![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wallispilem1 | Structured version Visualization version GIF version |
Description: πΌ is monotone: increasing the exponent, the integral decreases. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
wallispilem1.1 | β’ πΌ = (π β β0 β¦ β«(0(,)Ο)((sinβπ₯)βπ) dπ₯) |
wallispilem1.2 | β’ (π β π β β0) |
Ref | Expression |
---|---|
wallispilem1 | β’ (π β (πΌβ(π + 1)) β€ (πΌβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11216 | . . . . 5 β’ 0 β β | |
2 | 1 | a1i 11 | . . . 4 β’ (π β 0 β β) |
3 | pire 25968 | . . . . 5 β’ Ο β β | |
4 | 3 | a1i 11 | . . . 4 β’ (π β Ο β β) |
5 | wallispilem1.2 | . . . . 5 β’ (π β π β β0) | |
6 | peano2nn0 12512 | . . . . 5 β’ (π β β0 β (π + 1) β β0) | |
7 | 5, 6 | syl 17 | . . . 4 β’ (π β (π + 1) β β0) |
8 | iblioosinexp 44669 | . . . 4 β’ ((0 β β β§ Ο β β β§ (π + 1) β β0) β (π₯ β (0(,)Ο) β¦ ((sinβπ₯)β(π + 1))) β πΏ1) | |
9 | 2, 4, 7, 8 | syl3anc 1372 | . . 3 β’ (π β (π₯ β (0(,)Ο) β¦ ((sinβπ₯)β(π + 1))) β πΏ1) |
10 | iblioosinexp 44669 | . . . 4 β’ ((0 β β β§ Ο β β β§ π β β0) β (π₯ β (0(,)Ο) β¦ ((sinβπ₯)βπ)) β πΏ1) | |
11 | 2, 4, 5, 10 | syl3anc 1372 | . . 3 β’ (π β (π₯ β (0(,)Ο) β¦ ((sinβπ₯)βπ)) β πΏ1) |
12 | elioore 13354 | . . . . . 6 β’ (π₯ β (0(,)Ο) β π₯ β β) | |
13 | 12 | resincld 16086 | . . . . 5 β’ (π₯ β (0(,)Ο) β (sinβπ₯) β β) |
14 | 13 | adantl 483 | . . . 4 β’ ((π β§ π₯ β (0(,)Ο)) β (sinβπ₯) β β) |
15 | 7 | adantr 482 | . . . 4 β’ ((π β§ π₯ β (0(,)Ο)) β (π + 1) β β0) |
16 | 14, 15 | reexpcld 14128 | . . 3 β’ ((π β§ π₯ β (0(,)Ο)) β ((sinβπ₯)β(π + 1)) β β) |
17 | 5 | adantr 482 | . . . 4 β’ ((π β§ π₯ β (0(,)Ο)) β π β β0) |
18 | 14, 17 | reexpcld 14128 | . . 3 β’ ((π β§ π₯ β (0(,)Ο)) β ((sinβπ₯)βπ) β β) |
19 | 5 | nn0zd 12584 | . . . . . . 7 β’ (π β π β β€) |
20 | uzid 12837 | . . . . . . 7 β’ (π β β€ β π β (β€β₯βπ)) | |
21 | 19, 20 | syl 17 | . . . . . 6 β’ (π β π β (β€β₯βπ)) |
22 | peano2uz 12885 | . . . . . 6 β’ (π β (β€β₯βπ) β (π + 1) β (β€β₯βπ)) | |
23 | 21, 22 | syl 17 | . . . . 5 β’ (π β (π + 1) β (β€β₯βπ)) |
24 | 23 | adantr 482 | . . . 4 β’ ((π β§ π₯ β (0(,)Ο)) β (π + 1) β (β€β₯βπ)) |
25 | 13, 1 | jctil 521 | . . . . . 6 β’ (π₯ β (0(,)Ο) β (0 β β β§ (sinβπ₯) β β)) |
26 | sinq12gt0 26017 | . . . . . 6 β’ (π₯ β (0(,)Ο) β 0 < (sinβπ₯)) | |
27 | ltle 11302 | . . . . . 6 β’ ((0 β β β§ (sinβπ₯) β β) β (0 < (sinβπ₯) β 0 β€ (sinβπ₯))) | |
28 | 25, 26, 27 | sylc 65 | . . . . 5 β’ (π₯ β (0(,)Ο) β 0 β€ (sinβπ₯)) |
29 | 28 | adantl 483 | . . . 4 β’ ((π β§ π₯ β (0(,)Ο)) β 0 β€ (sinβπ₯)) |
30 | sinbnd 16123 | . . . . . . 7 β’ (π₯ β β β (-1 β€ (sinβπ₯) β§ (sinβπ₯) β€ 1)) | |
31 | 12, 30 | syl 17 | . . . . . 6 β’ (π₯ β (0(,)Ο) β (-1 β€ (sinβπ₯) β§ (sinβπ₯) β€ 1)) |
32 | 31 | simprd 497 | . . . . 5 β’ (π₯ β (0(,)Ο) β (sinβπ₯) β€ 1) |
33 | 32 | adantl 483 | . . . 4 β’ ((π β§ π₯ β (0(,)Ο)) β (sinβπ₯) β€ 1) |
34 | 14, 17, 24, 29, 33 | leexp2rd 14218 | . . 3 β’ ((π β§ π₯ β (0(,)Ο)) β ((sinβπ₯)β(π + 1)) β€ ((sinβπ₯)βπ)) |
35 | 9, 11, 16, 18, 34 | itgle 25327 | . 2 β’ (π β β«(0(,)Ο)((sinβπ₯)β(π + 1)) dπ₯ β€ β«(0(,)Ο)((sinβπ₯)βπ) dπ₯) |
36 | oveq2 7417 | . . . . . 6 β’ (π = (π + 1) β ((sinβπ₯)βπ) = ((sinβπ₯)β(π + 1))) | |
37 | 36 | adantr 482 | . . . . 5 β’ ((π = (π + 1) β§ π₯ β (0(,)Ο)) β ((sinβπ₯)βπ) = ((sinβπ₯)β(π + 1))) |
38 | 37 | itgeq2dv 25299 | . . . 4 β’ (π = (π + 1) β β«(0(,)Ο)((sinβπ₯)βπ) dπ₯ = β«(0(,)Ο)((sinβπ₯)β(π + 1)) dπ₯) |
39 | wallispilem1.1 | . . . 4 β’ πΌ = (π β β0 β¦ β«(0(,)Ο)((sinβπ₯)βπ) dπ₯) | |
40 | itgex 25288 | . . . 4 β’ β«(0(,)Ο)((sinβπ₯)β(π + 1)) dπ₯ β V | |
41 | 38, 39, 40 | fvmpt 6999 | . . 3 β’ ((π + 1) β β0 β (πΌβ(π + 1)) = β«(0(,)Ο)((sinβπ₯)β(π + 1)) dπ₯) |
42 | 7, 41 | syl 17 | . 2 β’ (π β (πΌβ(π + 1)) = β«(0(,)Ο)((sinβπ₯)β(π + 1)) dπ₯) |
43 | oveq2 7417 | . . . . . 6 β’ (π = π β ((sinβπ₯)βπ) = ((sinβπ₯)βπ)) | |
44 | 43 | adantr 482 | . . . . 5 β’ ((π = π β§ π₯ β (0(,)Ο)) β ((sinβπ₯)βπ) = ((sinβπ₯)βπ)) |
45 | 44 | itgeq2dv 25299 | . . . 4 β’ (π = π β β«(0(,)Ο)((sinβπ₯)βπ) dπ₯ = β«(0(,)Ο)((sinβπ₯)βπ) dπ₯) |
46 | itgex 25288 | . . . 4 β’ β«(0(,)Ο)((sinβπ₯)βπ) dπ₯ β V | |
47 | 45, 39, 46 | fvmpt 6999 | . . 3 β’ (π β β0 β (πΌβπ) = β«(0(,)Ο)((sinβπ₯)βπ) dπ₯) |
48 | 5, 47 | syl 17 | . 2 β’ (π β (πΌβπ) = β«(0(,)Ο)((sinβπ₯)βπ) dπ₯) |
49 | 35, 42, 48 | 3brtr4d 5181 | 1 β’ (π β (πΌβ(π + 1)) β€ (πΌβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 class class class wbr 5149 β¦ cmpt 5232 βcfv 6544 (class class class)co 7409 βcr 11109 0cc0 11110 1c1 11111 + caddc 11113 < clt 11248 β€ cle 11249 -cneg 11445 β0cn0 12472 β€cz 12558 β€β₯cuz 12822 (,)cioo 13324 βcexp 14027 sincsin 16007 Οcpi 16010 πΏ1cibl 25134 β«citg 25135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-inf2 9636 ax-cc 10430 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 ax-addf 11189 ax-mulf 11190 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-disj 5115 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-of 7670 df-ofr 7671 df-om 7856 df-1st 7975 df-2nd 7976 df-supp 8147 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-2o 8467 df-oadd 8470 df-omul 8471 df-er 8703 df-map 8822 df-pm 8823 df-ixp 8892 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-fsupp 9362 df-fi 9406 df-sup 9437 df-inf 9438 df-oi 9505 df-dju 9896 df-card 9934 df-acn 9937 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-q 12933 df-rp 12975 df-xneg 13092 df-xadd 13093 df-xmul 13094 df-ioo 13328 df-ioc 13329 df-ico 13330 df-icc 13331 df-fz 13485 df-fzo 13628 df-fl 13757 df-mod 13835 df-seq 13967 df-exp 14028 df-fac 14234 df-bc 14263 df-hash 14291 df-shft 15014 df-cj 15046 df-re 15047 df-im 15048 df-sqrt 15182 df-abs 15183 df-limsup 15415 df-clim 15432 df-rlim 15433 df-sum 15633 df-ef 16011 df-sin 16013 df-cos 16014 df-pi 16016 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-mulr 17211 df-starv 17212 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-unif 17220 df-hom 17221 df-cco 17222 df-rest 17368 df-topn 17369 df-0g 17387 df-gsum 17388 df-topgen 17389 df-pt 17390 df-prds 17393 df-xrs 17448 df-qtop 17453 df-imas 17454 df-xps 17456 df-mre 17530 df-mrc 17531 df-acs 17533 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-submnd 18672 df-mulg 18951 df-cntz 19181 df-cmn 19650 df-psmet 20936 df-xmet 20937 df-met 20938 df-bl 20939 df-mopn 20940 df-fbas 20941 df-fg 20942 df-cnfld 20945 df-top 22396 df-topon 22413 df-topsp 22435 df-bases 22449 df-cld 22523 df-ntr 22524 df-cls 22525 df-nei 22602 df-lp 22640 df-perf 22641 df-cn 22731 df-cnp 22732 df-haus 22819 df-cmp 22891 df-tx 23066 df-hmeo 23259 df-fil 23350 df-fm 23442 df-flim 23443 df-flf 23444 df-xms 23826 df-ms 23827 df-tms 23828 df-cncf 24394 df-ovol 24981 df-vol 24982 df-mbf 25136 df-itg1 25137 df-itg2 25138 df-ibl 25139 df-itg 25140 df-0p 25187 df-limc 25383 df-dv 25384 |
This theorem is referenced by: wallispilem5 44785 |
Copyright terms: Public domain | W3C validator |