Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgsinexp Structured version   Visualization version   GIF version

Theorem itgsinexp 45910
Description: A recursive formula for the integral of sin^N on the interval (0,π) . (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
itgsinexp.1 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)
itgsinexp.2 (𝜑𝑁 ∈ (ℤ‘2))
Assertion
Ref Expression
itgsinexp (𝜑 → (𝐼𝑁) = (((𝑁 − 1) / 𝑁) · (𝐼‘(𝑁 − 2))))
Distinct variable groups:   𝑥,𝑛,𝑁   𝜑,𝑛,𝑥
Allowed substitution hints:   𝐼(𝑥,𝑛)

Proof of Theorem itgsinexp
StepHypRef Expression
1 itgsinexp.2 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ‘2))
2 eluzelz 12885 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
3 zcn 12615 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
41, 2, 33syl 18 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
5 1cnd 11253 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
64, 5npcand 11621 . . . . . 6 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
76eqcomd 2740 . . . . 5 (𝜑𝑁 = ((𝑁 − 1) + 1))
87oveq1d 7445 . . . 4 (𝜑 → (𝑁 · (𝐼𝑁)) = (((𝑁 − 1) + 1) · (𝐼𝑁)))
9 uz2m1nn 12962 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)
101, 9syl 17 . . . . . 6 (𝜑 → (𝑁 − 1) ∈ ℕ)
1110nncnd 12279 . . . . 5 (𝜑 → (𝑁 − 1) ∈ ℂ)
12 itgsinexp.1 . . . . . . . 8 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)
1312a1i 11 . . . . . . 7 (𝜑𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥))
14 oveq2 7438 . . . . . . . . 9 (𝑛 = 𝑁 → ((sin‘𝑥)↑𝑛) = ((sin‘𝑥)↑𝑁))
1514ad2antlr 727 . . . . . . . 8 (((𝜑𝑛 = 𝑁) ∧ 𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑𝑛) = ((sin‘𝑥)↑𝑁))
1615itgeq2dv 25831 . . . . . . 7 ((𝜑𝑛 = 𝑁) → ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥 = ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥)
17 2cnd 12341 . . . . . . . . 9 (𝜑 → 2 ∈ ℂ)
18 npcan 11514 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ) → ((𝑁 − 2) + 2) = 𝑁)
1918eqcomd 2740 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ) → 𝑁 = ((𝑁 − 2) + 2))
204, 17, 19syl2anc 584 . . . . . . . 8 (𝜑𝑁 = ((𝑁 − 2) + 2))
21 uznn0sub 12914 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (𝑁 − 2) ∈ ℕ0)
221, 21syl 17 . . . . . . . . 9 (𝜑 → (𝑁 − 2) ∈ ℕ0)
23 2nn0 12540 . . . . . . . . . 10 2 ∈ ℕ0
2423a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℕ0)
2522, 24nn0addcld 12588 . . . . . . . 8 (𝜑 → ((𝑁 − 2) + 2) ∈ ℕ0)
2620, 25eqeltrd 2838 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
27 itgex 25819 . . . . . . . 8 ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥 ∈ V
2827a1i 11 . . . . . . 7 (𝜑 → ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥 ∈ V)
2913, 16, 26, 28fvmptd 7022 . . . . . 6 (𝜑 → (𝐼𝑁) = ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥)
30 ioosscn 13445 . . . . . . . . . . 11 (0(,)π) ⊆ ℂ
3130sseli 3990 . . . . . . . . . 10 (𝑥 ∈ (0(,)π) → 𝑥 ∈ ℂ)
3231sincld 16162 . . . . . . . . 9 (𝑥 ∈ (0(,)π) → (sin‘𝑥) ∈ ℂ)
3332adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)π)) → (sin‘𝑥) ∈ ℂ)
3426adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)π)) → 𝑁 ∈ ℕ0)
3533, 34expcld 14182 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑𝑁) ∈ ℂ)
36 ioossicc 13469 . . . . . . . . 9 (0(,)π) ⊆ (0[,]π)
3736a1i 11 . . . . . . . 8 (𝜑 → (0(,)π) ⊆ (0[,]π))
38 ioombl 25613 . . . . . . . . 9 (0(,)π) ∈ dom vol
3938a1i 11 . . . . . . . 8 (𝜑 → (0(,)π) ∈ dom vol)
40 0re 11260 . . . . . . . . . . . . . 14 0 ∈ ℝ
41 pire 26514 . . . . . . . . . . . . . 14 π ∈ ℝ
42 iccssre 13465 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ π ∈ ℝ) → (0[,]π) ⊆ ℝ)
4340, 41, 42mp2an 692 . . . . . . . . . . . . 13 (0[,]π) ⊆ ℝ
44 ax-resscn 11209 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
4543, 44sstri 4004 . . . . . . . . . . . 12 (0[,]π) ⊆ ℂ
4645sseli 3990 . . . . . . . . . . 11 (𝑥 ∈ (0[,]π) → 𝑥 ∈ ℂ)
4746sincld 16162 . . . . . . . . . 10 (𝑥 ∈ (0[,]π) → (sin‘𝑥) ∈ ℂ)
4847adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]π)) → (sin‘𝑥) ∈ ℂ)
4926adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]π)) → 𝑁 ∈ ℕ0)
5048, 49expcld 14182 . . . . . . . 8 ((𝜑𝑥 ∈ (0[,]π)) → ((sin‘𝑥)↑𝑁) ∈ ℂ)
5140a1i 11 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
5241a1i 11 . . . . . . . . 9 (𝜑 → π ∈ ℝ)
5346adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (0[,]π)) → 𝑥 ∈ ℂ)
54 eqid 2734 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁)) = (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))
5554fvmpt2 7026 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ ((sin‘𝑥)↑𝑁) ∈ ℂ) → ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))‘𝑥) = ((sin‘𝑥)↑𝑁))
5653, 50, 55syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (0[,]π)) → ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))‘𝑥) = ((sin‘𝑥)↑𝑁))
5756eqcomd 2740 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (0[,]π)) → ((sin‘𝑥)↑𝑁) = ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))‘𝑥))
5857mpteq2dva 5247 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑𝑁)) = (𝑥 ∈ (0[,]π) ↦ ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))‘𝑥)))
59 nfmpt1 5255 . . . . . . . . . . 11 𝑥(𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))
60 nfcv 2902 . . . . . . . . . . . 12 𝑥sin
61 sincn 26502 . . . . . . . . . . . . 13 sin ∈ (ℂ–cn→ℂ)
6261a1i 11 . . . . . . . . . . . 12 (𝜑 → sin ∈ (ℂ–cn→ℂ))
6360, 62, 26expcnfg 45546 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁)) ∈ (ℂ–cn→ℂ))
6445a1i 11 . . . . . . . . . . 11 (𝜑 → (0[,]π) ⊆ ℂ)
6559, 63, 64cncfmptss 45542 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0[,]π) ↦ ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))‘𝑥)) ∈ ((0[,]π)–cn→ℂ))
6658, 65eqeltrd 2838 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑𝑁)) ∈ ((0[,]π)–cn→ℂ))
67 cniccibl 25890 . . . . . . . . 9 ((0 ∈ ℝ ∧ π ∈ ℝ ∧ (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑𝑁)) ∈ ((0[,]π)–cn→ℂ)) → (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑𝑁)) ∈ 𝐿1)
6851, 52, 66, 67syl3anc 1370 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑𝑁)) ∈ 𝐿1)
6937, 39, 50, 68iblss 25854 . . . . . . 7 (𝜑 → (𝑥 ∈ (0(,)π) ↦ ((sin‘𝑥)↑𝑁)) ∈ 𝐿1)
7035, 69itgcl 25833 . . . . . 6 (𝜑 → ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥 ∈ ℂ)
7129, 70eqeltrd 2838 . . . . 5 (𝜑 → (𝐼𝑁) ∈ ℂ)
7211, 71adddirp1d 11284 . . . 4 (𝜑 → (((𝑁 − 1) + 1) · (𝐼𝑁)) = (((𝑁 − 1) · (𝐼𝑁)) + (𝐼𝑁)))
73 eluz2b2 12960 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁))
741, 73sylib 218 . . . . . . . . . . 11 (𝜑 → (𝑁 ∈ ℕ ∧ 1 < 𝑁))
7574simpld 494 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
76 expm1t 14127 . . . . . . . . . 10 (((sin‘𝑥) ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((sin‘𝑥)↑𝑁) = (((sin‘𝑥)↑(𝑁 − 1)) · (sin‘𝑥)))
7732, 75, 76syl2anr 597 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑𝑁) = (((sin‘𝑥)↑(𝑁 − 1)) · (sin‘𝑥)))
7877itgeq2dv 25831 . . . . . . . 8 (𝜑 → ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥 = ∫(0(,)π)(((sin‘𝑥)↑(𝑁 − 1)) · (sin‘𝑥)) d𝑥)
79 eqid 2734 . . . . . . . . . 10 (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 1))) = (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 1)))
80 eqid 2734 . . . . . . . . . 10 (𝑥 ∈ ℂ ↦ -(cos‘𝑥)) = (𝑥 ∈ ℂ ↦ -(cos‘𝑥))
81 eqid 2734 . . . . . . . . . 10 (𝑥 ∈ ℂ ↦ (((𝑁 − 1) · ((sin‘𝑥)↑((𝑁 − 1) − 1))) · (cos‘𝑥))) = (𝑥 ∈ ℂ ↦ (((𝑁 − 1) · ((sin‘𝑥)↑((𝑁 − 1) − 1))) · (cos‘𝑥)))
82 eqid 2734 . . . . . . . . . 10 (𝑥 ∈ ℂ ↦ (((sin‘𝑥)↑(𝑁 − 1)) · (sin‘𝑥))) = (𝑥 ∈ ℂ ↦ (((sin‘𝑥)↑(𝑁 − 1)) · (sin‘𝑥)))
83 eqid 2734 . . . . . . . . . 10 (𝑥 ∈ ℂ ↦ ((((𝑁 − 1) · ((sin‘𝑥)↑((𝑁 − 1) − 1))) · (cos‘𝑥)) · -(cos‘𝑥))) = (𝑥 ∈ ℂ ↦ ((((𝑁 − 1) · ((sin‘𝑥)↑((𝑁 − 1) − 1))) · (cos‘𝑥)) · -(cos‘𝑥)))
84 eqid 2734 . . . . . . . . . 10 (𝑥 ∈ ℂ ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑((𝑁 − 1) − 1)))) = (𝑥 ∈ ℂ ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑((𝑁 − 1) − 1))))
8579, 80, 81, 82, 83, 84, 10itgsinexplem1 45909 . . . . . . . . 9 (𝜑 → ∫(0(,)π)(((sin‘𝑥)↑(𝑁 − 1)) · (sin‘𝑥)) d𝑥 = ((𝑁 − 1) · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑((𝑁 − 1) − 1))) d𝑥))
864, 5, 5subsub4d 11648 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑁 − 1) − 1) = (𝑁 − (1 + 1)))
87 1p1e2 12388 . . . . . . . . . . . . . . . . 17 (1 + 1) = 2
8887a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → (1 + 1) = 2)
8988oveq2d 7446 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 − (1 + 1)) = (𝑁 − 2))
9086, 89eqtrd 2774 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 − 1) − 1) = (𝑁 − 2))
9190adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (0(,)π)) → ((𝑁 − 1) − 1) = (𝑁 − 2))
9291oveq2d 7446 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑((𝑁 − 1) − 1)) = ((sin‘𝑥)↑(𝑁 − 2)))
9392oveq2d 7446 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (0(,)π)) → (((cos‘𝑥)↑2) · ((sin‘𝑥)↑((𝑁 − 1) − 1))) = (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2))))
9493itgeq2dv 25831 . . . . . . . . . 10 (𝜑 → ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑((𝑁 − 1) − 1))) d𝑥 = ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2))) d𝑥)
9594oveq2d 7446 . . . . . . . . 9 (𝜑 → ((𝑁 − 1) · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑((𝑁 − 1) − 1))) d𝑥) = ((𝑁 − 1) · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2))) d𝑥))
96 sincossq 16208 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℂ → (((sin‘𝑥)↑2) + ((cos‘𝑥)↑2)) = 1)
97 1cnd 11253 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → 1 ∈ ℂ)
98 sincl 16158 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℂ → (sin‘𝑥) ∈ ℂ)
9998sqcld 14180 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → ((sin‘𝑥)↑2) ∈ ℂ)
100 coscl 16159 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℂ → (cos‘𝑥) ∈ ℂ)
101100sqcld 14180 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → ((cos‘𝑥)↑2) ∈ ℂ)
10297, 99, 101subaddd 11635 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℂ → ((1 − ((sin‘𝑥)↑2)) = ((cos‘𝑥)↑2) ↔ (((sin‘𝑥)↑2) + ((cos‘𝑥)↑2)) = 1))
10396, 102mpbird 257 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → (1 − ((sin‘𝑥)↑2)) = ((cos‘𝑥)↑2))
104103eqcomd 2740 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → ((cos‘𝑥)↑2) = (1 − ((sin‘𝑥)↑2)))
10531, 104syl 17 . . . . . . . . . . . . . 14 (𝑥 ∈ (0(,)π) → ((cos‘𝑥)↑2) = (1 − ((sin‘𝑥)↑2)))
106105oveq1d 7445 . . . . . . . . . . . . 13 (𝑥 ∈ (0(,)π) → (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2))) = ((1 − ((sin‘𝑥)↑2)) · ((sin‘𝑥)↑(𝑁 − 2))))
107106adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (0(,)π)) → (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2))) = ((1 − ((sin‘𝑥)↑2)) · ((sin‘𝑥)↑(𝑁 − 2))))
108107itgeq2dv 25831 . . . . . . . . . . 11 (𝜑 → ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2))) d𝑥 = ∫(0(,)π)((1 − ((sin‘𝑥)↑2)) · ((sin‘𝑥)↑(𝑁 − 2))) d𝑥)
109 1cnd 11253 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (0(,)π)) → 1 ∈ ℂ)
11032sqcld 14180 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0(,)π) → ((sin‘𝑥)↑2) ∈ ℂ)
111110adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑2) ∈ ℂ)
11290eqcomd 2740 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑁 − 2) = ((𝑁 − 1) − 1))
113 nnm1nn0 12564 . . . . . . . . . . . . . . . . . 18 ((𝑁 − 1) ∈ ℕ → ((𝑁 − 1) − 1) ∈ ℕ0)
11410, 113syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑁 − 1) − 1) ∈ ℕ0)
115112, 114eqeltrd 2838 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 − 2) ∈ ℕ0)
116115adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (0(,)π)) → (𝑁 − 2) ∈ ℕ0)
11733, 116expcld 14182 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑(𝑁 − 2)) ∈ ℂ)
118109, 111, 117subdird 11717 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (0(,)π)) → ((1 − ((sin‘𝑥)↑2)) · ((sin‘𝑥)↑(𝑁 − 2))) = ((1 · ((sin‘𝑥)↑(𝑁 − 2))) − (((sin‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2)))))
119117mullidd 11276 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (0(,)π)) → (1 · ((sin‘𝑥)↑(𝑁 − 2))) = ((sin‘𝑥)↑(𝑁 − 2)))
12023a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (0(,)π)) → 2 ∈ ℕ0)
12133, 116, 120expaddd 14184 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑(2 + (𝑁 − 2))) = (((sin‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2))))
12217, 4pncan3d 11620 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 + (𝑁 − 2)) = 𝑁)
123122oveq2d 7446 . . . . . . . . . . . . . . . 16 (𝜑 → ((sin‘𝑥)↑(2 + (𝑁 − 2))) = ((sin‘𝑥)↑𝑁))
124123adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑(2 + (𝑁 − 2))) = ((sin‘𝑥)↑𝑁))
125121, 124eqtr3d 2776 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (0(,)π)) → (((sin‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2))) = ((sin‘𝑥)↑𝑁))
126119, 125oveq12d 7448 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (0(,)π)) → ((1 · ((sin‘𝑥)↑(𝑁 − 2))) − (((sin‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2)))) = (((sin‘𝑥)↑(𝑁 − 2)) − ((sin‘𝑥)↑𝑁)))
127118, 126eqtrd 2774 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (0(,)π)) → ((1 − ((sin‘𝑥)↑2)) · ((sin‘𝑥)↑(𝑁 − 2))) = (((sin‘𝑥)↑(𝑁 − 2)) − ((sin‘𝑥)↑𝑁)))
128127itgeq2dv 25831 . . . . . . . . . . 11 (𝜑 → ∫(0(,)π)((1 − ((sin‘𝑥)↑2)) · ((sin‘𝑥)↑(𝑁 − 2))) d𝑥 = ∫(0(,)π)(((sin‘𝑥)↑(𝑁 − 2)) − ((sin‘𝑥)↑𝑁)) d𝑥)
129115adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (0[,]π)) → (𝑁 − 2) ∈ ℕ0)
13048, 129expcld 14182 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (0[,]π)) → ((sin‘𝑥)↑(𝑁 − 2)) ∈ ℂ)
131 eqid 2734 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 2))) = (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 2)))
132131fvmpt2 7026 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℂ ∧ ((sin‘𝑥)↑(𝑁 − 2)) ∈ ℂ) → ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 2)))‘𝑥) = ((sin‘𝑥)↑(𝑁 − 2)))
13353, 130, 132syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (0[,]π)) → ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 2)))‘𝑥) = ((sin‘𝑥)↑(𝑁 − 2)))
134133eqcomd 2740 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (0[,]π)) → ((sin‘𝑥)↑(𝑁 − 2)) = ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 2)))‘𝑥))
135134mpteq2dva 5247 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑(𝑁 − 2))) = (𝑥 ∈ (0[,]π) ↦ ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 2)))‘𝑥)))
136 nfmpt1 5255 . . . . . . . . . . . . . . . 16 𝑥(𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 2)))
13760, 62, 115expcnfg 45546 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 2))) ∈ (ℂ–cn→ℂ))
138136, 137, 64cncfmptss 45542 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 ∈ (0[,]π) ↦ ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 2)))‘𝑥)) ∈ ((0[,]π)–cn→ℂ))
139135, 138eqeltrd 2838 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑(𝑁 − 2))) ∈ ((0[,]π)–cn→ℂ))
140 cniccibl 25890 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ π ∈ ℝ ∧ (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑(𝑁 − 2))) ∈ ((0[,]π)–cn→ℂ)) → (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑(𝑁 − 2))) ∈ 𝐿1)
14151, 52, 139, 140syl3anc 1370 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑(𝑁 − 2))) ∈ 𝐿1)
14237, 39, 130, 141iblss 25854 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (0(,)π) ↦ ((sin‘𝑥)↑(𝑁 − 2))) ∈ 𝐿1)
143117, 142, 35, 69itgsub 25875 . . . . . . . . . . 11 (𝜑 → ∫(0(,)π)(((sin‘𝑥)↑(𝑁 − 2)) − ((sin‘𝑥)↑𝑁)) d𝑥 = (∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥 − ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥))
144108, 128, 1433eqtrd 2778 . . . . . . . . . 10 (𝜑 → ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2))) d𝑥 = (∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥 − ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥))
145144oveq2d 7446 . . . . . . . . 9 (𝜑 → ((𝑁 − 1) · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2))) d𝑥) = ((𝑁 − 1) · (∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥 − ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥)))
14685, 95, 1453eqtrd 2778 . . . . . . . 8 (𝜑 → ∫(0(,)π)(((sin‘𝑥)↑(𝑁 − 1)) · (sin‘𝑥)) d𝑥 = ((𝑁 − 1) · (∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥 − ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥)))
14729, 78, 1463eqtrd 2778 . . . . . . 7 (𝜑 → (𝐼𝑁) = ((𝑁 − 1) · (∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥 − ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥)))
148 oveq2 7438 . . . . . . . . . . . 12 (𝑛 = (𝑁 − 2) → ((sin‘𝑥)↑𝑛) = ((sin‘𝑥)↑(𝑁 − 2)))
149148adantr 480 . . . . . . . . . . 11 ((𝑛 = (𝑁 − 2) ∧ 𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑𝑛) = ((sin‘𝑥)↑(𝑁 − 2)))
150149itgeq2dv 25831 . . . . . . . . . 10 (𝑛 = (𝑁 − 2) → ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥 = ∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥)
151 itgex 25819 . . . . . . . . . . 11 ∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥 ∈ V
152151a1i 11 . . . . . . . . . 10 (𝜑 → ∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥 ∈ V)
15312, 150, 115, 152fvmptd3 7038 . . . . . . . . 9 (𝜑 → (𝐼‘(𝑁 − 2)) = ∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥)
154153, 29oveq12d 7448 . . . . . . . 8 (𝜑 → ((𝐼‘(𝑁 − 2)) − (𝐼𝑁)) = (∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥 − ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥))
155154oveq2d 7446 . . . . . . 7 (𝜑 → ((𝑁 − 1) · ((𝐼‘(𝑁 − 2)) − (𝐼𝑁))) = ((𝑁 − 1) · (∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥 − ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥)))
156117, 142itgcl 25833 . . . . . . . . 9 (𝜑 → ∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥 ∈ ℂ)
157153, 156eqeltrd 2838 . . . . . . . 8 (𝜑 → (𝐼‘(𝑁 − 2)) ∈ ℂ)
15811, 157, 71subdid 11716 . . . . . . 7 (𝜑 → ((𝑁 − 1) · ((𝐼‘(𝑁 − 2)) − (𝐼𝑁))) = (((𝑁 − 1) · (𝐼‘(𝑁 − 2))) − ((𝑁 − 1) · (𝐼𝑁))))
159147, 155, 1583eqtr2d 2780 . . . . . 6 (𝜑 → (𝐼𝑁) = (((𝑁 − 1) · (𝐼‘(𝑁 − 2))) − ((𝑁 − 1) · (𝐼𝑁))))
160159eqcomd 2740 . . . . 5 (𝜑 → (((𝑁 − 1) · (𝐼‘(𝑁 − 2))) − ((𝑁 − 1) · (𝐼𝑁))) = (𝐼𝑁))
16111, 157mulcld 11278 . . . . . 6 (𝜑 → ((𝑁 − 1) · (𝐼‘(𝑁 − 2))) ∈ ℂ)
16211, 71mulcld 11278 . . . . . 6 (𝜑 → ((𝑁 − 1) · (𝐼𝑁)) ∈ ℂ)
163161, 162, 71subaddd 11635 . . . . 5 (𝜑 → ((((𝑁 − 1) · (𝐼‘(𝑁 − 2))) − ((𝑁 − 1) · (𝐼𝑁))) = (𝐼𝑁) ↔ (((𝑁 − 1) · (𝐼𝑁)) + (𝐼𝑁)) = ((𝑁 − 1) · (𝐼‘(𝑁 − 2)))))
164160, 163mpbid 232 . . . 4 (𝜑 → (((𝑁 − 1) · (𝐼𝑁)) + (𝐼𝑁)) = ((𝑁 − 1) · (𝐼‘(𝑁 − 2))))
1658, 72, 1643eqtrd 2778 . . 3 (𝜑 → (𝑁 · (𝐼𝑁)) = ((𝑁 − 1) · (𝐼‘(𝑁 − 2))))
166165oveq1d 7445 . 2 (𝜑 → ((𝑁 · (𝐼𝑁)) / 𝑁) = (((𝑁 − 1) · (𝐼‘(𝑁 − 2))) / 𝑁))
16775nnne0d 12313 . . 3 (𝜑𝑁 ≠ 0)
16871, 4, 167divcan3d 12045 . 2 (𝜑 → ((𝑁 · (𝐼𝑁)) / 𝑁) = (𝐼𝑁))
16911, 157, 4, 167div23d 12077 . 2 (𝜑 → (((𝑁 − 1) · (𝐼‘(𝑁 − 2))) / 𝑁) = (((𝑁 − 1) / 𝑁) · (𝐼‘(𝑁 − 2))))
170166, 168, 1693eqtr3d 2782 1 (𝜑 → (𝐼𝑁) = (((𝑁 − 1) / 𝑁) · (𝐼‘(𝑁 − 2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  Vcvv 3477  wss 3962   class class class wbr 5147  cmpt 5230  dom cdm 5688  cfv 6562  (class class class)co 7430  cc 11150  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157   < clt 11292  cmin 11489  -cneg 11490   / cdiv 11917  cn 12263  2c2 12318  0cn0 12523  cz 12610  cuz 12875  (,)cioo 13383  [,]cicc 13386  cexp 14098  sincsin 16095  cosccos 16096  πcpi 16098  cnccncf 24915  volcvol 25511  𝐿1cibl 25665  citg 25666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cc 10472  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-symdif 4258  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-disj 5115  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-ofr 7697  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-omul 8509  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-dju 9938  df-card 9976  df-acn 9979  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ioc 13388  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-fac 14309  df-bc 14338  df-hash 14366  df-shft 15102  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719  df-ef 16099  df-sin 16101  df-cos 16102  df-pi 16104  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-perf 23160  df-cn 23250  df-cnp 23251  df-haus 23338  df-cmp 23410  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cncf 24917  df-ovol 25512  df-vol 25513  df-mbf 25667  df-itg1 25668  df-itg2 25669  df-ibl 25670  df-itg 25671  df-0p 25718  df-limc 25915  df-dv 25916
This theorem is referenced by:  wallispilem2  46021  wallispilem4  46023  wallispilem5  46024
  Copyright terms: Public domain W3C validator