| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wallispilem1 | Structured version Visualization version GIF version | ||
| Description: 𝐼 is monotone: increasing the exponent, the integral decreases. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| Ref | Expression |
|---|---|
| wallispilem1.1 | ⊢ 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥) |
| wallispilem1.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| wallispilem1 | ⊢ (𝜑 → (𝐼‘(𝑁 + 1)) ≤ (𝐼‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11117 | . . . . 5 ⊢ 0 ∈ ℝ | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ ℝ) |
| 3 | pire 26364 | . . . . 5 ⊢ π ∈ ℝ | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → π ∈ ℝ) |
| 5 | wallispilem1.2 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 6 | peano2nn0 12424 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) | |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑁 + 1) ∈ ℕ0) |
| 8 | iblioosinexp 45938 | . . . 4 ⊢ ((0 ∈ ℝ ∧ π ∈ ℝ ∧ (𝑁 + 1) ∈ ℕ0) → (𝑥 ∈ (0(,)π) ↦ ((sin‘𝑥)↑(𝑁 + 1))) ∈ 𝐿1) | |
| 9 | 2, 4, 7, 8 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (0(,)π) ↦ ((sin‘𝑥)↑(𝑁 + 1))) ∈ 𝐿1) |
| 10 | iblioosinexp 45938 | . . . 4 ⊢ ((0 ∈ ℝ ∧ π ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝑥 ∈ (0(,)π) ↦ ((sin‘𝑥)↑𝑁)) ∈ 𝐿1) | |
| 11 | 2, 4, 5, 10 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (0(,)π) ↦ ((sin‘𝑥)↑𝑁)) ∈ 𝐿1) |
| 12 | elioore 13278 | . . . . . 6 ⊢ (𝑥 ∈ (0(,)π) → 𝑥 ∈ ℝ) | |
| 13 | 12 | resincld 16052 | . . . . 5 ⊢ (𝑥 ∈ (0(,)π) → (sin‘𝑥) ∈ ℝ) |
| 14 | 13 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)π)) → (sin‘𝑥) ∈ ℝ) |
| 15 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)π)) → (𝑁 + 1) ∈ ℕ0) |
| 16 | 14, 15 | reexpcld 14070 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑(𝑁 + 1)) ∈ ℝ) |
| 17 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)π)) → 𝑁 ∈ ℕ0) |
| 18 | 14, 17 | reexpcld 14070 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑𝑁) ∈ ℝ) |
| 19 | 5 | nn0zd 12497 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 20 | uzid 12750 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ≥‘𝑁)) | |
| 21 | 19, 20 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑁)) |
| 22 | peano2uz 12802 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑁) → (𝑁 + 1) ∈ (ℤ≥‘𝑁)) | |
| 23 | 21, 22 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑁 + 1) ∈ (ℤ≥‘𝑁)) |
| 24 | 23 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)π)) → (𝑁 + 1) ∈ (ℤ≥‘𝑁)) |
| 25 | 13, 1 | jctil 519 | . . . . . 6 ⊢ (𝑥 ∈ (0(,)π) → (0 ∈ ℝ ∧ (sin‘𝑥) ∈ ℝ)) |
| 26 | sinq12gt0 26414 | . . . . . 6 ⊢ (𝑥 ∈ (0(,)π) → 0 < (sin‘𝑥)) | |
| 27 | ltle 11204 | . . . . . 6 ⊢ ((0 ∈ ℝ ∧ (sin‘𝑥) ∈ ℝ) → (0 < (sin‘𝑥) → 0 ≤ (sin‘𝑥))) | |
| 28 | 25, 26, 27 | sylc 65 | . . . . 5 ⊢ (𝑥 ∈ (0(,)π) → 0 ≤ (sin‘𝑥)) |
| 29 | 28 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)π)) → 0 ≤ (sin‘𝑥)) |
| 30 | sinbnd 16089 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → (-1 ≤ (sin‘𝑥) ∧ (sin‘𝑥) ≤ 1)) | |
| 31 | 12, 30 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ (0(,)π) → (-1 ≤ (sin‘𝑥) ∧ (sin‘𝑥) ≤ 1)) |
| 32 | 31 | simprd 495 | . . . . 5 ⊢ (𝑥 ∈ (0(,)π) → (sin‘𝑥) ≤ 1) |
| 33 | 32 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)π)) → (sin‘𝑥) ≤ 1) |
| 34 | 14, 17, 24, 29, 33 | leexp2rd 14162 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑(𝑁 + 1)) ≤ ((sin‘𝑥)↑𝑁)) |
| 35 | 9, 11, 16, 18, 34 | itgle 25709 | . 2 ⊢ (𝜑 → ∫(0(,)π)((sin‘𝑥)↑(𝑁 + 1)) d𝑥 ≤ ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥) |
| 36 | oveq2 7357 | . . . . . 6 ⊢ (𝑛 = (𝑁 + 1) → ((sin‘𝑥)↑𝑛) = ((sin‘𝑥)↑(𝑁 + 1))) | |
| 37 | 36 | adantr 480 | . . . . 5 ⊢ ((𝑛 = (𝑁 + 1) ∧ 𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑𝑛) = ((sin‘𝑥)↑(𝑁 + 1))) |
| 38 | 37 | itgeq2dv 25681 | . . . 4 ⊢ (𝑛 = (𝑁 + 1) → ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥 = ∫(0(,)π)((sin‘𝑥)↑(𝑁 + 1)) d𝑥) |
| 39 | wallispilem1.1 | . . . 4 ⊢ 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥) | |
| 40 | itgex 25669 | . . . 4 ⊢ ∫(0(,)π)((sin‘𝑥)↑(𝑁 + 1)) d𝑥 ∈ V | |
| 41 | 38, 39, 40 | fvmpt 6930 | . . 3 ⊢ ((𝑁 + 1) ∈ ℕ0 → (𝐼‘(𝑁 + 1)) = ∫(0(,)π)((sin‘𝑥)↑(𝑁 + 1)) d𝑥) |
| 42 | 7, 41 | syl 17 | . 2 ⊢ (𝜑 → (𝐼‘(𝑁 + 1)) = ∫(0(,)π)((sin‘𝑥)↑(𝑁 + 1)) d𝑥) |
| 43 | oveq2 7357 | . . . . . 6 ⊢ (𝑛 = 𝑁 → ((sin‘𝑥)↑𝑛) = ((sin‘𝑥)↑𝑁)) | |
| 44 | 43 | adantr 480 | . . . . 5 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑𝑛) = ((sin‘𝑥)↑𝑁)) |
| 45 | 44 | itgeq2dv 25681 | . . . 4 ⊢ (𝑛 = 𝑁 → ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥 = ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥) |
| 46 | itgex 25669 | . . . 4 ⊢ ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥 ∈ V | |
| 47 | 45, 39, 46 | fvmpt 6930 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝐼‘𝑁) = ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥) |
| 48 | 5, 47 | syl 17 | . 2 ⊢ (𝜑 → (𝐼‘𝑁) = ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥) |
| 49 | 35, 42, 48 | 3brtr4d 5124 | 1 ⊢ (𝜑 → (𝐼‘(𝑁 + 1)) ≤ (𝐼‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5092 ↦ cmpt 5173 ‘cfv 6482 (class class class)co 7349 ℝcr 11008 0cc0 11009 1c1 11010 + caddc 11012 < clt 11149 ≤ cle 11150 -cneg 11348 ℕ0cn0 12384 ℤcz 12471 ℤ≥cuz 12735 (,)cioo 13248 ↑cexp 13968 sincsin 15970 πcpi 15973 𝐿1cibl 25516 ∫citg 25517 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cc 10329 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-disj 5060 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-ofr 7614 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-omul 8393 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-dju 9797 df-card 9835 df-acn 9838 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-ioo 13252 df-ioc 13253 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-fac 14181 df-bc 14210 df-hash 14238 df-shft 14974 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-ef 15974 df-sin 15976 df-cos 15977 df-pi 15979 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-mulg 18947 df-cntz 19196 df-cmn 19661 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-fbas 21258 df-fg 21259 df-cnfld 21262 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-cld 22904 df-ntr 22905 df-cls 22906 df-nei 22983 df-lp 23021 df-perf 23022 df-cn 23112 df-cnp 23113 df-haus 23200 df-cmp 23272 df-tx 23447 df-hmeo 23640 df-fil 23731 df-fm 23823 df-flim 23824 df-flf 23825 df-xms 24206 df-ms 24207 df-tms 24208 df-cncf 24769 df-ovol 25363 df-vol 25364 df-mbf 25518 df-itg1 25519 df-itg2 25520 df-ibl 25521 df-itg 25522 df-0p 25569 df-limc 25765 df-dv 25766 |
| This theorem is referenced by: wallispilem5 46054 |
| Copyright terms: Public domain | W3C validator |