MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgulm Structured version   Visualization version   GIF version

Theorem itgulm 26374
Description: A uniform limit of integrals of integrable functions converges to the integral of the limit function. (Contributed by Mario Carneiro, 18-Mar-2015.)
Hypotheses
Ref Expression
itgulm.z 𝑍 = (ℤ𝑀)
itgulm.m (𝜑𝑀 ∈ ℤ)
itgulm.f (𝜑𝐹:𝑍⟶𝐿1)
itgulm.u (𝜑𝐹(⇝𝑢𝑆)𝐺)
itgulm.s (𝜑 → (vol‘𝑆) ∈ ℝ)
Assertion
Ref Expression
itgulm (𝜑 → (𝑘𝑍 ↦ ∫𝑆((𝐹𝑘)‘𝑥) d𝑥) ⇝ ∫𝑆(𝐺𝑥) d𝑥)
Distinct variable groups:   𝑥,𝑘,𝐹   𝑘,𝐺,𝑥   𝜑,𝑘,𝑥   𝑘,𝑀,𝑥   𝑆,𝑘,𝑥   𝑘,𝑍,𝑥

Proof of Theorem itgulm
Dummy variables 𝑗 𝑛 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgulm.z . . . . 5 𝑍 = (ℤ𝑀)
2 itgulm.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
32adantr 480 . . . . 5 ((𝜑𝑟 ∈ ℝ+) → 𝑀 ∈ ℤ)
4 itgulm.f . . . . . . . 8 (𝜑𝐹:𝑍⟶𝐿1)
54ffnd 6712 . . . . . . 7 (𝜑𝐹 Fn 𝑍)
6 itgulm.u . . . . . . 7 (𝜑𝐹(⇝𝑢𝑆)𝐺)
7 ulmf2 26350 . . . . . . 7 ((𝐹 Fn 𝑍𝐹(⇝𝑢𝑆)𝐺) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
85, 6, 7syl2anc 584 . . . . . 6 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
98adantr 480 . . . . 5 ((𝜑𝑟 ∈ ℝ+) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
10 eqidd 2737 . . . . 5 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍𝑧𝑆)) → ((𝐹𝑛)‘𝑧) = ((𝐹𝑛)‘𝑧))
11 eqidd 2737 . . . . 5 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑧𝑆) → (𝐺𝑧) = (𝐺𝑧))
126adantr 480 . . . . 5 ((𝜑𝑟 ∈ ℝ+) → 𝐹(⇝𝑢𝑆)𝐺)
13 simpr 484 . . . . . 6 ((𝜑𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+)
14 itgulm.s . . . . . . . 8 (𝜑 → (vol‘𝑆) ∈ ℝ)
1514adantr 480 . . . . . . 7 ((𝜑𝑟 ∈ ℝ+) → (vol‘𝑆) ∈ ℝ)
16 ulmcl 26347 . . . . . . . . . . . 12 (𝐹(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
17 fdm 6720 . . . . . . . . . . . 12 (𝐺:𝑆⟶ℂ → dom 𝐺 = 𝑆)
186, 16, 173syl 18 . . . . . . . . . . 11 (𝜑 → dom 𝐺 = 𝑆)
191, 2, 4, 6, 14iblulm 26373 . . . . . . . . . . . 12 (𝜑𝐺 ∈ 𝐿1)
20 iblmbf 25725 . . . . . . . . . . . 12 (𝐺 ∈ 𝐿1𝐺 ∈ MblFn)
21 mbfdm 25584 . . . . . . . . . . . 12 (𝐺 ∈ MblFn → dom 𝐺 ∈ dom vol)
2219, 20, 213syl 18 . . . . . . . . . . 11 (𝜑 → dom 𝐺 ∈ dom vol)
2318, 22eqeltrrd 2836 . . . . . . . . . 10 (𝜑𝑆 ∈ dom vol)
24 mblss 25489 . . . . . . . . . 10 (𝑆 ∈ dom vol → 𝑆 ⊆ ℝ)
25 ovolge0 25439 . . . . . . . . . 10 (𝑆 ⊆ ℝ → 0 ≤ (vol*‘𝑆))
2623, 24, 253syl 18 . . . . . . . . 9 (𝜑 → 0 ≤ (vol*‘𝑆))
27 mblvol 25488 . . . . . . . . . 10 (𝑆 ∈ dom vol → (vol‘𝑆) = (vol*‘𝑆))
2823, 27syl 17 . . . . . . . . 9 (𝜑 → (vol‘𝑆) = (vol*‘𝑆))
2926, 28breqtrrd 5152 . . . . . . . 8 (𝜑 → 0 ≤ (vol‘𝑆))
3029adantr 480 . . . . . . 7 ((𝜑𝑟 ∈ ℝ+) → 0 ≤ (vol‘𝑆))
3115, 30ge0p1rpd 13086 . . . . . 6 ((𝜑𝑟 ∈ ℝ+) → ((vol‘𝑆) + 1) ∈ ℝ+)
3213, 31rpdivcld 13073 . . . . 5 ((𝜑𝑟 ∈ ℝ+) → (𝑟 / ((vol‘𝑆) + 1)) ∈ ℝ+)
331, 3, 9, 10, 11, 12, 32ulmi 26352 . . . 4 ((𝜑𝑟 ∈ ℝ+) → ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))
341uztrn2 12876 . . . . . . . 8 ((𝑗𝑍𝑛 ∈ (ℤ𝑗)) → 𝑛𝑍)
358ffvelcdmda 7079 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ (ℂ ↑m 𝑆))
36 elmapi 8868 . . . . . . . . . . . . . . . 16 ((𝐹𝑛) ∈ (ℂ ↑m 𝑆) → (𝐹𝑛):𝑆⟶ℂ)
3735, 36syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍) → (𝐹𝑛):𝑆⟶ℂ)
3837ffvelcdmda 7079 . . . . . . . . . . . . . 14 (((𝜑𝑛𝑍) ∧ 𝑥𝑆) → ((𝐹𝑛)‘𝑥) ∈ ℂ)
3938adantllr 719 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑛𝑍) ∧ 𝑥𝑆) → ((𝐹𝑛)‘𝑥) ∈ ℂ)
4039adantlrr 721 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) ∧ 𝑥𝑆) → ((𝐹𝑛)‘𝑥) ∈ ℂ)
4137feqmptd 6952 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → (𝐹𝑛) = (𝑥𝑆 ↦ ((𝐹𝑛)‘𝑥)))
424ffvelcdmda 7079 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ 𝐿1)
4341, 42eqeltrrd 2836 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (𝑥𝑆 ↦ ((𝐹𝑛)‘𝑥)) ∈ 𝐿1)
4443ad2ant2r 747 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑥𝑆 ↦ ((𝐹𝑛)‘𝑥)) ∈ 𝐿1)
456, 16syl 17 . . . . . . . . . . . . . 14 (𝜑𝐺:𝑆⟶ℂ)
4645ffvelcdmda 7079 . . . . . . . . . . . . 13 ((𝜑𝑥𝑆) → (𝐺𝑥) ∈ ℂ)
4746ad4ant14 752 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) ∧ 𝑥𝑆) → (𝐺𝑥) ∈ ℂ)
4845feqmptd 6952 . . . . . . . . . . . . . 14 (𝜑𝐺 = (𝑥𝑆 ↦ (𝐺𝑥)))
4948, 19eqeltrrd 2836 . . . . . . . . . . . . 13 (𝜑 → (𝑥𝑆 ↦ (𝐺𝑥)) ∈ 𝐿1)
5049ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑥𝑆 ↦ (𝐺𝑥)) ∈ 𝐿1)
5140, 44, 47, 50itgsub 25784 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∫𝑆(((𝐹𝑛)‘𝑥) − (𝐺𝑥)) d𝑥 = (∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥))
5251fveq2d 6885 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (abs‘∫𝑆(((𝐹𝑛)‘𝑥) − (𝐺𝑥)) d𝑥) = (abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)))
5340, 47subcld 11599 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) ∧ 𝑥𝑆) → (((𝐹𝑛)‘𝑥) − (𝐺𝑥)) ∈ ℂ)
5440, 44, 47, 50iblsub 25780 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑥𝑆 ↦ (((𝐹𝑛)‘𝑥) − (𝐺𝑥))) ∈ 𝐿1)
5553, 54itgcl 25742 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∫𝑆(((𝐹𝑛)‘𝑥) − (𝐺𝑥)) d𝑥 ∈ ℂ)
5655abscld 15460 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (abs‘∫𝑆(((𝐹𝑛)‘𝑥) − (𝐺𝑥)) d𝑥) ∈ ℝ)
5753abscld 15460 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) ∧ 𝑥𝑆) → (abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) ∈ ℝ)
5853, 54iblabs 25787 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑥𝑆 ↦ (abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥)))) ∈ 𝐿1)
5957, 58itgrecl 25756 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∫𝑆(abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) d𝑥 ∈ ℝ)
60 rpre 13022 . . . . . . . . . . . 12 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
6160ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → 𝑟 ∈ ℝ)
6253, 54itgabs 25793 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (abs‘∫𝑆(((𝐹𝑛)‘𝑥) − (𝐺𝑥)) d𝑥) ≤ ∫𝑆(abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) d𝑥)
6332adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑟 / ((vol‘𝑆) + 1)) ∈ ℝ+)
6463rpred 13056 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑟 / ((vol‘𝑆) + 1)) ∈ ℝ)
6514ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (vol‘𝑆) ∈ ℝ)
6664, 65remulcld 11270 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((𝑟 / ((vol‘𝑆) + 1)) · (vol‘𝑆)) ∈ ℝ)
67 fconstmpt 5721 . . . . . . . . . . . . . . 15 (𝑆 × {(𝑟 / ((vol‘𝑆) + 1))}) = (𝑥𝑆 ↦ (𝑟 / ((vol‘𝑆) + 1)))
6823ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → 𝑆 ∈ dom vol)
6963rpcnd 13058 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑟 / ((vol‘𝑆) + 1)) ∈ ℂ)
70 iblconst 25776 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ dom vol ∧ (vol‘𝑆) ∈ ℝ ∧ (𝑟 / ((vol‘𝑆) + 1)) ∈ ℂ) → (𝑆 × {(𝑟 / ((vol‘𝑆) + 1))}) ∈ 𝐿1)
7168, 65, 69, 70syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑆 × {(𝑟 / ((vol‘𝑆) + 1))}) ∈ 𝐿1)
7267, 71eqeltrrid 2840 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑥𝑆 ↦ (𝑟 / ((vol‘𝑆) + 1))) ∈ 𝐿1)
7364adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) ∧ 𝑥𝑆) → (𝑟 / ((vol‘𝑆) + 1)) ∈ ℝ)
74 simprr 772 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))
75 fveq2 6881 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑥 → ((𝐹𝑛)‘𝑧) = ((𝐹𝑛)‘𝑥))
76 fveq2 6881 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑥 → (𝐺𝑧) = (𝐺𝑥))
7775, 76oveq12d 7428 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑥 → (((𝐹𝑛)‘𝑧) − (𝐺𝑧)) = (((𝐹𝑛)‘𝑥) − (𝐺𝑥)))
7877fveq2d 6885 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑥 → (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) = (abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))))
7978breq1d 5134 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑥 → ((abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)) ↔ (abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) < (𝑟 / ((vol‘𝑆) + 1))))
8079rspccva 3605 . . . . . . . . . . . . . . . 16 ((∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)) ∧ 𝑥𝑆) → (abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) < (𝑟 / ((vol‘𝑆) + 1)))
8174, 80sylan 580 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) ∧ 𝑥𝑆) → (abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) < (𝑟 / ((vol‘𝑆) + 1)))
8257, 73, 81ltled 11388 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) ∧ 𝑥𝑆) → (abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) ≤ (𝑟 / ((vol‘𝑆) + 1)))
8358, 72, 57, 73, 82itgle 25768 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∫𝑆(abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) d𝑥 ≤ ∫𝑆(𝑟 / ((vol‘𝑆) + 1)) d𝑥)
84 itgconst 25777 . . . . . . . . . . . . . 14 ((𝑆 ∈ dom vol ∧ (vol‘𝑆) ∈ ℝ ∧ (𝑟 / ((vol‘𝑆) + 1)) ∈ ℂ) → ∫𝑆(𝑟 / ((vol‘𝑆) + 1)) d𝑥 = ((𝑟 / ((vol‘𝑆) + 1)) · (vol‘𝑆)))
8568, 65, 69, 84syl3anc 1373 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∫𝑆(𝑟 / ((vol‘𝑆) + 1)) d𝑥 = ((𝑟 / ((vol‘𝑆) + 1)) · (vol‘𝑆)))
8683, 85breqtrd 5150 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∫𝑆(abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) d𝑥 ≤ ((𝑟 / ((vol‘𝑆) + 1)) · (vol‘𝑆)))
8761recnd 11268 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → 𝑟 ∈ ℂ)
8865recnd 11268 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (vol‘𝑆) ∈ ℂ)
8931adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((vol‘𝑆) + 1) ∈ ℝ+)
9089rpcnd 13058 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((vol‘𝑆) + 1) ∈ ℂ)
9189rpne0d 13061 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((vol‘𝑆) + 1) ≠ 0)
9287, 88, 90, 91div23d 12059 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((𝑟 · (vol‘𝑆)) / ((vol‘𝑆) + 1)) = ((𝑟 / ((vol‘𝑆) + 1)) · (vol‘𝑆)))
9365ltp1d 12177 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (vol‘𝑆) < ((vol‘𝑆) + 1))
94 peano2re 11413 . . . . . . . . . . . . . . . . 17 ((vol‘𝑆) ∈ ℝ → ((vol‘𝑆) + 1) ∈ ℝ)
9565, 94syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((vol‘𝑆) + 1) ∈ ℝ)
96 rpgt0 13026 . . . . . . . . . . . . . . . . 17 (𝑟 ∈ ℝ+ → 0 < 𝑟)
9796ad2antlr 727 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → 0 < 𝑟)
98 ltmul2 12097 . . . . . . . . . . . . . . . 16 (((vol‘𝑆) ∈ ℝ ∧ ((vol‘𝑆) + 1) ∈ ℝ ∧ (𝑟 ∈ ℝ ∧ 0 < 𝑟)) → ((vol‘𝑆) < ((vol‘𝑆) + 1) ↔ (𝑟 · (vol‘𝑆)) < (𝑟 · ((vol‘𝑆) + 1))))
9965, 95, 61, 97, 98syl112anc 1376 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((vol‘𝑆) < ((vol‘𝑆) + 1) ↔ (𝑟 · (vol‘𝑆)) < (𝑟 · ((vol‘𝑆) + 1))))
10093, 99mpbid 232 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑟 · (vol‘𝑆)) < (𝑟 · ((vol‘𝑆) + 1)))
10161, 65remulcld 11270 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑟 · (vol‘𝑆)) ∈ ℝ)
102101, 61, 89ltdivmul2d 13108 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (((𝑟 · (vol‘𝑆)) / ((vol‘𝑆) + 1)) < 𝑟 ↔ (𝑟 · (vol‘𝑆)) < (𝑟 · ((vol‘𝑆) + 1))))
103100, 102mpbird 257 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((𝑟 · (vol‘𝑆)) / ((vol‘𝑆) + 1)) < 𝑟)
10492, 103eqbrtrrd 5148 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((𝑟 / ((vol‘𝑆) + 1)) · (vol‘𝑆)) < 𝑟)
10559, 66, 61, 86, 104lelttrd 11398 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∫𝑆(abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) d𝑥 < 𝑟)
10656, 59, 61, 62, 105lelttrd 11398 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (abs‘∫𝑆(((𝐹𝑛)‘𝑥) − (𝐺𝑥)) d𝑥) < 𝑟)
10752, 106eqbrtrrd 5148 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)) < 𝑟)
108107expr 456 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → (∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)) → (abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)) < 𝑟))
10934, 108sylan2 593 . . . . . . 7 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)) → (abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)) < 𝑟))
110109anassrs 467 . . . . . 6 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑛 ∈ (ℤ𝑗)) → (∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)) → (abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)) < 𝑟))
111110ralimdva 3153 . . . . 5 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑛 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)) → ∀𝑛 ∈ (ℤ𝑗)(abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)) < 𝑟))
112111reximdva 3154 . . . 4 ((𝜑𝑟 ∈ ℝ+) → (∃𝑗𝑍𝑛 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)) → ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)) < 𝑟))
11333, 112mpd 15 . . 3 ((𝜑𝑟 ∈ ℝ+) → ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)) < 𝑟)
114113ralrimiva 3133 . 2 (𝜑 → ∀𝑟 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)) < 𝑟)
1151fvexi 6895 . . . . 5 𝑍 ∈ V
116115mptex 7220 . . . 4 (𝑘𝑍 ↦ ∫𝑆((𝐹𝑘)‘𝑥) d𝑥) ∈ V
117116a1i 11 . . 3 (𝜑 → (𝑘𝑍 ↦ ∫𝑆((𝐹𝑘)‘𝑥) d𝑥) ∈ V)
118 fveq2 6881 . . . . . . . 8 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
119118fveq1d 6883 . . . . . . 7 (𝑘 = 𝑛 → ((𝐹𝑘)‘𝑥) = ((𝐹𝑛)‘𝑥))
120119adantr 480 . . . . . 6 ((𝑘 = 𝑛𝑥𝑆) → ((𝐹𝑘)‘𝑥) = ((𝐹𝑛)‘𝑥))
121120itgeq2dv 25740 . . . . 5 (𝑘 = 𝑛 → ∫𝑆((𝐹𝑘)‘𝑥) d𝑥 = ∫𝑆((𝐹𝑛)‘𝑥) d𝑥)
122 eqid 2736 . . . . 5 (𝑘𝑍 ↦ ∫𝑆((𝐹𝑘)‘𝑥) d𝑥) = (𝑘𝑍 ↦ ∫𝑆((𝐹𝑘)‘𝑥) d𝑥)
123 itgex 25728 . . . . 5 𝑆((𝐹𝑛)‘𝑥) d𝑥 ∈ V
124121, 122, 123fvmpt 6991 . . . 4 (𝑛𝑍 → ((𝑘𝑍 ↦ ∫𝑆((𝐹𝑘)‘𝑥) d𝑥)‘𝑛) = ∫𝑆((𝐹𝑛)‘𝑥) d𝑥)
125124adantl 481 . . 3 ((𝜑𝑛𝑍) → ((𝑘𝑍 ↦ ∫𝑆((𝐹𝑘)‘𝑥) d𝑥)‘𝑛) = ∫𝑆((𝐹𝑛)‘𝑥) d𝑥)
12646, 49itgcl 25742 . . 3 (𝜑 → ∫𝑆(𝐺𝑥) d𝑥 ∈ ℂ)
12738, 43itgcl 25742 . . 3 ((𝜑𝑛𝑍) → ∫𝑆((𝐹𝑛)‘𝑥) d𝑥 ∈ ℂ)
1281, 2, 117, 125, 126, 127clim2c 15526 . 2 (𝜑 → ((𝑘𝑍 ↦ ∫𝑆((𝐹𝑘)‘𝑥) d𝑥) ⇝ ∫𝑆(𝐺𝑥) d𝑥 ↔ ∀𝑟 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)) < 𝑟))
129114, 128mpbird 257 1 (𝜑 → (𝑘𝑍 ↦ ∫𝑆((𝐹𝑘)‘𝑥) d𝑥) ⇝ ∫𝑆(𝐺𝑥) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  wrex 3061  Vcvv 3464  wss 3931  {csn 4606   class class class wbr 5124  cmpt 5206   × cxp 5657  dom cdm 5659   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  m cmap 8845  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139   < clt 11274  cle 11275  cmin 11471   / cdiv 11899  cz 12593  cuz 12857  +crp 13013  abscabs 15258  cli 15505  vol*covol 25420  volcvol 25421  MblFncmbf 25572  𝐿1cibl 25575  citg 25576  𝑢culm 26342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cc 10454  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-disj 5092  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-ofr 7677  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-omul 8490  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-dju 9920  df-card 9958  df-acn 9961  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-limsup 15492  df-clim 15509  df-rlim 15510  df-sum 15708  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cn 23170  df-cnp 23171  df-cmp 23330  df-tx 23505  df-hmeo 23698  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-ovol 25422  df-vol 25423  df-mbf 25577  df-itg1 25578  df-itg2 25579  df-ibl 25580  df-itg 25581  df-0p 25628  df-ulm 26343
This theorem is referenced by:  itgulm2  26375
  Copyright terms: Public domain W3C validator