Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgsinexp Structured version   Visualization version   GIF version

Theorem itgsinexp 43496
Description: A recursive formula for the integral of sin^N on the interval (0,π) . (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
itgsinexp.1 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)
itgsinexp.2 (𝜑𝑁 ∈ (ℤ‘2))
Assertion
Ref Expression
itgsinexp (𝜑 → (𝐼𝑁) = (((𝑁 − 1) / 𝑁) · (𝐼‘(𝑁 − 2))))
Distinct variable groups:   𝑥,𝑛,𝑁   𝜑,𝑛,𝑥
Allowed substitution hints:   𝐼(𝑥,𝑛)

Proof of Theorem itgsinexp
StepHypRef Expression
1 itgsinexp.2 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ‘2))
2 eluzelz 12592 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
3 zcn 12324 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
41, 2, 33syl 18 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
5 1cnd 10970 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
64, 5npcand 11336 . . . . . 6 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
76eqcomd 2744 . . . . 5 (𝜑𝑁 = ((𝑁 − 1) + 1))
87oveq1d 7290 . . . 4 (𝜑 → (𝑁 · (𝐼𝑁)) = (((𝑁 − 1) + 1) · (𝐼𝑁)))
9 uz2m1nn 12663 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)
101, 9syl 17 . . . . . 6 (𝜑 → (𝑁 − 1) ∈ ℕ)
1110nncnd 11989 . . . . 5 (𝜑 → (𝑁 − 1) ∈ ℂ)
12 itgsinexp.1 . . . . . . . 8 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)
1312a1i 11 . . . . . . 7 (𝜑𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥))
14 oveq2 7283 . . . . . . . . 9 (𝑛 = 𝑁 → ((sin‘𝑥)↑𝑛) = ((sin‘𝑥)↑𝑁))
1514ad2antlr 724 . . . . . . . 8 (((𝜑𝑛 = 𝑁) ∧ 𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑𝑛) = ((sin‘𝑥)↑𝑁))
1615itgeq2dv 24946 . . . . . . 7 ((𝜑𝑛 = 𝑁) → ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥 = ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥)
17 2cnd 12051 . . . . . . . . 9 (𝜑 → 2 ∈ ℂ)
18 npcan 11230 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ) → ((𝑁 − 2) + 2) = 𝑁)
1918eqcomd 2744 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ) → 𝑁 = ((𝑁 − 2) + 2))
204, 17, 19syl2anc 584 . . . . . . . 8 (𝜑𝑁 = ((𝑁 − 2) + 2))
21 uznn0sub 12617 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (𝑁 − 2) ∈ ℕ0)
221, 21syl 17 . . . . . . . . 9 (𝜑 → (𝑁 − 2) ∈ ℕ0)
23 2nn0 12250 . . . . . . . . . 10 2 ∈ ℕ0
2423a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℕ0)
2522, 24nn0addcld 12297 . . . . . . . 8 (𝜑 → ((𝑁 − 2) + 2) ∈ ℕ0)
2620, 25eqeltrd 2839 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
27 itgex 24935 . . . . . . . 8 ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥 ∈ V
2827a1i 11 . . . . . . 7 (𝜑 → ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥 ∈ V)
2913, 16, 26, 28fvmptd 6882 . . . . . 6 (𝜑 → (𝐼𝑁) = ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥)
30 ioosscn 13141 . . . . . . . . . . 11 (0(,)π) ⊆ ℂ
3130sseli 3917 . . . . . . . . . 10 (𝑥 ∈ (0(,)π) → 𝑥 ∈ ℂ)
3231sincld 15839 . . . . . . . . 9 (𝑥 ∈ (0(,)π) → (sin‘𝑥) ∈ ℂ)
3332adantl 482 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)π)) → (sin‘𝑥) ∈ ℂ)
3426adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)π)) → 𝑁 ∈ ℕ0)
3533, 34expcld 13864 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑𝑁) ∈ ℂ)
36 ioossicc 13165 . . . . . . . . 9 (0(,)π) ⊆ (0[,]π)
3736a1i 11 . . . . . . . 8 (𝜑 → (0(,)π) ⊆ (0[,]π))
38 ioombl 24729 . . . . . . . . 9 (0(,)π) ∈ dom vol
3938a1i 11 . . . . . . . 8 (𝜑 → (0(,)π) ∈ dom vol)
40 0re 10977 . . . . . . . . . . . . . 14 0 ∈ ℝ
41 pire 25615 . . . . . . . . . . . . . 14 π ∈ ℝ
42 iccssre 13161 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ π ∈ ℝ) → (0[,]π) ⊆ ℝ)
4340, 41, 42mp2an 689 . . . . . . . . . . . . 13 (0[,]π) ⊆ ℝ
44 ax-resscn 10928 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
4543, 44sstri 3930 . . . . . . . . . . . 12 (0[,]π) ⊆ ℂ
4645sseli 3917 . . . . . . . . . . 11 (𝑥 ∈ (0[,]π) → 𝑥 ∈ ℂ)
4746sincld 15839 . . . . . . . . . 10 (𝑥 ∈ (0[,]π) → (sin‘𝑥) ∈ ℂ)
4847adantl 482 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]π)) → (sin‘𝑥) ∈ ℂ)
4926adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]π)) → 𝑁 ∈ ℕ0)
5048, 49expcld 13864 . . . . . . . 8 ((𝜑𝑥 ∈ (0[,]π)) → ((sin‘𝑥)↑𝑁) ∈ ℂ)
5140a1i 11 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
5241a1i 11 . . . . . . . . 9 (𝜑 → π ∈ ℝ)
5346adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (0[,]π)) → 𝑥 ∈ ℂ)
54 eqid 2738 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁)) = (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))
5554fvmpt2 6886 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ ((sin‘𝑥)↑𝑁) ∈ ℂ) → ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))‘𝑥) = ((sin‘𝑥)↑𝑁))
5653, 50, 55syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (0[,]π)) → ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))‘𝑥) = ((sin‘𝑥)↑𝑁))
5756eqcomd 2744 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (0[,]π)) → ((sin‘𝑥)↑𝑁) = ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))‘𝑥))
5857mpteq2dva 5174 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑𝑁)) = (𝑥 ∈ (0[,]π) ↦ ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))‘𝑥)))
59 nfmpt1 5182 . . . . . . . . . . 11 𝑥(𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))
60 nfcv 2907 . . . . . . . . . . . 12 𝑥sin
61 sincn 25603 . . . . . . . . . . . . 13 sin ∈ (ℂ–cn→ℂ)
6261a1i 11 . . . . . . . . . . . 12 (𝜑 → sin ∈ (ℂ–cn→ℂ))
6360, 62, 26expcnfg 43132 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁)) ∈ (ℂ–cn→ℂ))
6445a1i 11 . . . . . . . . . . 11 (𝜑 → (0[,]π) ⊆ ℂ)
6559, 63, 64cncfmptss 43128 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0[,]π) ↦ ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))‘𝑥)) ∈ ((0[,]π)–cn→ℂ))
6658, 65eqeltrd 2839 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑𝑁)) ∈ ((0[,]π)–cn→ℂ))
67 cniccibl 25005 . . . . . . . . 9 ((0 ∈ ℝ ∧ π ∈ ℝ ∧ (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑𝑁)) ∈ ((0[,]π)–cn→ℂ)) → (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑𝑁)) ∈ 𝐿1)
6851, 52, 66, 67syl3anc 1370 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑𝑁)) ∈ 𝐿1)
6937, 39, 50, 68iblss 24969 . . . . . . 7 (𝜑 → (𝑥 ∈ (0(,)π) ↦ ((sin‘𝑥)↑𝑁)) ∈ 𝐿1)
7035, 69itgcl 24948 . . . . . 6 (𝜑 → ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥 ∈ ℂ)
7129, 70eqeltrd 2839 . . . . 5 (𝜑 → (𝐼𝑁) ∈ ℂ)
7211, 71adddirp1d 11001 . . . 4 (𝜑 → (((𝑁 − 1) + 1) · (𝐼𝑁)) = (((𝑁 − 1) · (𝐼𝑁)) + (𝐼𝑁)))
73 eluz2b2 12661 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁))
741, 73sylib 217 . . . . . . . . . . 11 (𝜑 → (𝑁 ∈ ℕ ∧ 1 < 𝑁))
7574simpld 495 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
76 expm1t 13811 . . . . . . . . . 10 (((sin‘𝑥) ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((sin‘𝑥)↑𝑁) = (((sin‘𝑥)↑(𝑁 − 1)) · (sin‘𝑥)))
7732, 75, 76syl2anr 597 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑𝑁) = (((sin‘𝑥)↑(𝑁 − 1)) · (sin‘𝑥)))
7877itgeq2dv 24946 . . . . . . . 8 (𝜑 → ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥 = ∫(0(,)π)(((sin‘𝑥)↑(𝑁 − 1)) · (sin‘𝑥)) d𝑥)
79 eqid 2738 . . . . . . . . . 10 (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 1))) = (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 1)))
80 eqid 2738 . . . . . . . . . 10 (𝑥 ∈ ℂ ↦ -(cos‘𝑥)) = (𝑥 ∈ ℂ ↦ -(cos‘𝑥))
81 eqid 2738 . . . . . . . . . 10 (𝑥 ∈ ℂ ↦ (((𝑁 − 1) · ((sin‘𝑥)↑((𝑁 − 1) − 1))) · (cos‘𝑥))) = (𝑥 ∈ ℂ ↦ (((𝑁 − 1) · ((sin‘𝑥)↑((𝑁 − 1) − 1))) · (cos‘𝑥)))
82 eqid 2738 . . . . . . . . . 10 (𝑥 ∈ ℂ ↦ (((sin‘𝑥)↑(𝑁 − 1)) · (sin‘𝑥))) = (𝑥 ∈ ℂ ↦ (((sin‘𝑥)↑(𝑁 − 1)) · (sin‘𝑥)))
83 eqid 2738 . . . . . . . . . 10 (𝑥 ∈ ℂ ↦ ((((𝑁 − 1) · ((sin‘𝑥)↑((𝑁 − 1) − 1))) · (cos‘𝑥)) · -(cos‘𝑥))) = (𝑥 ∈ ℂ ↦ ((((𝑁 − 1) · ((sin‘𝑥)↑((𝑁 − 1) − 1))) · (cos‘𝑥)) · -(cos‘𝑥)))
84 eqid 2738 . . . . . . . . . 10 (𝑥 ∈ ℂ ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑((𝑁 − 1) − 1)))) = (𝑥 ∈ ℂ ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑((𝑁 − 1) − 1))))
8579, 80, 81, 82, 83, 84, 10itgsinexplem1 43495 . . . . . . . . 9 (𝜑 → ∫(0(,)π)(((sin‘𝑥)↑(𝑁 − 1)) · (sin‘𝑥)) d𝑥 = ((𝑁 − 1) · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑((𝑁 − 1) − 1))) d𝑥))
864, 5, 5subsub4d 11363 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑁 − 1) − 1) = (𝑁 − (1 + 1)))
87 1p1e2 12098 . . . . . . . . . . . . . . . . 17 (1 + 1) = 2
8887a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → (1 + 1) = 2)
8988oveq2d 7291 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 − (1 + 1)) = (𝑁 − 2))
9086, 89eqtrd 2778 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 − 1) − 1) = (𝑁 − 2))
9190adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (0(,)π)) → ((𝑁 − 1) − 1) = (𝑁 − 2))
9291oveq2d 7291 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑((𝑁 − 1) − 1)) = ((sin‘𝑥)↑(𝑁 − 2)))
9392oveq2d 7291 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (0(,)π)) → (((cos‘𝑥)↑2) · ((sin‘𝑥)↑((𝑁 − 1) − 1))) = (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2))))
9493itgeq2dv 24946 . . . . . . . . . 10 (𝜑 → ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑((𝑁 − 1) − 1))) d𝑥 = ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2))) d𝑥)
9594oveq2d 7291 . . . . . . . . 9 (𝜑 → ((𝑁 − 1) · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑((𝑁 − 1) − 1))) d𝑥) = ((𝑁 − 1) · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2))) d𝑥))
96 sincossq 15885 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℂ → (((sin‘𝑥)↑2) + ((cos‘𝑥)↑2)) = 1)
97 1cnd 10970 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → 1 ∈ ℂ)
98 sincl 15835 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℂ → (sin‘𝑥) ∈ ℂ)
9998sqcld 13862 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → ((sin‘𝑥)↑2) ∈ ℂ)
100 coscl 15836 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℂ → (cos‘𝑥) ∈ ℂ)
101100sqcld 13862 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → ((cos‘𝑥)↑2) ∈ ℂ)
10297, 99, 101subaddd 11350 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℂ → ((1 − ((sin‘𝑥)↑2)) = ((cos‘𝑥)↑2) ↔ (((sin‘𝑥)↑2) + ((cos‘𝑥)↑2)) = 1))
10396, 102mpbird 256 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → (1 − ((sin‘𝑥)↑2)) = ((cos‘𝑥)↑2))
104103eqcomd 2744 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → ((cos‘𝑥)↑2) = (1 − ((sin‘𝑥)↑2)))
10531, 104syl 17 . . . . . . . . . . . . . 14 (𝑥 ∈ (0(,)π) → ((cos‘𝑥)↑2) = (1 − ((sin‘𝑥)↑2)))
106105oveq1d 7290 . . . . . . . . . . . . 13 (𝑥 ∈ (0(,)π) → (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2))) = ((1 − ((sin‘𝑥)↑2)) · ((sin‘𝑥)↑(𝑁 − 2))))
107106adantl 482 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (0(,)π)) → (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2))) = ((1 − ((sin‘𝑥)↑2)) · ((sin‘𝑥)↑(𝑁 − 2))))
108107itgeq2dv 24946 . . . . . . . . . . 11 (𝜑 → ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2))) d𝑥 = ∫(0(,)π)((1 − ((sin‘𝑥)↑2)) · ((sin‘𝑥)↑(𝑁 − 2))) d𝑥)
109 1cnd 10970 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (0(,)π)) → 1 ∈ ℂ)
11032sqcld 13862 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0(,)π) → ((sin‘𝑥)↑2) ∈ ℂ)
111110adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑2) ∈ ℂ)
11290eqcomd 2744 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑁 − 2) = ((𝑁 − 1) − 1))
113 nnm1nn0 12274 . . . . . . . . . . . . . . . . . 18 ((𝑁 − 1) ∈ ℕ → ((𝑁 − 1) − 1) ∈ ℕ0)
11410, 113syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑁 − 1) − 1) ∈ ℕ0)
115112, 114eqeltrd 2839 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 − 2) ∈ ℕ0)
116115adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (0(,)π)) → (𝑁 − 2) ∈ ℕ0)
11733, 116expcld 13864 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑(𝑁 − 2)) ∈ ℂ)
118109, 111, 117subdird 11432 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (0(,)π)) → ((1 − ((sin‘𝑥)↑2)) · ((sin‘𝑥)↑(𝑁 − 2))) = ((1 · ((sin‘𝑥)↑(𝑁 − 2))) − (((sin‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2)))))
119117mulid2d 10993 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (0(,)π)) → (1 · ((sin‘𝑥)↑(𝑁 − 2))) = ((sin‘𝑥)↑(𝑁 − 2)))
12023a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (0(,)π)) → 2 ∈ ℕ0)
12133, 116, 120expaddd 13866 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑(2 + (𝑁 − 2))) = (((sin‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2))))
12217, 4pncan3d 11335 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 + (𝑁 − 2)) = 𝑁)
123122oveq2d 7291 . . . . . . . . . . . . . . . 16 (𝜑 → ((sin‘𝑥)↑(2 + (𝑁 − 2))) = ((sin‘𝑥)↑𝑁))
124123adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑(2 + (𝑁 − 2))) = ((sin‘𝑥)↑𝑁))
125121, 124eqtr3d 2780 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (0(,)π)) → (((sin‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2))) = ((sin‘𝑥)↑𝑁))
126119, 125oveq12d 7293 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (0(,)π)) → ((1 · ((sin‘𝑥)↑(𝑁 − 2))) − (((sin‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2)))) = (((sin‘𝑥)↑(𝑁 − 2)) − ((sin‘𝑥)↑𝑁)))
127118, 126eqtrd 2778 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (0(,)π)) → ((1 − ((sin‘𝑥)↑2)) · ((sin‘𝑥)↑(𝑁 − 2))) = (((sin‘𝑥)↑(𝑁 − 2)) − ((sin‘𝑥)↑𝑁)))
128127itgeq2dv 24946 . . . . . . . . . . 11 (𝜑 → ∫(0(,)π)((1 − ((sin‘𝑥)↑2)) · ((sin‘𝑥)↑(𝑁 − 2))) d𝑥 = ∫(0(,)π)(((sin‘𝑥)↑(𝑁 − 2)) − ((sin‘𝑥)↑𝑁)) d𝑥)
129115adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (0[,]π)) → (𝑁 − 2) ∈ ℕ0)
13048, 129expcld 13864 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (0[,]π)) → ((sin‘𝑥)↑(𝑁 − 2)) ∈ ℂ)
131 eqid 2738 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 2))) = (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 2)))
132131fvmpt2 6886 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℂ ∧ ((sin‘𝑥)↑(𝑁 − 2)) ∈ ℂ) → ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 2)))‘𝑥) = ((sin‘𝑥)↑(𝑁 − 2)))
13353, 130, 132syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (0[,]π)) → ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 2)))‘𝑥) = ((sin‘𝑥)↑(𝑁 − 2)))
134133eqcomd 2744 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (0[,]π)) → ((sin‘𝑥)↑(𝑁 − 2)) = ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 2)))‘𝑥))
135134mpteq2dva 5174 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑(𝑁 − 2))) = (𝑥 ∈ (0[,]π) ↦ ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 2)))‘𝑥)))
136 nfmpt1 5182 . . . . . . . . . . . . . . . 16 𝑥(𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 2)))
13760, 62, 115expcnfg 43132 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 2))) ∈ (ℂ–cn→ℂ))
138136, 137, 64cncfmptss 43128 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 ∈ (0[,]π) ↦ ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑(𝑁 − 2)))‘𝑥)) ∈ ((0[,]π)–cn→ℂ))
139135, 138eqeltrd 2839 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑(𝑁 − 2))) ∈ ((0[,]π)–cn→ℂ))
140 cniccibl 25005 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ π ∈ ℝ ∧ (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑(𝑁 − 2))) ∈ ((0[,]π)–cn→ℂ)) → (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑(𝑁 − 2))) ∈ 𝐿1)
14151, 52, 139, 140syl3anc 1370 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (0[,]π) ↦ ((sin‘𝑥)↑(𝑁 − 2))) ∈ 𝐿1)
14237, 39, 130, 141iblss 24969 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (0(,)π) ↦ ((sin‘𝑥)↑(𝑁 − 2))) ∈ 𝐿1)
143117, 142, 35, 69itgsub 24990 . . . . . . . . . . 11 (𝜑 → ∫(0(,)π)(((sin‘𝑥)↑(𝑁 − 2)) − ((sin‘𝑥)↑𝑁)) d𝑥 = (∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥 − ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥))
144108, 128, 1433eqtrd 2782 . . . . . . . . . 10 (𝜑 → ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2))) d𝑥 = (∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥 − ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥))
145144oveq2d 7291 . . . . . . . . 9 (𝜑 → ((𝑁 − 1) · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 2))) d𝑥) = ((𝑁 − 1) · (∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥 − ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥)))
14685, 95, 1453eqtrd 2782 . . . . . . . 8 (𝜑 → ∫(0(,)π)(((sin‘𝑥)↑(𝑁 − 1)) · (sin‘𝑥)) d𝑥 = ((𝑁 − 1) · (∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥 − ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥)))
14729, 78, 1463eqtrd 2782 . . . . . . 7 (𝜑 → (𝐼𝑁) = ((𝑁 − 1) · (∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥 − ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥)))
148 oveq2 7283 . . . . . . . . . . . 12 (𝑛 = (𝑁 − 2) → ((sin‘𝑥)↑𝑛) = ((sin‘𝑥)↑(𝑁 − 2)))
149148adantr 481 . . . . . . . . . . 11 ((𝑛 = (𝑁 − 2) ∧ 𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑𝑛) = ((sin‘𝑥)↑(𝑁 − 2)))
150149itgeq2dv 24946 . . . . . . . . . 10 (𝑛 = (𝑁 − 2) → ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥 = ∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥)
151 itgex 24935 . . . . . . . . . . 11 ∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥 ∈ V
152151a1i 11 . . . . . . . . . 10 (𝜑 → ∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥 ∈ V)
15312, 150, 115, 152fvmptd3 6898 . . . . . . . . 9 (𝜑 → (𝐼‘(𝑁 − 2)) = ∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥)
154153, 29oveq12d 7293 . . . . . . . 8 (𝜑 → ((𝐼‘(𝑁 − 2)) − (𝐼𝑁)) = (∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥 − ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥))
155154oveq2d 7291 . . . . . . 7 (𝜑 → ((𝑁 − 1) · ((𝐼‘(𝑁 − 2)) − (𝐼𝑁))) = ((𝑁 − 1) · (∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥 − ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥)))
156117, 142itgcl 24948 . . . . . . . . 9 (𝜑 → ∫(0(,)π)((sin‘𝑥)↑(𝑁 − 2)) d𝑥 ∈ ℂ)
157153, 156eqeltrd 2839 . . . . . . . 8 (𝜑 → (𝐼‘(𝑁 − 2)) ∈ ℂ)
15811, 157, 71subdid 11431 . . . . . . 7 (𝜑 → ((𝑁 − 1) · ((𝐼‘(𝑁 − 2)) − (𝐼𝑁))) = (((𝑁 − 1) · (𝐼‘(𝑁 − 2))) − ((𝑁 − 1) · (𝐼𝑁))))
159147, 155, 1583eqtr2d 2784 . . . . . 6 (𝜑 → (𝐼𝑁) = (((𝑁 − 1) · (𝐼‘(𝑁 − 2))) − ((𝑁 − 1) · (𝐼𝑁))))
160159eqcomd 2744 . . . . 5 (𝜑 → (((𝑁 − 1) · (𝐼‘(𝑁 − 2))) − ((𝑁 − 1) · (𝐼𝑁))) = (𝐼𝑁))
16111, 157mulcld 10995 . . . . . 6 (𝜑 → ((𝑁 − 1) · (𝐼‘(𝑁 − 2))) ∈ ℂ)
16211, 71mulcld 10995 . . . . . 6 (𝜑 → ((𝑁 − 1) · (𝐼𝑁)) ∈ ℂ)
163161, 162, 71subaddd 11350 . . . . 5 (𝜑 → ((((𝑁 − 1) · (𝐼‘(𝑁 − 2))) − ((𝑁 − 1) · (𝐼𝑁))) = (𝐼𝑁) ↔ (((𝑁 − 1) · (𝐼𝑁)) + (𝐼𝑁)) = ((𝑁 − 1) · (𝐼‘(𝑁 − 2)))))
164160, 163mpbid 231 . . . 4 (𝜑 → (((𝑁 − 1) · (𝐼𝑁)) + (𝐼𝑁)) = ((𝑁 − 1) · (𝐼‘(𝑁 − 2))))
1658, 72, 1643eqtrd 2782 . . 3 (𝜑 → (𝑁 · (𝐼𝑁)) = ((𝑁 − 1) · (𝐼‘(𝑁 − 2))))
166165oveq1d 7290 . 2 (𝜑 → ((𝑁 · (𝐼𝑁)) / 𝑁) = (((𝑁 − 1) · (𝐼‘(𝑁 − 2))) / 𝑁))
16775nnne0d 12023 . . 3 (𝜑𝑁 ≠ 0)
16871, 4, 167divcan3d 11756 . 2 (𝜑 → ((𝑁 · (𝐼𝑁)) / 𝑁) = (𝐼𝑁))
16911, 157, 4, 167div23d 11788 . 2 (𝜑 → (((𝑁 − 1) · (𝐼‘(𝑁 − 2))) / 𝑁) = (((𝑁 − 1) / 𝑁) · (𝐼‘(𝑁 − 2))))
170166, 168, 1693eqtr3d 2786 1 (𝜑 → (𝐼𝑁) = (((𝑁 − 1) / 𝑁) · (𝐼‘(𝑁 − 2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  wss 3887   class class class wbr 5074  cmpt 5157  dom cdm 5589  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cmin 11205  -cneg 11206   / cdiv 11632  cn 11973  2c2 12028  0cn0 12233  cz 12319  cuz 12582  (,)cioo 13079  [,]cicc 13082  cexp 13782  sincsin 15773  cosccos 15774  πcpi 15776  cnccncf 24039  volcvol 24627  𝐿1cibl 24781  citg 24782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cc 10191  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-symdif 4176  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-pi 15782  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-cmp 22538  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-ovol 24628  df-vol 24629  df-mbf 24783  df-itg1 24784  df-itg2 24785  df-ibl 24786  df-itg 24787  df-0p 24834  df-limc 25030  df-dv 25031
This theorem is referenced by:  wallispilem2  43607  wallispilem4  43609  wallispilem5  43610
  Copyright terms: Public domain W3C validator