| Step | Hyp | Ref
| Expression |
| 1 | | itgulm.z |
. . . . 5
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 2 | | itgulm.m |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 3 | 2 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) → 𝑀 ∈
ℤ) |
| 4 | | itgulm.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝑍⟶𝐿1) |
| 5 | 4 | ffnd 6712 |
. . . . . . 7
⊢ (𝜑 → 𝐹 Fn 𝑍) |
| 6 | | itgulm.u |
. . . . . . 7
⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) |
| 7 | | ulmf2 26350 |
. . . . . . 7
⊢ ((𝐹 Fn 𝑍 ∧ 𝐹(⇝𝑢‘𝑆)𝐺) → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) |
| 8 | 5, 6, 7 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) |
| 9 | 8 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) |
| 10 | | eqidd 2737 |
. . . . 5
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆)) → ((𝐹‘𝑛)‘𝑧) = ((𝐹‘𝑛)‘𝑧)) |
| 11 | | eqidd 2737 |
. . . . 5
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑧 ∈ 𝑆) → (𝐺‘𝑧) = (𝐺‘𝑧)) |
| 12 | 6 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) → 𝐹(⇝𝑢‘𝑆)𝐺) |
| 13 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈
ℝ+) |
| 14 | | itgulm.s |
. . . . . . . 8
⊢ (𝜑 → (vol‘𝑆) ∈
ℝ) |
| 15 | 14 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) →
(vol‘𝑆) ∈
ℝ) |
| 16 | | ulmcl 26347 |
. . . . . . . . . . . 12
⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝐺:𝑆⟶ℂ) |
| 17 | | fdm 6720 |
. . . . . . . . . . . 12
⊢ (𝐺:𝑆⟶ℂ → dom 𝐺 = 𝑆) |
| 18 | 6, 16, 17 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝜑 → dom 𝐺 = 𝑆) |
| 19 | 1, 2, 4, 6, 14 | iblulm 26373 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺 ∈
𝐿1) |
| 20 | | iblmbf 25725 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ 𝐿1
→ 𝐺 ∈
MblFn) |
| 21 | | mbfdm 25584 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ MblFn → dom 𝐺 ∈ dom
vol) |
| 22 | 19, 20, 21 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝜑 → dom 𝐺 ∈ dom vol) |
| 23 | 18, 22 | eqeltrrd 2836 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ∈ dom vol) |
| 24 | | mblss 25489 |
. . . . . . . . . 10
⊢ (𝑆 ∈ dom vol → 𝑆 ⊆
ℝ) |
| 25 | | ovolge0 25439 |
. . . . . . . . . 10
⊢ (𝑆 ⊆ ℝ → 0 ≤
(vol*‘𝑆)) |
| 26 | 23, 24, 25 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → 0 ≤ (vol*‘𝑆)) |
| 27 | | mblvol 25488 |
. . . . . . . . . 10
⊢ (𝑆 ∈ dom vol →
(vol‘𝑆) =
(vol*‘𝑆)) |
| 28 | 23, 27 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (vol‘𝑆) = (vol*‘𝑆)) |
| 29 | 26, 28 | breqtrrd 5152 |
. . . . . . . 8
⊢ (𝜑 → 0 ≤ (vol‘𝑆)) |
| 30 | 29 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) → 0 ≤
(vol‘𝑆)) |
| 31 | 15, 30 | ge0p1rpd 13086 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) →
((vol‘𝑆) + 1) ∈
ℝ+) |
| 32 | 13, 31 | rpdivcld 13073 |
. . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) → (𝑟 / ((vol‘𝑆) + 1)) ∈
ℝ+) |
| 33 | 1, 3, 9, 10, 11, 12, 32 | ulmi 26352 |
. . . 4
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) →
∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1))) |
| 34 | 1 | uztrn2 12876 |
. . . . . . . 8
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗)) → 𝑛 ∈ 𝑍) |
| 35 | 8 | ffvelcdmda 7079 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ (ℂ ↑m 𝑆)) |
| 36 | | elmapi 8868 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑛) ∈ (ℂ ↑m 𝑆) → (𝐹‘𝑛):𝑆⟶ℂ) |
| 37 | 35, 36 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛):𝑆⟶ℂ) |
| 38 | 37 | ffvelcdmda 7079 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ 𝑆) → ((𝐹‘𝑛)‘𝑥) ∈ ℂ) |
| 39 | 38 | adantllr 719 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ 𝑆) → ((𝐹‘𝑛)‘𝑥) ∈ ℂ) |
| 40 | 39 | adantlrr 721 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) ∧ 𝑥 ∈ 𝑆) → ((𝐹‘𝑛)‘𝑥) ∈ ℂ) |
| 41 | 37 | feqmptd 6952 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) = (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑛)‘𝑥))) |
| 42 | 4 | ffvelcdmda 7079 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈
𝐿1) |
| 43 | 41, 42 | eqeltrrd 2836 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑛)‘𝑥)) ∈
𝐿1) |
| 44 | 43 | ad2ant2r 747 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑛)‘𝑥)) ∈
𝐿1) |
| 45 | 6, 16 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐺:𝑆⟶ℂ) |
| 46 | 45 | ffvelcdmda 7079 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝐺‘𝑥) ∈ ℂ) |
| 47 | 46 | ad4ant14 752 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) ∧ 𝑥 ∈ 𝑆) → (𝐺‘𝑥) ∈ ℂ) |
| 48 | 45 | feqmptd 6952 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝑆 ↦ (𝐺‘𝑥))) |
| 49 | 48, 19 | eqeltrrd 2836 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥 ∈ 𝑆 ↦ (𝐺‘𝑥)) ∈
𝐿1) |
| 50 | 49 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑥 ∈ 𝑆 ↦ (𝐺‘𝑥)) ∈
𝐿1) |
| 51 | 40, 44, 47, 50 | itgsub 25784 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∫𝑆(((𝐹‘𝑛)‘𝑥) − (𝐺‘𝑥)) d𝑥 = (∫𝑆((𝐹‘𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺‘𝑥) d𝑥)) |
| 52 | 51 | fveq2d 6885 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (abs‘∫𝑆(((𝐹‘𝑛)‘𝑥) − (𝐺‘𝑥)) d𝑥) = (abs‘(∫𝑆((𝐹‘𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺‘𝑥) d𝑥))) |
| 53 | 40, 47 | subcld 11599 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) ∧ 𝑥 ∈ 𝑆) → (((𝐹‘𝑛)‘𝑥) − (𝐺‘𝑥)) ∈ ℂ) |
| 54 | 40, 44, 47, 50 | iblsub 25780 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑥 ∈ 𝑆 ↦ (((𝐹‘𝑛)‘𝑥) − (𝐺‘𝑥))) ∈
𝐿1) |
| 55 | 53, 54 | itgcl 25742 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∫𝑆(((𝐹‘𝑛)‘𝑥) − (𝐺‘𝑥)) d𝑥 ∈ ℂ) |
| 56 | 55 | abscld 15460 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (abs‘∫𝑆(((𝐹‘𝑛)‘𝑥) − (𝐺‘𝑥)) d𝑥) ∈ ℝ) |
| 57 | 53 | abscld 15460 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) ∧ 𝑥 ∈ 𝑆) → (abs‘(((𝐹‘𝑛)‘𝑥) − (𝐺‘𝑥))) ∈ ℝ) |
| 58 | 53, 54 | iblabs 25787 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑥 ∈ 𝑆 ↦ (abs‘(((𝐹‘𝑛)‘𝑥) − (𝐺‘𝑥)))) ∈
𝐿1) |
| 59 | 57, 58 | itgrecl 25756 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∫𝑆(abs‘(((𝐹‘𝑛)‘𝑥) − (𝐺‘𝑥))) d𝑥 ∈ ℝ) |
| 60 | | rpre 13022 |
. . . . . . . . . . . 12
⊢ (𝑟 ∈ ℝ+
→ 𝑟 ∈
ℝ) |
| 61 | 60 | ad2antlr 727 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → 𝑟 ∈ ℝ) |
| 62 | 53, 54 | itgabs 25793 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (abs‘∫𝑆(((𝐹‘𝑛)‘𝑥) − (𝐺‘𝑥)) d𝑥) ≤ ∫𝑆(abs‘(((𝐹‘𝑛)‘𝑥) − (𝐺‘𝑥))) d𝑥) |
| 63 | 32 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑟 / ((vol‘𝑆) + 1)) ∈
ℝ+) |
| 64 | 63 | rpred 13056 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑟 / ((vol‘𝑆) + 1)) ∈ ℝ) |
| 65 | 14 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (vol‘𝑆) ∈
ℝ) |
| 66 | 64, 65 | remulcld 11270 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((𝑟 / ((vol‘𝑆) + 1)) · (vol‘𝑆)) ∈
ℝ) |
| 67 | | fconstmpt 5721 |
. . . . . . . . . . . . . . 15
⊢ (𝑆 × {(𝑟 / ((vol‘𝑆) + 1))}) = (𝑥 ∈ 𝑆 ↦ (𝑟 / ((vol‘𝑆) + 1))) |
| 68 | 23 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → 𝑆 ∈ dom vol) |
| 69 | 63 | rpcnd 13058 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑟 / ((vol‘𝑆) + 1)) ∈ ℂ) |
| 70 | | iblconst 25776 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑆 ∈ dom vol ∧
(vol‘𝑆) ∈
ℝ ∧ (𝑟 /
((vol‘𝑆) + 1)) ∈
ℂ) → (𝑆 ×
{(𝑟 / ((vol‘𝑆) + 1))}) ∈
𝐿1) |
| 71 | 68, 65, 69, 70 | syl3anc 1373 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑆 × {(𝑟 / ((vol‘𝑆) + 1))}) ∈
𝐿1) |
| 72 | 67, 71 | eqeltrrid 2840 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑥 ∈ 𝑆 ↦ (𝑟 / ((vol‘𝑆) + 1))) ∈
𝐿1) |
| 73 | 64 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) ∧ 𝑥 ∈ 𝑆) → (𝑟 / ((vol‘𝑆) + 1)) ∈ ℝ) |
| 74 | | simprr 772 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1))) |
| 75 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = 𝑥 → ((𝐹‘𝑛)‘𝑧) = ((𝐹‘𝑛)‘𝑥)) |
| 76 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = 𝑥 → (𝐺‘𝑧) = (𝐺‘𝑥)) |
| 77 | 75, 76 | oveq12d 7428 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = 𝑥 → (((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧)) = (((𝐹‘𝑛)‘𝑥) − (𝐺‘𝑥))) |
| 78 | 77 | fveq2d 6885 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑥 → (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) = (abs‘(((𝐹‘𝑛)‘𝑥) − (𝐺‘𝑥)))) |
| 79 | 78 | breq1d 5134 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑥 → ((abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)) ↔ (abs‘(((𝐹‘𝑛)‘𝑥) − (𝐺‘𝑥))) < (𝑟 / ((vol‘𝑆) + 1)))) |
| 80 | 79 | rspccva 3605 |
. . . . . . . . . . . . . . . 16
⊢
((∀𝑧 ∈
𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)) ∧ 𝑥 ∈ 𝑆) → (abs‘(((𝐹‘𝑛)‘𝑥) − (𝐺‘𝑥))) < (𝑟 / ((vol‘𝑆) + 1))) |
| 81 | 74, 80 | sylan 580 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) ∧ 𝑥 ∈ 𝑆) → (abs‘(((𝐹‘𝑛)‘𝑥) − (𝐺‘𝑥))) < (𝑟 / ((vol‘𝑆) + 1))) |
| 82 | 57, 73, 81 | ltled 11388 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) ∧ 𝑥 ∈ 𝑆) → (abs‘(((𝐹‘𝑛)‘𝑥) − (𝐺‘𝑥))) ≤ (𝑟 / ((vol‘𝑆) + 1))) |
| 83 | 58, 72, 57, 73, 82 | itgle 25768 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∫𝑆(abs‘(((𝐹‘𝑛)‘𝑥) − (𝐺‘𝑥))) d𝑥 ≤ ∫𝑆(𝑟 / ((vol‘𝑆) + 1)) d𝑥) |
| 84 | | itgconst 25777 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 ∈ dom vol ∧
(vol‘𝑆) ∈
ℝ ∧ (𝑟 /
((vol‘𝑆) + 1)) ∈
ℂ) → ∫𝑆(𝑟 / ((vol‘𝑆) + 1)) d𝑥 = ((𝑟 / ((vol‘𝑆) + 1)) · (vol‘𝑆))) |
| 85 | 68, 65, 69, 84 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∫𝑆(𝑟 / ((vol‘𝑆) + 1)) d𝑥 = ((𝑟 / ((vol‘𝑆) + 1)) · (vol‘𝑆))) |
| 86 | 83, 85 | breqtrd 5150 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∫𝑆(abs‘(((𝐹‘𝑛)‘𝑥) − (𝐺‘𝑥))) d𝑥 ≤ ((𝑟 / ((vol‘𝑆) + 1)) · (vol‘𝑆))) |
| 87 | 61 | recnd 11268 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → 𝑟 ∈ ℂ) |
| 88 | 65 | recnd 11268 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (vol‘𝑆) ∈
ℂ) |
| 89 | 31 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((vol‘𝑆) + 1) ∈
ℝ+) |
| 90 | 89 | rpcnd 13058 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((vol‘𝑆) + 1) ∈
ℂ) |
| 91 | 89 | rpne0d 13061 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((vol‘𝑆) + 1) ≠ 0) |
| 92 | 87, 88, 90, 91 | div23d 12059 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((𝑟 · (vol‘𝑆)) / ((vol‘𝑆) + 1)) = ((𝑟 / ((vol‘𝑆) + 1)) · (vol‘𝑆))) |
| 93 | 65 | ltp1d 12177 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (vol‘𝑆) < ((vol‘𝑆) + 1)) |
| 94 | | peano2re 11413 |
. . . . . . . . . . . . . . . . 17
⊢
((vol‘𝑆)
∈ ℝ → ((vol‘𝑆) + 1) ∈ ℝ) |
| 95 | 65, 94 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((vol‘𝑆) + 1) ∈
ℝ) |
| 96 | | rpgt0 13026 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑟 ∈ ℝ+
→ 0 < 𝑟) |
| 97 | 96 | ad2antlr 727 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → 0 < 𝑟) |
| 98 | | ltmul2 12097 |
. . . . . . . . . . . . . . . 16
⊢
(((vol‘𝑆)
∈ ℝ ∧ ((vol‘𝑆) + 1) ∈ ℝ ∧ (𝑟 ∈ ℝ ∧ 0 <
𝑟)) →
((vol‘𝑆) <
((vol‘𝑆) + 1) ↔
(𝑟 ·
(vol‘𝑆)) < (𝑟 · ((vol‘𝑆) + 1)))) |
| 99 | 65, 95, 61, 97, 98 | syl112anc 1376 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((vol‘𝑆) < ((vol‘𝑆) + 1) ↔ (𝑟 · (vol‘𝑆)) < (𝑟 · ((vol‘𝑆) + 1)))) |
| 100 | 93, 99 | mpbid 232 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑟 · (vol‘𝑆)) < (𝑟 · ((vol‘𝑆) + 1))) |
| 101 | 61, 65 | remulcld 11270 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑟 · (vol‘𝑆)) ∈ ℝ) |
| 102 | 101, 61, 89 | ltdivmul2d 13108 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (((𝑟 · (vol‘𝑆)) / ((vol‘𝑆) + 1)) < 𝑟 ↔ (𝑟 · (vol‘𝑆)) < (𝑟 · ((vol‘𝑆) + 1)))) |
| 103 | 100, 102 | mpbird 257 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((𝑟 · (vol‘𝑆)) / ((vol‘𝑆) + 1)) < 𝑟) |
| 104 | 92, 103 | eqbrtrrd 5148 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((𝑟 / ((vol‘𝑆) + 1)) · (vol‘𝑆)) < 𝑟) |
| 105 | 59, 66, 61, 86, 104 | lelttrd 11398 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∫𝑆(abs‘(((𝐹‘𝑛)‘𝑥) − (𝐺‘𝑥))) d𝑥 < 𝑟) |
| 106 | 56, 59, 61, 62, 105 | lelttrd 11398 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (abs‘∫𝑆(((𝐹‘𝑛)‘𝑥) − (𝐺‘𝑥)) d𝑥) < 𝑟) |
| 107 | 52, 106 | eqbrtrrd 5148 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑛 ∈ 𝑍 ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (abs‘(∫𝑆((𝐹‘𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺‘𝑥) d𝑥)) < 𝑟) |
| 108 | 107 | expr 456 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑛 ∈ 𝑍) → (∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)) → (abs‘(∫𝑆((𝐹‘𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺‘𝑥) d𝑥)) < 𝑟)) |
| 109 | 34, 108 | sylan2 593 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)) → (abs‘(∫𝑆((𝐹‘𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺‘𝑥) d𝑥)) < 𝑟)) |
| 110 | 109 | anassrs 467 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑗)) → (∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)) → (abs‘(∫𝑆((𝐹‘𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺‘𝑥) d𝑥)) < 𝑟)) |
| 111 | 110 | ralimdva 3153 |
. . . . 5
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → (∀𝑛 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)) → ∀𝑛 ∈ (ℤ≥‘𝑗)(abs‘(∫𝑆((𝐹‘𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺‘𝑥) d𝑥)) < 𝑟)) |
| 112 | 111 | reximdva 3154 |
. . . 4
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) →
(∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑛)‘𝑧) − (𝐺‘𝑧))) < (𝑟 / ((vol‘𝑆) + 1)) → ∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)(abs‘(∫𝑆((𝐹‘𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺‘𝑥) d𝑥)) < 𝑟)) |
| 113 | 33, 112 | mpd 15 |
. . 3
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) →
∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)(abs‘(∫𝑆((𝐹‘𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺‘𝑥) d𝑥)) < 𝑟) |
| 114 | 113 | ralrimiva 3133 |
. 2
⊢ (𝜑 → ∀𝑟 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)(abs‘(∫𝑆((𝐹‘𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺‘𝑥) d𝑥)) < 𝑟) |
| 115 | 1 | fvexi 6895 |
. . . . 5
⊢ 𝑍 ∈ V |
| 116 | 115 | mptex 7220 |
. . . 4
⊢ (𝑘 ∈ 𝑍 ↦ ∫𝑆((𝐹‘𝑘)‘𝑥) d𝑥) ∈ V |
| 117 | 116 | a1i 11 |
. . 3
⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ ∫𝑆((𝐹‘𝑘)‘𝑥) d𝑥) ∈ V) |
| 118 | | fveq2 6881 |
. . . . . . . 8
⊢ (𝑘 = 𝑛 → (𝐹‘𝑘) = (𝐹‘𝑛)) |
| 119 | 118 | fveq1d 6883 |
. . . . . . 7
⊢ (𝑘 = 𝑛 → ((𝐹‘𝑘)‘𝑥) = ((𝐹‘𝑛)‘𝑥)) |
| 120 | 119 | adantr 480 |
. . . . . 6
⊢ ((𝑘 = 𝑛 ∧ 𝑥 ∈ 𝑆) → ((𝐹‘𝑘)‘𝑥) = ((𝐹‘𝑛)‘𝑥)) |
| 121 | 120 | itgeq2dv 25740 |
. . . . 5
⊢ (𝑘 = 𝑛 → ∫𝑆((𝐹‘𝑘)‘𝑥) d𝑥 = ∫𝑆((𝐹‘𝑛)‘𝑥) d𝑥) |
| 122 | | eqid 2736 |
. . . . 5
⊢ (𝑘 ∈ 𝑍 ↦ ∫𝑆((𝐹‘𝑘)‘𝑥) d𝑥) = (𝑘 ∈ 𝑍 ↦ ∫𝑆((𝐹‘𝑘)‘𝑥) d𝑥) |
| 123 | | itgex 25728 |
. . . . 5
⊢
∫𝑆((𝐹‘𝑛)‘𝑥) d𝑥 ∈ V |
| 124 | 121, 122,
123 | fvmpt 6991 |
. . . 4
⊢ (𝑛 ∈ 𝑍 → ((𝑘 ∈ 𝑍 ↦ ∫𝑆((𝐹‘𝑘)‘𝑥) d𝑥)‘𝑛) = ∫𝑆((𝐹‘𝑛)‘𝑥) d𝑥) |
| 125 | 124 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ ∫𝑆((𝐹‘𝑘)‘𝑥) d𝑥)‘𝑛) = ∫𝑆((𝐹‘𝑛)‘𝑥) d𝑥) |
| 126 | 46, 49 | itgcl 25742 |
. . 3
⊢ (𝜑 → ∫𝑆(𝐺‘𝑥) d𝑥 ∈ ℂ) |
| 127 | 38, 43 | itgcl 25742 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ∫𝑆((𝐹‘𝑛)‘𝑥) d𝑥 ∈ ℂ) |
| 128 | 1, 2, 117, 125, 126, 127 | clim2c 15526 |
. 2
⊢ (𝜑 → ((𝑘 ∈ 𝑍 ↦ ∫𝑆((𝐹‘𝑘)‘𝑥) d𝑥) ⇝ ∫𝑆(𝐺‘𝑥) d𝑥 ↔ ∀𝑟 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)(abs‘(∫𝑆((𝐹‘𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺‘𝑥) d𝑥)) < 𝑟)) |
| 129 | 114, 128 | mpbird 257 |
1
⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ ∫𝑆((𝐹‘𝑘)‘𝑥) d𝑥) ⇝ ∫𝑆(𝐺‘𝑥) d𝑥) |