . 10 (𝑛 = (𝑁 − 2) → ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥 = ∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥)
151 itgex 24371 . . . . . . . . . . 11 ∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥 ∈ V
152151a1i 11 . . . . . . . . . 10 (𝜑 → ∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥 ∈ V)
15312, 150, 115, 152fvmptd3 6791 . . . . . . . . 9 (𝜑 → (𝐼‘(𝑁 − 2)) = ∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥)
154153, 29oveq12d 7174 . . . . . . . 8 (𝜑 → ((𝐼‘(𝑁 − 2)) − (𝐼𝑁)) = (∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥 − ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥))
155154oveq2d 7172 . . . . . . 7 (𝜑 → ((𝑁 − 1) · ((𝐼‘(𝑁 − 2)) − (𝐼𝑁))) = ((𝑁 − 1) · (∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥 − ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥)))
156117, 142itgcl 24384 . . . . . . . . 9 (𝜑 → ∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥 ∈ ℂ)
157153, 156eqeltrd 2913 . . . . . . . 8 (𝜑 → (𝐼‘(𝑁 − 2)) ∈ ℂ)
15811, 157, 71subdid 11096 . . . . . . 7 (𝜑 → ((𝑁 − 1) · ((𝐼‘(𝑁 − 2)) − (𝐼𝑁))) = (((𝑁 − 1) · (𝐼‘(𝑁 − 2))) − ((𝑁 − 1) · (𝐼𝑁))))
159147, 155, 1583eqtr2d 2862 . . . . . 6 (𝜑 → (𝐼𝑁) = (((𝑁 − 1) · (𝐼‘(𝑁 − 2))) − ((𝑁 − 1) · (𝐼𝑁))))
160159eqcomd 2827 . . . . 5 (𝜑 → (((𝑁 − 1) · (𝐼‘(𝑁 − 2))) − ((𝑁 − 1) · (𝐼𝑁))) = (𝐼𝑁))
16111, 157mulcld 10661 . . . . . 6 (𝜑 → ((𝑁 − 1) · (𝐼‘(𝑁 − 2))) ∈ ℂ)
16211, 71mulcld 10661 . . . . . 6 (𝜑 → ((𝑁 − 1) · (𝐼𝑁)) ∈ ℂ)
163161, 162, 71subaddd 11015 . . . . 5 (𝜑 → ((((𝑁 − 1) · (𝐼‘(𝑁 − 2))) − ((𝑁 − 1) · (𝐼𝑁))) = (𝐼𝑁) ↔ (((𝑁 − 1) · (𝐼𝑁)) + (𝐼𝑁)) = ((𝑁 − 1) · (𝐼‘(𝑁 − 2)))))
164160, 163mpbid 234 . . . 4 (𝜑 → (((𝑁 − 1) · (𝐼𝑁)) + (𝐼𝑁)) = ((𝑁 − 1) · (𝐼‘(𝑁 − 2))))
1658, 72, 1643eqtrd 2860 . . 3 (𝜑 → (𝑁 · (𝐼𝑁)) = ((𝑁 − 1) · (𝐼‘(𝑁 − 2))))
166165oveq1d 7171 . 2 (𝜑 → ((𝑁 · (𝐼𝑁)) / 𝑁) = (((𝑁 − 1) · (𝐼‘(𝑁 − 2))) / 𝑁))
16775nnne0d 11688 . . 3 (𝜑𝑁 ≠ 0)
16871, 4, 167divcan3d 11421 . 2 (𝜑 → ((𝑁 · (𝐼𝑁)) / 𝑁) = (𝐼𝑁))
16911, 157, 4, 167div23d 11453 . 2 (𝜑 → (((𝑁 − 1) · (𝐼‘(𝑁 − 2))) / 𝑁) = (((𝑁 − 1) / 𝑁) · (𝐼‘(𝑁 − 2))))
170166, 168, 1693eqtr3d 2864 1 (𝜑 → (𝐼𝑁) = (((𝑁 − 1) / 𝑁) · (𝐼‘(𝑁 − 2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  Vcvv 3494  wss 3936   class class class wbr 5066  cmpt 5146  dom cdm 5555  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542   < clt 10675  cmin 10870  -cneg 10871   / cdiv 11297  cn 11638  2c2 11693  0cn0 11898  cz 11982  cuz 12244  (,)cioo 12739  [,]cicc 12742  cexp 13430  sincsin 15417  cosccos 15418  πcpi 15420  cnccncf 23484  volcvol 24064  𝐿1cibl 24218  citg 24219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cc 9857  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-symdif 4219  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-disj 5032  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-ofr 7410  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-omul 8107  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-acn 9371  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ioc 12744  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043  df-ef 15421  df-sin 15423  df-cos 15424  df-pi 15426  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-cmp 21995  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-ovol 24065  df-vol 24066  df-mbf 24220  df-itg1 24221  df-itg2 24222  df-ibl 24223  df-itg 24224  df-0p 24271  df-limc 24464  df-dv 24465
This theorem is referenced by:  wallispilem2  42400  wallispilem4  42402  wallispilem5  42403
  Copyright terms: Public domain W3C validator