MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgulm Structured version   Visualization version   GIF version

Theorem itgulm 26466
Description: A uniform limit of integrals of integrable functions converges to the integral of the limit function. (Contributed by Mario Carneiro, 18-Mar-2015.)
Hypotheses
Ref Expression
itgulm.z 𝑍 = (ℤ𝑀)
itgulm.m (𝜑𝑀 ∈ ℤ)
itgulm.f (𝜑𝐹:𝑍⟶𝐿1)
itgulm.u (𝜑𝐹(⇝𝑢𝑆)𝐺)
itgulm.s (𝜑 → (vol‘𝑆) ∈ ℝ)
Assertion
Ref Expression
itgulm (𝜑 → (𝑘𝑍 ↦ ∫𝑆((𝐹𝑘)‘𝑥) d𝑥) ⇝ ∫𝑆(𝐺𝑥) d𝑥)
Distinct variable groups:   𝑥,𝑘,𝐹   𝑘,𝐺,𝑥   𝜑,𝑘,𝑥   𝑘,𝑀,𝑥   𝑆,𝑘,𝑥   𝑘,𝑍,𝑥

Proof of Theorem itgulm
Dummy variables 𝑗 𝑛 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgulm.z . . . . 5 𝑍 = (ℤ𝑀)
2 itgulm.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
32adantr 480 . . . . 5 ((𝜑𝑟 ∈ ℝ+) → 𝑀 ∈ ℤ)
4 itgulm.f . . . . . . . 8 (𝜑𝐹:𝑍⟶𝐿1)
54ffnd 6738 . . . . . . 7 (𝜑𝐹 Fn 𝑍)
6 itgulm.u . . . . . . 7 (𝜑𝐹(⇝𝑢𝑆)𝐺)
7 ulmf2 26442 . . . . . . 7 ((𝐹 Fn 𝑍𝐹(⇝𝑢𝑆)𝐺) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
85, 6, 7syl2anc 584 . . . . . 6 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
98adantr 480 . . . . 5 ((𝜑𝑟 ∈ ℝ+) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
10 eqidd 2736 . . . . 5 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍𝑧𝑆)) → ((𝐹𝑛)‘𝑧) = ((𝐹𝑛)‘𝑧))
11 eqidd 2736 . . . . 5 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑧𝑆) → (𝐺𝑧) = (𝐺𝑧))
126adantr 480 . . . . 5 ((𝜑𝑟 ∈ ℝ+) → 𝐹(⇝𝑢𝑆)𝐺)
13 simpr 484 . . . . . 6 ((𝜑𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+)
14 itgulm.s . . . . . . . 8 (𝜑 → (vol‘𝑆) ∈ ℝ)
1514adantr 480 . . . . . . 7 ((𝜑𝑟 ∈ ℝ+) → (vol‘𝑆) ∈ ℝ)
16 ulmcl 26439 . . . . . . . . . . . 12 (𝐹(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
17 fdm 6746 . . . . . . . . . . . 12 (𝐺:𝑆⟶ℂ → dom 𝐺 = 𝑆)
186, 16, 173syl 18 . . . . . . . . . . 11 (𝜑 → dom 𝐺 = 𝑆)
191, 2, 4, 6, 14iblulm 26465 . . . . . . . . . . . 12 (𝜑𝐺 ∈ 𝐿1)
20 iblmbf 25817 . . . . . . . . . . . 12 (𝐺 ∈ 𝐿1𝐺 ∈ MblFn)
21 mbfdm 25675 . . . . . . . . . . . 12 (𝐺 ∈ MblFn → dom 𝐺 ∈ dom vol)
2219, 20, 213syl 18 . . . . . . . . . . 11 (𝜑 → dom 𝐺 ∈ dom vol)
2318, 22eqeltrrd 2840 . . . . . . . . . 10 (𝜑𝑆 ∈ dom vol)
24 mblss 25580 . . . . . . . . . 10 (𝑆 ∈ dom vol → 𝑆 ⊆ ℝ)
25 ovolge0 25530 . . . . . . . . . 10 (𝑆 ⊆ ℝ → 0 ≤ (vol*‘𝑆))
2623, 24, 253syl 18 . . . . . . . . 9 (𝜑 → 0 ≤ (vol*‘𝑆))
27 mblvol 25579 . . . . . . . . . 10 (𝑆 ∈ dom vol → (vol‘𝑆) = (vol*‘𝑆))
2823, 27syl 17 . . . . . . . . 9 (𝜑 → (vol‘𝑆) = (vol*‘𝑆))
2926, 28breqtrrd 5176 . . . . . . . 8 (𝜑 → 0 ≤ (vol‘𝑆))
3029adantr 480 . . . . . . 7 ((𝜑𝑟 ∈ ℝ+) → 0 ≤ (vol‘𝑆))
3115, 30ge0p1rpd 13105 . . . . . 6 ((𝜑𝑟 ∈ ℝ+) → ((vol‘𝑆) + 1) ∈ ℝ+)
3213, 31rpdivcld 13092 . . . . 5 ((𝜑𝑟 ∈ ℝ+) → (𝑟 / ((vol‘𝑆) + 1)) ∈ ℝ+)
331, 3, 9, 10, 11, 12, 32ulmi 26444 . . . 4 ((𝜑𝑟 ∈ ℝ+) → ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))
341uztrn2 12895 . . . . . . . 8 ((𝑗𝑍𝑛 ∈ (ℤ𝑗)) → 𝑛𝑍)
358ffvelcdmda 7104 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ (ℂ ↑m 𝑆))
36 elmapi 8888 . . . . . . . . . . . . . . . 16 ((𝐹𝑛) ∈ (ℂ ↑m 𝑆) → (𝐹𝑛):𝑆⟶ℂ)
3735, 36syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍) → (𝐹𝑛):𝑆⟶ℂ)
3837ffvelcdmda 7104 . . . . . . . . . . . . . 14 (((𝜑𝑛𝑍) ∧ 𝑥𝑆) → ((𝐹𝑛)‘𝑥) ∈ ℂ)
3938adantllr 719 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑛𝑍) ∧ 𝑥𝑆) → ((𝐹𝑛)‘𝑥) ∈ ℂ)
4039adantlrr 721 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) ∧ 𝑥𝑆) → ((𝐹𝑛)‘𝑥) ∈ ℂ)
4137feqmptd 6977 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → (𝐹𝑛) = (𝑥𝑆 ↦ ((𝐹𝑛)‘𝑥)))
424ffvelcdmda 7104 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ 𝐿1)
4341, 42eqeltrrd 2840 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (𝑥𝑆 ↦ ((𝐹𝑛)‘𝑥)) ∈ 𝐿1)
4443ad2ant2r 747 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑥𝑆 ↦ ((𝐹𝑛)‘𝑥)) ∈ 𝐿1)
456, 16syl 17 . . . . . . . . . . . . . 14 (𝜑𝐺:𝑆⟶ℂ)
4645ffvelcdmda 7104 . . . . . . . . . . . . 13 ((𝜑𝑥𝑆) → (𝐺𝑥) ∈ ℂ)
4746ad4ant14 752 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) ∧ 𝑥𝑆) → (𝐺𝑥) ∈ ℂ)
4845feqmptd 6977 . . . . . . . . . . . . . 14 (𝜑𝐺 = (𝑥𝑆 ↦ (𝐺𝑥)))
4948, 19eqeltrrd 2840 . . . . . . . . . . . . 13 (𝜑 → (𝑥𝑆 ↦ (𝐺𝑥)) ∈ 𝐿1)
5049ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑥𝑆 ↦ (𝐺𝑥)) ∈ 𝐿1)
5140, 44, 47, 50itgsub 25876 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∫𝑆(((𝐹𝑛)‘𝑥) − (𝐺𝑥)) d𝑥 = (∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥))
5251fveq2d 6911 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (abs‘∫𝑆(((𝐹𝑛)‘𝑥) − (𝐺𝑥)) d𝑥) = (abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)))
5340, 47subcld 11618 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) ∧ 𝑥𝑆) → (((𝐹𝑛)‘𝑥) − (𝐺𝑥)) ∈ ℂ)
5440, 44, 47, 50iblsub 25872 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑥𝑆 ↦ (((𝐹𝑛)‘𝑥) − (𝐺𝑥))) ∈ 𝐿1)
5553, 54itgcl 25834 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∫𝑆(((𝐹𝑛)‘𝑥) − (𝐺𝑥)) d𝑥 ∈ ℂ)
5655abscld 15472 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (abs‘∫𝑆(((𝐹𝑛)‘𝑥) − (𝐺𝑥)) d𝑥) ∈ ℝ)
5753abscld 15472 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) ∧ 𝑥𝑆) → (abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) ∈ ℝ)
5853, 54iblabs 25879 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑥𝑆 ↦ (abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥)))) ∈ 𝐿1)
5957, 58itgrecl 25848 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∫𝑆(abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) d𝑥 ∈ ℝ)
60 rpre 13041 . . . . . . . . . . . 12 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
6160ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → 𝑟 ∈ ℝ)
6253, 54itgabs 25885 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (abs‘∫𝑆(((𝐹𝑛)‘𝑥) − (𝐺𝑥)) d𝑥) ≤ ∫𝑆(abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) d𝑥)
6332adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑟 / ((vol‘𝑆) + 1)) ∈ ℝ+)
6463rpred 13075 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑟 / ((vol‘𝑆) + 1)) ∈ ℝ)
6514ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (vol‘𝑆) ∈ ℝ)
6664, 65remulcld 11289 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((𝑟 / ((vol‘𝑆) + 1)) · (vol‘𝑆)) ∈ ℝ)
67 fconstmpt 5751 . . . . . . . . . . . . . . 15 (𝑆 × {(𝑟 / ((vol‘𝑆) + 1))}) = (𝑥𝑆 ↦ (𝑟 / ((vol‘𝑆) + 1)))
6823ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → 𝑆 ∈ dom vol)
6963rpcnd 13077 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑟 / ((vol‘𝑆) + 1)) ∈ ℂ)
70 iblconst 25868 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ dom vol ∧ (vol‘𝑆) ∈ ℝ ∧ (𝑟 / ((vol‘𝑆) + 1)) ∈ ℂ) → (𝑆 × {(𝑟 / ((vol‘𝑆) + 1))}) ∈ 𝐿1)
7168, 65, 69, 70syl3anc 1370 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑆 × {(𝑟 / ((vol‘𝑆) + 1))}) ∈ 𝐿1)
7267, 71eqeltrrid 2844 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑥𝑆 ↦ (𝑟 / ((vol‘𝑆) + 1))) ∈ 𝐿1)
7364adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) ∧ 𝑥𝑆) → (𝑟 / ((vol‘𝑆) + 1)) ∈ ℝ)
74 simprr 773 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))
75 fveq2 6907 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑥 → ((𝐹𝑛)‘𝑧) = ((𝐹𝑛)‘𝑥))
76 fveq2 6907 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑥 → (𝐺𝑧) = (𝐺𝑥))
7775, 76oveq12d 7449 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑥 → (((𝐹𝑛)‘𝑧) − (𝐺𝑧)) = (((𝐹𝑛)‘𝑥) − (𝐺𝑥)))
7877fveq2d 6911 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑥 → (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) = (abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))))
7978breq1d 5158 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑥 → ((abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)) ↔ (abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) < (𝑟 / ((vol‘𝑆) + 1))))
8079rspccva 3621 . . . . . . . . . . . . . . . 16 ((∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)) ∧ 𝑥𝑆) → (abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) < (𝑟 / ((vol‘𝑆) + 1)))
8174, 80sylan 580 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) ∧ 𝑥𝑆) → (abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) < (𝑟 / ((vol‘𝑆) + 1)))
8257, 73, 81ltled 11407 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) ∧ 𝑥𝑆) → (abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) ≤ (𝑟 / ((vol‘𝑆) + 1)))
8358, 72, 57, 73, 82itgle 25860 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∫𝑆(abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) d𝑥 ≤ ∫𝑆(𝑟 / ((vol‘𝑆) + 1)) d𝑥)
84 itgconst 25869 . . . . . . . . . . . . . 14 ((𝑆 ∈ dom vol ∧ (vol‘𝑆) ∈ ℝ ∧ (𝑟 / ((vol‘𝑆) + 1)) ∈ ℂ) → ∫𝑆(𝑟 / ((vol‘𝑆) + 1)) d𝑥 = ((𝑟 / ((vol‘𝑆) + 1)) · (vol‘𝑆)))
8568, 65, 69, 84syl3anc 1370 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∫𝑆(𝑟 / ((vol‘𝑆) + 1)) d𝑥 = ((𝑟 / ((vol‘𝑆) + 1)) · (vol‘𝑆)))
8683, 85breqtrd 5174 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∫𝑆(abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) d𝑥 ≤ ((𝑟 / ((vol‘𝑆) + 1)) · (vol‘𝑆)))
8761recnd 11287 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → 𝑟 ∈ ℂ)
8865recnd 11287 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (vol‘𝑆) ∈ ℂ)
8931adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((vol‘𝑆) + 1) ∈ ℝ+)
9089rpcnd 13077 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((vol‘𝑆) + 1) ∈ ℂ)
9189rpne0d 13080 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((vol‘𝑆) + 1) ≠ 0)
9287, 88, 90, 91div23d 12078 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((𝑟 · (vol‘𝑆)) / ((vol‘𝑆) + 1)) = ((𝑟 / ((vol‘𝑆) + 1)) · (vol‘𝑆)))
9365ltp1d 12196 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (vol‘𝑆) < ((vol‘𝑆) + 1))
94 peano2re 11432 . . . . . . . . . . . . . . . . 17 ((vol‘𝑆) ∈ ℝ → ((vol‘𝑆) + 1) ∈ ℝ)
9565, 94syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((vol‘𝑆) + 1) ∈ ℝ)
96 rpgt0 13045 . . . . . . . . . . . . . . . . 17 (𝑟 ∈ ℝ+ → 0 < 𝑟)
9796ad2antlr 727 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → 0 < 𝑟)
98 ltmul2 12116 . . . . . . . . . . . . . . . 16 (((vol‘𝑆) ∈ ℝ ∧ ((vol‘𝑆) + 1) ∈ ℝ ∧ (𝑟 ∈ ℝ ∧ 0 < 𝑟)) → ((vol‘𝑆) < ((vol‘𝑆) + 1) ↔ (𝑟 · (vol‘𝑆)) < (𝑟 · ((vol‘𝑆) + 1))))
9965, 95, 61, 97, 98syl112anc 1373 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((vol‘𝑆) < ((vol‘𝑆) + 1) ↔ (𝑟 · (vol‘𝑆)) < (𝑟 · ((vol‘𝑆) + 1))))
10093, 99mpbid 232 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑟 · (vol‘𝑆)) < (𝑟 · ((vol‘𝑆) + 1)))
10161, 65remulcld 11289 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑟 · (vol‘𝑆)) ∈ ℝ)
102101, 61, 89ltdivmul2d 13127 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (((𝑟 · (vol‘𝑆)) / ((vol‘𝑆) + 1)) < 𝑟 ↔ (𝑟 · (vol‘𝑆)) < (𝑟 · ((vol‘𝑆) + 1))))
103100, 102mpbird 257 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((𝑟 · (vol‘𝑆)) / ((vol‘𝑆) + 1)) < 𝑟)
10492, 103eqbrtrrd 5172 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((𝑟 / ((vol‘𝑆) + 1)) · (vol‘𝑆)) < 𝑟)
10559, 66, 61, 86, 104lelttrd 11417 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∫𝑆(abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) d𝑥 < 𝑟)
10656, 59, 61, 62, 105lelttrd 11417 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (abs‘∫𝑆(((𝐹𝑛)‘𝑥) − (𝐺𝑥)) d𝑥) < 𝑟)
10752, 106eqbrtrrd 5172 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)) < 𝑟)
108107expr 456 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → (∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)) → (abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)) < 𝑟))
10934, 108sylan2 593 . . . . . . 7 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)) → (abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)) < 𝑟))
110109anassrs 467 . . . . . 6 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑛 ∈ (ℤ𝑗)) → (∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)) → (abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)) < 𝑟))
111110ralimdva 3165 . . . . 5 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑛 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)) → ∀𝑛 ∈ (ℤ𝑗)(abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)) < 𝑟))
112111reximdva 3166 . . . 4 ((𝜑𝑟 ∈ ℝ+) → (∃𝑗𝑍𝑛 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)) → ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)) < 𝑟))
11333, 112mpd 15 . . 3 ((𝜑𝑟 ∈ ℝ+) → ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)) < 𝑟)
114113ralrimiva 3144 . 2 (𝜑 → ∀𝑟 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)) < 𝑟)
1151fvexi 6921 . . . . 5 𝑍 ∈ V
116115mptex 7243 . . . 4 (𝑘𝑍 ↦ ∫𝑆((𝐹𝑘)‘𝑥) d𝑥) ∈ V
117116a1i 11 . . 3 (𝜑 → (𝑘𝑍 ↦ ∫𝑆((𝐹𝑘)‘𝑥) d𝑥) ∈ V)
118 fveq2 6907 . . . . . . . 8 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
119118fveq1d 6909 . . . . . . 7 (𝑘 = 𝑛 → ((𝐹𝑘)‘𝑥) = ((𝐹𝑛)‘𝑥))
120119adantr 480 . . . . . 6 ((𝑘 = 𝑛𝑥𝑆) → ((𝐹𝑘)‘𝑥) = ((𝐹𝑛)‘𝑥))
121120itgeq2dv 25832 . . . . 5 (𝑘 = 𝑛 → ∫𝑆((𝐹𝑘)‘𝑥) d𝑥 = ∫𝑆((𝐹𝑛)‘𝑥) d𝑥)
122 eqid 2735 . . . . 5 (𝑘𝑍 ↦ ∫𝑆((𝐹𝑘)‘𝑥) d𝑥) = (𝑘𝑍 ↦ ∫𝑆((𝐹𝑘)‘𝑥) d𝑥)
123 itgex 25820 . . . . 5 𝑆((𝐹𝑛)‘𝑥) d𝑥 ∈ V
124121, 122, 123fvmpt 7016 . . . 4 (𝑛𝑍 → ((𝑘𝑍 ↦ ∫𝑆((𝐹𝑘)‘𝑥) d𝑥)‘𝑛) = ∫𝑆((𝐹𝑛)‘𝑥) d𝑥)
125124adantl 481 . . 3 ((𝜑𝑛𝑍) → ((𝑘𝑍 ↦ ∫𝑆((𝐹𝑘)‘𝑥) d𝑥)‘𝑛) = ∫𝑆((𝐹𝑛)‘𝑥) d𝑥)
12646, 49itgcl 25834 . . 3 (𝜑 → ∫𝑆(𝐺𝑥) d𝑥 ∈ ℂ)
12738, 43itgcl 25834 . . 3 ((𝜑𝑛𝑍) → ∫𝑆((𝐹𝑛)‘𝑥) d𝑥 ∈ ℂ)
1281, 2, 117, 125, 126, 127clim2c 15538 . 2 (𝜑 → ((𝑘𝑍 ↦ ∫𝑆((𝐹𝑘)‘𝑥) d𝑥) ⇝ ∫𝑆(𝐺𝑥) d𝑥 ↔ ∀𝑟 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)) < 𝑟))
129114, 128mpbird 257 1 (𝜑 → (𝑘𝑍 ↦ ∫𝑆((𝐹𝑘)‘𝑥) d𝑥) ⇝ ∫𝑆(𝐺𝑥) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  wrex 3068  Vcvv 3478  wss 3963  {csn 4631   class class class wbr 5148  cmpt 5231   × cxp 5687  dom cdm 5689   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  m cmap 8865  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  cle 11294  cmin 11490   / cdiv 11918  cz 12611  cuz 12876  +crp 13032  abscabs 15270  cli 15517  vol*covol 25511  volcvol 25512  MblFncmbf 25663  𝐿1cibl 25666  citg 25667  𝑢culm 26434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cc 10473  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-omul 8510  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-acn 9980  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cn 23251  df-cnp 23252  df-cmp 23411  df-tx 23586  df-hmeo 23779  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-ovol 25513  df-vol 25514  df-mbf 25668  df-itg1 25669  df-itg2 25670  df-ibl 25671  df-itg 25672  df-0p 25719  df-ulm 26435
This theorem is referenced by:  itgulm2  26467
  Copyright terms: Public domain W3C validator