Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wallispilem1 Structured version   Visualization version   GIF version

Theorem wallispilem1 42549
Description: 𝐼 is monotone: increasing the exponent, the integral decreases. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
wallispilem1.1 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)
wallispilem1.2 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
wallispilem1 (𝜑 → (𝐼‘(𝑁 + 1)) ≤ (𝐼𝑁))
Distinct variable groups:   𝑥,𝑛,𝑁   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑛)   𝐼(𝑥,𝑛)

Proof of Theorem wallispilem1
StepHypRef Expression
1 0re 10628 . . . . 5 0 ∈ ℝ
21a1i 11 . . . 4 (𝜑 → 0 ∈ ℝ)
3 pire 25040 . . . . 5 π ∈ ℝ
43a1i 11 . . . 4 (𝜑 → π ∈ ℝ)
5 wallispilem1.2 . . . . 5 (𝜑𝑁 ∈ ℕ0)
6 peano2nn0 11923 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
75, 6syl 17 . . . 4 (𝜑 → (𝑁 + 1) ∈ ℕ0)
8 iblioosinexp 42437 . . . 4 ((0 ∈ ℝ ∧ π ∈ ℝ ∧ (𝑁 + 1) ∈ ℕ0) → (𝑥 ∈ (0(,)π) ↦ ((sin‘𝑥)↑(𝑁 + 1))) ∈ 𝐿1)
92, 4, 7, 8syl3anc 1368 . . 3 (𝜑 → (𝑥 ∈ (0(,)π) ↦ ((sin‘𝑥)↑(𝑁 + 1))) ∈ 𝐿1)
10 iblioosinexp 42437 . . . 4 ((0 ∈ ℝ ∧ π ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝑥 ∈ (0(,)π) ↦ ((sin‘𝑥)↑𝑁)) ∈ 𝐿1)
112, 4, 5, 10syl3anc 1368 . . 3 (𝜑 → (𝑥 ∈ (0(,)π) ↦ ((sin‘𝑥)↑𝑁)) ∈ 𝐿1)
12 elioore 12754 . . . . . 6 (𝑥 ∈ (0(,)π) → 𝑥 ∈ ℝ)
1312resincld 15485 . . . . 5 (𝑥 ∈ (0(,)π) → (sin‘𝑥) ∈ ℝ)
1413adantl 485 . . . 4 ((𝜑𝑥 ∈ (0(,)π)) → (sin‘𝑥) ∈ ℝ)
157adantr 484 . . . 4 ((𝜑𝑥 ∈ (0(,)π)) → (𝑁 + 1) ∈ ℕ0)
1614, 15reexpcld 13521 . . 3 ((𝜑𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑(𝑁 + 1)) ∈ ℝ)
175adantr 484 . . . 4 ((𝜑𝑥 ∈ (0(,)π)) → 𝑁 ∈ ℕ0)
1814, 17reexpcld 13521 . . 3 ((𝜑𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑𝑁) ∈ ℝ)
195nn0zd 12071 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
20 uzid 12244 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
2119, 20syl 17 . . . . . 6 (𝜑𝑁 ∈ (ℤ𝑁))
22 peano2uz 12287 . . . . . 6 (𝑁 ∈ (ℤ𝑁) → (𝑁 + 1) ∈ (ℤ𝑁))
2321, 22syl 17 . . . . 5 (𝜑 → (𝑁 + 1) ∈ (ℤ𝑁))
2423adantr 484 . . . 4 ((𝜑𝑥 ∈ (0(,)π)) → (𝑁 + 1) ∈ (ℤ𝑁))
2513, 1jctil 523 . . . . . 6 (𝑥 ∈ (0(,)π) → (0 ∈ ℝ ∧ (sin‘𝑥) ∈ ℝ))
26 sinq12gt0 25089 . . . . . 6 (𝑥 ∈ (0(,)π) → 0 < (sin‘𝑥))
27 ltle 10714 . . . . . 6 ((0 ∈ ℝ ∧ (sin‘𝑥) ∈ ℝ) → (0 < (sin‘𝑥) → 0 ≤ (sin‘𝑥)))
2825, 26, 27sylc 65 . . . . 5 (𝑥 ∈ (0(,)π) → 0 ≤ (sin‘𝑥))
2928adantl 485 . . . 4 ((𝜑𝑥 ∈ (0(,)π)) → 0 ≤ (sin‘𝑥))
30 sinbnd 15522 . . . . . . 7 (𝑥 ∈ ℝ → (-1 ≤ (sin‘𝑥) ∧ (sin‘𝑥) ≤ 1))
3112, 30syl 17 . . . . . 6 (𝑥 ∈ (0(,)π) → (-1 ≤ (sin‘𝑥) ∧ (sin‘𝑥) ≤ 1))
3231simprd 499 . . . . 5 (𝑥 ∈ (0(,)π) → (sin‘𝑥) ≤ 1)
3332adantl 485 . . . 4 ((𝜑𝑥 ∈ (0(,)π)) → (sin‘𝑥) ≤ 1)
3414, 17, 24, 29, 33leexp2rd 13612 . . 3 ((𝜑𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑(𝑁 + 1)) ≤ ((sin‘𝑥)↑𝑁))
359, 11, 16, 18, 34itgle 24402 . 2 (𝜑 → ∫(0(,)π)((sin‘𝑥)↑(𝑁 + 1)) d𝑥 ≤ ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥)
36 oveq2 7146 . . . . . 6 (𝑛 = (𝑁 + 1) → ((sin‘𝑥)↑𝑛) = ((sin‘𝑥)↑(𝑁 + 1)))
3736adantr 484 . . . . 5 ((𝑛 = (𝑁 + 1) ∧ 𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑𝑛) = ((sin‘𝑥)↑(𝑁 + 1)))
3837itgeq2dv 24374 . . . 4 (𝑛 = (𝑁 + 1) → ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥 = ∫(0(,)π)((sin‘𝑥)↑(𝑁 + 1)) d𝑥)
39 wallispilem1.1 . . . 4 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)
40 itgex 24363 . . . 4 ∫(0(,)π)((sin‘𝑥)↑(𝑁 + 1)) d𝑥 ∈ V
4138, 39, 40fvmpt 6749 . . 3 ((𝑁 + 1) ∈ ℕ0 → (𝐼‘(𝑁 + 1)) = ∫(0(,)π)((sin‘𝑥)↑(𝑁 + 1)) d𝑥)
427, 41syl 17 . 2 (𝜑 → (𝐼‘(𝑁 + 1)) = ∫(0(,)π)((sin‘𝑥)↑(𝑁 + 1)) d𝑥)
43 oveq2 7146 . . . . . 6 (𝑛 = 𝑁 → ((sin‘𝑥)↑𝑛) = ((sin‘𝑥)↑𝑁))
4443adantr 484 . . . . 5 ((𝑛 = 𝑁𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑𝑛) = ((sin‘𝑥)↑𝑁))
4544itgeq2dv 24374 . . . 4 (𝑛 = 𝑁 → ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥 = ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥)
46 itgex 24363 . . . 4 ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥 ∈ V
4745, 39, 46fvmpt 6749 . . 3 (𝑁 ∈ ℕ0 → (𝐼𝑁) = ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥)
485, 47syl 17 . 2 (𝜑 → (𝐼𝑁) = ∫(0(,)π)((sin‘𝑥)↑𝑁) d𝑥)
4935, 42, 483brtr4d 5079 1 (𝜑 → (𝐼‘(𝑁 + 1)) ≤ (𝐼𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115   class class class wbr 5047  cmpt 5127  cfv 6336  (class class class)co 7138  cr 10521  0cc0 10522  1c1 10523   + caddc 10525   < clt 10660  cle 10661  -cneg 10856  0cn0 11883  cz 11967  cuz 12229  (,)cioo 12724  cexp 13423  sincsin 15406  πcpi 15409  𝐿1cibl 24210  citg 24211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-inf2 9088  ax-cc 9842  ax-cnex 10578  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599  ax-pre-sup 10600  ax-addf 10601  ax-mulf 10602
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-int 4858  df-iun 4902  df-iin 4903  df-disj 5013  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-se 5496  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-of 7392  df-ofr 7393  df-om 7564  df-1st 7672  df-2nd 7673  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-omul 8090  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-acn 9355  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-div 11283  df-nn 11624  df-2 11686  df-3 11687  df-4 11688  df-5 11689  df-6 11690  df-7 11691  df-8 11692  df-9 11693  df-n0 11884  df-z 11968  df-dec 12085  df-uz 12230  df-q 12335  df-rp 12376  df-xneg 12493  df-xadd 12494  df-xmul 12495  df-ioo 12728  df-ioc 12729  df-ico 12730  df-icc 12731  df-fz 12884  df-fzo 13027  df-fl 13155  df-mod 13231  df-seq 13363  df-exp 13424  df-fac 13628  df-bc 13657  df-hash 13685  df-shft 14415  df-cj 14447  df-re 14448  df-im 14449  df-sqrt 14583  df-abs 14584  df-limsup 14817  df-clim 14834  df-rlim 14835  df-sum 15032  df-ef 15410  df-sin 15412  df-cos 15413  df-pi 15415  df-struct 16474  df-ndx 16475  df-slot 16476  df-base 16478  df-sets 16479  df-ress 16480  df-plusg 16567  df-mulr 16568  df-starv 16569  df-sca 16570  df-vsca 16571  df-ip 16572  df-tset 16573  df-ple 16574  df-ds 16576  df-unif 16577  df-hom 16578  df-cco 16579  df-rest 16685  df-topn 16686  df-0g 16704  df-gsum 16705  df-topgen 16706  df-pt 16707  df-prds 16710  df-xrs 16764  df-qtop 16769  df-imas 16770  df-xps 16772  df-mre 16846  df-mrc 16847  df-acs 16849  df-mgm 17841  df-sgrp 17890  df-mnd 17901  df-submnd 17946  df-mulg 18214  df-cntz 18436  df-cmn 18897  df-psmet 20523  df-xmet 20524  df-met 20525  df-bl 20526  df-mopn 20527  df-fbas 20528  df-fg 20529  df-cnfld 20532  df-top 21488  df-topon 21505  df-topsp 21527  df-bases 21540  df-cld 21613  df-ntr 21614  df-cls 21615  df-nei 21692  df-lp 21730  df-perf 21731  df-cn 21821  df-cnp 21822  df-haus 21909  df-cmp 21981  df-tx 22156  df-hmeo 22349  df-fil 22440  df-fm 22532  df-flim 22533  df-flf 22534  df-xms 22916  df-ms 22917  df-tms 22918  df-cncf 23472  df-ovol 24057  df-vol 24058  df-mbf 24212  df-itg1 24213  df-itg2 24214  df-ibl 24215  df-itg 24216  df-0p 24263  df-limc 24458  df-dv 24459
This theorem is referenced by:  wallispilem5  42553
  Copyright terms: Public domain W3C validator