MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgeq1f Structured version   Visualization version   GIF version

Theorem itgeq1f 25700
Description: Equality theorem for an integral. (Contributed by Mario Carneiro, 28-Jun-2014.) Avoid axioms. (Revised by GG, 1-Sep-2025.)
Hypotheses
Ref Expression
itgeq1f.1 𝑥𝐴
itgeq1f.2 𝑥𝐵
Assertion
Ref Expression
itgeq1f (𝐴 = 𝐵 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥)

Proof of Theorem itgeq1f
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgeq1f.1 . . . . . . 7 𝑥𝐴
2 itgeq1f.2 . . . . . . 7 𝑥𝐵
31, 2nfeq 2909 . . . . . 6 𝑥 𝐴 = 𝐵
4 eleq2 2822 . . . . . . . . . 10 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
54anbi1d 631 . . . . . . . . 9 (𝐴 = 𝐵 → ((𝑥𝐴 ∧ 0 ≤ 𝑦) ↔ (𝑥𝐵 ∧ 0 ≤ 𝑦)))
65ifbid 4498 . . . . . . . 8 (𝐴 = 𝐵 → if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0) = if((𝑥𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0))
76csbeq2dv 3853 . . . . . . 7 (𝐴 = 𝐵(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0) = (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0))
87adantr 480 . . . . . 6 ((𝐴 = 𝐵𝑥 ∈ ℝ) → (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0) = (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0))
93, 8mpteq2da 5185 . . . . 5 (𝐴 = 𝐵 → (𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)) = (𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0)))
109fveq2d 6832 . . . 4 (𝐴 = 𝐵 → (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))) = (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0))))
1110oveq2d 7368 . . 3 (𝐴 = 𝐵 → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) = ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0)))))
1211sumeq2sdv 15612 . 2 (𝐴 = 𝐵 → Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0)))))
13 df-itg 25552 . 2 𝐴𝐶 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
14 df-itg 25552 . 2 𝐵𝐶 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0))))
1512, 13, 143eqtr4g 2793 1 (𝐴 = 𝐵 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wnfc 2880  csb 3846  ifcif 4474   class class class wbr 5093  cmpt 5174  cfv 6486  (class class class)co 7352  cr 11012  0cc0 11013  ici 11015   · cmul 11018  cle 11154   / cdiv 11781  3c3 12188  ...cfz 13409  cexp 13970  cre 15006  Σcsu 15595  2citg2 25545  citg 25547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-xp 5625  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-iota 6442  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-seq 13911  df-sum 15596  df-itg 25552
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator