Step | Hyp | Ref
| Expression |
1 | | itgsinexp.2 |
. . . . . . . 8
β’ (π β π β
(β€β₯β2)) |
2 | | eluzelz 12836 |
. . . . . . . 8
β’ (π β
(β€β₯β2) β π β β€) |
3 | | zcn 12567 |
. . . . . . . 8
β’ (π β β€ β π β
β) |
4 | 1, 2, 3 | 3syl 18 |
. . . . . . 7
β’ (π β π β β) |
5 | | 1cnd 11213 |
. . . . . . 7
β’ (π β 1 β
β) |
6 | 4, 5 | npcand 11579 |
. . . . . 6
β’ (π β ((π β 1) + 1) = π) |
7 | 6 | eqcomd 2736 |
. . . . 5
β’ (π β π = ((π β 1) + 1)) |
8 | 7 | oveq1d 7426 |
. . . 4
β’ (π β (π Β· (πΌβπ)) = (((π β 1) + 1) Β· (πΌβπ))) |
9 | | uz2m1nn 12911 |
. . . . . . 7
β’ (π β
(β€β₯β2) β (π β 1) β β) |
10 | 1, 9 | syl 17 |
. . . . . 6
β’ (π β (π β 1) β β) |
11 | 10 | nncnd 12232 |
. . . . 5
β’ (π β (π β 1) β β) |
12 | | itgsinexp.1 |
. . . . . . . 8
β’ πΌ = (π β β0 β¦
β«(0(,)Ο)((sinβπ₯)βπ) dπ₯) |
13 | 12 | a1i 11 |
. . . . . . 7
β’ (π β πΌ = (π β β0 β¦
β«(0(,)Ο)((sinβπ₯)βπ) dπ₯)) |
14 | | oveq2 7419 |
. . . . . . . . 9
β’ (π = π β ((sinβπ₯)βπ) = ((sinβπ₯)βπ)) |
15 | 14 | ad2antlr 723 |
. . . . . . . 8
β’ (((π β§ π = π) β§ π₯ β (0(,)Ο)) β ((sinβπ₯)βπ) = ((sinβπ₯)βπ)) |
16 | 15 | itgeq2dv 25531 |
. . . . . . 7
β’ ((π β§ π = π) β β«(0(,)Ο)((sinβπ₯)βπ) dπ₯ = β«(0(,)Ο)((sinβπ₯)βπ) dπ₯) |
17 | | 2cnd 12294 |
. . . . . . . . 9
β’ (π β 2 β
β) |
18 | | npcan 11473 |
. . . . . . . . . 10
β’ ((π β β β§ 2 β
β) β ((π β
2) + 2) = π) |
19 | 18 | eqcomd 2736 |
. . . . . . . . 9
β’ ((π β β β§ 2 β
β) β π = ((π β 2) +
2)) |
20 | 4, 17, 19 | syl2anc 582 |
. . . . . . . 8
β’ (π β π = ((π β 2) + 2)) |
21 | | uznn0sub 12865 |
. . . . . . . . . 10
β’ (π β
(β€β₯β2) β (π β 2) β
β0) |
22 | 1, 21 | syl 17 |
. . . . . . . . 9
β’ (π β (π β 2) β
β0) |
23 | | 2nn0 12493 |
. . . . . . . . . 10
β’ 2 β
β0 |
24 | 23 | a1i 11 |
. . . . . . . . 9
β’ (π β 2 β
β0) |
25 | 22, 24 | nn0addcld 12540 |
. . . . . . . 8
β’ (π β ((π β 2) + 2) β
β0) |
26 | 20, 25 | eqeltrd 2831 |
. . . . . . 7
β’ (π β π β
β0) |
27 | | itgex 25520 |
. . . . . . . 8
β’
β«(0(,)Ο)((sinβπ₯)βπ) dπ₯ β V |
28 | 27 | a1i 11 |
. . . . . . 7
β’ (π β
β«(0(,)Ο)((sinβπ₯)βπ) dπ₯ β V) |
29 | 13, 16, 26, 28 | fvmptd 7004 |
. . . . . 6
β’ (π β (πΌβπ) = β«(0(,)Ο)((sinβπ₯)βπ) dπ₯) |
30 | | ioosscn 13390 |
. . . . . . . . . . 11
β’
(0(,)Ο) β β |
31 | 30 | sseli 3977 |
. . . . . . . . . 10
β’ (π₯ β (0(,)Ο) β π₯ β
β) |
32 | 31 | sincld 16077 |
. . . . . . . . 9
β’ (π₯ β (0(,)Ο) β
(sinβπ₯) β
β) |
33 | 32 | adantl 480 |
. . . . . . . 8
β’ ((π β§ π₯ β (0(,)Ο)) β (sinβπ₯) β
β) |
34 | 26 | adantr 479 |
. . . . . . . 8
β’ ((π β§ π₯ β (0(,)Ο)) β π β
β0) |
35 | 33, 34 | expcld 14115 |
. . . . . . 7
β’ ((π β§ π₯ β (0(,)Ο)) β ((sinβπ₯)βπ) β β) |
36 | | ioossicc 13414 |
. . . . . . . . 9
β’
(0(,)Ο) β (0[,]Ο) |
37 | 36 | a1i 11 |
. . . . . . . 8
β’ (π β (0(,)Ο) β
(0[,]Ο)) |
38 | | ioombl 25314 |
. . . . . . . . 9
β’
(0(,)Ο) β dom vol |
39 | 38 | a1i 11 |
. . . . . . . 8
β’ (π β (0(,)Ο) β dom
vol) |
40 | | 0re 11220 |
. . . . . . . . . . . . . 14
β’ 0 β
β |
41 | | pire 26204 |
. . . . . . . . . . . . . 14
β’ Ο
β β |
42 | | iccssre 13410 |
. . . . . . . . . . . . . 14
β’ ((0
β β β§ Ο β β) β (0[,]Ο) β
β) |
43 | 40, 41, 42 | mp2an 688 |
. . . . . . . . . . . . 13
β’
(0[,]Ο) β β |
44 | | ax-resscn 11169 |
. . . . . . . . . . . . 13
β’ β
β β |
45 | 43, 44 | sstri 3990 |
. . . . . . . . . . . 12
β’
(0[,]Ο) β β |
46 | 45 | sseli 3977 |
. . . . . . . . . . 11
β’ (π₯ β (0[,]Ο) β π₯ β
β) |
47 | 46 | sincld 16077 |
. . . . . . . . . 10
β’ (π₯ β (0[,]Ο) β
(sinβπ₯) β
β) |
48 | 47 | adantl 480 |
. . . . . . . . 9
β’ ((π β§ π₯ β (0[,]Ο)) β (sinβπ₯) β
β) |
49 | 26 | adantr 479 |
. . . . . . . . 9
β’ ((π β§ π₯ β (0[,]Ο)) β π β
β0) |
50 | 48, 49 | expcld 14115 |
. . . . . . . 8
β’ ((π β§ π₯ β (0[,]Ο)) β ((sinβπ₯)βπ) β β) |
51 | 40 | a1i 11 |
. . . . . . . . 9
β’ (π β 0 β
β) |
52 | 41 | a1i 11 |
. . . . . . . . 9
β’ (π β Ο β
β) |
53 | 46 | adantl 480 |
. . . . . . . . . . . . 13
β’ ((π β§ π₯ β (0[,]Ο)) β π₯ β β) |
54 | | eqid 2730 |
. . . . . . . . . . . . . 14
β’ (π₯ β β β¦
((sinβπ₯)βπ)) = (π₯ β β β¦ ((sinβπ₯)βπ)) |
55 | 54 | fvmpt2 7008 |
. . . . . . . . . . . . 13
β’ ((π₯ β β β§
((sinβπ₯)βπ) β β) β ((π₯ β β β¦
((sinβπ₯)βπ))βπ₯) = ((sinβπ₯)βπ)) |
56 | 53, 50, 55 | syl2anc 582 |
. . . . . . . . . . . 12
β’ ((π β§ π₯ β (0[,]Ο)) β ((π₯ β β β¦
((sinβπ₯)βπ))βπ₯) = ((sinβπ₯)βπ)) |
57 | 56 | eqcomd 2736 |
. . . . . . . . . . 11
β’ ((π β§ π₯ β (0[,]Ο)) β ((sinβπ₯)βπ) = ((π₯ β β β¦ ((sinβπ₯)βπ))βπ₯)) |
58 | 57 | mpteq2dva 5247 |
. . . . . . . . . 10
β’ (π β (π₯ β (0[,]Ο) β¦ ((sinβπ₯)βπ)) = (π₯ β (0[,]Ο) β¦ ((π₯ β β β¦
((sinβπ₯)βπ))βπ₯))) |
59 | | nfmpt1 5255 |
. . . . . . . . . . 11
β’
β²π₯(π₯ β β β¦ ((sinβπ₯)βπ)) |
60 | | nfcv 2901 |
. . . . . . . . . . . 12
β’
β²π₯sin |
61 | | sincn 26192 |
. . . . . . . . . . . . 13
β’ sin
β (ββcnββ) |
62 | 61 | a1i 11 |
. . . . . . . . . . . 12
β’ (π β sin β
(ββcnββ)) |
63 | 60, 62, 26 | expcnfg 44605 |
. . . . . . . . . . 11
β’ (π β (π₯ β β β¦ ((sinβπ₯)βπ)) β (ββcnββ)) |
64 | 45 | a1i 11 |
. . . . . . . . . . 11
β’ (π β (0[,]Ο) β
β) |
65 | 59, 63, 64 | cncfmptss 44601 |
. . . . . . . . . 10
β’ (π β (π₯ β (0[,]Ο) β¦ ((π₯ β β β¦
((sinβπ₯)βπ))βπ₯)) β ((0[,]Ο)βcnββ)) |
66 | 58, 65 | eqeltrd 2831 |
. . . . . . . . 9
β’ (π β (π₯ β (0[,]Ο) β¦ ((sinβπ₯)βπ)) β ((0[,]Ο)βcnββ)) |
67 | | cniccibl 25590 |
. . . . . . . . 9
β’ ((0
β β β§ Ο β β β§ (π₯ β (0[,]Ο) β¦ ((sinβπ₯)βπ)) β ((0[,]Ο)βcnββ)) β (π₯ β (0[,]Ο) β¦ ((sinβπ₯)βπ)) β
πΏ1) |
68 | 51, 52, 66, 67 | syl3anc 1369 |
. . . . . . . 8
β’ (π β (π₯ β (0[,]Ο) β¦ ((sinβπ₯)βπ)) β
πΏ1) |
69 | 37, 39, 50, 68 | iblss 25554 |
. . . . . . 7
β’ (π β (π₯ β (0(,)Ο) β¦ ((sinβπ₯)βπ)) β
πΏ1) |
70 | 35, 69 | itgcl 25533 |
. . . . . 6
β’ (π β
β«(0(,)Ο)((sinβπ₯)βπ) dπ₯ β β) |
71 | 29, 70 | eqeltrd 2831 |
. . . . 5
β’ (π β (πΌβπ) β β) |
72 | 11, 71 | adddirp1d 11244 |
. . . 4
β’ (π β (((π β 1) + 1) Β· (πΌβπ)) = (((π β 1) Β· (πΌβπ)) + (πΌβπ))) |
73 | | eluz2b2 12909 |
. . . . . . . . . . . 12
β’ (π β
(β€β₯β2) β (π β β β§ 1 < π)) |
74 | 1, 73 | sylib 217 |
. . . . . . . . . . 11
β’ (π β (π β β β§ 1 < π)) |
75 | 74 | simpld 493 |
. . . . . . . . . 10
β’ (π β π β β) |
76 | | expm1t 14060 |
. . . . . . . . . 10
β’
(((sinβπ₯)
β β β§ π
β β) β ((sinβπ₯)βπ) = (((sinβπ₯)β(π β 1)) Β· (sinβπ₯))) |
77 | 32, 75, 76 | syl2anr 595 |
. . . . . . . . 9
β’ ((π β§ π₯ β (0(,)Ο)) β ((sinβπ₯)βπ) = (((sinβπ₯)β(π β 1)) Β· (sinβπ₯))) |
78 | 77 | itgeq2dv 25531 |
. . . . . . . 8
β’ (π β
β«(0(,)Ο)((sinβπ₯)βπ) dπ₯ = β«(0(,)Ο)(((sinβπ₯)β(π β 1)) Β· (sinβπ₯)) dπ₯) |
79 | | eqid 2730 |
. . . . . . . . . 10
β’ (π₯ β β β¦
((sinβπ₯)β(π β 1))) = (π₯ β β β¦
((sinβπ₯)β(π β 1))) |
80 | | eqid 2730 |
. . . . . . . . . 10
β’ (π₯ β β β¦
-(cosβπ₯)) = (π₯ β β β¦
-(cosβπ₯)) |
81 | | eqid 2730 |
. . . . . . . . . 10
β’ (π₯ β β β¦ (((π β 1) Β·
((sinβπ₯)β((π β 1) β 1)))
Β· (cosβπ₯))) =
(π₯ β β β¦
(((π β 1) Β·
((sinβπ₯)β((π β 1) β 1)))
Β· (cosβπ₯))) |
82 | | eqid 2730 |
. . . . . . . . . 10
β’ (π₯ β β β¦
(((sinβπ₯)β(π β 1)) Β·
(sinβπ₯))) = (π₯ β β β¦
(((sinβπ₯)β(π β 1)) Β·
(sinβπ₯))) |
83 | | eqid 2730 |
. . . . . . . . . 10
β’ (π₯ β β β¦
((((π β 1) Β·
((sinβπ₯)β((π β 1) β 1)))
Β· (cosβπ₯))
Β· -(cosβπ₯))) =
(π₯ β β β¦
((((π β 1) Β·
((sinβπ₯)β((π β 1) β 1)))
Β· (cosβπ₯))
Β· -(cosβπ₯))) |
84 | | eqid 2730 |
. . . . . . . . . 10
β’ (π₯ β β β¦
(((cosβπ₯)β2)
Β· ((sinβπ₯)β((π β 1) β 1)))) = (π₯ β β β¦
(((cosβπ₯)β2)
Β· ((sinβπ₯)β((π β 1) β 1)))) |
85 | 79, 80, 81, 82, 83, 84, 10 | itgsinexplem1 44968 |
. . . . . . . . 9
β’ (π β
β«(0(,)Ο)(((sinβπ₯)β(π β 1)) Β· (sinβπ₯)) dπ₯ = ((π β 1) Β·
β«(0(,)Ο)(((cosβπ₯)β2) Β· ((sinβπ₯)β((π β 1) β 1))) dπ₯)) |
86 | 4, 5, 5 | subsub4d 11606 |
. . . . . . . . . . . . . . 15
β’ (π β ((π β 1) β 1) = (π β (1 + 1))) |
87 | | 1p1e2 12341 |
. . . . . . . . . . . . . . . . 17
β’ (1 + 1) =
2 |
88 | 87 | a1i 11 |
. . . . . . . . . . . . . . . 16
β’ (π β (1 + 1) =
2) |
89 | 88 | oveq2d 7427 |
. . . . . . . . . . . . . . 15
β’ (π β (π β (1 + 1)) = (π β 2)) |
90 | 86, 89 | eqtrd 2770 |
. . . . . . . . . . . . . 14
β’ (π β ((π β 1) β 1) = (π β 2)) |
91 | 90 | adantr 479 |
. . . . . . . . . . . . 13
β’ ((π β§ π₯ β (0(,)Ο)) β ((π β 1) β 1) = (π β 2)) |
92 | 91 | oveq2d 7427 |
. . . . . . . . . . . 12
β’ ((π β§ π₯ β (0(,)Ο)) β ((sinβπ₯)β((π β 1) β 1)) = ((sinβπ₯)β(π β 2))) |
93 | 92 | oveq2d 7427 |
. . . . . . . . . . 11
β’ ((π β§ π₯ β (0(,)Ο)) β (((cosβπ₯)β2) Β·
((sinβπ₯)β((π β 1) β 1))) =
(((cosβπ₯)β2)
Β· ((sinβπ₯)β(π β 2)))) |
94 | 93 | itgeq2dv 25531 |
. . . . . . . . . 10
β’ (π β
β«(0(,)Ο)(((cosβπ₯)β2) Β· ((sinβπ₯)β((π β 1) β 1))) dπ₯ = β«(0(,)Ο)(((cosβπ₯)β2) Β·
((sinβπ₯)β(π β 2))) dπ₯) |
95 | 94 | oveq2d 7427 |
. . . . . . . . 9
β’ (π β ((π β 1) Β·
β«(0(,)Ο)(((cosβπ₯)β2) Β· ((sinβπ₯)β((π β 1) β 1))) dπ₯) = ((π β 1) Β·
β«(0(,)Ο)(((cosβπ₯)β2) Β· ((sinβπ₯)β(π β 2))) dπ₯)) |
96 | | sincossq 16123 |
. . . . . . . . . . . . . . . . 17
β’ (π₯ β β β
(((sinβπ₯)β2) +
((cosβπ₯)β2)) =
1) |
97 | | 1cnd 11213 |
. . . . . . . . . . . . . . . . . 18
β’ (π₯ β β β 1 β
β) |
98 | | sincl 16073 |
. . . . . . . . . . . . . . . . . . 19
β’ (π₯ β β β
(sinβπ₯) β
β) |
99 | 98 | sqcld 14113 |
. . . . . . . . . . . . . . . . . 18
β’ (π₯ β β β
((sinβπ₯)β2)
β β) |
100 | | coscl 16074 |
. . . . . . . . . . . . . . . . . . 19
β’ (π₯ β β β
(cosβπ₯) β
β) |
101 | 100 | sqcld 14113 |
. . . . . . . . . . . . . . . . . 18
β’ (π₯ β β β
((cosβπ₯)β2)
β β) |
102 | 97, 99, 101 | subaddd 11593 |
. . . . . . . . . . . . . . . . 17
β’ (π₯ β β β ((1
β ((sinβπ₯)β2)) = ((cosβπ₯)β2) β (((sinβπ₯)β2) + ((cosβπ₯)β2)) =
1)) |
103 | 96, 102 | mpbird 256 |
. . . . . . . . . . . . . . . 16
β’ (π₯ β β β (1
β ((sinβπ₯)β2)) = ((cosβπ₯)β2)) |
104 | 103 | eqcomd 2736 |
. . . . . . . . . . . . . . 15
β’ (π₯ β β β
((cosβπ₯)β2) = (1
β ((sinβπ₯)β2))) |
105 | 31, 104 | syl 17 |
. . . . . . . . . . . . . 14
β’ (π₯ β (0(,)Ο) β
((cosβπ₯)β2) = (1
β ((sinβπ₯)β2))) |
106 | 105 | oveq1d 7426 |
. . . . . . . . . . . . 13
β’ (π₯ β (0(,)Ο) β
(((cosβπ₯)β2)
Β· ((sinβπ₯)β(π β 2))) = ((1 β
((sinβπ₯)β2))
Β· ((sinβπ₯)β(π β 2)))) |
107 | 106 | adantl 480 |
. . . . . . . . . . . 12
β’ ((π β§ π₯ β (0(,)Ο)) β (((cosβπ₯)β2) Β·
((sinβπ₯)β(π β 2))) = ((1 β
((sinβπ₯)β2))
Β· ((sinβπ₯)β(π β 2)))) |
108 | 107 | itgeq2dv 25531 |
. . . . . . . . . . 11
β’ (π β
β«(0(,)Ο)(((cosβπ₯)β2) Β· ((sinβπ₯)β(π β 2))) dπ₯ = β«(0(,)Ο)((1 β
((sinβπ₯)β2))
Β· ((sinβπ₯)β(π β 2))) dπ₯) |
109 | | 1cnd 11213 |
. . . . . . . . . . . . . 14
β’ ((π β§ π₯ β (0(,)Ο)) β 1 β
β) |
110 | 32 | sqcld 14113 |
. . . . . . . . . . . . . . 15
β’ (π₯ β (0(,)Ο) β
((sinβπ₯)β2)
β β) |
111 | 110 | adantl 480 |
. . . . . . . . . . . . . 14
β’ ((π β§ π₯ β (0(,)Ο)) β ((sinβπ₯)β2) β
β) |
112 | 90 | eqcomd 2736 |
. . . . . . . . . . . . . . . . 17
β’ (π β (π β 2) = ((π β 1) β 1)) |
113 | | nnm1nn0 12517 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β 1) β β
β ((π β 1)
β 1) β β0) |
114 | 10, 113 | syl 17 |
. . . . . . . . . . . . . . . . 17
β’ (π β ((π β 1) β 1) β
β0) |
115 | 112, 114 | eqeltrd 2831 |
. . . . . . . . . . . . . . . 16
β’ (π β (π β 2) β
β0) |
116 | 115 | adantr 479 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π₯ β (0(,)Ο)) β (π β 2) β
β0) |
117 | 33, 116 | expcld 14115 |
. . . . . . . . . . . . . 14
β’ ((π β§ π₯ β (0(,)Ο)) β ((sinβπ₯)β(π β 2)) β
β) |
118 | 109, 111,
117 | subdird 11675 |
. . . . . . . . . . . . 13
β’ ((π β§ π₯ β (0(,)Ο)) β ((1 β
((sinβπ₯)β2))
Β· ((sinβπ₯)β(π β 2))) = ((1 Β·
((sinβπ₯)β(π β 2))) β
(((sinβπ₯)β2)
Β· ((sinβπ₯)β(π β 2))))) |
119 | 117 | mullidd 11236 |
. . . . . . . . . . . . . 14
β’ ((π β§ π₯ β (0(,)Ο)) β (1 Β·
((sinβπ₯)β(π β 2))) =
((sinβπ₯)β(π β 2))) |
120 | 23 | a1i 11 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π₯ β (0(,)Ο)) β 2 β
β0) |
121 | 33, 116, 120 | expaddd 14117 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π₯ β (0(,)Ο)) β ((sinβπ₯)β(2 + (π β 2))) = (((sinβπ₯)β2) Β·
((sinβπ₯)β(π β 2)))) |
122 | 17, 4 | pncan3d 11578 |
. . . . . . . . . . . . . . . . 17
β’ (π β (2 + (π β 2)) = π) |
123 | 122 | oveq2d 7427 |
. . . . . . . . . . . . . . . 16
β’ (π β ((sinβπ₯)β(2 + (π β 2))) = ((sinβπ₯)βπ)) |
124 | 123 | adantr 479 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π₯ β (0(,)Ο)) β ((sinβπ₯)β(2 + (π β 2))) = ((sinβπ₯)βπ)) |
125 | 121, 124 | eqtr3d 2772 |
. . . . . . . . . . . . . 14
β’ ((π β§ π₯ β (0(,)Ο)) β (((sinβπ₯)β2) Β·
((sinβπ₯)β(π β 2))) =
((sinβπ₯)βπ)) |
126 | 119, 125 | oveq12d 7429 |
. . . . . . . . . . . . 13
β’ ((π β§ π₯ β (0(,)Ο)) β ((1 Β·
((sinβπ₯)β(π β 2))) β
(((sinβπ₯)β2)
Β· ((sinβπ₯)β(π β 2)))) = (((sinβπ₯)β(π β 2)) β ((sinβπ₯)βπ))) |
127 | 118, 126 | eqtrd 2770 |
. . . . . . . . . . . 12
β’ ((π β§ π₯ β (0(,)Ο)) β ((1 β
((sinβπ₯)β2))
Β· ((sinβπ₯)β(π β 2))) = (((sinβπ₯)β(π β 2)) β ((sinβπ₯)βπ))) |
128 | 127 | itgeq2dv 25531 |
. . . . . . . . . . 11
β’ (π β β«(0(,)Ο)((1 β
((sinβπ₯)β2))
Β· ((sinβπ₯)β(π β 2))) dπ₯ = β«(0(,)Ο)(((sinβπ₯)β(π β 2)) β ((sinβπ₯)βπ)) dπ₯) |
129 | 115 | adantr 479 |
. . . . . . . . . . . . . 14
β’ ((π β§ π₯ β (0[,]Ο)) β (π β 2) β
β0) |
130 | 48, 129 | expcld 14115 |
. . . . . . . . . . . . 13
β’ ((π β§ π₯ β (0[,]Ο)) β ((sinβπ₯)β(π β 2)) β
β) |
131 | | eqid 2730 |
. . . . . . . . . . . . . . . . . . 19
β’ (π₯ β β β¦
((sinβπ₯)β(π β 2))) = (π₯ β β β¦
((sinβπ₯)β(π β 2))) |
132 | 131 | fvmpt2 7008 |
. . . . . . . . . . . . . . . . . 18
β’ ((π₯ β β β§
((sinβπ₯)β(π β 2)) β β)
β ((π₯ β β
β¦ ((sinβπ₯)β(π β 2)))βπ₯) = ((sinβπ₯)β(π β 2))) |
133 | 53, 130, 132 | syl2anc 582 |
. . . . . . . . . . . . . . . . 17
β’ ((π β§ π₯ β (0[,]Ο)) β ((π₯ β β β¦
((sinβπ₯)β(π β 2)))βπ₯) = ((sinβπ₯)β(π β 2))) |
134 | 133 | eqcomd 2736 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π₯ β (0[,]Ο)) β ((sinβπ₯)β(π β 2)) = ((π₯ β β β¦ ((sinβπ₯)β(π β 2)))βπ₯)) |
135 | 134 | mpteq2dva 5247 |
. . . . . . . . . . . . . . 15
β’ (π β (π₯ β (0[,]Ο) β¦ ((sinβπ₯)β(π β 2))) = (π₯ β (0[,]Ο) β¦ ((π₯ β β β¦
((sinβπ₯)β(π β 2)))βπ₯))) |
136 | | nfmpt1 5255 |
. . . . . . . . . . . . . . . 16
β’
β²π₯(π₯ β β β¦ ((sinβπ₯)β(π β 2))) |
137 | 60, 62, 115 | expcnfg 44605 |
. . . . . . . . . . . . . . . 16
β’ (π β (π₯ β β β¦ ((sinβπ₯)β(π β 2))) β (ββcnββ)) |
138 | 136, 137,
64 | cncfmptss 44601 |
. . . . . . . . . . . . . . 15
β’ (π β (π₯ β (0[,]Ο) β¦ ((π₯ β β β¦
((sinβπ₯)β(π β 2)))βπ₯)) β
((0[,]Ο)βcnββ)) |
139 | 135, 138 | eqeltrd 2831 |
. . . . . . . . . . . . . 14
β’ (π β (π₯ β (0[,]Ο) β¦ ((sinβπ₯)β(π β 2))) β ((0[,]Ο)βcnββ)) |
140 | | cniccibl 25590 |
. . . . . . . . . . . . . 14
β’ ((0
β β β§ Ο β β β§ (π₯ β (0[,]Ο) β¦ ((sinβπ₯)β(π β 2))) β ((0[,]Ο)βcnββ)) β (π₯ β (0[,]Ο) β¦ ((sinβπ₯)β(π β 2))) β
πΏ1) |
141 | 51, 52, 139, 140 | syl3anc 1369 |
. . . . . . . . . . . . 13
β’ (π β (π₯ β (0[,]Ο) β¦ ((sinβπ₯)β(π β 2))) β
πΏ1) |
142 | 37, 39, 130, 141 | iblss 25554 |
. . . . . . . . . . . 12
β’ (π β (π₯ β (0(,)Ο) β¦ ((sinβπ₯)β(π β 2))) β
πΏ1) |
143 | 117, 142,
35, 69 | itgsub 25575 |
. . . . . . . . . . 11
β’ (π β
β«(0(,)Ο)(((sinβπ₯)β(π β 2)) β ((sinβπ₯)βπ)) dπ₯ = (β«(0(,)Ο)((sinβπ₯)β(π β 2)) dπ₯ β β«(0(,)Ο)((sinβπ₯)βπ) dπ₯)) |
144 | 108, 128,
143 | 3eqtrd 2774 |
. . . . . . . . . 10
β’ (π β
β«(0(,)Ο)(((cosβπ₯)β2) Β· ((sinβπ₯)β(π β 2))) dπ₯ = (β«(0(,)Ο)((sinβπ₯)β(π β 2)) dπ₯ β β«(0(,)Ο)((sinβπ₯)βπ) dπ₯)) |
145 | 144 | oveq2d 7427 |
. . . . . . . . 9
β’ (π β ((π β 1) Β·
β«(0(,)Ο)(((cosβπ₯)β2) Β· ((sinβπ₯)β(π β 2))) dπ₯) = ((π β 1) Β·
(β«(0(,)Ο)((sinβπ₯)β(π β 2)) dπ₯ β β«(0(,)Ο)((sinβπ₯)βπ) dπ₯))) |
146 | 85, 95, 145 | 3eqtrd 2774 |
. . . . . . . 8
β’ (π β
β«(0(,)Ο)(((sinβπ₯)β(π β 1)) Β· (sinβπ₯)) dπ₯ = ((π β 1) Β·
(β«(0(,)Ο)((sinβπ₯)β(π β 2)) dπ₯ β β«(0(,)Ο)((sinβπ₯)βπ) dπ₯))) |
147 | 29, 78, 146 | 3eqtrd 2774 |
. . . . . . 7
β’ (π β (πΌβπ) = ((π β 1) Β·
(β«(0(,)Ο)((sinβπ₯)β(π β 2)) dπ₯ β β«(0(,)Ο)((sinβπ₯)βπ) dπ₯))) |
148 | | oveq2 7419 |
. . . . . . . . . . . 12
β’ (π = (π β 2) β ((sinβπ₯)βπ) = ((sinβπ₯)β(π β 2))) |
149 | 148 | adantr 479 |
. . . . . . . . . . 11
β’ ((π = (π β 2) β§ π₯ β (0(,)Ο)) β ((sinβπ₯)βπ) = ((sinβπ₯)β(π β 2))) |
150 | 149 | itgeq2dv 25531 |
. . . . . . . . . 10
β’ (π = (π β 2) β
β«(0(,)Ο)((sinβπ₯)βπ) dπ₯ = β«(0(,)Ο)((sinβπ₯)β(π β 2)) dπ₯) |
151 | | itgex 25520 |
. . . . . . . . . . 11
β’
β«(0(,)Ο)((sinβπ₯)β(π β 2)) dπ₯ β V |
152 | 151 | a1i 11 |
. . . . . . . . . 10
β’ (π β
β«(0(,)Ο)((sinβπ₯)β(π β 2)) dπ₯ β V) |
153 | 12, 150, 115, 152 | fvmptd3 7020 |
. . . . . . . . 9
β’ (π β (πΌβ(π β 2)) =
β«(0(,)Ο)((sinβπ₯)β(π β 2)) dπ₯) |
154 | 153, 29 | oveq12d 7429 |
. . . . . . . 8
β’ (π β ((πΌβ(π β 2)) β (πΌβπ)) = (β«(0(,)Ο)((sinβπ₯)β(π β 2)) dπ₯ β β«(0(,)Ο)((sinβπ₯)βπ) dπ₯)) |
155 | 154 | oveq2d 7427 |
. . . . . . 7
β’ (π β ((π β 1) Β· ((πΌβ(π β 2)) β (πΌβπ))) = ((π β 1) Β·
(β«(0(,)Ο)((sinβπ₯)β(π β 2)) dπ₯ β β«(0(,)Ο)((sinβπ₯)βπ) dπ₯))) |
156 | 117, 142 | itgcl 25533 |
. . . . . . . . 9
β’ (π β
β«(0(,)Ο)((sinβπ₯)β(π β 2)) dπ₯ β β) |
157 | 153, 156 | eqeltrd 2831 |
. . . . . . . 8
β’ (π β (πΌβ(π β 2)) β
β) |
158 | 11, 157, 71 | subdid 11674 |
. . . . . . 7
β’ (π β ((π β 1) Β· ((πΌβ(π β 2)) β (πΌβπ))) = (((π β 1) Β· (πΌβ(π β 2))) β ((π β 1) Β· (πΌβπ)))) |
159 | 147, 155,
158 | 3eqtr2d 2776 |
. . . . . 6
β’ (π β (πΌβπ) = (((π β 1) Β· (πΌβ(π β 2))) β ((π β 1) Β· (πΌβπ)))) |
160 | 159 | eqcomd 2736 |
. . . . 5
β’ (π β (((π β 1) Β· (πΌβ(π β 2))) β ((π β 1) Β· (πΌβπ))) = (πΌβπ)) |
161 | 11, 157 | mulcld 11238 |
. . . . . 6
β’ (π β ((π β 1) Β· (πΌβ(π β 2))) β
β) |
162 | 11, 71 | mulcld 11238 |
. . . . . 6
β’ (π β ((π β 1) Β· (πΌβπ)) β β) |
163 | 161, 162,
71 | subaddd 11593 |
. . . . 5
β’ (π β ((((π β 1) Β· (πΌβ(π β 2))) β ((π β 1) Β· (πΌβπ))) = (πΌβπ) β (((π β 1) Β· (πΌβπ)) + (πΌβπ)) = ((π β 1) Β· (πΌβ(π β 2))))) |
164 | 160, 163 | mpbid 231 |
. . . 4
β’ (π β (((π β 1) Β· (πΌβπ)) + (πΌβπ)) = ((π β 1) Β· (πΌβ(π β 2)))) |
165 | 8, 72, 164 | 3eqtrd 2774 |
. . 3
β’ (π β (π Β· (πΌβπ)) = ((π β 1) Β· (πΌβ(π β 2)))) |
166 | 165 | oveq1d 7426 |
. 2
β’ (π β ((π Β· (πΌβπ)) / π) = (((π β 1) Β· (πΌβ(π β 2))) / π)) |
167 | 75 | nnne0d 12266 |
. . 3
β’ (π β π β 0) |
168 | 71, 4, 167 | divcan3d 11999 |
. 2
β’ (π β ((π Β· (πΌβπ)) / π) = (πΌβπ)) |
169 | 11, 157, 4, 167 | div23d 12031 |
. 2
β’ (π β (((π β 1) Β· (πΌβ(π β 2))) / π) = (((π β 1) / π) Β· (πΌβ(π β 2)))) |
170 | 166, 168,
169 | 3eqtr3d 2778 |
1
β’ (π β (πΌβπ) = (((π β 1) / π) Β· (πΌβ(π β 2)))) |