![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wallispilem1 | Structured version Visualization version GIF version |
Description: πΌ is monotone: increasing the exponent, the integral decreases. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
wallispilem1.1 | β’ πΌ = (π β β0 β¦ β«(0(,)Ο)((sinβπ₯)βπ) dπ₯) |
wallispilem1.2 | β’ (π β π β β0) |
Ref | Expression |
---|---|
wallispilem1 | β’ (π β (πΌβ(π + 1)) β€ (πΌβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11241 | . . . . 5 β’ 0 β β | |
2 | 1 | a1i 11 | . . . 4 β’ (π β 0 β β) |
3 | pire 26406 | . . . . 5 β’ Ο β β | |
4 | 3 | a1i 11 | . . . 4 β’ (π β Ο β β) |
5 | wallispilem1.2 | . . . . 5 β’ (π β π β β0) | |
6 | peano2nn0 12537 | . . . . 5 β’ (π β β0 β (π + 1) β β0) | |
7 | 5, 6 | syl 17 | . . . 4 β’ (π β (π + 1) β β0) |
8 | iblioosinexp 45400 | . . . 4 β’ ((0 β β β§ Ο β β β§ (π + 1) β β0) β (π₯ β (0(,)Ο) β¦ ((sinβπ₯)β(π + 1))) β πΏ1) | |
9 | 2, 4, 7, 8 | syl3anc 1368 | . . 3 β’ (π β (π₯ β (0(,)Ο) β¦ ((sinβπ₯)β(π + 1))) β πΏ1) |
10 | iblioosinexp 45400 | . . . 4 β’ ((0 β β β§ Ο β β β§ π β β0) β (π₯ β (0(,)Ο) β¦ ((sinβπ₯)βπ)) β πΏ1) | |
11 | 2, 4, 5, 10 | syl3anc 1368 | . . 3 β’ (π β (π₯ β (0(,)Ο) β¦ ((sinβπ₯)βπ)) β πΏ1) |
12 | elioore 13381 | . . . . . 6 β’ (π₯ β (0(,)Ο) β π₯ β β) | |
13 | 12 | resincld 16114 | . . . . 5 β’ (π₯ β (0(,)Ο) β (sinβπ₯) β β) |
14 | 13 | adantl 480 | . . . 4 β’ ((π β§ π₯ β (0(,)Ο)) β (sinβπ₯) β β) |
15 | 7 | adantr 479 | . . . 4 β’ ((π β§ π₯ β (0(,)Ο)) β (π + 1) β β0) |
16 | 14, 15 | reexpcld 14154 | . . 3 β’ ((π β§ π₯ β (0(,)Ο)) β ((sinβπ₯)β(π + 1)) β β) |
17 | 5 | adantr 479 | . . . 4 β’ ((π β§ π₯ β (0(,)Ο)) β π β β0) |
18 | 14, 17 | reexpcld 14154 | . . 3 β’ ((π β§ π₯ β (0(,)Ο)) β ((sinβπ₯)βπ) β β) |
19 | 5 | nn0zd 12609 | . . . . . . 7 β’ (π β π β β€) |
20 | uzid 12862 | . . . . . . 7 β’ (π β β€ β π β (β€β₯βπ)) | |
21 | 19, 20 | syl 17 | . . . . . 6 β’ (π β π β (β€β₯βπ)) |
22 | peano2uz 12910 | . . . . . 6 β’ (π β (β€β₯βπ) β (π + 1) β (β€β₯βπ)) | |
23 | 21, 22 | syl 17 | . . . . 5 β’ (π β (π + 1) β (β€β₯βπ)) |
24 | 23 | adantr 479 | . . . 4 β’ ((π β§ π₯ β (0(,)Ο)) β (π + 1) β (β€β₯βπ)) |
25 | 13, 1 | jctil 518 | . . . . . 6 β’ (π₯ β (0(,)Ο) β (0 β β β§ (sinβπ₯) β β)) |
26 | sinq12gt0 26455 | . . . . . 6 β’ (π₯ β (0(,)Ο) β 0 < (sinβπ₯)) | |
27 | ltle 11327 | . . . . . 6 β’ ((0 β β β§ (sinβπ₯) β β) β (0 < (sinβπ₯) β 0 β€ (sinβπ₯))) | |
28 | 25, 26, 27 | sylc 65 | . . . . 5 β’ (π₯ β (0(,)Ο) β 0 β€ (sinβπ₯)) |
29 | 28 | adantl 480 | . . . 4 β’ ((π β§ π₯ β (0(,)Ο)) β 0 β€ (sinβπ₯)) |
30 | sinbnd 16151 | . . . . . . 7 β’ (π₯ β β β (-1 β€ (sinβπ₯) β§ (sinβπ₯) β€ 1)) | |
31 | 12, 30 | syl 17 | . . . . . 6 β’ (π₯ β (0(,)Ο) β (-1 β€ (sinβπ₯) β§ (sinβπ₯) β€ 1)) |
32 | 31 | simprd 494 | . . . . 5 β’ (π₯ β (0(,)Ο) β (sinβπ₯) β€ 1) |
33 | 32 | adantl 480 | . . . 4 β’ ((π β§ π₯ β (0(,)Ο)) β (sinβπ₯) β€ 1) |
34 | 14, 17, 24, 29, 33 | leexp2rd 14244 | . . 3 β’ ((π β§ π₯ β (0(,)Ο)) β ((sinβπ₯)β(π + 1)) β€ ((sinβπ₯)βπ)) |
35 | 9, 11, 16, 18, 34 | itgle 25752 | . 2 β’ (π β β«(0(,)Ο)((sinβπ₯)β(π + 1)) dπ₯ β€ β«(0(,)Ο)((sinβπ₯)βπ) dπ₯) |
36 | oveq2 7421 | . . . . . 6 β’ (π = (π + 1) β ((sinβπ₯)βπ) = ((sinβπ₯)β(π + 1))) | |
37 | 36 | adantr 479 | . . . . 5 β’ ((π = (π + 1) β§ π₯ β (0(,)Ο)) β ((sinβπ₯)βπ) = ((sinβπ₯)β(π + 1))) |
38 | 37 | itgeq2dv 25724 | . . . 4 β’ (π = (π + 1) β β«(0(,)Ο)((sinβπ₯)βπ) dπ₯ = β«(0(,)Ο)((sinβπ₯)β(π + 1)) dπ₯) |
39 | wallispilem1.1 | . . . 4 β’ πΌ = (π β β0 β¦ β«(0(,)Ο)((sinβπ₯)βπ) dπ₯) | |
40 | itgex 25713 | . . . 4 β’ β«(0(,)Ο)((sinβπ₯)β(π + 1)) dπ₯ β V | |
41 | 38, 39, 40 | fvmpt 6998 | . . 3 β’ ((π + 1) β β0 β (πΌβ(π + 1)) = β«(0(,)Ο)((sinβπ₯)β(π + 1)) dπ₯) |
42 | 7, 41 | syl 17 | . 2 β’ (π β (πΌβ(π + 1)) = β«(0(,)Ο)((sinβπ₯)β(π + 1)) dπ₯) |
43 | oveq2 7421 | . . . . . 6 β’ (π = π β ((sinβπ₯)βπ) = ((sinβπ₯)βπ)) | |
44 | 43 | adantr 479 | . . . . 5 β’ ((π = π β§ π₯ β (0(,)Ο)) β ((sinβπ₯)βπ) = ((sinβπ₯)βπ)) |
45 | 44 | itgeq2dv 25724 | . . . 4 β’ (π = π β β«(0(,)Ο)((sinβπ₯)βπ) dπ₯ = β«(0(,)Ο)((sinβπ₯)βπ) dπ₯) |
46 | itgex 25713 | . . . 4 β’ β«(0(,)Ο)((sinβπ₯)βπ) dπ₯ β V | |
47 | 45, 39, 46 | fvmpt 6998 | . . 3 β’ (π β β0 β (πΌβπ) = β«(0(,)Ο)((sinβπ₯)βπ) dπ₯) |
48 | 5, 47 | syl 17 | . 2 β’ (π β (πΌβπ) = β«(0(,)Ο)((sinβπ₯)βπ) dπ₯) |
49 | 35, 42, 48 | 3brtr4d 5176 | 1 β’ (π β (πΌβ(π + 1)) β€ (πΌβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 class class class wbr 5144 β¦ cmpt 5227 βcfv 6543 (class class class)co 7413 βcr 11132 0cc0 11133 1c1 11134 + caddc 11136 < clt 11273 β€ cle 11274 -cneg 11470 β0cn0 12497 β€cz 12583 β€β₯cuz 12847 (,)cioo 13351 βcexp 14053 sincsin 16034 Οcpi 16037 πΏ1cibl 25559 β«citg 25560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-inf2 9659 ax-cc 10453 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 ax-pre-sup 11211 ax-addf 11212 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-iin 4995 df-disj 5110 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-se 5629 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-ofr 7680 df-om 7866 df-1st 7987 df-2nd 7988 df-supp 8159 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-omul 8485 df-er 8718 df-map 8840 df-pm 8841 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9381 df-fi 9429 df-sup 9460 df-inf 9461 df-oi 9528 df-dju 9919 df-card 9957 df-acn 9960 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-div 11897 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-5 12303 df-6 12304 df-7 12305 df-8 12306 df-9 12307 df-n0 12498 df-z 12584 df-dec 12703 df-uz 12848 df-q 12958 df-rp 13002 df-xneg 13119 df-xadd 13120 df-xmul 13121 df-ioo 13355 df-ioc 13356 df-ico 13357 df-icc 13358 df-fz 13512 df-fzo 13655 df-fl 13784 df-mod 13862 df-seq 13994 df-exp 14054 df-fac 14260 df-bc 14289 df-hash 14317 df-shft 15041 df-cj 15073 df-re 15074 df-im 15075 df-sqrt 15209 df-abs 15210 df-limsup 15442 df-clim 15459 df-rlim 15460 df-sum 15660 df-ef 16038 df-sin 16040 df-cos 16041 df-pi 16043 df-struct 17110 df-sets 17127 df-slot 17145 df-ndx 17157 df-base 17175 df-ress 17204 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-rest 17398 df-topn 17399 df-0g 17417 df-gsum 17418 df-topgen 17419 df-pt 17420 df-prds 17423 df-xrs 17478 df-qtop 17483 df-imas 17484 df-xps 17486 df-mre 17560 df-mrc 17561 df-acs 17563 df-mgm 18594 df-sgrp 18673 df-mnd 18689 df-submnd 18735 df-mulg 19023 df-cntz 19267 df-cmn 19736 df-psmet 21270 df-xmet 21271 df-met 21272 df-bl 21273 df-mopn 21274 df-fbas 21275 df-fg 21276 df-cnfld 21279 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22862 df-cld 22936 df-ntr 22937 df-cls 22938 df-nei 23015 df-lp 23053 df-perf 23054 df-cn 23144 df-cnp 23145 df-haus 23232 df-cmp 23304 df-tx 23479 df-hmeo 23672 df-fil 23763 df-fm 23855 df-flim 23856 df-flf 23857 df-xms 24239 df-ms 24240 df-tms 24241 df-cncf 24811 df-ovol 25406 df-vol 25407 df-mbf 25561 df-itg1 25562 df-itg2 25563 df-ibl 25564 df-itg 25565 df-0p 25612 df-limc 25808 df-dv 25809 |
This theorem is referenced by: wallispilem5 45516 |
Copyright terms: Public domain | W3C validator |