| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wallispilem1 | Structured version Visualization version GIF version | ||
| Description: 𝐼 is monotone: increasing the exponent, the integral decreases. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| Ref | Expression |
|---|---|
| wallispilem1.1 | ⊢ 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥) |
| wallispilem1.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| wallispilem1 | ⊢ (𝜑 → (𝐼‘(𝑁 + 1)) ≤ (𝐼‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11114 | . . . . 5 ⊢ 0 ∈ ℝ | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ ℝ) |
| 3 | pire 26393 | . . . . 5 ⊢ π ∈ ℝ | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → π ∈ ℝ) |
| 5 | wallispilem1.2 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 6 | peano2nn0 12421 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) | |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑁 + 1) ∈ ℕ0) |
| 8 | iblioosinexp 46061 | . . . 4 ⊢ ((0 ∈ ℝ ∧ π ∈ ℝ ∧ (𝑁 + 1) ∈ ℕ0) → (𝑥 ∈ (0(,)π) ↦ ((sin‘𝑥)↑(𝑁 + 1))) ∈ 𝐿1) | |
| 9 | 2, 4, 7, 8 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (0(,)π) ↦ ((sin‘𝑥)↑(𝑁 + 1))) ∈ 𝐿1) |
| 10 | iblioosinexp 46061 | . . . 4 ⊢ ((0 ∈ ℝ ∧ π ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝑥 ∈ (0(,)π) ↦ ((sin‘𝑥)↑𝑁)) ∈ 𝐿1) | |
| 11 | 2, 4, 5, 10 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (0(,)π) ↦ ((sin‘𝑥)↑𝑁)) ∈ 𝐿1) |
| 12 | elioore 13275 | . . . . . 6 ⊢ (𝑥 ∈ (0(,)π) → 𝑥 ∈ ℝ) | |
| 13 | 12 | resincld 16052 | . . . . 5 ⊢ (𝑥 ∈ (0(,)π) → (sin‘𝑥) ∈ ℝ) |
| 14 | 13 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)π)) → (sin‘𝑥) ∈ ℝ) |
| 15 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)π)) → (𝑁 + 1) ∈ ℕ0) |
| 16 | 14, 15 | reexpcld 14070 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑(𝑁 + 1)) ∈ ℝ) |
| 17 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)π)) → 𝑁 ∈ ℕ0) |
| 18 | 14, 17 | reexpcld 14070 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑𝑁) ∈ ℝ) |
| 19 | 5 | nn0zd 12494 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 20 | uzid 12747 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ≥‘𝑁)) | |
| 21 | 19, 20 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑁)) |
| 22 | peano2uz 12799 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑁) → (𝑁 + 1) ∈ (ℤ≥‘𝑁)) | |
| 23 | 21, 22 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑁 + 1) ∈ (ℤ≥‘𝑁)) |
| 24 | 23 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)π)) → (𝑁 + 1) ∈ (ℤ≥‘𝑁)) |
| 25 | 13, 1 | jctil 519 | . . . . . 6 ⊢ (𝑥 ∈ (0(,)π) → (0 ∈ ℝ ∧ (sin‘𝑥) ∈ ℝ)) |
| 26 | sinq12gt0 26443 | . . . . . 6 ⊢ (𝑥 ∈ (0(,)π) → 0 < (sin‘𝑥)) | |
| 27 | ltle 11201 | . . . . . 6 ⊢ ((0 ∈ ℝ ∧ (sin‘𝑥) ∈ ℝ) → (0 < (sin‘𝑥) → 0 ≤ (sin‘𝑥))) | |
| 28 | 25, 26, 27 | sylc 65 | . . . . 5 ⊢ (𝑥 ∈ (0(,)π) → 0 ≤ (sin‘𝑥)) |
| 29 | 28 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)π)) → 0 ≤ (sin‘𝑥)) |
| 30 | sinbnd 16089 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → (-1 ≤ (sin‘𝑥) ∧ (sin‘𝑥) ≤ 1)) | |
| 31 | 12, 30 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ (0(,)π) → (-1 ≤ (sin‘𝑥) ∧ (sin‘𝑥) ≤ 1)) |
| 32 | 31 | simprd 495 | . . . . 5 ⊢ (𝑥 ∈ (0(,)π) → (sin‘𝑥) ≤ 1) |
| 33 | 32 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)π)) → (sin‘𝑥) ≤ 1) |
| 34 | 14, 17, 24, 29, 33 | leexp2rd 14162 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑(𝑁 + 1)) ≤ ((sin‘𝑥)↑𝑁)) |
| 35 | 9, 11, 16, 18, 34 | itgle 25738 | . 2 ⊢ (𝜑 → ∫(0(,)π)((sin‘𝑥)↑(𝑁 + 1)) d𝑥 ≤ ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥) |
| 36 | oveq2 7354 | . . . . . 6 ⊢ (𝑛 = (𝑁 + 1) → ((sin‘𝑥)↑𝑛) = ((sin‘𝑥)↑(𝑁 + 1))) | |
| 37 | 36 | adantr 480 | . . . . 5 ⊢ ((𝑛 = (𝑁 + 1) ∧ 𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑𝑛) = ((sin‘𝑥)↑(𝑁 + 1))) |
| 38 | 37 | itgeq2dv 25710 | . . . 4 ⊢ (𝑛 = (𝑁 + 1) → ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥 = ∫(0(,)π)((sin‘𝑥)↑(𝑁 + 1)) d𝑥) |
| 39 | wallispilem1.1 | . . . 4 ⊢ 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥) | |
| 40 | itgex 25698 | . . . 4 ⊢ ∫(0(,)π)((sin‘𝑥)↑(𝑁 + 1)) d𝑥 ∈ V | |
| 41 | 38, 39, 40 | fvmpt 6929 | . . 3 ⊢ ((𝑁 + 1) ∈ ℕ0 → (𝐼‘(𝑁 + 1)) = ∫(0(,)π)((sin‘𝑥)↑(𝑁 + 1)) d𝑥) |
| 42 | 7, 41 | syl 17 | . 2 ⊢ (𝜑 → (𝐼‘(𝑁 + 1)) = ∫(0(,)π)((sin‘𝑥)↑(𝑁 + 1)) d𝑥) |
| 43 | oveq2 7354 | . . . . . 6 ⊢ (𝑛 = 𝑁 → ((sin‘𝑥)↑𝑛) = ((sin‘𝑥)↑𝑁)) | |
| 44 | 43 | adantr 480 | . . . . 5 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑𝑛) = ((sin‘𝑥)↑𝑁)) |
| 45 | 44 | itgeq2dv 25710 | . . . 4 ⊢ (𝑛 = 𝑁 → ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥 = ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥) |
| 46 | itgex 25698 | . . . 4 ⊢ ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥 ∈ V | |
| 47 | 45, 39, 46 | fvmpt 6929 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝐼‘𝑁) = ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥) |
| 48 | 5, 47 | syl 17 | . 2 ⊢ (𝜑 → (𝐼‘𝑁) = ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥) |
| 49 | 35, 42, 48 | 3brtr4d 5121 | 1 ⊢ (𝜑 → (𝐼‘(𝑁 + 1)) ≤ (𝐼‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 ↦ cmpt 5170 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 0cc0 11006 1c1 11007 + caddc 11009 < clt 11146 ≤ cle 11147 -cneg 11345 ℕ0cn0 12381 ℤcz 12468 ℤ≥cuz 12732 (,)cioo 13245 ↑cexp 13968 sincsin 15970 πcpi 15973 𝐿1cibl 25545 ∫citg 25546 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cc 10326 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-disj 5057 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-ofr 7611 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-omul 8390 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-dju 9794 df-card 9832 df-acn 9835 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ioo 13249 df-ioc 13250 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-fac 14181 df-bc 14210 df-hash 14238 df-shft 14974 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-ef 15974 df-sin 15976 df-cos 15977 df-pi 15979 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-mulg 18981 df-cntz 19229 df-cmn 19694 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-fbas 21288 df-fg 21289 df-cnfld 21292 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22861 df-cld 22934 df-ntr 22935 df-cls 22936 df-nei 23013 df-lp 23051 df-perf 23052 df-cn 23142 df-cnp 23143 df-haus 23230 df-cmp 23302 df-tx 23477 df-hmeo 23670 df-fil 23761 df-fm 23853 df-flim 23854 df-flf 23855 df-xms 24235 df-ms 24236 df-tms 24237 df-cncf 24798 df-ovol 25392 df-vol 25393 df-mbf 25547 df-itg1 25548 df-itg2 25549 df-ibl 25550 df-itg 25551 df-0p 25598 df-limc 25794 df-dv 25795 |
| This theorem is referenced by: wallispilem5 46177 |
| Copyright terms: Public domain | W3C validator |