![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wallispilem1 | Structured version Visualization version GIF version |
Description: πΌ is monotone: increasing the exponent, the integral decreases. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
wallispilem1.1 | β’ πΌ = (π β β0 β¦ β«(0(,)Ο)((sinβπ₯)βπ) dπ₯) |
wallispilem1.2 | β’ (π β π β β0) |
Ref | Expression |
---|---|
wallispilem1 | β’ (π β (πΌβ(π + 1)) β€ (πΌβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11232 | . . . . 5 β’ 0 β β | |
2 | 1 | a1i 11 | . . . 4 β’ (π β 0 β β) |
3 | pire 26367 | . . . . 5 β’ Ο β β | |
4 | 3 | a1i 11 | . . . 4 β’ (π β Ο β β) |
5 | wallispilem1.2 | . . . . 5 β’ (π β π β β0) | |
6 | peano2nn0 12528 | . . . . 5 β’ (π β β0 β (π + 1) β β0) | |
7 | 5, 6 | syl 17 | . . . 4 β’ (π β (π + 1) β β0) |
8 | iblioosinexp 45254 | . . . 4 β’ ((0 β β β§ Ο β β β§ (π + 1) β β0) β (π₯ β (0(,)Ο) β¦ ((sinβπ₯)β(π + 1))) β πΏ1) | |
9 | 2, 4, 7, 8 | syl3anc 1369 | . . 3 β’ (π β (π₯ β (0(,)Ο) β¦ ((sinβπ₯)β(π + 1))) β πΏ1) |
10 | iblioosinexp 45254 | . . . 4 β’ ((0 β β β§ Ο β β β§ π β β0) β (π₯ β (0(,)Ο) β¦ ((sinβπ₯)βπ)) β πΏ1) | |
11 | 2, 4, 5, 10 | syl3anc 1369 | . . 3 β’ (π β (π₯ β (0(,)Ο) β¦ ((sinβπ₯)βπ)) β πΏ1) |
12 | elioore 13372 | . . . . . 6 β’ (π₯ β (0(,)Ο) β π₯ β β) | |
13 | 12 | resincld 16105 | . . . . 5 β’ (π₯ β (0(,)Ο) β (sinβπ₯) β β) |
14 | 13 | adantl 481 | . . . 4 β’ ((π β§ π₯ β (0(,)Ο)) β (sinβπ₯) β β) |
15 | 7 | adantr 480 | . . . 4 β’ ((π β§ π₯ β (0(,)Ο)) β (π + 1) β β0) |
16 | 14, 15 | reexpcld 14145 | . . 3 β’ ((π β§ π₯ β (0(,)Ο)) β ((sinβπ₯)β(π + 1)) β β) |
17 | 5 | adantr 480 | . . . 4 β’ ((π β§ π₯ β (0(,)Ο)) β π β β0) |
18 | 14, 17 | reexpcld 14145 | . . 3 β’ ((π β§ π₯ β (0(,)Ο)) β ((sinβπ₯)βπ) β β) |
19 | 5 | nn0zd 12600 | . . . . . . 7 β’ (π β π β β€) |
20 | uzid 12853 | . . . . . . 7 β’ (π β β€ β π β (β€β₯βπ)) | |
21 | 19, 20 | syl 17 | . . . . . 6 β’ (π β π β (β€β₯βπ)) |
22 | peano2uz 12901 | . . . . . 6 β’ (π β (β€β₯βπ) β (π + 1) β (β€β₯βπ)) | |
23 | 21, 22 | syl 17 | . . . . 5 β’ (π β (π + 1) β (β€β₯βπ)) |
24 | 23 | adantr 480 | . . . 4 β’ ((π β§ π₯ β (0(,)Ο)) β (π + 1) β (β€β₯βπ)) |
25 | 13, 1 | jctil 519 | . . . . . 6 β’ (π₯ β (0(,)Ο) β (0 β β β§ (sinβπ₯) β β)) |
26 | sinq12gt0 26416 | . . . . . 6 β’ (π₯ β (0(,)Ο) β 0 < (sinβπ₯)) | |
27 | ltle 11318 | . . . . . 6 β’ ((0 β β β§ (sinβπ₯) β β) β (0 < (sinβπ₯) β 0 β€ (sinβπ₯))) | |
28 | 25, 26, 27 | sylc 65 | . . . . 5 β’ (π₯ β (0(,)Ο) β 0 β€ (sinβπ₯)) |
29 | 28 | adantl 481 | . . . 4 β’ ((π β§ π₯ β (0(,)Ο)) β 0 β€ (sinβπ₯)) |
30 | sinbnd 16142 | . . . . . . 7 β’ (π₯ β β β (-1 β€ (sinβπ₯) β§ (sinβπ₯) β€ 1)) | |
31 | 12, 30 | syl 17 | . . . . . 6 β’ (π₯ β (0(,)Ο) β (-1 β€ (sinβπ₯) β§ (sinβπ₯) β€ 1)) |
32 | 31 | simprd 495 | . . . . 5 β’ (π₯ β (0(,)Ο) β (sinβπ₯) β€ 1) |
33 | 32 | adantl 481 | . . . 4 β’ ((π β§ π₯ β (0(,)Ο)) β (sinβπ₯) β€ 1) |
34 | 14, 17, 24, 29, 33 | leexp2rd 14235 | . . 3 β’ ((π β§ π₯ β (0(,)Ο)) β ((sinβπ₯)β(π + 1)) β€ ((sinβπ₯)βπ)) |
35 | 9, 11, 16, 18, 34 | itgle 25713 | . 2 β’ (π β β«(0(,)Ο)((sinβπ₯)β(π + 1)) dπ₯ β€ β«(0(,)Ο)((sinβπ₯)βπ) dπ₯) |
36 | oveq2 7422 | . . . . . 6 β’ (π = (π + 1) β ((sinβπ₯)βπ) = ((sinβπ₯)β(π + 1))) | |
37 | 36 | adantr 480 | . . . . 5 β’ ((π = (π + 1) β§ π₯ β (0(,)Ο)) β ((sinβπ₯)βπ) = ((sinβπ₯)β(π + 1))) |
38 | 37 | itgeq2dv 25685 | . . . 4 β’ (π = (π + 1) β β«(0(,)Ο)((sinβπ₯)βπ) dπ₯ = β«(0(,)Ο)((sinβπ₯)β(π + 1)) dπ₯) |
39 | wallispilem1.1 | . . . 4 β’ πΌ = (π β β0 β¦ β«(0(,)Ο)((sinβπ₯)βπ) dπ₯) | |
40 | itgex 25674 | . . . 4 β’ β«(0(,)Ο)((sinβπ₯)β(π + 1)) dπ₯ β V | |
41 | 38, 39, 40 | fvmpt 6999 | . . 3 β’ ((π + 1) β β0 β (πΌβ(π + 1)) = β«(0(,)Ο)((sinβπ₯)β(π + 1)) dπ₯) |
42 | 7, 41 | syl 17 | . 2 β’ (π β (πΌβ(π + 1)) = β«(0(,)Ο)((sinβπ₯)β(π + 1)) dπ₯) |
43 | oveq2 7422 | . . . . . 6 β’ (π = π β ((sinβπ₯)βπ) = ((sinβπ₯)βπ)) | |
44 | 43 | adantr 480 | . . . . 5 β’ ((π = π β§ π₯ β (0(,)Ο)) β ((sinβπ₯)βπ) = ((sinβπ₯)βπ)) |
45 | 44 | itgeq2dv 25685 | . . . 4 β’ (π = π β β«(0(,)Ο)((sinβπ₯)βπ) dπ₯ = β«(0(,)Ο)((sinβπ₯)βπ) dπ₯) |
46 | itgex 25674 | . . . 4 β’ β«(0(,)Ο)((sinβπ₯)βπ) dπ₯ β V | |
47 | 45, 39, 46 | fvmpt 6999 | . . 3 β’ (π β β0 β (πΌβπ) = β«(0(,)Ο)((sinβπ₯)βπ) dπ₯) |
48 | 5, 47 | syl 17 | . 2 β’ (π β (πΌβπ) = β«(0(,)Ο)((sinβπ₯)βπ) dπ₯) |
49 | 35, 42, 48 | 3brtr4d 5174 | 1 β’ (π β (πΌβ(π + 1)) β€ (πΌβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1534 β wcel 2099 class class class wbr 5142 β¦ cmpt 5225 βcfv 6542 (class class class)co 7414 βcr 11123 0cc0 11124 1c1 11125 + caddc 11127 < clt 11264 β€ cle 11265 -cneg 11461 β0cn0 12488 β€cz 12574 β€β₯cuz 12838 (,)cioo 13342 βcexp 14044 sincsin 16025 Οcpi 16028 πΏ1cibl 25520 β«citg 25521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-inf2 9650 ax-cc 10444 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 ax-pre-sup 11202 ax-addf 11203 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-disj 5108 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7677 df-ofr 7678 df-om 7863 df-1st 7985 df-2nd 7986 df-supp 8158 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-oadd 8482 df-omul 8483 df-er 8716 df-map 8836 df-pm 8837 df-ixp 8906 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-fsupp 9376 df-fi 9420 df-sup 9451 df-inf 9452 df-oi 9519 df-dju 9910 df-card 9948 df-acn 9951 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-div 11888 df-nn 12229 df-2 12291 df-3 12292 df-4 12293 df-5 12294 df-6 12295 df-7 12296 df-8 12297 df-9 12298 df-n0 12489 df-z 12575 df-dec 12694 df-uz 12839 df-q 12949 df-rp 12993 df-xneg 13110 df-xadd 13111 df-xmul 13112 df-ioo 13346 df-ioc 13347 df-ico 13348 df-icc 13349 df-fz 13503 df-fzo 13646 df-fl 13775 df-mod 13853 df-seq 13985 df-exp 14045 df-fac 14251 df-bc 14280 df-hash 14308 df-shft 15032 df-cj 15064 df-re 15065 df-im 15066 df-sqrt 15200 df-abs 15201 df-limsup 15433 df-clim 15450 df-rlim 15451 df-sum 15651 df-ef 16029 df-sin 16031 df-cos 16032 df-pi 16034 df-struct 17101 df-sets 17118 df-slot 17136 df-ndx 17148 df-base 17166 df-ress 17195 df-plusg 17231 df-mulr 17232 df-starv 17233 df-sca 17234 df-vsca 17235 df-ip 17236 df-tset 17237 df-ple 17238 df-ds 17240 df-unif 17241 df-hom 17242 df-cco 17243 df-rest 17389 df-topn 17390 df-0g 17408 df-gsum 17409 df-topgen 17410 df-pt 17411 df-prds 17414 df-xrs 17469 df-qtop 17474 df-imas 17475 df-xps 17477 df-mre 17551 df-mrc 17552 df-acs 17554 df-mgm 18585 df-sgrp 18664 df-mnd 18680 df-submnd 18726 df-mulg 19008 df-cntz 19252 df-cmn 19721 df-psmet 21251 df-xmet 21252 df-met 21253 df-bl 21254 df-mopn 21255 df-fbas 21256 df-fg 21257 df-cnfld 21260 df-top 22770 df-topon 22787 df-topsp 22809 df-bases 22823 df-cld 22897 df-ntr 22898 df-cls 22899 df-nei 22976 df-lp 23014 df-perf 23015 df-cn 23105 df-cnp 23106 df-haus 23193 df-cmp 23265 df-tx 23440 df-hmeo 23633 df-fil 23724 df-fm 23816 df-flim 23817 df-flf 23818 df-xms 24200 df-ms 24201 df-tms 24202 df-cncf 24772 df-ovol 25367 df-vol 25368 df-mbf 25522 df-itg1 25523 df-itg2 25524 df-ibl 25525 df-itg 25526 df-0p 25573 df-limc 25769 df-dv 25770 |
This theorem is referenced by: wallispilem5 45370 |
Copyright terms: Public domain | W3C validator |