MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgeq1f Structured version   Visualization version   GIF version

Theorem itgeq1f 25688
Description: Equality theorem for an integral. (Contributed by Mario Carneiro, 28-Jun-2014.) Avoid axioms. (Revised by GG, 1-Sep-2025.)
Hypotheses
Ref Expression
itgeq1f.1 𝑥𝐴
itgeq1f.2 𝑥𝐵
Assertion
Ref Expression
itgeq1f (𝐴 = 𝐵 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥)

Proof of Theorem itgeq1f
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgeq1f.1 . . . . . . 7 𝑥𝐴
2 itgeq1f.2 . . . . . . 7 𝑥𝐵
31, 2nfeq 2905 . . . . . 6 𝑥 𝐴 = 𝐵
4 eleq2 2817 . . . . . . . . . 10 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
54anbi1d 631 . . . . . . . . 9 (𝐴 = 𝐵 → ((𝑥𝐴 ∧ 0 ≤ 𝑦) ↔ (𝑥𝐵 ∧ 0 ≤ 𝑦)))
65ifbid 4502 . . . . . . . 8 (𝐴 = 𝐵 → if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0) = if((𝑥𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0))
76csbeq2dv 3860 . . . . . . 7 (𝐴 = 𝐵(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0) = (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0))
87adantr 480 . . . . . 6 ((𝐴 = 𝐵𝑥 ∈ ℝ) → (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0) = (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0))
93, 8mpteq2da 5187 . . . . 5 (𝐴 = 𝐵 → (𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)) = (𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0)))
109fveq2d 6830 . . . 4 (𝐴 = 𝐵 → (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))) = (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0))))
1110oveq2d 7369 . . 3 (𝐴 = 𝐵 → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) = ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0)))))
1211sumeq2sdv 15628 . 2 (𝐴 = 𝐵 → Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0)))))
13 df-itg 25540 . 2 𝐴𝐶 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
14 df-itg 25540 . 2 𝐵𝐶 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0))))
1512, 13, 143eqtr4g 2789 1 (𝐴 = 𝐵 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wnfc 2876  csb 3853  ifcif 4478   class class class wbr 5095  cmpt 5176  cfv 6486  (class class class)co 7353  cr 11027  0cc0 11028  ici 11030   · cmul 11033  cle 11169   / cdiv 11795  3c3 12202  ...cfz 13428  cexp 13986  cre 15022  Σcsu 15611  2citg2 25533  citg 25535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-xp 5629  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-iota 6442  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-seq 13927  df-sum 15612  df-itg 25540
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator