MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1lem1 Structured version   Visualization version   GIF version

Theorem ftc1lem1 26091
Description: Lemma for ftc1a 26093 and ftc1 26098. (Contributed by Mario Carneiro, 31-Aug-2014.)
Hypotheses
Ref Expression
ftc1.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1.a (𝜑𝐴 ∈ ℝ)
ftc1.b (𝜑𝐵 ∈ ℝ)
ftc1.le (𝜑𝐴𝐵)
ftc1.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
ftc1.d (𝜑𝐷 ⊆ ℝ)
ftc1.i (𝜑𝐹 ∈ 𝐿1)
ftc1a.f (𝜑𝐹:𝐷⟶ℂ)
ftc1lem1.x (𝜑𝑋 ∈ (𝐴[,]𝐵))
ftc1lem1.y (𝜑𝑌 ∈ (𝐴[,]𝐵))
Assertion
Ref Expression
ftc1lem1 ((𝜑𝑋𝑌) → ((𝐺𝑌) − (𝐺𝑋)) = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
Distinct variable groups:   𝑥,𝑡,𝐷   𝑡,𝐴,𝑥   𝑡,𝐵,𝑥   𝑡,𝑋,𝑥   𝜑,𝑡,𝑥   𝑡,𝑌,𝑥   𝑡,𝐹,𝑥
Allowed substitution hints:   𝐺(𝑥,𝑡)

Proof of Theorem ftc1lem1
StepHypRef Expression
1 ftc1lem1.y . . . . . 6 (𝜑𝑌 ∈ (𝐴[,]𝐵))
2 oveq2 7439 . . . . . . . 8 (𝑥 = 𝑌 → (𝐴(,)𝑥) = (𝐴(,)𝑌))
3 itgeq1 25823 . . . . . . . 8 ((𝐴(,)𝑥) = (𝐴(,)𝑌) → ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡 = ∫(𝐴(,)𝑌)(𝐹𝑡) d𝑡)
42, 3syl 17 . . . . . . 7 (𝑥 = 𝑌 → ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡 = ∫(𝐴(,)𝑌)(𝐹𝑡) d𝑡)
5 ftc1.g . . . . . . 7 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
6 itgex 25820 . . . . . . 7 ∫(𝐴(,)𝑌)(𝐹𝑡) d𝑡 ∈ V
74, 5, 6fvmpt 7016 . . . . . 6 (𝑌 ∈ (𝐴[,]𝐵) → (𝐺𝑌) = ∫(𝐴(,)𝑌)(𝐹𝑡) d𝑡)
81, 7syl 17 . . . . 5 (𝜑 → (𝐺𝑌) = ∫(𝐴(,)𝑌)(𝐹𝑡) d𝑡)
98adantr 480 . . . 4 ((𝜑𝑋𝑌) → (𝐺𝑌) = ∫(𝐴(,)𝑌)(𝐹𝑡) d𝑡)
10 ftc1.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
1110adantr 480 . . . . 5 ((𝜑𝑋𝑌) → 𝐴 ∈ ℝ)
12 ftc1.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
13 iccssre 13466 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
1410, 12, 13syl2anc 584 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
1514, 1sseldd 3996 . . . . . 6 (𝜑𝑌 ∈ ℝ)
1615adantr 480 . . . . 5 ((𝜑𝑋𝑌) → 𝑌 ∈ ℝ)
17 ftc1lem1.x . . . . . . . 8 (𝜑𝑋 ∈ (𝐴[,]𝐵))
1814, 17sseldd 3996 . . . . . . 7 (𝜑𝑋 ∈ ℝ)
1918adantr 480 . . . . . 6 ((𝜑𝑋𝑌) → 𝑋 ∈ ℝ)
20 elicc2 13449 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
2110, 12, 20syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
2217, 21mpbid 232 . . . . . . . 8 (𝜑 → (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵))
2322simp2d 1142 . . . . . . 7 (𝜑𝐴𝑋)
2423adantr 480 . . . . . 6 ((𝜑𝑋𝑌) → 𝐴𝑋)
25 simpr 484 . . . . . 6 ((𝜑𝑋𝑌) → 𝑋𝑌)
26 elicc2 13449 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑋 ∈ (𝐴[,]𝑌) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝑌)))
2710, 15, 26syl2anc 584 . . . . . . 7 (𝜑 → (𝑋 ∈ (𝐴[,]𝑌) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝑌)))
2827adantr 480 . . . . . 6 ((𝜑𝑋𝑌) → (𝑋 ∈ (𝐴[,]𝑌) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝑌)))
2919, 24, 25, 28mpbir3and 1341 . . . . 5 ((𝜑𝑋𝑌) → 𝑋 ∈ (𝐴[,]𝑌))
3012rexrd 11309 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ*)
31 elicc2 13449 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑌 ∈ (𝐴[,]𝐵) ↔ (𝑌 ∈ ℝ ∧ 𝐴𝑌𝑌𝐵)))
3210, 12, 31syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝑌 ∈ (𝐴[,]𝐵) ↔ (𝑌 ∈ ℝ ∧ 𝐴𝑌𝑌𝐵)))
331, 32mpbid 232 . . . . . . . . . . 11 (𝜑 → (𝑌 ∈ ℝ ∧ 𝐴𝑌𝑌𝐵))
3433simp3d 1143 . . . . . . . . . 10 (𝜑𝑌𝐵)
35 iooss2 13420 . . . . . . . . . 10 ((𝐵 ∈ ℝ*𝑌𝐵) → (𝐴(,)𝑌) ⊆ (𝐴(,)𝐵))
3630, 34, 35syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐴(,)𝑌) ⊆ (𝐴(,)𝐵))
37 ftc1.s . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
3836, 37sstrd 4006 . . . . . . . 8 (𝜑 → (𝐴(,)𝑌) ⊆ 𝐷)
3938adantr 480 . . . . . . 7 ((𝜑𝑋𝑌) → (𝐴(,)𝑌) ⊆ 𝐷)
4039sselda 3995 . . . . . 6 (((𝜑𝑋𝑌) ∧ 𝑡 ∈ (𝐴(,)𝑌)) → 𝑡𝐷)
41 ftc1a.f . . . . . . . 8 (𝜑𝐹:𝐷⟶ℂ)
4241ffvelcdmda 7104 . . . . . . 7 ((𝜑𝑡𝐷) → (𝐹𝑡) ∈ ℂ)
4342adantlr 715 . . . . . 6 (((𝜑𝑋𝑌) ∧ 𝑡𝐷) → (𝐹𝑡) ∈ ℂ)
4440, 43syldan 591 . . . . 5 (((𝜑𝑋𝑌) ∧ 𝑡 ∈ (𝐴(,)𝑌)) → (𝐹𝑡) ∈ ℂ)
4522simp3d 1143 . . . . . . . . 9 (𝜑𝑋𝐵)
46 iooss2 13420 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝑋𝐵) → (𝐴(,)𝑋) ⊆ (𝐴(,)𝐵))
4730, 45, 46syl2anc 584 . . . . . . . 8 (𝜑 → (𝐴(,)𝑋) ⊆ (𝐴(,)𝐵))
4847, 37sstrd 4006 . . . . . . 7 (𝜑 → (𝐴(,)𝑋) ⊆ 𝐷)
49 ioombl 25614 . . . . . . . 8 (𝐴(,)𝑋) ∈ dom vol
5049a1i 11 . . . . . . 7 (𝜑 → (𝐴(,)𝑋) ∈ dom vol)
51 fvexd 6922 . . . . . . 7 ((𝜑𝑡𝐷) → (𝐹𝑡) ∈ V)
5241feqmptd 6977 . . . . . . . 8 (𝜑𝐹 = (𝑡𝐷 ↦ (𝐹𝑡)))
53 ftc1.i . . . . . . . 8 (𝜑𝐹 ∈ 𝐿1)
5452, 53eqeltrrd 2840 . . . . . . 7 (𝜑 → (𝑡𝐷 ↦ (𝐹𝑡)) ∈ 𝐿1)
5548, 50, 51, 54iblss 25855 . . . . . 6 (𝜑 → (𝑡 ∈ (𝐴(,)𝑋) ↦ (𝐹𝑡)) ∈ 𝐿1)
5655adantr 480 . . . . 5 ((𝜑𝑋𝑌) → (𝑡 ∈ (𝐴(,)𝑋) ↦ (𝐹𝑡)) ∈ 𝐿1)
5710rexrd 11309 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ*)
58 iooss1 13419 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐴𝑋) → (𝑋(,)𝑌) ⊆ (𝐴(,)𝑌))
5957, 23, 58syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑋(,)𝑌) ⊆ (𝐴(,)𝑌))
6059, 36sstrd 4006 . . . . . . . 8 (𝜑 → (𝑋(,)𝑌) ⊆ (𝐴(,)𝐵))
6160, 37sstrd 4006 . . . . . . 7 (𝜑 → (𝑋(,)𝑌) ⊆ 𝐷)
62 ioombl 25614 . . . . . . . 8 (𝑋(,)𝑌) ∈ dom vol
6362a1i 11 . . . . . . 7 (𝜑 → (𝑋(,)𝑌) ∈ dom vol)
6461, 63, 51, 54iblss 25855 . . . . . 6 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑡)) ∈ 𝐿1)
6564adantr 480 . . . . 5 ((𝜑𝑋𝑌) → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑡)) ∈ 𝐿1)
6611, 16, 29, 44, 56, 65itgsplitioo 25888 . . . 4 ((𝜑𝑋𝑌) → ∫(𝐴(,)𝑌)(𝐹𝑡) d𝑡 = (∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡))
679, 66eqtrd 2775 . . 3 ((𝜑𝑋𝑌) → (𝐺𝑌) = (∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡))
68 oveq2 7439 . . . . . . 7 (𝑥 = 𝑋 → (𝐴(,)𝑥) = (𝐴(,)𝑋))
69 itgeq1 25823 . . . . . . 7 ((𝐴(,)𝑥) = (𝐴(,)𝑋) → ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡 = ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡)
7068, 69syl 17 . . . . . 6 (𝑥 = 𝑋 → ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡 = ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡)
71 itgex 25820 . . . . . 6 ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡 ∈ V
7270, 5, 71fvmpt 7016 . . . . 5 (𝑋 ∈ (𝐴[,]𝐵) → (𝐺𝑋) = ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡)
7317, 72syl 17 . . . 4 (𝜑 → (𝐺𝑋) = ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡)
7473adantr 480 . . 3 ((𝜑𝑋𝑌) → (𝐺𝑋) = ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡)
7567, 74oveq12d 7449 . 2 ((𝜑𝑋𝑌) → ((𝐺𝑌) − (𝐺𝑋)) = ((∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡) − ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡))
76 fvexd 6922 . . . . 5 ((𝜑𝑡 ∈ (𝐴(,)𝑋)) → (𝐹𝑡) ∈ V)
7776, 55itgcl 25834 . . . 4 (𝜑 → ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡 ∈ ℂ)
7861sselda 3995 . . . . . 6 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑡𝐷)
7978, 42syldan 591 . . . . 5 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐹𝑡) ∈ ℂ)
8079, 64itgcl 25834 . . . 4 (𝜑 → ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡 ∈ ℂ)
8177, 80pncan2d 11620 . . 3 (𝜑 → ((∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡) − ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡) = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
8281adantr 480 . 2 ((𝜑𝑋𝑌) → ((∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡) − ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡) = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
8375, 82eqtrd 2775 1 ((𝜑𝑋𝑌) → ((𝐺𝑌) − (𝐺𝑋)) = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  Vcvv 3478  wss 3963   class class class wbr 5148  cmpt 5231  dom cdm 5689  wf 6559  cfv 6563  (class class class)co 7431  cc 11151  cr 11152   + caddc 11156  *cxr 11292  cle 11294  cmin 11490  (,)cioo 13384  [,]cicc 13387  volcvol 25512  𝐿1cibl 25666  citg 25667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-symdif 4259  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-rlim 15522  df-sum 15720  df-rest 17469  df-topgen 17490  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-top 22916  df-topon 22933  df-bases 22969  df-cmp 23411  df-ovol 25513  df-vol 25514  df-mbf 25668  df-itg1 25669  df-itg2 25670  df-ibl 25671  df-itg 25672  df-0p 25719
This theorem is referenced by:  ftc1a  26093  ftc1lem4  26095  ftc1cnnclem  37678
  Copyright terms: Public domain W3C validator