Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgsinexp Structured version   Visualization version   GIF version

Theorem itgsinexp 43386
Description: A recursive formula for the integral of sin^N on the interval (0,π) . (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
itgsinexp.1 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)
itgsinexp.2 (𝜑𝑁 ∈ (ℤ‘2))
Assertion
Ref Expression
itgsinexp (𝜑 → (𝐼𝑁) = (((𝑁 − 1) / 𝑁) · (𝐼‘(𝑁 − 2))))
Distinct variable groups:   𝑥,𝑛,𝑁   𝜑,𝑛,𝑥
Allowed substitution hints:   𝐼(𝑥,𝑛)

Proof of Theorem itgsinexp
StepHypRef Expression
1 itgsinexp.2 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ‘2))
2 eluzelz 12521 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
3 zcn 12254 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
41, 2, 33syl 18 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
5 1cnd 10901 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
64, 5npcand 11266 . . . . . 6 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
76eqcomd 2744 . . . . 5 (𝜑𝑁 = ((𝑁 − 1) + 1))
87oveq1d 7270 . . . 4 (𝜑 → (𝑁 · (𝐼𝑁)) = (((𝑁 − 1) + 1) · (𝐼𝑁)))
9 uz2m1nn 12592 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)
101, 9syl 17 . . . . . 6 (𝜑 → (𝑁 − 1) ∈ ℕ)
1110nncnd 11919 . . . . 5 (𝜑 → (𝑁 − 1) ∈ ℂ)
12 itgsinexp.1 . . . . . . . 8 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)
1312a1i 11 . . . . . . 7 (𝜑𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥))
14 oveq2 7263 . . . . . . . . 9 (𝑛 = 𝑁 → ((sin‘𝑥)↑𝑛) = ((sin‘𝑥)↑𝑁))
1514ad2antlr 723 . . . . . . . 8 (((𝜑𝑛 = 𝑁) ∧ 𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑𝑛) = ((sin‘𝑥)↑𝑁))
1615itgeq2dv 24851 . . . . . . 7 ((𝜑𝑛 = 𝑁) → ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥 = ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥)
17 2cnd 11981 . . . . . . . . 9 (𝜑 → 2 ∈ ℂ)
18 npcan 11160 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ) → ((𝑁 − 2) + 2) = 𝑁)
1918eqcomd 2744 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ) → 𝑁 = ((𝑁 − 2) + 2))
204, 17, 19syl2anc 583 . . . . . . . 8 (𝜑𝑁 = ((𝑁 − 2) + 2))
21 uznn0sub 12546 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (𝑁 − 2) ∈ ℕ0)
221, 21syl 17 . . . . . . . . 9 (𝜑 → (𝑁 − 2) ∈ ℕ0)
23 2nn0 12180 . . . . . . . . . 10 2 ∈ ℕ0
2423a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℕ0)
2522, 24nn0addcld 12227 . . . . . . . 8 (𝜑 → ((𝑁 − 2) + 2) ∈ ℕ0)
2620, 25eqeltrd 2839 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
27 itgex 24840 . . . . . . . 8 ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥 ∈ V
2827a1i 11 . . . . . . 7 (𝜑 → ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥 ∈ V)
2913, 16, 26, 28fvmptd 6864 . . . . . 6 (𝜑 → (𝐼𝑁) = ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥)
30 ioosscn 13070 . . . . . . . . . . 11 (0(,)π) ⊆ ℂ
3130sseli 3913 . . . . . . . . . 10 (𝑥 ∈ (0(,)π) → 𝑥 ∈ ℂ)
3231sincld 15767 . . . . . . . . 9 (𝑥 ∈ (0(,)π) → (sin‘𝑥) ∈ ℂ)
3332adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)π)) → (sin‘𝑥) ∈ ℂ)
3426adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)π)) → 𝑁 ∈ ℕ0)
3533, 34expcld 13792 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑𝑁) ∈ ℂ)
36 ioossicc 13094 . . . . . . . . 9 (0(,)π) ⊆ (0[,]π)
3736a1i 11 . . . . . . . 8 (𝜑 → (0(,)π) ⊆ (0[,]π))
38 ioombl 24634 . . . . . . . . 9 (0(,)π) ∈ dom vol
3938a1i 11 . . . . . . . 8 (𝜑 → (0(,)π) ∈ dom vol)
40 0re 10908 . . . . . . . . . . . . . 14 0 ∈ ℝ
41 pire 25520 . . . . . . . . . . . . . 14 π ∈ ℝ
42 iccssre 13090 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ π ∈ ℝ) → (0[,]π) ⊆ ℝ)
4340, 41, 42mp2an 688 . . . . . . . . . . . . 13 (0[,]π) ⊆ ℝ
44 ax-resscn 10859 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
4543, 44sstri 3926 . . . . . . . . . . . 12 (0[,]π) ⊆ ℂ
4645sseli 3913 . . . . . . . . . . 11 (𝑥 ∈ (0[,]π) → 𝑥 ∈ ℂ)
4746sincld 15767 . . . . . . . . . 10 (𝑥 ∈ (0[,]π) → (sin‘𝑥) ∈ ℂ)
4847adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]π)) → (sin‘𝑥) ∈ ℂ)
4926adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]π)) → 𝑁 ∈ ℕ0)
5048, 49expcld 13792 . . . . . . . 8 ((𝜑𝑥 ∈ (0[,]π)) → ((sin‘𝑥)↑𝑁) ∈ ℂ)
5140a1i 11 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
5241a1i 11 . . . . . . . . 9 (𝜑 → π ∈ ℝ)
5346adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (0[,]π)) → 𝑥 ∈ ℂ)
54 eqid 2738 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁)) = (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))
5554fvmpt2 6868 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ ((sin‘𝑥)↑𝑁) ∈ ℂ) → ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))‘𝑥) = ((sin‘𝑥)↑𝑁))
5653, 50, 55syl2anc 583 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (0[,]π)) → ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))‘𝑥) = ((sin‘𝑥)↑𝑁))
5756eqcomd 2744 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (0[,]π)) → ((sin‘𝑥)↑𝑁) = ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))‘𝑥))
5857mpteq2dva 5170 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑𝑁)) = (𝑥 ∈ (0[,]π) ↦ ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))‘𝑥)))
59 nfmpt1 5178 . . . . . . . . . . 11 𝑥(𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))
60 nfcv 2906 . . . . . . . . . . . 12 𝑥sin
61 sincn 25508 . . . . . . . . . . . . 13 sin ∈ (ℂ–cn→ℂ)
6261a1i 11 . . . . . . . . . . . 12 (𝜑 → sin ∈ (ℂ–cn→ℂ))
6360, 62, 26expcnfg 43022 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁)) ∈ (ℂ–cn→ℂ))
6445a1i 11 . . . . . . . . . . 11 (𝜑 → (0[,]π) ⊆ ℂ)
6559, 63, 64cncfmptss 43018 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0[,]π) ↦ ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))‘𝑥)) ∈ ((0[,]π)–cn→ℂ))
6658, 65eqeltrd 2839 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑𝑁)) ∈ ((0[,]π)–cn→ℂ))
67 cniccibl 24910 . . . . . . . . 9 ((0 ∈ ℝ ∧ π ∈ ℝ ∧ (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑𝑁)) ∈ ((0[,]π)–cn→ℂ)) → (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑𝑁)) ∈ 𝐿1)
6851, 52, 66, 67syl3anc 1369 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑𝑁)) ∈ 𝐿1)
6937, 39, 50, 68iblss 24874 . . . . . . 7 (𝜑 → (𝑥 ∈ (0(,)π) ↦ ((sin‘𝑥)↑𝑁)) ∈ 𝐿1)
7035, 69itgcl 24853 . . . . . 6 (𝜑 → ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥 ∈ ℂ)
7129, 70eqeltrd 2839 . . . . 5 (𝜑 → (𝐼𝑁) ∈ ℂ)
7211, 71adddirp1d 10932 . . . 4 (𝜑 → (((𝑁 − 1) + 1) · (𝐼𝑁)) = (((𝑁 − 1) · (𝐼𝑁)) + (𝐼𝑁)))
73 eluz2b2 12590 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁))
741, 73sylib 217 . . . . . . . . . . 11 (𝜑 → (𝑁 ∈ ℕ ∧ 1 < 𝑁))
7574simpld 494 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
76 expm1t 13739 . . . . . . . . . 10 (((sin‘𝑥) ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((sin‘𝑥)↑𝑁) = (((sin‘𝑥)↑(𝑁 − 1)) · (sin‘𝑥)))
7732, 75, 76syl2anr 596 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑𝑁) = (((sin‘𝑥)↑(𝑁 − 1)) · (sin‘𝑥)))
7877itgeq2dv 24851 . . . . . . . 8 (𝜑 → ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥 = ∫(0(,)π)(((sin‘𝑥)↑(𝑁 − 1)) · (sin‘𝑥)) d𝑥)
79 eqid 2738 . . . . . . . . . 10 (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 1))) = (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 1)))
80 eqid 2738 . . . . . . . . . 10 (𝑥 ∈ ℂ ↦ -(cos‘𝑥)) = (𝑥 ∈ ℂ ↦ -(cos‘𝑥))
81 eqid 2738 . . . . . . . . . 10 (𝑥 ∈ ℂ ↦ (((𝑁 − 1) · ((sin‘𝑥)↑((𝑁 − 1) − 1))) · (cos‘𝑥))) = (𝑥 ∈ ℂ ↦ (((𝑁 − 1) · ((sin‘𝑥)↑((𝑁 − 1) − 1))) · (cos‘𝑥)))
82 eqid 2738 . . . . . . . . . 10 (𝑥 ∈ ℂ ↦ (((sin‘𝑥)↑(𝑁 − 1)) · (sin‘𝑥))) = (𝑥 ∈ ℂ ↦ (((sin‘𝑥)↑(𝑁 − 1)) · (sin‘𝑥)))
83 eqid 2738 . . . . . . . . . 10 (𝑥 ∈ ℂ ↦ ((((𝑁 − 1) · ((sin‘𝑥)↑((𝑁 − 1) − 1))) · (cos‘𝑥)) · -(cos‘𝑥))) = (𝑥 ∈ ℂ ↦ ((((𝑁 − 1) · ((sin‘𝑥)↑((𝑁 − 1) − 1))) · (cos‘𝑥)) · -(cos‘𝑥)))
84 eqid 2738 . . . . . . . . . 10 (𝑥 ∈ ℂ ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑((𝑁 − 1) − 1)))) = (𝑥 ∈ ℂ ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑((𝑁 − 1) − 1))))
8579, 80, 81, 82, 83, 84, 10itgsinexplem1 43385 . . . . . . . . 9 (𝜑 → ∫(0(,)π)(((sin‘𝑥)↑(𝑁 − 1)) · (sin‘𝑥)) d𝑥 = ((𝑁 − 1) · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑((𝑁 − 1) − 1))) d𝑥))
864, 5, 5subsub4d 11293 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑁 − 1) − 1) = (𝑁 − (1 + 1)))
87 1p1e2 12028 . . . . . . . . . . . . . . . . 17 (1 + 1) = 2
8887a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → (1 + 1) = 2)
8988oveq2d 7271 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 − (1 + 1)) = (𝑁 − 2))
9086, 89eqtrd 2778 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 − 1) − 1) = (𝑁 − 2))
9190adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (0(,)π)) → ((𝑁 − 1) − 1) = (𝑁 − 2))
9291oveq2d 7271 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑((𝑁 − 1) − 1)) = ((sin‘𝑥)↑(𝑁 − 2)))
9392oveq2d 7271 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (0(,)π)) → (((cos‘𝑥)↑2) · ((sin‘𝑥)↑((𝑁 − 1) − 1))) = (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2))))
9493itgeq2dv 24851 . . . . . . . . . 10 (𝜑 → ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑((𝑁 − 1) − 1))) d𝑥 = ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2))) d𝑥)
9594oveq2d 7271 . . . . . . . . 9 (𝜑 → ((𝑁 − 1) · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑((𝑁 − 1) − 1))) d𝑥) = ((𝑁 − 1) · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2))) d𝑥))
96 sincossq 15813 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℂ → (((sin‘𝑥)↑2) + ((cos‘𝑥)↑2)) = 1)
97 1cnd 10901 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → 1 ∈ ℂ)
98 sincl 15763 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℂ → (sin‘𝑥) ∈ ℂ)
9998sqcld 13790 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → ((sin‘𝑥)↑2) ∈ ℂ)
100 coscl 15764 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℂ → (cos‘𝑥) ∈ ℂ)
101100sqcld 13790 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → ((cos‘𝑥)↑2) ∈ ℂ)
10297, 99, 101subaddd 11280 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℂ → ((1 − ((sin‘𝑥)↑2)) = ((cos‘𝑥)↑2) ↔ (((sin‘𝑥)↑2) + ((cos‘𝑥)↑2)) = 1))
10396, 102mpbird 256 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → (1 − ((sin‘𝑥)↑2)) = ((cos‘𝑥)↑2))
104103eqcomd 2744 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → ((cos‘𝑥)↑2) = (1 − ((sin‘𝑥)↑2)))
10531, 104syl 17 . . . . . . . . . . . . . 14 (𝑥 ∈ (0(,)π) → ((cos‘𝑥)↑2) = (1 − ((sin‘𝑥)↑2)))
106105oveq1d 7270 . . . . . . . . . . . . 13 (𝑥 ∈ (0(,)π) → (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2))) = ((1 − ((sin‘𝑥)↑2)) · ((sin‘𝑥)↑(𝑁 − 2))))
107106adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (0(,)π)) → (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2))) = ((1 − ((sin‘𝑥)↑2)) · ((sin‘𝑥)↑(𝑁 − 2))))
108107itgeq2dv 24851 . . . . . . . . . . 11 (𝜑 → ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2))) d𝑥 = ∫(0(,)π)((1 − ((sin‘𝑥)↑2)) · ((sin‘𝑥)↑(𝑁 − 2))) d𝑥)
109 1cnd 10901 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (0(,)π)) → 1 ∈ ℂ)
11032sqcld 13790 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0(,)π) → ((sin‘𝑥)↑2) ∈ ℂ)
111110adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑2) ∈ ℂ)
11290eqcomd 2744 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑁 − 2) = ((𝑁 − 1) − 1))
113 nnm1nn0 12204 . . . . . . . . . . . . . . . . . 18 ((𝑁 − 1) ∈ ℕ → ((𝑁 − 1) − 1) ∈ ℕ0)
11410, 113syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑁 − 1) − 1) ∈ ℕ0)
115112, 114eqeltrd 2839 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 − 2) ∈ ℕ0)
116115adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (0(,)π)) → (𝑁 − 2) ∈ ℕ0)
11733, 116expcld 13792 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑(𝑁 − 2)) ∈ ℂ)
118109, 111, 117subdird 11362 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (0(,)π)) → ((1 − ((sin‘𝑥)↑2)) · ((sin‘𝑥)↑(𝑁 − 2))) = ((1 · ((sin‘𝑥)↑(𝑁 − 2))) − (((sin‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2)))))
119117mulid2d 10924 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (0(,)π)) → (1 · ((sin‘𝑥)↑(𝑁 − 2))) = ((sin‘𝑥)↑(𝑁 − 2)))
12023a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (0(,)π)) → 2 ∈ ℕ0)
12133, 116, 120expaddd 13794 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑(2 + (𝑁 − 2))) = (((sin‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2))))
12217, 4pncan3d 11265 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 + (𝑁 − 2)) = 𝑁)
123122oveq2d 7271 . . . . . . . . . . . . . . . 16 (𝜑 → ((sin‘𝑥)↑(2 + (𝑁 − 2))) = ((sin‘𝑥)↑𝑁))
124123adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑(2 + (𝑁 − 2))) = ((sin‘𝑥)↑𝑁))
125121, 124eqtr3d 2780 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (0(,)π)) → (((sin‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2))) = ((sin‘𝑥)↑𝑁))
126119, 125oveq12d 7273 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (0(,)π)) → ((1 · ((sin‘𝑥)↑(𝑁 − 2))) − (((sin‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2)))) = (((sin‘𝑥)↑(𝑁 − 2)) − ((sin‘𝑥)↑𝑁)))
127118, 126eqtrd 2778 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (0(,)π)) → ((1 − ((sin‘𝑥)↑2)) · ((sin‘𝑥)↑(𝑁 − 2))) = (((sin‘𝑥)↑(𝑁 − 2)) − ((sin‘𝑥)↑𝑁)))
128127itgeq2dv 24851 . . . . . . . . . . 11 (𝜑 → ∫(0(,)π)((1 − ((sin‘𝑥)↑2)) · ((sin‘𝑥)↑(𝑁 − 2))) d𝑥 = ∫(0(,)π)(((sin‘𝑥)↑(𝑁 − 2)) − ((sin‘𝑥)↑𝑁)) d𝑥)
129115adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (0[,]π)) → (𝑁 − 2) ∈ ℕ0)
13048, 129expcld 13792 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (0[,]π)) → ((sin‘𝑥)↑(𝑁 − 2)) ∈ ℂ)
131 eqid 2738 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 2))) = (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 2)))
132131fvmpt2 6868 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℂ ∧ ((sin‘𝑥)↑(𝑁 − 2)) ∈ ℂ) → ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 2)))‘𝑥) = ((sin‘𝑥)↑(𝑁 − 2)))
13353, 130, 132syl2anc 583 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (0[,]π)) → ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 2)))‘𝑥) = ((sin‘𝑥)↑(𝑁 − 2)))
134133eqcomd 2744 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (0[,]π)) → ((sin‘𝑥)↑(𝑁 − 2)) = ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 2)))‘𝑥))
135134mpteq2dva 5170 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑(𝑁 − 2))) = (𝑥 ∈ (0[,]π) ↦ ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 2)))‘𝑥)))
136 nfmpt1 5178 . . . . . . . . . . . . . . . 16 𝑥(𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 2)))
13760, 62, 115expcnfg 43022 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 2))) ∈ (ℂ–cn→ℂ))
138136, 137, 64cncfmptss 43018 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 ∈ (0[,]π) ↦ ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 2)))‘𝑥)) ∈ ((0[,]π)–cn→ℂ))
139135, 138eqeltrd 2839 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑(𝑁 − 2))) ∈ ((0[,]π)–cn→ℂ))
140 cniccibl 24910 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ π ∈ ℝ ∧ (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑(𝑁 − 2))) ∈ ((0[,]π)–cn→ℂ)) → (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑(𝑁 − 2))) ∈ 𝐿1)
14151, 52, 139, 140syl3anc 1369 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑(𝑁 − 2))) ∈ 𝐿1)
14237, 39, 130, 141iblss 24874 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (0(,)π) ↦ ((sin‘𝑥)↑(𝑁 − 2))) ∈ 𝐿1)
143117, 142, 35, 69itgsub 24895 . . . . . . . . . . 11 (𝜑 → ∫(0(,)π)(((sin‘𝑥)↑(𝑁 − 2)) − ((sin‘𝑥)↑𝑁)) d𝑥 = (∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥 − ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥))
144108, 128, 1433eqtrd 2782 . . . . . . . . . 10 (𝜑 → ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2))) d𝑥 = (∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥 − ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥))
145144oveq2d 7271 . . . . . . . . 9 (𝜑 → ((𝑁 − 1) · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2))) d𝑥) = ((𝑁 − 1) · (∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥 − ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥)))
14685, 95, 1453eqtrd 2782 . . . . . . . 8 (𝜑 → ∫(0(,)π)(((sin‘𝑥)↑(𝑁 − 1)) · (sin‘𝑥)) d𝑥 = ((𝑁 − 1) · (∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥 − ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥)))
14729, 78, 1463eqtrd 2782 . . . . . . 7 (𝜑 → (𝐼𝑁) = ((𝑁 − 1) · (∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥 − ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥)))
148 oveq2 7263 . . . . . . . . . . . 12 (𝑛 = (𝑁 − 2) → ((sin‘𝑥)↑𝑛) = ((sin‘𝑥)↑(𝑁 − 2)))
149148adantr 480 . . . . . . . . . . 11 ((𝑛 = (𝑁 − 2) ∧ 𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑𝑛) = ((sin‘𝑥)↑(𝑁 − 2)))
150149itgeq2dv 24851 . . . . . . . . . 10 (𝑛 = (𝑁 − 2) → ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥 = ∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥)
151 itgex 24840 . . . . . . . . . . 11 ∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥 ∈ V
152151a1i 11 . . . . . . . . . 10 (𝜑 → ∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥 ∈ V)
15312, 150, 115, 152fvmptd3 6880 . . . . . . . . 9 (𝜑 → (𝐼‘(𝑁 − 2)) = ∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥)
154153, 29oveq12d 7273 . . . . . . . 8 (𝜑 → ((𝐼‘(𝑁 − 2)) − (𝐼𝑁)) = (∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥 − ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥))
155154oveq2d 7271 . . . . . . 7 (𝜑 → ((𝑁 − 1) · ((𝐼‘(𝑁 − 2)) − (𝐼𝑁))) = ((𝑁 − 1) · (∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥 − ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥)))
156117, 142itgcl 24853 . . . . . . . . 9 (𝜑 → ∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥 ∈ ℂ)
157153, 156eqeltrd 2839 . . . . . . . 8 (𝜑 → (𝐼‘(𝑁 − 2)) ∈ ℂ)
15811, 157, 71subdid 11361 . . . . . . 7 (𝜑 → ((𝑁 − 1) · ((𝐼‘(𝑁 − 2)) − (𝐼𝑁))) = (((𝑁 − 1) · (𝐼‘(𝑁 − 2))) − ((𝑁 − 1) · (𝐼𝑁))))
159147, 155, 1583eqtr2d 2784 . . . . . 6 (𝜑 → (𝐼𝑁) = (((𝑁 − 1) · (𝐼‘(𝑁 − 2))) − ((𝑁 − 1) · (𝐼𝑁))))
160159eqcomd 2744 . . . . 5 (𝜑 → (((𝑁 − 1) · (𝐼‘(𝑁 − 2))) − ((𝑁 − 1) · (𝐼𝑁))) = (𝐼𝑁))
16111, 157mulcld 10926 . . . . . 6 (𝜑 → ((𝑁 − 1) · (𝐼‘(𝑁 − 2))) ∈ ℂ)
16211, 71mulcld 10926 . . . . . 6 (𝜑 → ((𝑁 − 1) · (𝐼𝑁)) ∈ ℂ)
163161, 162, 71subaddd 11280 . . . . 5 (𝜑 → ((((𝑁 − 1) · (𝐼‘(𝑁 − 2))) − ((𝑁 − 1) · (𝐼𝑁))) = (𝐼𝑁) ↔ (((𝑁 − 1) · (𝐼𝑁)) + (𝐼𝑁)) = ((𝑁 − 1) · (𝐼‘(𝑁 − 2)))))
164160, 163mpbid 231 . . . 4 (𝜑 → (((𝑁 − 1) · (𝐼𝑁)) + (𝐼𝑁)) = ((𝑁 − 1) · (𝐼‘(𝑁 − 2))))
1658, 72, 1643eqtrd 2782 . . 3 (𝜑 → (𝑁 · (𝐼𝑁)) = ((𝑁 − 1) · (𝐼‘(𝑁 − 2))))
166165oveq1d 7270 . 2 (𝜑 → ((𝑁 · (𝐼𝑁)) / 𝑁) = (((𝑁 − 1) · (𝐼‘(𝑁 − 2))) / 𝑁))
16775nnne0d 11953 . . 3 (𝜑𝑁 ≠ 0)
16871, 4, 167divcan3d 11686 . 2 (𝜑 → ((𝑁 · (𝐼𝑁)) / 𝑁) = (𝐼𝑁))
16911, 157, 4, 167div23d 11718 . 2 (𝜑 → (((𝑁 − 1) · (𝐼‘(𝑁 − 2))) / 𝑁) = (((𝑁 − 1) / 𝑁) · (𝐼‘(𝑁 − 2))))
170166, 168, 1693eqtr3d 2786 1 (𝜑 → (𝐼𝑁) = (((𝑁 − 1) / 𝑁) · (𝐼‘(𝑁 − 2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  wss 3883   class class class wbr 5070  cmpt 5153  dom cdm 5580  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cmin 11135  -cneg 11136   / cdiv 11562  cn 11903  2c2 11958  0cn0 12163  cz 12249  cuz 12511  (,)cioo 13008  [,]cicc 13011  cexp 13710  sincsin 15701  cosccos 15702  πcpi 15704  cnccncf 23945  volcvol 24532  𝐿1cibl 24686  citg 24687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cc 10122  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-symdif 4173  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-ovol 24533  df-vol 24534  df-mbf 24688  df-itg1 24689  df-itg2 24690  df-ibl 24691  df-itg 24692  df-0p 24739  df-limc 24935  df-dv 24936
This theorem is referenced by:  wallispilem2  43497  wallispilem4  43499  wallispilem5  43500
  Copyright terms: Public domain W3C validator