![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > itgeq1f | Structured version Visualization version GIF version |
Description: Equality theorem for an integral. (Contributed by Mario Carneiro, 28-Jun-2014.) Avoid axioms. (Revised by GG, 1-Sep-2025.) |
Ref | Expression |
---|---|
itgeq1f.1 | ⊢ Ⅎ𝑥𝐴 |
itgeq1f.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
itgeq1f | ⊢ (𝐴 = 𝐵 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itgeq1f.1 | . . . . . . 7 ⊢ Ⅎ𝑥𝐴 | |
2 | itgeq1f.2 | . . . . . . 7 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | nfeq 2916 | . . . . . 6 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
4 | eleq2 2827 | . . . . . . . . . 10 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
5 | 4 | anbi1d 631 | . . . . . . . . 9 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦) ↔ (𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦))) |
6 | 5 | ifbid 4553 | . . . . . . . 8 ⊢ (𝐴 = 𝐵 → if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0) = if((𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0)) |
7 | 6 | csbeq2dv 3914 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → ⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0) = ⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0)) |
8 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝐴 = 𝐵 ∧ 𝑥 ∈ ℝ) → ⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0) = ⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0)) |
9 | 3, 8 | mpteq2da 5245 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)) = (𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0))) |
10 | 9 | fveq2d 6910 | . . . 4 ⊢ (𝐴 = 𝐵 → (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))) = (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0)))) |
11 | 10 | oveq2d 7446 | . . 3 ⊢ (𝐴 = 𝐵 → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) = ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0))))) |
12 | 11 | sumeq2sdv 15735 | . 2 ⊢ (𝐴 = 𝐵 → Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0))))) |
13 | df-itg 25671 | . 2 ⊢ ∫𝐴𝐶 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) | |
14 | df-itg 25671 | . 2 ⊢ ∫𝐵𝐶 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0)))) | |
15 | 12, 13, 14 | 3eqtr4g 2799 | 1 ⊢ (𝐴 = 𝐵 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 Ⅎwnfc 2887 ⦋csb 3907 ifcif 4530 class class class wbr 5147 ↦ cmpt 5230 ‘cfv 6562 (class class class)co 7430 ℝcr 11151 0cc0 11152 ici 11154 · cmul 11157 ≤ cle 11293 / cdiv 11917 3c3 12319 ...cfz 13543 ↑cexp 14098 ℜcre 15132 Σcsu 15718 ∫2citg2 25664 ∫citg 25666 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-xp 5694 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-iota 6515 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-seq 14039 df-sum 15719 df-itg 25671 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |