| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itgeq1f | Structured version Visualization version GIF version | ||
| Description: Equality theorem for an integral. (Contributed by Mario Carneiro, 28-Jun-2014.) Avoid axioms. (Revised by GG, 1-Sep-2025.) |
| Ref | Expression |
|---|---|
| itgeq1f.1 | ⊢ Ⅎ𝑥𝐴 |
| itgeq1f.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| itgeq1f | ⊢ (𝐴 = 𝐵 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgeq1f.1 | . . . . . . 7 ⊢ Ⅎ𝑥𝐴 | |
| 2 | itgeq1f.2 | . . . . . . 7 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | nfeq 2905 | . . . . . 6 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| 4 | eleq2 2817 | . . . . . . . . . 10 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 5 | 4 | anbi1d 631 | . . . . . . . . 9 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦) ↔ (𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦))) |
| 6 | 5 | ifbid 4502 | . . . . . . . 8 ⊢ (𝐴 = 𝐵 → if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0) = if((𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0)) |
| 7 | 6 | csbeq2dv 3860 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → ⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0) = ⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0)) |
| 8 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝐴 = 𝐵 ∧ 𝑥 ∈ ℝ) → ⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0) = ⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0)) |
| 9 | 3, 8 | mpteq2da 5187 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)) = (𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0))) |
| 10 | 9 | fveq2d 6830 | . . . 4 ⊢ (𝐴 = 𝐵 → (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))) = (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0)))) |
| 11 | 10 | oveq2d 7369 | . . 3 ⊢ (𝐴 = 𝐵 → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) = ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0))))) |
| 12 | 11 | sumeq2sdv 15628 | . 2 ⊢ (𝐴 = 𝐵 → Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0))))) |
| 13 | df-itg 25540 | . 2 ⊢ ∫𝐴𝐶 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) | |
| 14 | df-itg 25540 | . 2 ⊢ ∫𝐵𝐶 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0)))) | |
| 15 | 12, 13, 14 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Ⅎwnfc 2876 ⦋csb 3853 ifcif 4478 class class class wbr 5095 ↦ cmpt 5176 ‘cfv 6486 (class class class)co 7353 ℝcr 11027 0cc0 11028 ici 11030 · cmul 11033 ≤ cle 11169 / cdiv 11795 3c3 12202 ...cfz 13428 ↑cexp 13986 ℜcre 15022 Σcsu 15611 ∫2citg2 25533 ∫citg 25535 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-xp 5629 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-iota 6442 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-seq 13927 df-sum 15612 df-itg 25540 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |