MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1lem1 Structured version   Visualization version   GIF version

Theorem ftc1lem1 25918
Description: Lemma for ftc1a 25920 and ftc1 25925. (Contributed by Mario Carneiro, 31-Aug-2014.)
Hypotheses
Ref Expression
ftc1.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1.a (𝜑𝐴 ∈ ℝ)
ftc1.b (𝜑𝐵 ∈ ℝ)
ftc1.le (𝜑𝐴𝐵)
ftc1.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
ftc1.d (𝜑𝐷 ⊆ ℝ)
ftc1.i (𝜑𝐹 ∈ 𝐿1)
ftc1a.f (𝜑𝐹:𝐷⟶ℂ)
ftc1lem1.x (𝜑𝑋 ∈ (𝐴[,]𝐵))
ftc1lem1.y (𝜑𝑌 ∈ (𝐴[,]𝐵))
Assertion
Ref Expression
ftc1lem1 ((𝜑𝑋𝑌) → ((𝐺𝑌) − (𝐺𝑋)) = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
Distinct variable groups:   𝑥,𝑡,𝐷   𝑡,𝐴,𝑥   𝑡,𝐵,𝑥   𝑡,𝑋,𝑥   𝜑,𝑡,𝑥   𝑡,𝑌,𝑥   𝑡,𝐹,𝑥
Allowed substitution hints:   𝐺(𝑥,𝑡)

Proof of Theorem ftc1lem1
StepHypRef Expression
1 ftc1lem1.y . . . . . 6 (𝜑𝑌 ∈ (𝐴[,]𝐵))
2 oveq2 7377 . . . . . . . 8 (𝑥 = 𝑌 → (𝐴(,)𝑥) = (𝐴(,)𝑌))
3 itgeq1 25650 . . . . . . . 8 ((𝐴(,)𝑥) = (𝐴(,)𝑌) → ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡 = ∫(𝐴(,)𝑌)(𝐹𝑡) d𝑡)
42, 3syl 17 . . . . . . 7 (𝑥 = 𝑌 → ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡 = ∫(𝐴(,)𝑌)(𝐹𝑡) d𝑡)
5 ftc1.g . . . . . . 7 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
6 itgex 25647 . . . . . . 7 ∫(𝐴(,)𝑌)(𝐹𝑡) d𝑡 ∈ V
74, 5, 6fvmpt 6950 . . . . . 6 (𝑌 ∈ (𝐴[,]𝐵) → (𝐺𝑌) = ∫(𝐴(,)𝑌)(𝐹𝑡) d𝑡)
81, 7syl 17 . . . . 5 (𝜑 → (𝐺𝑌) = ∫(𝐴(,)𝑌)(𝐹𝑡) d𝑡)
98adantr 480 . . . 4 ((𝜑𝑋𝑌) → (𝐺𝑌) = ∫(𝐴(,)𝑌)(𝐹𝑡) d𝑡)
10 ftc1.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
1110adantr 480 . . . . 5 ((𝜑𝑋𝑌) → 𝐴 ∈ ℝ)
12 ftc1.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
13 iccssre 13366 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
1410, 12, 13syl2anc 584 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
1514, 1sseldd 3944 . . . . . 6 (𝜑𝑌 ∈ ℝ)
1615adantr 480 . . . . 5 ((𝜑𝑋𝑌) → 𝑌 ∈ ℝ)
17 ftc1lem1.x . . . . . . . 8 (𝜑𝑋 ∈ (𝐴[,]𝐵))
1814, 17sseldd 3944 . . . . . . 7 (𝜑𝑋 ∈ ℝ)
1918adantr 480 . . . . . 6 ((𝜑𝑋𝑌) → 𝑋 ∈ ℝ)
20 elicc2 13348 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
2110, 12, 20syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
2217, 21mpbid 232 . . . . . . . 8 (𝜑 → (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵))
2322simp2d 1143 . . . . . . 7 (𝜑𝐴𝑋)
2423adantr 480 . . . . . 6 ((𝜑𝑋𝑌) → 𝐴𝑋)
25 simpr 484 . . . . . 6 ((𝜑𝑋𝑌) → 𝑋𝑌)
26 elicc2 13348 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑋 ∈ (𝐴[,]𝑌) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝑌)))
2710, 15, 26syl2anc 584 . . . . . . 7 (𝜑 → (𝑋 ∈ (𝐴[,]𝑌) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝑌)))
2827adantr 480 . . . . . 6 ((𝜑𝑋𝑌) → (𝑋 ∈ (𝐴[,]𝑌) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝑌)))
2919, 24, 25, 28mpbir3and 1343 . . . . 5 ((𝜑𝑋𝑌) → 𝑋 ∈ (𝐴[,]𝑌))
3012rexrd 11200 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ*)
31 elicc2 13348 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑌 ∈ (𝐴[,]𝐵) ↔ (𝑌 ∈ ℝ ∧ 𝐴𝑌𝑌𝐵)))
3210, 12, 31syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝑌 ∈ (𝐴[,]𝐵) ↔ (𝑌 ∈ ℝ ∧ 𝐴𝑌𝑌𝐵)))
331, 32mpbid 232 . . . . . . . . . . 11 (𝜑 → (𝑌 ∈ ℝ ∧ 𝐴𝑌𝑌𝐵))
3433simp3d 1144 . . . . . . . . . 10 (𝜑𝑌𝐵)
35 iooss2 13318 . . . . . . . . . 10 ((𝐵 ∈ ℝ*𝑌𝐵) → (𝐴(,)𝑌) ⊆ (𝐴(,)𝐵))
3630, 34, 35syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐴(,)𝑌) ⊆ (𝐴(,)𝐵))
37 ftc1.s . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
3836, 37sstrd 3954 . . . . . . . 8 (𝜑 → (𝐴(,)𝑌) ⊆ 𝐷)
3938adantr 480 . . . . . . 7 ((𝜑𝑋𝑌) → (𝐴(,)𝑌) ⊆ 𝐷)
4039sselda 3943 . . . . . 6 (((𝜑𝑋𝑌) ∧ 𝑡 ∈ (𝐴(,)𝑌)) → 𝑡𝐷)
41 ftc1a.f . . . . . . . 8 (𝜑𝐹:𝐷⟶ℂ)
4241ffvelcdmda 7038 . . . . . . 7 ((𝜑𝑡𝐷) → (𝐹𝑡) ∈ ℂ)
4342adantlr 715 . . . . . 6 (((𝜑𝑋𝑌) ∧ 𝑡𝐷) → (𝐹𝑡) ∈ ℂ)
4440, 43syldan 591 . . . . 5 (((𝜑𝑋𝑌) ∧ 𝑡 ∈ (𝐴(,)𝑌)) → (𝐹𝑡) ∈ ℂ)
4522simp3d 1144 . . . . . . . . 9 (𝜑𝑋𝐵)
46 iooss2 13318 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝑋𝐵) → (𝐴(,)𝑋) ⊆ (𝐴(,)𝐵))
4730, 45, 46syl2anc 584 . . . . . . . 8 (𝜑 → (𝐴(,)𝑋) ⊆ (𝐴(,)𝐵))
4847, 37sstrd 3954 . . . . . . 7 (𝜑 → (𝐴(,)𝑋) ⊆ 𝐷)
49 ioombl 25442 . . . . . . . 8 (𝐴(,)𝑋) ∈ dom vol
5049a1i 11 . . . . . . 7 (𝜑 → (𝐴(,)𝑋) ∈ dom vol)
51 fvexd 6855 . . . . . . 7 ((𝜑𝑡𝐷) → (𝐹𝑡) ∈ V)
5241feqmptd 6911 . . . . . . . 8 (𝜑𝐹 = (𝑡𝐷 ↦ (𝐹𝑡)))
53 ftc1.i . . . . . . . 8 (𝜑𝐹 ∈ 𝐿1)
5452, 53eqeltrrd 2829 . . . . . . 7 (𝜑 → (𝑡𝐷 ↦ (𝐹𝑡)) ∈ 𝐿1)
5548, 50, 51, 54iblss 25682 . . . . . 6 (𝜑 → (𝑡 ∈ (𝐴(,)𝑋) ↦ (𝐹𝑡)) ∈ 𝐿1)
5655adantr 480 . . . . 5 ((𝜑𝑋𝑌) → (𝑡 ∈ (𝐴(,)𝑋) ↦ (𝐹𝑡)) ∈ 𝐿1)
5710rexrd 11200 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ*)
58 iooss1 13317 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐴𝑋) → (𝑋(,)𝑌) ⊆ (𝐴(,)𝑌))
5957, 23, 58syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑋(,)𝑌) ⊆ (𝐴(,)𝑌))
6059, 36sstrd 3954 . . . . . . . 8 (𝜑 → (𝑋(,)𝑌) ⊆ (𝐴(,)𝐵))
6160, 37sstrd 3954 . . . . . . 7 (𝜑 → (𝑋(,)𝑌) ⊆ 𝐷)
62 ioombl 25442 . . . . . . . 8 (𝑋(,)𝑌) ∈ dom vol
6362a1i 11 . . . . . . 7 (𝜑 → (𝑋(,)𝑌) ∈ dom vol)
6461, 63, 51, 54iblss 25682 . . . . . 6 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑡)) ∈ 𝐿1)
6564adantr 480 . . . . 5 ((𝜑𝑋𝑌) → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑡)) ∈ 𝐿1)
6611, 16, 29, 44, 56, 65itgsplitioo 25715 . . . 4 ((𝜑𝑋𝑌) → ∫(𝐴(,)𝑌)(𝐹𝑡) d𝑡 = (∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡))
679, 66eqtrd 2764 . . 3 ((𝜑𝑋𝑌) → (𝐺𝑌) = (∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡))
68 oveq2 7377 . . . . . . 7 (𝑥 = 𝑋 → (𝐴(,)𝑥) = (𝐴(,)𝑋))
69 itgeq1 25650 . . . . . . 7 ((𝐴(,)𝑥) = (𝐴(,)𝑋) → ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡 = ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡)
7068, 69syl 17 . . . . . 6 (𝑥 = 𝑋 → ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡 = ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡)
71 itgex 25647 . . . . . 6 ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡 ∈ V
7270, 5, 71fvmpt 6950 . . . . 5 (𝑋 ∈ (𝐴[,]𝐵) → (𝐺𝑋) = ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡)
7317, 72syl 17 . . . 4 (𝜑 → (𝐺𝑋) = ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡)
7473adantr 480 . . 3 ((𝜑𝑋𝑌) → (𝐺𝑋) = ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡)
7567, 74oveq12d 7387 . 2 ((𝜑𝑋𝑌) → ((𝐺𝑌) − (𝐺𝑋)) = ((∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡) − ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡))
76 fvexd 6855 . . . . 5 ((𝜑𝑡 ∈ (𝐴(,)𝑋)) → (𝐹𝑡) ∈ V)
7776, 55itgcl 25661 . . . 4 (𝜑 → ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡 ∈ ℂ)
7861sselda 3943 . . . . . 6 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑡𝐷)
7978, 42syldan 591 . . . . 5 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐹𝑡) ∈ ℂ)
8079, 64itgcl 25661 . . . 4 (𝜑 → ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡 ∈ ℂ)
8177, 80pncan2d 11511 . . 3 (𝜑 → ((∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡) − ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡) = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
8281adantr 480 . 2 ((𝜑𝑋𝑌) → ((∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡) − ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡) = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
8375, 82eqtrd 2764 1 ((𝜑𝑋𝑌) → ((𝐺𝑌) − (𝐺𝑋)) = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3444  wss 3911   class class class wbr 5102  cmpt 5183  dom cdm 5631  wf 6495  cfv 6499  (class class class)co 7369  cc 11042  cr 11043   + caddc 11047  *cxr 11183  cle 11185  cmin 11381  (,)cioo 13282  [,]cicc 13285  volcvol 25340  𝐿1cibl 25494  citg 25495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-symdif 4212  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431  df-sum 15629  df-rest 17361  df-topgen 17382  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-top 22757  df-topon 22774  df-bases 22809  df-cmp 23250  df-ovol 25341  df-vol 25342  df-mbf 25496  df-itg1 25497  df-itg2 25498  df-ibl 25499  df-itg 25500  df-0p 25547
This theorem is referenced by:  ftc1a  25920  ftc1lem4  25922  ftc1cnnclem  37658
  Copyright terms: Public domain W3C validator