MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgulm Structured version   Visualization version   GIF version

Theorem itgulm 26333
Description: A uniform limit of integrals of integrable functions converges to the integral of the limit function. (Contributed by Mario Carneiro, 18-Mar-2015.)
Hypotheses
Ref Expression
itgulm.z 𝑍 = (ℤ𝑀)
itgulm.m (𝜑𝑀 ∈ ℤ)
itgulm.f (𝜑𝐹:𝑍⟶𝐿1)
itgulm.u (𝜑𝐹(⇝𝑢𝑆)𝐺)
itgulm.s (𝜑 → (vol‘𝑆) ∈ ℝ)
Assertion
Ref Expression
itgulm (𝜑 → (𝑘𝑍 ↦ ∫𝑆((𝐹𝑘)‘𝑥) d𝑥) ⇝ ∫𝑆(𝐺𝑥) d𝑥)
Distinct variable groups:   𝑥,𝑘,𝐹   𝑘,𝐺,𝑥   𝜑,𝑘,𝑥   𝑘,𝑀,𝑥   𝑆,𝑘,𝑥   𝑘,𝑍,𝑥

Proof of Theorem itgulm
Dummy variables 𝑗 𝑛 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgulm.z . . . . 5 𝑍 = (ℤ𝑀)
2 itgulm.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
32adantr 480 . . . . 5 ((𝜑𝑟 ∈ ℝ+) → 𝑀 ∈ ℤ)
4 itgulm.f . . . . . . . 8 (𝜑𝐹:𝑍⟶𝐿1)
54ffnd 6657 . . . . . . 7 (𝜑𝐹 Fn 𝑍)
6 itgulm.u . . . . . . 7 (𝜑𝐹(⇝𝑢𝑆)𝐺)
7 ulmf2 26309 . . . . . . 7 ((𝐹 Fn 𝑍𝐹(⇝𝑢𝑆)𝐺) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
85, 6, 7syl2anc 584 . . . . . 6 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
98adantr 480 . . . . 5 ((𝜑𝑟 ∈ ℝ+) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
10 eqidd 2730 . . . . 5 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍𝑧𝑆)) → ((𝐹𝑛)‘𝑧) = ((𝐹𝑛)‘𝑧))
11 eqidd 2730 . . . . 5 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑧𝑆) → (𝐺𝑧) = (𝐺𝑧))
126adantr 480 . . . . 5 ((𝜑𝑟 ∈ ℝ+) → 𝐹(⇝𝑢𝑆)𝐺)
13 simpr 484 . . . . . 6 ((𝜑𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+)
14 itgulm.s . . . . . . . 8 (𝜑 → (vol‘𝑆) ∈ ℝ)
1514adantr 480 . . . . . . 7 ((𝜑𝑟 ∈ ℝ+) → (vol‘𝑆) ∈ ℝ)
16 ulmcl 26306 . . . . . . . . . . . 12 (𝐹(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
17 fdm 6665 . . . . . . . . . . . 12 (𝐺:𝑆⟶ℂ → dom 𝐺 = 𝑆)
186, 16, 173syl 18 . . . . . . . . . . 11 (𝜑 → dom 𝐺 = 𝑆)
191, 2, 4, 6, 14iblulm 26332 . . . . . . . . . . . 12 (𝜑𝐺 ∈ 𝐿1)
20 iblmbf 25684 . . . . . . . . . . . 12 (𝐺 ∈ 𝐿1𝐺 ∈ MblFn)
21 mbfdm 25543 . . . . . . . . . . . 12 (𝐺 ∈ MblFn → dom 𝐺 ∈ dom vol)
2219, 20, 213syl 18 . . . . . . . . . . 11 (𝜑 → dom 𝐺 ∈ dom vol)
2318, 22eqeltrrd 2829 . . . . . . . . . 10 (𝜑𝑆 ∈ dom vol)
24 mblss 25448 . . . . . . . . . 10 (𝑆 ∈ dom vol → 𝑆 ⊆ ℝ)
25 ovolge0 25398 . . . . . . . . . 10 (𝑆 ⊆ ℝ → 0 ≤ (vol*‘𝑆))
2623, 24, 253syl 18 . . . . . . . . 9 (𝜑 → 0 ≤ (vol*‘𝑆))
27 mblvol 25447 . . . . . . . . . 10 (𝑆 ∈ dom vol → (vol‘𝑆) = (vol*‘𝑆))
2823, 27syl 17 . . . . . . . . 9 (𝜑 → (vol‘𝑆) = (vol*‘𝑆))
2926, 28breqtrrd 5123 . . . . . . . 8 (𝜑 → 0 ≤ (vol‘𝑆))
3029adantr 480 . . . . . . 7 ((𝜑𝑟 ∈ ℝ+) → 0 ≤ (vol‘𝑆))
3115, 30ge0p1rpd 12985 . . . . . 6 ((𝜑𝑟 ∈ ℝ+) → ((vol‘𝑆) + 1) ∈ ℝ+)
3213, 31rpdivcld 12972 . . . . 5 ((𝜑𝑟 ∈ ℝ+) → (𝑟 / ((vol‘𝑆) + 1)) ∈ ℝ+)
331, 3, 9, 10, 11, 12, 32ulmi 26311 . . . 4 ((𝜑𝑟 ∈ ℝ+) → ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))
341uztrn2 12772 . . . . . . . 8 ((𝑗𝑍𝑛 ∈ (ℤ𝑗)) → 𝑛𝑍)
358ffvelcdmda 7022 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ (ℂ ↑m 𝑆))
36 elmapi 8783 . . . . . . . . . . . . . . . 16 ((𝐹𝑛) ∈ (ℂ ↑m 𝑆) → (𝐹𝑛):𝑆⟶ℂ)
3735, 36syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍) → (𝐹𝑛):𝑆⟶ℂ)
3837ffvelcdmda 7022 . . . . . . . . . . . . . 14 (((𝜑𝑛𝑍) ∧ 𝑥𝑆) → ((𝐹𝑛)‘𝑥) ∈ ℂ)
3938adantllr 719 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑛𝑍) ∧ 𝑥𝑆) → ((𝐹𝑛)‘𝑥) ∈ ℂ)
4039adantlrr 721 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) ∧ 𝑥𝑆) → ((𝐹𝑛)‘𝑥) ∈ ℂ)
4137feqmptd 6895 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → (𝐹𝑛) = (𝑥𝑆 ↦ ((𝐹𝑛)‘𝑥)))
424ffvelcdmda 7022 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ 𝐿1)
4341, 42eqeltrrd 2829 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (𝑥𝑆 ↦ ((𝐹𝑛)‘𝑥)) ∈ 𝐿1)
4443ad2ant2r 747 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑥𝑆 ↦ ((𝐹𝑛)‘𝑥)) ∈ 𝐿1)
456, 16syl 17 . . . . . . . . . . . . . 14 (𝜑𝐺:𝑆⟶ℂ)
4645ffvelcdmda 7022 . . . . . . . . . . . . 13 ((𝜑𝑥𝑆) → (𝐺𝑥) ∈ ℂ)
4746ad4ant14 752 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) ∧ 𝑥𝑆) → (𝐺𝑥) ∈ ℂ)
4845feqmptd 6895 . . . . . . . . . . . . . 14 (𝜑𝐺 = (𝑥𝑆 ↦ (𝐺𝑥)))
4948, 19eqeltrrd 2829 . . . . . . . . . . . . 13 (𝜑 → (𝑥𝑆 ↦ (𝐺𝑥)) ∈ 𝐿1)
5049ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑥𝑆 ↦ (𝐺𝑥)) ∈ 𝐿1)
5140, 44, 47, 50itgsub 25743 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∫𝑆(((𝐹𝑛)‘𝑥) − (𝐺𝑥)) d𝑥 = (∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥))
5251fveq2d 6830 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (abs‘∫𝑆(((𝐹𝑛)‘𝑥) − (𝐺𝑥)) d𝑥) = (abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)))
5340, 47subcld 11493 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) ∧ 𝑥𝑆) → (((𝐹𝑛)‘𝑥) − (𝐺𝑥)) ∈ ℂ)
5440, 44, 47, 50iblsub 25739 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑥𝑆 ↦ (((𝐹𝑛)‘𝑥) − (𝐺𝑥))) ∈ 𝐿1)
5553, 54itgcl 25701 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∫𝑆(((𝐹𝑛)‘𝑥) − (𝐺𝑥)) d𝑥 ∈ ℂ)
5655abscld 15364 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (abs‘∫𝑆(((𝐹𝑛)‘𝑥) − (𝐺𝑥)) d𝑥) ∈ ℝ)
5753abscld 15364 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) ∧ 𝑥𝑆) → (abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) ∈ ℝ)
5853, 54iblabs 25746 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑥𝑆 ↦ (abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥)))) ∈ 𝐿1)
5957, 58itgrecl 25715 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∫𝑆(abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) d𝑥 ∈ ℝ)
60 rpre 12920 . . . . . . . . . . . 12 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
6160ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → 𝑟 ∈ ℝ)
6253, 54itgabs 25752 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (abs‘∫𝑆(((𝐹𝑛)‘𝑥) − (𝐺𝑥)) d𝑥) ≤ ∫𝑆(abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) d𝑥)
6332adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑟 / ((vol‘𝑆) + 1)) ∈ ℝ+)
6463rpred 12955 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑟 / ((vol‘𝑆) + 1)) ∈ ℝ)
6514ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (vol‘𝑆) ∈ ℝ)
6664, 65remulcld 11164 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((𝑟 / ((vol‘𝑆) + 1)) · (vol‘𝑆)) ∈ ℝ)
67 fconstmpt 5685 . . . . . . . . . . . . . . 15 (𝑆 × {(𝑟 / ((vol‘𝑆) + 1))}) = (𝑥𝑆 ↦ (𝑟 / ((vol‘𝑆) + 1)))
6823ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → 𝑆 ∈ dom vol)
6963rpcnd 12957 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑟 / ((vol‘𝑆) + 1)) ∈ ℂ)
70 iblconst 25735 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ dom vol ∧ (vol‘𝑆) ∈ ℝ ∧ (𝑟 / ((vol‘𝑆) + 1)) ∈ ℂ) → (𝑆 × {(𝑟 / ((vol‘𝑆) + 1))}) ∈ 𝐿1)
7168, 65, 69, 70syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑆 × {(𝑟 / ((vol‘𝑆) + 1))}) ∈ 𝐿1)
7267, 71eqeltrrid 2833 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑥𝑆 ↦ (𝑟 / ((vol‘𝑆) + 1))) ∈ 𝐿1)
7364adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) ∧ 𝑥𝑆) → (𝑟 / ((vol‘𝑆) + 1)) ∈ ℝ)
74 simprr 772 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))
75 fveq2 6826 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑥 → ((𝐹𝑛)‘𝑧) = ((𝐹𝑛)‘𝑥))
76 fveq2 6826 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑥 → (𝐺𝑧) = (𝐺𝑥))
7775, 76oveq12d 7371 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑥 → (((𝐹𝑛)‘𝑧) − (𝐺𝑧)) = (((𝐹𝑛)‘𝑥) − (𝐺𝑥)))
7877fveq2d 6830 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑥 → (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) = (abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))))
7978breq1d 5105 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑥 → ((abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)) ↔ (abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) < (𝑟 / ((vol‘𝑆) + 1))))
8079rspccva 3578 . . . . . . . . . . . . . . . 16 ((∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)) ∧ 𝑥𝑆) → (abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) < (𝑟 / ((vol‘𝑆) + 1)))
8174, 80sylan 580 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) ∧ 𝑥𝑆) → (abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) < (𝑟 / ((vol‘𝑆) + 1)))
8257, 73, 81ltled 11282 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) ∧ 𝑥𝑆) → (abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) ≤ (𝑟 / ((vol‘𝑆) + 1)))
8358, 72, 57, 73, 82itgle 25727 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∫𝑆(abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) d𝑥 ≤ ∫𝑆(𝑟 / ((vol‘𝑆) + 1)) d𝑥)
84 itgconst 25736 . . . . . . . . . . . . . 14 ((𝑆 ∈ dom vol ∧ (vol‘𝑆) ∈ ℝ ∧ (𝑟 / ((vol‘𝑆) + 1)) ∈ ℂ) → ∫𝑆(𝑟 / ((vol‘𝑆) + 1)) d𝑥 = ((𝑟 / ((vol‘𝑆) + 1)) · (vol‘𝑆)))
8568, 65, 69, 84syl3anc 1373 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∫𝑆(𝑟 / ((vol‘𝑆) + 1)) d𝑥 = ((𝑟 / ((vol‘𝑆) + 1)) · (vol‘𝑆)))
8683, 85breqtrd 5121 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∫𝑆(abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) d𝑥 ≤ ((𝑟 / ((vol‘𝑆) + 1)) · (vol‘𝑆)))
8761recnd 11162 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → 𝑟 ∈ ℂ)
8865recnd 11162 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (vol‘𝑆) ∈ ℂ)
8931adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((vol‘𝑆) + 1) ∈ ℝ+)
9089rpcnd 12957 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((vol‘𝑆) + 1) ∈ ℂ)
9189rpne0d 12960 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((vol‘𝑆) + 1) ≠ 0)
9287, 88, 90, 91div23d 11955 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((𝑟 · (vol‘𝑆)) / ((vol‘𝑆) + 1)) = ((𝑟 / ((vol‘𝑆) + 1)) · (vol‘𝑆)))
9365ltp1d 12073 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (vol‘𝑆) < ((vol‘𝑆) + 1))
94 peano2re 11307 . . . . . . . . . . . . . . . . 17 ((vol‘𝑆) ∈ ℝ → ((vol‘𝑆) + 1) ∈ ℝ)
9565, 94syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((vol‘𝑆) + 1) ∈ ℝ)
96 rpgt0 12924 . . . . . . . . . . . . . . . . 17 (𝑟 ∈ ℝ+ → 0 < 𝑟)
9796ad2antlr 727 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → 0 < 𝑟)
98 ltmul2 11993 . . . . . . . . . . . . . . . 16 (((vol‘𝑆) ∈ ℝ ∧ ((vol‘𝑆) + 1) ∈ ℝ ∧ (𝑟 ∈ ℝ ∧ 0 < 𝑟)) → ((vol‘𝑆) < ((vol‘𝑆) + 1) ↔ (𝑟 · (vol‘𝑆)) < (𝑟 · ((vol‘𝑆) + 1))))
9965, 95, 61, 97, 98syl112anc 1376 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((vol‘𝑆) < ((vol‘𝑆) + 1) ↔ (𝑟 · (vol‘𝑆)) < (𝑟 · ((vol‘𝑆) + 1))))
10093, 99mpbid 232 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑟 · (vol‘𝑆)) < (𝑟 · ((vol‘𝑆) + 1)))
10161, 65remulcld 11164 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑟 · (vol‘𝑆)) ∈ ℝ)
102101, 61, 89ltdivmul2d 13007 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (((𝑟 · (vol‘𝑆)) / ((vol‘𝑆) + 1)) < 𝑟 ↔ (𝑟 · (vol‘𝑆)) < (𝑟 · ((vol‘𝑆) + 1))))
103100, 102mpbird 257 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((𝑟 · (vol‘𝑆)) / ((vol‘𝑆) + 1)) < 𝑟)
10492, 103eqbrtrrd 5119 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((𝑟 / ((vol‘𝑆) + 1)) · (vol‘𝑆)) < 𝑟)
10559, 66, 61, 86, 104lelttrd 11292 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∫𝑆(abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) d𝑥 < 𝑟)
10656, 59, 61, 62, 105lelttrd 11292 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (abs‘∫𝑆(((𝐹𝑛)‘𝑥) − (𝐺𝑥)) d𝑥) < 𝑟)
10752, 106eqbrtrrd 5119 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)) < 𝑟)
108107expr 456 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → (∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)) → (abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)) < 𝑟))
10934, 108sylan2 593 . . . . . . 7 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)) → (abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)) < 𝑟))
110109anassrs 467 . . . . . 6 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑛 ∈ (ℤ𝑗)) → (∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)) → (abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)) < 𝑟))
111110ralimdva 3141 . . . . 5 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑛 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)) → ∀𝑛 ∈ (ℤ𝑗)(abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)) < 𝑟))
112111reximdva 3142 . . . 4 ((𝜑𝑟 ∈ ℝ+) → (∃𝑗𝑍𝑛 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)) → ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)) < 𝑟))
11333, 112mpd 15 . . 3 ((𝜑𝑟 ∈ ℝ+) → ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)) < 𝑟)
114113ralrimiva 3121 . 2 (𝜑 → ∀𝑟 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)) < 𝑟)
1151fvexi 6840 . . . . 5 𝑍 ∈ V
116115mptex 7163 . . . 4 (𝑘𝑍 ↦ ∫𝑆((𝐹𝑘)‘𝑥) d𝑥) ∈ V
117116a1i 11 . . 3 (𝜑 → (𝑘𝑍 ↦ ∫𝑆((𝐹𝑘)‘𝑥) d𝑥) ∈ V)
118 fveq2 6826 . . . . . . . 8 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
119118fveq1d 6828 . . . . . . 7 (𝑘 = 𝑛 → ((𝐹𝑘)‘𝑥) = ((𝐹𝑛)‘𝑥))
120119adantr 480 . . . . . 6 ((𝑘 = 𝑛𝑥𝑆) → ((𝐹𝑘)‘𝑥) = ((𝐹𝑛)‘𝑥))
121120itgeq2dv 25699 . . . . 5 (𝑘 = 𝑛 → ∫𝑆((𝐹𝑘)‘𝑥) d𝑥 = ∫𝑆((𝐹𝑛)‘𝑥) d𝑥)
122 eqid 2729 . . . . 5 (𝑘𝑍 ↦ ∫𝑆((𝐹𝑘)‘𝑥) d𝑥) = (𝑘𝑍 ↦ ∫𝑆((𝐹𝑘)‘𝑥) d𝑥)
123 itgex 25687 . . . . 5 𝑆((𝐹𝑛)‘𝑥) d𝑥 ∈ V
124121, 122, 123fvmpt 6934 . . . 4 (𝑛𝑍 → ((𝑘𝑍 ↦ ∫𝑆((𝐹𝑘)‘𝑥) d𝑥)‘𝑛) = ∫𝑆((𝐹𝑛)‘𝑥) d𝑥)
125124adantl 481 . . 3 ((𝜑𝑛𝑍) → ((𝑘𝑍 ↦ ∫𝑆((𝐹𝑘)‘𝑥) d𝑥)‘𝑛) = ∫𝑆((𝐹𝑛)‘𝑥) d𝑥)
12646, 49itgcl 25701 . . 3 (𝜑 → ∫𝑆(𝐺𝑥) d𝑥 ∈ ℂ)
12738, 43itgcl 25701 . . 3 ((𝜑𝑛𝑍) → ∫𝑆((𝐹𝑛)‘𝑥) d𝑥 ∈ ℂ)
1281, 2, 117, 125, 126, 127clim2c 15430 . 2 (𝜑 → ((𝑘𝑍 ↦ ∫𝑆((𝐹𝑘)‘𝑥) d𝑥) ⇝ ∫𝑆(𝐺𝑥) d𝑥 ↔ ∀𝑟 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)) < 𝑟))
129114, 128mpbird 257 1 (𝜑 → (𝑘𝑍 ↦ ∫𝑆((𝐹𝑘)‘𝑥) d𝑥) ⇝ ∫𝑆(𝐺𝑥) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3438  wss 3905  {csn 4579   class class class wbr 5095  cmpt 5176   × cxp 5621  dom cdm 5623   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  m cmap 8760  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033   < clt 11168  cle 11169  cmin 11365   / cdiv 11795  cz 12489  cuz 12753  +crp 12911  abscabs 15159  cli 15409  vol*covol 25379  volcvol 25380  MblFncmbf 25531  𝐿1cibl 25534  citg 25535  𝑢culm 26301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cc 10348  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-ofr 7618  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-omul 8400  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-acn 9857  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ioc 13271  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-sum 15612  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cn 23130  df-cnp 23131  df-cmp 23290  df-tx 23465  df-hmeo 23658  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-ovol 25381  df-vol 25382  df-mbf 25536  df-itg1 25537  df-itg2 25538  df-ibl 25539  df-itg 25540  df-0p 25587  df-ulm 26302
This theorem is referenced by:  itgulm2  26334
  Copyright terms: Public domain W3C validator