MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgulm Structured version   Visualization version   GIF version

Theorem itgulm 24452
Description: A uniform limit of integrals of integrable functions converges to the integral of the limit function. (Contributed by Mario Carneiro, 18-Mar-2015.)
Hypotheses
Ref Expression
itgulm.z 𝑍 = (ℤ𝑀)
itgulm.m (𝜑𝑀 ∈ ℤ)
itgulm.f (𝜑𝐹:𝑍⟶𝐿1)
itgulm.u (𝜑𝐹(⇝𝑢𝑆)𝐺)
itgulm.s (𝜑 → (vol‘𝑆) ∈ ℝ)
Assertion
Ref Expression
itgulm (𝜑 → (𝑘𝑍 ↦ ∫𝑆((𝐹𝑘)‘𝑥) d𝑥) ⇝ ∫𝑆(𝐺𝑥) d𝑥)
Distinct variable groups:   𝑥,𝑘,𝐹   𝑘,𝐺,𝑥   𝜑,𝑘,𝑥   𝑘,𝑀,𝑥   𝑆,𝑘,𝑥   𝑘,𝑍,𝑥

Proof of Theorem itgulm
Dummy variables 𝑗 𝑛 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgulm.z . . . . 5 𝑍 = (ℤ𝑀)
2 itgulm.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
32adantr 472 . . . . 5 ((𝜑𝑟 ∈ ℝ+) → 𝑀 ∈ ℤ)
4 itgulm.f . . . . . . . 8 (𝜑𝐹:𝑍⟶𝐿1)
54ffnd 6223 . . . . . . 7 (𝜑𝐹 Fn 𝑍)
6 itgulm.u . . . . . . 7 (𝜑𝐹(⇝𝑢𝑆)𝐺)
7 ulmf2 24428 . . . . . . 7 ((𝐹 Fn 𝑍𝐹(⇝𝑢𝑆)𝐺) → 𝐹:𝑍⟶(ℂ ↑𝑚 𝑆))
85, 6, 7syl2anc 579 . . . . . 6 (𝜑𝐹:𝑍⟶(ℂ ↑𝑚 𝑆))
98adantr 472 . . . . 5 ((𝜑𝑟 ∈ ℝ+) → 𝐹:𝑍⟶(ℂ ↑𝑚 𝑆))
10 eqidd 2765 . . . . 5 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍𝑧𝑆)) → ((𝐹𝑛)‘𝑧) = ((𝐹𝑛)‘𝑧))
11 eqidd 2765 . . . . 5 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑧𝑆) → (𝐺𝑧) = (𝐺𝑧))
126adantr 472 . . . . 5 ((𝜑𝑟 ∈ ℝ+) → 𝐹(⇝𝑢𝑆)𝐺)
13 simpr 477 . . . . . 6 ((𝜑𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+)
14 itgulm.s . . . . . . . 8 (𝜑 → (vol‘𝑆) ∈ ℝ)
1514adantr 472 . . . . . . 7 ((𝜑𝑟 ∈ ℝ+) → (vol‘𝑆) ∈ ℝ)
16 ulmcl 24425 . . . . . . . . . . . 12 (𝐹(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
17 fdm 6230 . . . . . . . . . . . 12 (𝐺:𝑆⟶ℂ → dom 𝐺 = 𝑆)
186, 16, 173syl 18 . . . . . . . . . . 11 (𝜑 → dom 𝐺 = 𝑆)
191, 2, 4, 6, 14iblulm 24451 . . . . . . . . . . . 12 (𝜑𝐺 ∈ 𝐿1)
20 iblmbf 23824 . . . . . . . . . . . 12 (𝐺 ∈ 𝐿1𝐺 ∈ MblFn)
21 mbfdm 23683 . . . . . . . . . . . 12 (𝐺 ∈ MblFn → dom 𝐺 ∈ dom vol)
2219, 20, 213syl 18 . . . . . . . . . . 11 (𝜑 → dom 𝐺 ∈ dom vol)
2318, 22eqeltrrd 2844 . . . . . . . . . 10 (𝜑𝑆 ∈ dom vol)
24 mblss 23588 . . . . . . . . . 10 (𝑆 ∈ dom vol → 𝑆 ⊆ ℝ)
25 ovolge0 23538 . . . . . . . . . 10 (𝑆 ⊆ ℝ → 0 ≤ (vol*‘𝑆))
2623, 24, 253syl 18 . . . . . . . . 9 (𝜑 → 0 ≤ (vol*‘𝑆))
27 mblvol 23587 . . . . . . . . . 10 (𝑆 ∈ dom vol → (vol‘𝑆) = (vol*‘𝑆))
2823, 27syl 17 . . . . . . . . 9 (𝜑 → (vol‘𝑆) = (vol*‘𝑆))
2926, 28breqtrrd 4836 . . . . . . . 8 (𝜑 → 0 ≤ (vol‘𝑆))
3029adantr 472 . . . . . . 7 ((𝜑𝑟 ∈ ℝ+) → 0 ≤ (vol‘𝑆))
3115, 30ge0p1rpd 12099 . . . . . 6 ((𝜑𝑟 ∈ ℝ+) → ((vol‘𝑆) + 1) ∈ ℝ+)
3213, 31rpdivcld 12086 . . . . 5 ((𝜑𝑟 ∈ ℝ+) → (𝑟 / ((vol‘𝑆) + 1)) ∈ ℝ+)
331, 3, 9, 10, 11, 12, 32ulmi 24430 . . . 4 ((𝜑𝑟 ∈ ℝ+) → ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))
341uztrn2 11903 . . . . . . . 8 ((𝑗𝑍𝑛 ∈ (ℤ𝑗)) → 𝑛𝑍)
358ffvelrnda 6548 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ (ℂ ↑𝑚 𝑆))
36 elmapi 8081 . . . . . . . . . . . . . . . 16 ((𝐹𝑛) ∈ (ℂ ↑𝑚 𝑆) → (𝐹𝑛):𝑆⟶ℂ)
3735, 36syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍) → (𝐹𝑛):𝑆⟶ℂ)
3837ffvelrnda 6548 . . . . . . . . . . . . . 14 (((𝜑𝑛𝑍) ∧ 𝑥𝑆) → ((𝐹𝑛)‘𝑥) ∈ ℂ)
3938adantllr 710 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑛𝑍) ∧ 𝑥𝑆) → ((𝐹𝑛)‘𝑥) ∈ ℂ)
4039adantlrr 712 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) ∧ 𝑥𝑆) → ((𝐹𝑛)‘𝑥) ∈ ℂ)
4137feqmptd 6437 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → (𝐹𝑛) = (𝑥𝑆 ↦ ((𝐹𝑛)‘𝑥)))
424ffvelrnda 6548 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ 𝐿1)
4341, 42eqeltrrd 2844 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (𝑥𝑆 ↦ ((𝐹𝑛)‘𝑥)) ∈ 𝐿1)
4443ad2ant2r 753 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑥𝑆 ↦ ((𝐹𝑛)‘𝑥)) ∈ 𝐿1)
456, 16syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐺:𝑆⟶ℂ)
4645ffvelrnda 6548 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑆) → (𝐺𝑥) ∈ ℂ)
4746adantlr 706 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥𝑆) → (𝐺𝑥) ∈ ℂ)
4847adantlr 706 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) ∧ 𝑥𝑆) → (𝐺𝑥) ∈ ℂ)
4945feqmptd 6437 . . . . . . . . . . . . . 14 (𝜑𝐺 = (𝑥𝑆 ↦ (𝐺𝑥)))
5049, 19eqeltrrd 2844 . . . . . . . . . . . . 13 (𝜑 → (𝑥𝑆 ↦ (𝐺𝑥)) ∈ 𝐿1)
5150ad2antrr 717 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑥𝑆 ↦ (𝐺𝑥)) ∈ 𝐿1)
5240, 44, 48, 51itgsub 23882 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∫𝑆(((𝐹𝑛)‘𝑥) − (𝐺𝑥)) d𝑥 = (∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥))
5352fveq2d 6378 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (abs‘∫𝑆(((𝐹𝑛)‘𝑥) − (𝐺𝑥)) d𝑥) = (abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)))
5440, 48subcld 10645 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) ∧ 𝑥𝑆) → (((𝐹𝑛)‘𝑥) − (𝐺𝑥)) ∈ ℂ)
5540, 44, 48, 51iblsub 23878 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑥𝑆 ↦ (((𝐹𝑛)‘𝑥) − (𝐺𝑥))) ∈ 𝐿1)
5654, 55itgcl 23840 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∫𝑆(((𝐹𝑛)‘𝑥) − (𝐺𝑥)) d𝑥 ∈ ℂ)
5756abscld 14461 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (abs‘∫𝑆(((𝐹𝑛)‘𝑥) − (𝐺𝑥)) d𝑥) ∈ ℝ)
5854abscld 14461 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) ∧ 𝑥𝑆) → (abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) ∈ ℝ)
5954, 55iblabs 23885 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑥𝑆 ↦ (abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥)))) ∈ 𝐿1)
6058, 59itgrecl 23854 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∫𝑆(abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) d𝑥 ∈ ℝ)
61 rpre 12035 . . . . . . . . . . . 12 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
6261ad2antlr 718 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → 𝑟 ∈ ℝ)
6354, 55itgabs 23891 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (abs‘∫𝑆(((𝐹𝑛)‘𝑥) − (𝐺𝑥)) d𝑥) ≤ ∫𝑆(abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) d𝑥)
6432adantr 472 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑟 / ((vol‘𝑆) + 1)) ∈ ℝ+)
6564rpred 12069 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑟 / ((vol‘𝑆) + 1)) ∈ ℝ)
6614ad2antrr 717 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (vol‘𝑆) ∈ ℝ)
6765, 66remulcld 10323 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((𝑟 / ((vol‘𝑆) + 1)) · (vol‘𝑆)) ∈ ℝ)
68 fconstmpt 5332 . . . . . . . . . . . . . . 15 (𝑆 × {(𝑟 / ((vol‘𝑆) + 1))}) = (𝑥𝑆 ↦ (𝑟 / ((vol‘𝑆) + 1)))
6923ad2antrr 717 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → 𝑆 ∈ dom vol)
7064rpcnd 12071 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑟 / ((vol‘𝑆) + 1)) ∈ ℂ)
71 iblconst 23874 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ dom vol ∧ (vol‘𝑆) ∈ ℝ ∧ (𝑟 / ((vol‘𝑆) + 1)) ∈ ℂ) → (𝑆 × {(𝑟 / ((vol‘𝑆) + 1))}) ∈ 𝐿1)
7269, 66, 70, 71syl3anc 1490 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑆 × {(𝑟 / ((vol‘𝑆) + 1))}) ∈ 𝐿1)
7368, 72syl5eqelr 2848 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑥𝑆 ↦ (𝑟 / ((vol‘𝑆) + 1))) ∈ 𝐿1)
7465adantr 472 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) ∧ 𝑥𝑆) → (𝑟 / ((vol‘𝑆) + 1)) ∈ ℝ)
75 simprr 789 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))
76 fveq2 6374 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑥 → ((𝐹𝑛)‘𝑧) = ((𝐹𝑛)‘𝑥))
77 fveq2 6374 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑥 → (𝐺𝑧) = (𝐺𝑥))
7876, 77oveq12d 6859 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑥 → (((𝐹𝑛)‘𝑧) − (𝐺𝑧)) = (((𝐹𝑛)‘𝑥) − (𝐺𝑥)))
7978fveq2d 6378 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑥 → (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) = (abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))))
8079breq1d 4818 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑥 → ((abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)) ↔ (abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) < (𝑟 / ((vol‘𝑆) + 1))))
8180rspccva 3459 . . . . . . . . . . . . . . . 16 ((∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)) ∧ 𝑥𝑆) → (abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) < (𝑟 / ((vol‘𝑆) + 1)))
8275, 81sylan 575 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) ∧ 𝑥𝑆) → (abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) < (𝑟 / ((vol‘𝑆) + 1)))
8358, 74, 82ltled 10438 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) ∧ 𝑥𝑆) → (abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) ≤ (𝑟 / ((vol‘𝑆) + 1)))
8459, 73, 58, 74, 83itgle 23866 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∫𝑆(abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) d𝑥 ≤ ∫𝑆(𝑟 / ((vol‘𝑆) + 1)) d𝑥)
85 itgconst 23875 . . . . . . . . . . . . . 14 ((𝑆 ∈ dom vol ∧ (vol‘𝑆) ∈ ℝ ∧ (𝑟 / ((vol‘𝑆) + 1)) ∈ ℂ) → ∫𝑆(𝑟 / ((vol‘𝑆) + 1)) d𝑥 = ((𝑟 / ((vol‘𝑆) + 1)) · (vol‘𝑆)))
8669, 66, 70, 85syl3anc 1490 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∫𝑆(𝑟 / ((vol‘𝑆) + 1)) d𝑥 = ((𝑟 / ((vol‘𝑆) + 1)) · (vol‘𝑆)))
8784, 86breqtrd 4834 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∫𝑆(abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) d𝑥 ≤ ((𝑟 / ((vol‘𝑆) + 1)) · (vol‘𝑆)))
8862recnd 10321 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → 𝑟 ∈ ℂ)
8966recnd 10321 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (vol‘𝑆) ∈ ℂ)
9031adantr 472 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((vol‘𝑆) + 1) ∈ ℝ+)
9190rpcnd 12071 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((vol‘𝑆) + 1) ∈ ℂ)
9290rpne0d 12074 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((vol‘𝑆) + 1) ≠ 0)
9388, 89, 91, 92div23d 11091 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((𝑟 · (vol‘𝑆)) / ((vol‘𝑆) + 1)) = ((𝑟 / ((vol‘𝑆) + 1)) · (vol‘𝑆)))
9466ltp1d 11207 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (vol‘𝑆) < ((vol‘𝑆) + 1))
95 peano2re 10462 . . . . . . . . . . . . . . . . 17 ((vol‘𝑆) ∈ ℝ → ((vol‘𝑆) + 1) ∈ ℝ)
9666, 95syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((vol‘𝑆) + 1) ∈ ℝ)
97 rpgt0 12041 . . . . . . . . . . . . . . . . 17 (𝑟 ∈ ℝ+ → 0 < 𝑟)
9897ad2antlr 718 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → 0 < 𝑟)
99 ltmul2 11127 . . . . . . . . . . . . . . . 16 (((vol‘𝑆) ∈ ℝ ∧ ((vol‘𝑆) + 1) ∈ ℝ ∧ (𝑟 ∈ ℝ ∧ 0 < 𝑟)) → ((vol‘𝑆) < ((vol‘𝑆) + 1) ↔ (𝑟 · (vol‘𝑆)) < (𝑟 · ((vol‘𝑆) + 1))))
10066, 96, 62, 98, 99syl112anc 1493 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((vol‘𝑆) < ((vol‘𝑆) + 1) ↔ (𝑟 · (vol‘𝑆)) < (𝑟 · ((vol‘𝑆) + 1))))
10194, 100mpbid 223 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑟 · (vol‘𝑆)) < (𝑟 · ((vol‘𝑆) + 1)))
10262, 66remulcld 10323 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (𝑟 · (vol‘𝑆)) ∈ ℝ)
103102, 62, 90ltdivmul2d 12121 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (((𝑟 · (vol‘𝑆)) / ((vol‘𝑆) + 1)) < 𝑟 ↔ (𝑟 · (vol‘𝑆)) < (𝑟 · ((vol‘𝑆) + 1))))
104101, 103mpbird 248 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((𝑟 · (vol‘𝑆)) / ((vol‘𝑆) + 1)) < 𝑟)
10593, 104eqbrtrrd 4832 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ((𝑟 / ((vol‘𝑆) + 1)) · (vol‘𝑆)) < 𝑟)
10660, 67, 62, 87, 105lelttrd 10448 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → ∫𝑆(abs‘(((𝐹𝑛)‘𝑥) − (𝐺𝑥))) d𝑥 < 𝑟)
10757, 60, 62, 63, 106lelttrd 10448 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (abs‘∫𝑆(((𝐹𝑛)‘𝑥) − (𝐺𝑥)) d𝑥) < 𝑟)
10853, 107eqbrtrrd 4832 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛𝑍 ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)))) → (abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)) < 𝑟)
109108expr 448 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑛𝑍) → (∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)) → (abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)) < 𝑟))
11034, 109sylan2 586 . . . . . . 7 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)) → (abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)) < 𝑟))
111110anassrs 459 . . . . . 6 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑛 ∈ (ℤ𝑗)) → (∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)) → (abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)) < 𝑟))
112111ralimdva 3108 . . . . 5 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑛 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)) → ∀𝑛 ∈ (ℤ𝑗)(abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)) < 𝑟))
113112reximdva 3162 . . . 4 ((𝜑𝑟 ∈ ℝ+) → (∃𝑗𝑍𝑛 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑛)‘𝑧) − (𝐺𝑧))) < (𝑟 / ((vol‘𝑆) + 1)) → ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)) < 𝑟))
11433, 113mpd 15 . . 3 ((𝜑𝑟 ∈ ℝ+) → ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)) < 𝑟)
115114ralrimiva 3112 . 2 (𝜑 → ∀𝑟 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)) < 𝑟)
1161fvexi 6388 . . . . 5 𝑍 ∈ V
117116mptex 6678 . . . 4 (𝑘𝑍 ↦ ∫𝑆((𝐹𝑘)‘𝑥) d𝑥) ∈ V
118117a1i 11 . . 3 (𝜑 → (𝑘𝑍 ↦ ∫𝑆((𝐹𝑘)‘𝑥) d𝑥) ∈ V)
119 fveq2 6374 . . . . . . . 8 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
120119fveq1d 6376 . . . . . . 7 (𝑘 = 𝑛 → ((𝐹𝑘)‘𝑥) = ((𝐹𝑛)‘𝑥))
121120adantr 472 . . . . . 6 ((𝑘 = 𝑛𝑥𝑆) → ((𝐹𝑘)‘𝑥) = ((𝐹𝑛)‘𝑥))
122121itgeq2dv 23838 . . . . 5 (𝑘 = 𝑛 → ∫𝑆((𝐹𝑘)‘𝑥) d𝑥 = ∫𝑆((𝐹𝑛)‘𝑥) d𝑥)
123 eqid 2764 . . . . 5 (𝑘𝑍 ↦ ∫𝑆((𝐹𝑘)‘𝑥) d𝑥) = (𝑘𝑍 ↦ ∫𝑆((𝐹𝑘)‘𝑥) d𝑥)
124 itgex 23827 . . . . 5 𝑆((𝐹𝑛)‘𝑥) d𝑥 ∈ V
125122, 123, 124fvmpt 6470 . . . 4 (𝑛𝑍 → ((𝑘𝑍 ↦ ∫𝑆((𝐹𝑘)‘𝑥) d𝑥)‘𝑛) = ∫𝑆((𝐹𝑛)‘𝑥) d𝑥)
126125adantl 473 . . 3 ((𝜑𝑛𝑍) → ((𝑘𝑍 ↦ ∫𝑆((𝐹𝑘)‘𝑥) d𝑥)‘𝑛) = ∫𝑆((𝐹𝑛)‘𝑥) d𝑥)
12746, 50itgcl 23840 . . 3 (𝜑 → ∫𝑆(𝐺𝑥) d𝑥 ∈ ℂ)
12838, 43itgcl 23840 . . 3 ((𝜑𝑛𝑍) → ∫𝑆((𝐹𝑛)‘𝑥) d𝑥 ∈ ℂ)
1291, 2, 118, 126, 127, 128clim2c 14522 . 2 (𝜑 → ((𝑘𝑍 ↦ ∫𝑆((𝐹𝑘)‘𝑥) d𝑥) ⇝ ∫𝑆(𝐺𝑥) d𝑥 ↔ ∀𝑟 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘(∫𝑆((𝐹𝑛)‘𝑥) d𝑥 − ∫𝑆(𝐺𝑥) d𝑥)) < 𝑟))
130115, 129mpbird 248 1 (𝜑 → (𝑘𝑍 ↦ ∫𝑆((𝐹𝑘)‘𝑥) d𝑥) ⇝ ∫𝑆(𝐺𝑥) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wral 3054  wrex 3055  Vcvv 3349  wss 3731  {csn 4333   class class class wbr 4808  cmpt 4887   × cxp 5274  dom cdm 5276   Fn wfn 6062  wf 6063  cfv 6067  (class class class)co 6841  𝑚 cmap 8059  cc 10186  cr 10187  0cc0 10188  1c1 10189   + caddc 10191   · cmul 10193   < clt 10327  cle 10328  cmin 10519   / cdiv 10937  cz 11623  cuz 11885  +crp 12027  abscabs 14260  cli 14501  vol*covol 23519  volcvol 23520  MblFncmbf 23671  𝐿1cibl 23674  citg 23675  𝑢culm 24420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2349  ax-ext 2742  ax-rep 4929  ax-sep 4940  ax-nul 4948  ax-pow 5000  ax-pr 5061  ax-un 7146  ax-inf2 8752  ax-cc 9509  ax-cnex 10244  ax-resscn 10245  ax-1cn 10246  ax-icn 10247  ax-addcl 10248  ax-addrcl 10249  ax-mulcl 10250  ax-mulrcl 10251  ax-mulcom 10252  ax-addass 10253  ax-mulass 10254  ax-distr 10255  ax-i2m1 10256  ax-1ne0 10257  ax-1rid 10258  ax-rnegex 10259  ax-rrecex 10260  ax-cnre 10261  ax-pre-lttri 10262  ax-pre-lttrn 10263  ax-pre-ltadd 10264  ax-pre-mulgt0 10265  ax-pre-sup 10266  ax-addf 10267  ax-mulf 10268
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2564  df-eu 2581  df-clab 2751  df-cleq 2757  df-clel 2760  df-nfc 2895  df-ne 2937  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3351  df-sbc 3596  df-csb 3691  df-dif 3734  df-un 3736  df-in 3738  df-ss 3745  df-pss 3747  df-nul 4079  df-if 4243  df-pw 4316  df-sn 4334  df-pr 4336  df-tp 4338  df-op 4340  df-uni 4594  df-int 4633  df-iun 4677  df-iin 4678  df-disj 4777  df-br 4809  df-opab 4871  df-mpt 4888  df-tr 4911  df-id 5184  df-eprel 5189  df-po 5197  df-so 5198  df-fr 5235  df-se 5236  df-we 5237  df-xp 5282  df-rel 5283  df-cnv 5284  df-co 5285  df-dm 5286  df-rn 5287  df-res 5288  df-ima 5289  df-pred 5864  df-ord 5910  df-on 5911  df-lim 5912  df-suc 5913  df-iota 6030  df-fun 6069  df-fn 6070  df-f 6071  df-f1 6072  df-fo 6073  df-f1o 6074  df-fv 6075  df-isom 6076  df-riota 6802  df-ov 6844  df-oprab 6845  df-mpt2 6846  df-of 7094  df-ofr 7095  df-om 7263  df-1st 7365  df-2nd 7366  df-supp 7497  df-wrecs 7609  df-recs 7671  df-rdg 7709  df-1o 7763  df-2o 7764  df-oadd 7767  df-omul 7768  df-er 7946  df-map 8061  df-pm 8062  df-ixp 8113  df-en 8160  df-dom 8161  df-sdom 8162  df-fin 8163  df-fsupp 8482  df-fi 8523  df-sup 8554  df-inf 8555  df-oi 8621  df-card 9015  df-acn 9018  df-cda 9242  df-pnf 10329  df-mnf 10330  df-xr 10331  df-ltxr 10332  df-le 10333  df-sub 10521  df-neg 10522  df-div 10938  df-nn 11274  df-2 11334  df-3 11335  df-4 11336  df-5 11337  df-6 11338  df-7 11339  df-8 11340  df-9 11341  df-n0 11538  df-z 11624  df-dec 11740  df-uz 11886  df-q 11989  df-rp 12028  df-xneg 12145  df-xadd 12146  df-xmul 12147  df-ioo 12380  df-ioc 12381  df-ico 12382  df-icc 12383  df-fz 12533  df-fzo 12673  df-fl 12800  df-mod 12876  df-seq 13008  df-exp 13067  df-hash 13321  df-cj 14125  df-re 14126  df-im 14127  df-sqrt 14261  df-abs 14262  df-limsup 14488  df-clim 14505  df-rlim 14506  df-sum 14703  df-struct 16133  df-ndx 16134  df-slot 16135  df-base 16137  df-sets 16138  df-ress 16139  df-plusg 16228  df-mulr 16229  df-starv 16230  df-sca 16231  df-vsca 16232  df-ip 16233  df-tset 16234  df-ple 16235  df-ds 16237  df-unif 16238  df-hom 16239  df-cco 16240  df-rest 16350  df-topn 16351  df-0g 16369  df-gsum 16370  df-topgen 16371  df-pt 16372  df-prds 16375  df-xrs 16429  df-qtop 16434  df-imas 16435  df-xps 16437  df-mre 16513  df-mrc 16514  df-acs 16516  df-mgm 17509  df-sgrp 17551  df-mnd 17562  df-submnd 17603  df-mulg 17809  df-cntz 18014  df-cmn 18460  df-psmet 20010  df-xmet 20011  df-met 20012  df-bl 20013  df-mopn 20014  df-cnfld 20019  df-top 20977  df-topon 20994  df-topsp 21016  df-bases 21029  df-cn 21310  df-cnp 21311  df-cmp 21469  df-tx 21644  df-hmeo 21837  df-xms 22403  df-ms 22404  df-tms 22405  df-cncf 22959  df-ovol 23521  df-vol 23522  df-mbf 23676  df-itg1 23677  df-itg2 23678  df-ibl 23679  df-itg 23680  df-0p 23727  df-ulm 24421
This theorem is referenced by:  itgulm2  24453
  Copyright terms: Public domain W3C validator