MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgeq1f Structured version   Visualization version   GIF version

Theorem itgeq1f 25679
Description: Equality theorem for an integral. (Contributed by Mario Carneiro, 28-Jun-2014.) Avoid axioms. (Revised by GG, 1-Sep-2025.)
Hypotheses
Ref Expression
itgeq1f.1 𝑥𝐴
itgeq1f.2 𝑥𝐵
Assertion
Ref Expression
itgeq1f (𝐴 = 𝐵 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥)

Proof of Theorem itgeq1f
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgeq1f.1 . . . . . . 7 𝑥𝐴
2 itgeq1f.2 . . . . . . 7 𝑥𝐵
31, 2nfeq 2906 . . . . . 6 𝑥 𝐴 = 𝐵
4 eleq2 2818 . . . . . . . . . 10 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
54anbi1d 631 . . . . . . . . 9 (𝐴 = 𝐵 → ((𝑥𝐴 ∧ 0 ≤ 𝑦) ↔ (𝑥𝐵 ∧ 0 ≤ 𝑦)))
65ifbid 4515 . . . . . . . 8 (𝐴 = 𝐵 → if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0) = if((𝑥𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0))
76csbeq2dv 3872 . . . . . . 7 (𝐴 = 𝐵(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0) = (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0))
87adantr 480 . . . . . 6 ((𝐴 = 𝐵𝑥 ∈ ℝ) → (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0) = (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0))
93, 8mpteq2da 5202 . . . . 5 (𝐴 = 𝐵 → (𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)) = (𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0)))
109fveq2d 6865 . . . 4 (𝐴 = 𝐵 → (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))) = (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0))))
1110oveq2d 7406 . . 3 (𝐴 = 𝐵 → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) = ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0)))))
1211sumeq2sdv 15676 . 2 (𝐴 = 𝐵 → Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0)))))
13 df-itg 25531 . 2 𝐴𝐶 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
14 df-itg 25531 . 2 𝐵𝐶 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0))))
1512, 13, 143eqtr4g 2790 1 (𝐴 = 𝐵 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wnfc 2877  csb 3865  ifcif 4491   class class class wbr 5110  cmpt 5191  cfv 6514  (class class class)co 7390  cr 11074  0cc0 11075  ici 11077   · cmul 11080  cle 11216   / cdiv 11842  3c3 12249  ...cfz 13475  cexp 14033  cre 15070  Σcsu 15659  2citg2 25524  citg 25526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-xp 5647  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-iota 6467  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-seq 13974  df-sum 15660  df-itg 25531
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator