Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgulm Structured version   Visualization version   GIF version

Theorem itgulm 25013
 Description: A uniform limit of integrals of integrable functions converges to the integral of the limit function. (Contributed by Mario Carneiro, 18-Mar-2015.)
Hypotheses
Ref Expression
itgulm.z 𝑍 = (ℤ𝑀)
itgulm.m (𝜑𝑀 ∈ ℤ)
itgulm.f (𝜑𝐹:𝑍⟶𝐿1)
itgulm.u (𝜑𝐹(⇝𝑢𝑆)𝐺)
itgulm.s (𝜑 → (vol‘𝑆) ∈ ℝ)
Assertion
Ref Expression
itgulm (𝜑 → (𝑘𝑍 ↦ ∫𝑆((𝐹𝑘)‘𝑥) d𝑥) ⇝ ∫𝑆(𝐺𝑥) d𝑥)
Distinct variable groups:   𝑥,𝑘,𝐹   𝑘,𝐺,𝑥   𝜑,𝑘,𝑥   𝑘,𝑀,𝑥   𝑆,𝑘,𝑥   𝑘,𝑍,𝑥

Proof of Theorem itgulm
Dummy variables 𝑗 𝑛 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgulm.z . . . . 5 𝑍 = (ℤ𝑀)
2 itgulm.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
32adantr 484 . . . . 5 ((𝜑𝑟 ∈ ℝ+) → 𝑀 ∈ ℤ)
4 itgulm.f . . . . . . . 8 (𝜑𝐹:𝑍⟶𝐿1)
54ffnd 6489 . . . . . . 7 (𝜑𝐹 Fn 𝑍)
6 itgulm.u . . . . . . 7 (𝜑𝐹(⇝𝑢𝑆)𝐺)
7 ulmf2 24989 . . . . . . 7 ((𝐹 Fn 𝑍𝐹(⇝𝑢𝑆)𝐺) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
85, 6, 7syl2anc 587 . . . . . 6 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
98adantr 484 . . . . 5 ((𝜑𝑟 ∈ ℝ+) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
10 eqidd 2799 . . . . 5 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍𝑧𝑆)) → ((𝐹𝑛)‘𝑧) = ((𝐹𝑛)‘𝑧))
11 eqidd 2799 . . . . 5 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑧𝑆) → (𝐺𝑧) = (𝐺𝑧))
126adantr 484 . . . . 5 ((𝜑𝑟 ∈ ℝ+) → 𝐹(⇝𝑢𝑆)𝐺)
13 simpr 488 . . . . . 6 ((𝜑𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+)
14 itgulm.s . . . . . . . 8 (𝜑 → (vol‘𝑆) ∈ ℝ)
1514adantr 484 . . . . . . 7 ((𝜑𝑟 ∈ ℝ+) → (vol‘𝑆) ∈ ℝ)
16 ulmcl 24986 . . . . . . . . . . . 12 (𝐹(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
17 fdm 6496 . . . . . . . . . . . 12 (𝐺:𝑆⟶ℂ → dom 𝐺 = 𝑆)
186, 16, 173syl 18 . . . . . . . . . . 11 (𝜑 → dom 𝐺 = 𝑆)
191, 2, 4, 6, 14iblulm 25012 . . . . . . . . . . . 12 (𝜑𝐺 ∈ 𝐿1)
20 iblmbf 24381 . . . . . . . . . . . 12 (𝐺 ∈ 𝐿1𝐺 ∈ MblFn)
21 mbfdm 24240 . . . . . . . . . . . 12 (𝐺 ∈ MblFn → dom 𝐺 ∈ dom vol)
2219, 20, 213syl 18 . . . . . . . . . . 11 (𝜑 → dom 𝐺 ∈ dom vol)
2318, 22eqeltrrd 2891 . . . . . . . . . 10 (𝜑𝑆 ∈ dom vol)
24 mblss 24145 . . . . . . . . . 10 (𝑆 ∈ dom vol → 𝑆 ⊆ ℝ)
25 ovolge0 24095 . . . . . . . . . 10 (𝑆 ⊆ ℝ → 0 ≤ (vol*‘𝑆))
2623, 24, 253syl 18 . . . . . . . . 9 (𝜑 → 0 ≤ (vol*‘𝑆))
27 mblvol 24144 . . . . . . . . . 10 (𝑆 ∈ dom vol → (vol‘𝑆) = (vol*‘𝑆))
2823, 27syl 17 . . . . . . . . 9 (𝜑 → (vol‘𝑆) = (vol*‘𝑆))
2926, 28breqtrrd 5059 . . . . . . . 8 (𝜑 → 0 ≤ (vol‘𝑆))
3029adantr 484 . . . . . . 7 ((𝜑𝑟 ∈ ℝ+) → 0 ≤ (vol‘𝑆))
3115, 30ge0p1rpd 12452 . . . . . 6 ((𝜑𝑟 ∈ ℝ+) → ((vol‘𝑆) + 1) ∈ ℝ+)
3213, 31rpdivcld 12439 . . . . 5 ((𝜑𝑟 ∈ ℝ+) → (𝑟 / ((vol‘𝑆) + 1)) ∈ ℝ+)
331, 3, 9, 10, 11, 12, 32ulmi 24991 . . . 4 ((𝜑𝑟 ∈ ℝ+) → ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))
341uztrn2 12253 . . . . . . . 8 ((𝑗𝑍𝑛 ∈ (ℤ𝑗)) → 𝑛𝑍)
358ffvelrnda 6829 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ (ℂ ↑m 𝑆))
36 elmapi 8414 . . . . . . . . . . . . . . . 16 ((𝐹𝑛) ∈ (ℂ ↑m 𝑆) → (𝐹𝑛):𝑆⟶ℂ)
3735, 36syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍) → (𝐹𝑛):𝑆⟶ℂ)
3837ffvelrnda 6829 . . . . . . . . . . . . . 14 (((𝜑𝑛𝑍) ∧ 𝑥𝑆) → ((𝐹𝑛)‘𝑥) ∈ ℂ)
3938adantllr 718 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑛𝑍) ∧ 𝑥𝑆) → ((𝐹𝑛)‘𝑥) ∈ ℂ)
4039adantlrr 720 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) ∧ 𝑥𝑆) → ((𝐹𝑛)‘𝑥) ∈ ℂ)
4137feqmptd 6709 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → (𝐹𝑛) = (𝑥𝑆 ↦ ((𝐹𝑛)‘𝑥)))
424ffvelrnda 6829 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ 𝐿1)
4341, 42eqeltrrd 2891 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (𝑥𝑆 ↦ ((𝐹𝑛)‘𝑥)) ∈ 𝐿1)
4443ad2ant2r 746 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑥𝑆 ↦ ((𝐹𝑛)‘𝑥)) ∈ 𝐿1)
456, 16syl 17 . . . . . . . . . . . . . 14 (𝜑𝐺:𝑆⟶ℂ)
4645ffvelrnda 6829 . . . . . . . . . . . . 13 ((𝜑𝑥𝑆) → (𝐺𝑥) ∈ ℂ)
4746ad4ant14 751 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) ∧ 𝑥𝑆) → (𝐺𝑥) ∈ ℂ)
4845feqmptd 6709 . . . . . . . . . . . . . 14 (𝜑𝐺 = (𝑥𝑆 ↦ (𝐺𝑥)))
4948, 19eqeltrrd 2891 . . . . . . . . . . . . 13 (𝜑 → (𝑥𝑆 ↦ (𝐺𝑥)) ∈ 𝐿1)
5049ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑥𝑆 ↦ (𝐺𝑥)) ∈ 𝐿1)
5140, 44, 47, 50itgsub 24439 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∫𝑆(((𝐹𝑛)‘𝑥) − (𝐺𝑥)) d𝑥 = (∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥))
5251fveq2d 6650 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (abs‘∫𝑆(((𝐹𝑛)‘𝑥) − (𝐺𝑥)) d𝑥) = (abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)))
5340, 47subcld 10989 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) ∧ 𝑥𝑆) → (((𝐹𝑛)‘𝑥) − (𝐺𝑥)) ∈ ℂ)
5440, 44, 47, 50iblsub 24435 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑥𝑆 ↦ (((𝐹𝑛)‘𝑥) − (𝐺𝑥))) ∈ 𝐿1)
5553, 54itgcl 24397 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∫𝑆(((𝐹𝑛)‘𝑥) − (𝐺𝑥)) d𝑥 ∈ ℂ)
5655abscld 14791 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (abs‘∫𝑆(((𝐹𝑛)‘𝑥) − (𝐺𝑥)) d𝑥) ∈ ℝ)
5753abscld 14791 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) ∧ 𝑥𝑆) → (abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) ∈ ℝ)
5853, 54iblabs 24442 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑥𝑆 ↦ (abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥)))) ∈ 𝐿1)
5957, 58itgrecl 24411 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∫𝑆(abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) d𝑥 ∈ ℝ)
60 rpre 12388 . . . . . . . . . . . 12 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
6160ad2antlr 726 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → 𝑟 ∈ ℝ)
6253, 54itgabs 24448 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (abs‘∫𝑆(((𝐹𝑛)‘𝑥) − (𝐺𝑥)) d𝑥) ≤ ∫𝑆(abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) d𝑥)
6332adantr 484 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑟 / ((vol‘𝑆) + 1)) ∈ ℝ+)
6463rpred 12422 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑟 / ((vol‘𝑆) + 1)) ∈ ℝ)
6514ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (vol‘𝑆) ∈ ℝ)
6664, 65remulcld 10663 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((𝑟 / ((vol‘𝑆) + 1)) · (vol‘𝑆)) ∈ ℝ)
67 fconstmpt 5579 . . . . . . . . . . . . . . 15 (𝑆 × {(𝑟 / ((vol‘𝑆) + 1))}) = (𝑥𝑆 ↦ (𝑟 / ((vol‘𝑆) + 1)))
6823ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → 𝑆 ∈ dom vol)
6963rpcnd 12424 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑟 / ((vol‘𝑆) + 1)) ∈ ℂ)
70 iblconst 24431 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ dom vol ∧ (vol‘𝑆) ∈ ℝ ∧ (𝑟 / ((vol‘𝑆) + 1)) ∈ ℂ) → (𝑆 × {(𝑟 / ((vol‘𝑆) + 1))}) ∈ 𝐿1)
7168, 65, 69, 70syl3anc 1368 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑆 × {(𝑟 / ((vol‘𝑆) + 1))}) ∈ 𝐿1)
7267, 71eqeltrrid 2895 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑥𝑆 ↦ (𝑟 / ((vol‘𝑆) + 1))) ∈ 𝐿1)
7364adantr 484 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) ∧ 𝑥𝑆) → (𝑟 / ((vol‘𝑆) + 1)) ∈ ℝ)
74 simprr 772 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))
75 fveq2 6646 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑥 → ((𝐹𝑛)‘𝑧) = ((𝐹𝑛)‘𝑥))
76 fveq2 6646 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑥 → (𝐺𝑧) = (𝐺𝑥))
7775, 76oveq12d 7154 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑥 → (((𝐹𝑛)‘𝑧) − (𝐺𝑧)) = (((𝐹𝑛)‘𝑥) − (𝐺𝑥)))
7877fveq2d 6650 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑥 → (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) = (abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))))
7978breq1d 5041 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑥 → ((abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)) ↔ (abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) < (𝑟 / ((vol‘𝑆) + 1))))
8079rspccva 3570 . . . . . . . . . . . . . . . 16 ((∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)) ∧ 𝑥𝑆) → (abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) < (𝑟 / ((vol‘𝑆) + 1)))
8174, 80sylan 583 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) ∧ 𝑥𝑆) → (abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) < (𝑟 / ((vol‘𝑆) + 1)))
8257, 73, 81ltled 10780 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) ∧ 𝑥𝑆) → (abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) ≤ (𝑟 / ((vol‘𝑆) + 1)))
8358, 72, 57, 73, 82itgle 24423 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∫𝑆(abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) d𝑥 ≤ ∫𝑆(𝑟 / ((vol‘𝑆) + 1)) d𝑥)
84 itgconst 24432 . . . . . . . . . . . . . 14 ((𝑆 ∈ dom vol ∧ (vol‘𝑆) ∈ ℝ ∧ (𝑟 / ((vol‘𝑆) + 1)) ∈ ℂ) → ∫𝑆(𝑟 / ((vol‘𝑆) + 1)) d𝑥 = ((𝑟 / ((vol‘𝑆) + 1)) · (vol‘𝑆)))
8568, 65, 69, 84syl3anc 1368 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∫𝑆(𝑟 / ((vol‘𝑆) + 1)) d𝑥 = ((𝑟 / ((vol‘𝑆) + 1)) · (vol‘𝑆)))
8683, 85breqtrd 5057 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∫𝑆(abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) d𝑥 ≤ ((𝑟 / ((vol‘𝑆) + 1)) · (vol‘𝑆)))
8761recnd 10661 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → 𝑟 ∈ ℂ)
8865recnd 10661 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (vol‘𝑆) ∈ ℂ)
8931adantr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((vol‘𝑆) + 1) ∈ ℝ+)
9089rpcnd 12424 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((vol‘𝑆) + 1) ∈ ℂ)
9189rpne0d 12427 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((vol‘𝑆) + 1) ≠ 0)
9287, 88, 90, 91div23d 11445 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((𝑟 · (vol‘𝑆)) / ((vol‘𝑆) + 1)) = ((𝑟 / ((vol‘𝑆) + 1)) · (vol‘𝑆)))
9365ltp1d 11562 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (vol‘𝑆) < ((vol‘𝑆) + 1))
94 peano2re 10805 . . . . . . . . . . . . . . . . 17 ((vol‘𝑆) ∈ ℝ → ((vol‘𝑆) + 1) ∈ ℝ)
9565, 94syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((vol‘𝑆) + 1) ∈ ℝ)
96 rpgt0 12392 . . . . . . . . . . . . . . . . 17 (𝑟 ∈ ℝ+ → 0 < 𝑟)
9796ad2antlr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → 0 < 𝑟)
98 ltmul2 11483 . . . . . . . . . . . . . . . 16 (((vol‘𝑆) ∈ ℝ ∧ ((vol‘𝑆) + 1) ∈ ℝ ∧ (𝑟 ∈ ℝ ∧ 0 < 𝑟)) → ((vol‘𝑆) < ((vol‘𝑆) + 1) ↔ (𝑟 · (vol‘𝑆)) < (𝑟 · ((vol‘𝑆) + 1))))
9965, 95, 61, 97, 98syl112anc 1371 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((vol‘𝑆) < ((vol‘𝑆) + 1) ↔ (𝑟 · (vol‘𝑆)) < (𝑟 · ((vol‘𝑆) + 1))))
10093, 99mpbid 235 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑟 · (vol‘𝑆)) < (𝑟 · ((vol‘𝑆) + 1)))
10161, 65remulcld 10663 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑟 · (vol‘𝑆)) ∈ ℝ)
102101, 61, 89ltdivmul2d 12474 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (((𝑟 · (vol‘𝑆)) / ((vol‘𝑆) + 1)) < 𝑟 ↔ (𝑟 · (vol‘𝑆)) < (𝑟 · ((vol‘𝑆) + 1))))
103100, 102mpbird 260 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((𝑟 · (vol‘𝑆)) / ((vol‘𝑆) + 1)) < 𝑟)
10492, 103eqbrtrrd 5055 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((𝑟 / ((vol‘𝑆) + 1)) · (vol‘𝑆)) < 𝑟)
10559, 66, 61, 86, 104lelttrd 10790 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∫𝑆(abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) d𝑥 < 𝑟)
10656, 59, 61, 62, 105lelttrd 10790 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (abs‘∫𝑆(((𝐹𝑛)‘𝑥) − (𝐺𝑥)) d𝑥) < 𝑟)
10752, 106eqbrtrrd 5055 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)) < 𝑟)
108107expr 460 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → (∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)) → (abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)) < 𝑟))
10934, 108sylan2 595 . . . . . . 7 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)) → (abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)) < 𝑟))
110109anassrs 471 . . . . . 6 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑛 ∈ (ℤ𝑗)) → (∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)) → (abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)) < 𝑟))
111110ralimdva 3144 . . . . 5 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑛 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)) → ∀𝑛 ∈ (ℤ𝑗)(abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)) < 𝑟))
112111reximdva 3233 . . . 4 ((𝜑𝑟 ∈ ℝ+) → (∃𝑗𝑍𝑛 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)) → ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)) < 𝑟))
11333, 112mpd 15 . . 3 ((𝜑𝑟 ∈ ℝ+) → ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)) < 𝑟)
114113ralrimiva 3149 . 2 (𝜑 → ∀𝑟 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)) < 𝑟)
1151fvexi 6660 . . . . 5 𝑍 ∈ V
116115mptex 6964 . . . 4 (𝑘𝑍 ↦ ∫𝑆((𝐹𝑘)‘𝑥) d𝑥) ∈ V
117116a1i 11 . . 3 (𝜑 → (𝑘𝑍 ↦ ∫𝑆((𝐹𝑘)‘𝑥) d𝑥) ∈ V)
118 fveq2 6646 . . . . . . . 8 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
119118fveq1d 6648 . . . . . . 7 (𝑘 = 𝑛 → ((𝐹𝑘)‘𝑥) = ((𝐹𝑛)‘𝑥))
120119adantr 484 . . . . . 6 ((𝑘 = 𝑛𝑥𝑆) → ((𝐹𝑘)‘𝑥) = ((𝐹𝑛)‘𝑥))
121120itgeq2dv 24395 . . . . 5 (𝑘 = 𝑛 → ∫𝑆((𝐹𝑘)‘𝑥) d𝑥 = ∫𝑆((𝐹𝑛)‘𝑥) d𝑥)
122 eqid 2798 . . . . 5 (𝑘𝑍 ↦ ∫𝑆((𝐹𝑘)‘𝑥) d𝑥) = (𝑘𝑍 ↦ ∫𝑆((𝐹𝑘)‘𝑥) d𝑥)
123 itgex 24384 . . . . 5 𝑆((𝐹𝑛)‘𝑥) d𝑥 ∈ V
124121, 122, 123fvmpt 6746 . . . 4 (𝑛𝑍 → ((𝑘𝑍 ↦ ∫𝑆((𝐹𝑘)‘𝑥) d𝑥)‘𝑛) = ∫𝑆((𝐹𝑛)‘𝑥) d𝑥)
125124adantl 485 . . 3 ((𝜑𝑛𝑍) → ((𝑘𝑍 ↦ ∫𝑆((𝐹𝑘)‘𝑥) d𝑥)‘𝑛) = ∫𝑆((𝐹𝑛)‘𝑥) d𝑥)
12646, 49itgcl 24397 . . 3 (𝜑 → ∫𝑆(𝐺𝑥) d𝑥 ∈ ℂ)
12738, 43itgcl 24397 . . 3 ((𝜑𝑛𝑍) → ∫𝑆((𝐹𝑛)‘𝑥) d𝑥 ∈ ℂ)
1281, 2, 117, 125, 126, 127clim2c 14857 . 2 (𝜑 → ((𝑘𝑍 ↦ ∫𝑆((𝐹𝑘)‘𝑥) d𝑥) ⇝ ∫𝑆(𝐺𝑥) d𝑥 ↔ ∀𝑟 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)) < 𝑟))
129114, 128mpbird 260 1 (𝜑 → (𝑘𝑍 ↦ ∫𝑆((𝐹𝑘)‘𝑥) d𝑥) ⇝ ∫𝑆(𝐺𝑥) d𝑥)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3106  ∃wrex 3107  Vcvv 3441   ⊆ wss 3881  {csn 4525   class class class wbr 5031   ↦ cmpt 5111   × cxp 5518  dom cdm 5520   Fn wfn 6320  ⟶wf 6321  ‘cfv 6325  (class class class)co 7136   ↑m cmap 8392  ℂcc 10527  ℝcr 10528  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534   < clt 10667   ≤ cle 10668   − cmin 10862   / cdiv 11289  ℤcz 11972  ℤ≥cuz 12234  ℝ+crp 12380  abscabs 14588   ⇝ cli 14836  vol*covol 24076  volcvol 24077  MblFncmbf 24228  𝐿1cibl 24231  ∫citg 24232  ⇝𝑢culm 24981 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-inf2 9091  ax-cc 9849  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-iin 4885  df-disj 4997  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-se 5480  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-isom 6334  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-of 7391  df-ofr 7392  df-om 7564  df-1st 7674  df-2nd 7675  df-supp 7817  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-2o 8089  df-oadd 8092  df-omul 8093  df-er 8275  df-map 8394  df-pm 8395  df-ixp 8448  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-fsupp 8821  df-fi 8862  df-sup 8893  df-inf 8894  df-oi 8961  df-dju 9317  df-card 9355  df-acn 9358  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11629  df-2 11691  df-3 11692  df-4 11693  df-5 11694  df-6 11695  df-7 11696  df-8 11697  df-9 11698  df-n0 11889  df-z 11973  df-dec 12090  df-uz 12235  df-q 12340  df-rp 12381  df-xneg 12498  df-xadd 12499  df-xmul 12500  df-ioo 12733  df-ioc 12734  df-ico 12735  df-icc 12736  df-fz 12889  df-fzo 13032  df-fl 13160  df-mod 13236  df-seq 13368  df-exp 13429  df-hash 13690  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-limsup 14823  df-clim 14840  df-rlim 14841  df-sum 15038  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-starv 16575  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-unif 16583  df-hom 16584  df-cco 16585  df-rest 16691  df-topn 16692  df-0g 16710  df-gsum 16711  df-topgen 16712  df-pt 16713  df-prds 16716  df-xrs 16770  df-qtop 16775  df-imas 16776  df-xps 16778  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-submnd 17952  df-mulg 18221  df-cntz 18443  df-cmn 18904  df-psmet 20087  df-xmet 20088  df-met 20089  df-bl 20090  df-mopn 20091  df-cnfld 20096  df-top 21509  df-topon 21526  df-topsp 21548  df-bases 21561  df-cn 21842  df-cnp 21843  df-cmp 22002  df-tx 22177  df-hmeo 22370  df-xms 22937  df-ms 22938  df-tms 22939  df-cncf 23493  df-ovol 24078  df-vol 24079  df-mbf 24233  df-itg1 24234  df-itg2 24235  df-ibl 24236  df-itg 24237  df-0p 24284  df-ulm 24982 This theorem is referenced by:  itgulm2  25014
 Copyright terms: Public domain W3C validator