MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1lem1 Structured version   Visualization version   GIF version

Theorem ftc1lem1 24886
Description: Lemma for ftc1a 24888 and ftc1 24893. (Contributed by Mario Carneiro, 31-Aug-2014.)
Hypotheses
Ref Expression
ftc1.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1.a (𝜑𝐴 ∈ ℝ)
ftc1.b (𝜑𝐵 ∈ ℝ)
ftc1.le (𝜑𝐴𝐵)
ftc1.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
ftc1.d (𝜑𝐷 ⊆ ℝ)
ftc1.i (𝜑𝐹 ∈ 𝐿1)
ftc1a.f (𝜑𝐹:𝐷⟶ℂ)
ftc1lem1.x (𝜑𝑋 ∈ (𝐴[,]𝐵))
ftc1lem1.y (𝜑𝑌 ∈ (𝐴[,]𝐵))
Assertion
Ref Expression
ftc1lem1 ((𝜑𝑋𝑌) → ((𝐺𝑌) − (𝐺𝑋)) = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
Distinct variable groups:   𝑥,𝑡,𝐷   𝑡,𝐴,𝑥   𝑡,𝐵,𝑥   𝑡,𝑋,𝑥   𝜑,𝑡,𝑥   𝑡,𝑌,𝑥   𝑡,𝐹,𝑥
Allowed substitution hints:   𝐺(𝑥,𝑡)

Proof of Theorem ftc1lem1
StepHypRef Expression
1 ftc1lem1.y . . . . . 6 (𝜑𝑌 ∈ (𝐴[,]𝐵))
2 oveq2 7199 . . . . . . . 8 (𝑥 = 𝑌 → (𝐴(,)𝑥) = (𝐴(,)𝑌))
3 itgeq1 24624 . . . . . . . 8 ((𝐴(,)𝑥) = (𝐴(,)𝑌) → ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡 = ∫(𝐴(,)𝑌)(𝐹𝑡) d𝑡)
42, 3syl 17 . . . . . . 7 (𝑥 = 𝑌 → ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡 = ∫(𝐴(,)𝑌)(𝐹𝑡) d𝑡)
5 ftc1.g . . . . . . 7 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
6 itgex 24622 . . . . . . 7 ∫(𝐴(,)𝑌)(𝐹𝑡) d𝑡 ∈ V
74, 5, 6fvmpt 6796 . . . . . 6 (𝑌 ∈ (𝐴[,]𝐵) → (𝐺𝑌) = ∫(𝐴(,)𝑌)(𝐹𝑡) d𝑡)
81, 7syl 17 . . . . 5 (𝜑 → (𝐺𝑌) = ∫(𝐴(,)𝑌)(𝐹𝑡) d𝑡)
98adantr 484 . . . 4 ((𝜑𝑋𝑌) → (𝐺𝑌) = ∫(𝐴(,)𝑌)(𝐹𝑡) d𝑡)
10 ftc1.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
1110adantr 484 . . . . 5 ((𝜑𝑋𝑌) → 𝐴 ∈ ℝ)
12 ftc1.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
13 iccssre 12982 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
1410, 12, 13syl2anc 587 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
1514, 1sseldd 3888 . . . . . 6 (𝜑𝑌 ∈ ℝ)
1615adantr 484 . . . . 5 ((𝜑𝑋𝑌) → 𝑌 ∈ ℝ)
17 ftc1lem1.x . . . . . . . 8 (𝜑𝑋 ∈ (𝐴[,]𝐵))
1814, 17sseldd 3888 . . . . . . 7 (𝜑𝑋 ∈ ℝ)
1918adantr 484 . . . . . 6 ((𝜑𝑋𝑌) → 𝑋 ∈ ℝ)
20 elicc2 12965 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
2110, 12, 20syl2anc 587 . . . . . . . . 9 (𝜑 → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
2217, 21mpbid 235 . . . . . . . 8 (𝜑 → (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵))
2322simp2d 1145 . . . . . . 7 (𝜑𝐴𝑋)
2423adantr 484 . . . . . 6 ((𝜑𝑋𝑌) → 𝐴𝑋)
25 simpr 488 . . . . . 6 ((𝜑𝑋𝑌) → 𝑋𝑌)
26 elicc2 12965 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑋 ∈ (𝐴[,]𝑌) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝑌)))
2710, 15, 26syl2anc 587 . . . . . . 7 (𝜑 → (𝑋 ∈ (𝐴[,]𝑌) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝑌)))
2827adantr 484 . . . . . 6 ((𝜑𝑋𝑌) → (𝑋 ∈ (𝐴[,]𝑌) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝑌)))
2919, 24, 25, 28mpbir3and 1344 . . . . 5 ((𝜑𝑋𝑌) → 𝑋 ∈ (𝐴[,]𝑌))
3012rexrd 10848 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ*)
31 elicc2 12965 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑌 ∈ (𝐴[,]𝐵) ↔ (𝑌 ∈ ℝ ∧ 𝐴𝑌𝑌𝐵)))
3210, 12, 31syl2anc 587 . . . . . . . . . . . 12 (𝜑 → (𝑌 ∈ (𝐴[,]𝐵) ↔ (𝑌 ∈ ℝ ∧ 𝐴𝑌𝑌𝐵)))
331, 32mpbid 235 . . . . . . . . . . 11 (𝜑 → (𝑌 ∈ ℝ ∧ 𝐴𝑌𝑌𝐵))
3433simp3d 1146 . . . . . . . . . 10 (𝜑𝑌𝐵)
35 iooss2 12936 . . . . . . . . . 10 ((𝐵 ∈ ℝ*𝑌𝐵) → (𝐴(,)𝑌) ⊆ (𝐴(,)𝐵))
3630, 34, 35syl2anc 587 . . . . . . . . 9 (𝜑 → (𝐴(,)𝑌) ⊆ (𝐴(,)𝐵))
37 ftc1.s . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
3836, 37sstrd 3897 . . . . . . . 8 (𝜑 → (𝐴(,)𝑌) ⊆ 𝐷)
3938adantr 484 . . . . . . 7 ((𝜑𝑋𝑌) → (𝐴(,)𝑌) ⊆ 𝐷)
4039sselda 3887 . . . . . 6 (((𝜑𝑋𝑌) ∧ 𝑡 ∈ (𝐴(,)𝑌)) → 𝑡𝐷)
41 ftc1a.f . . . . . . . 8 (𝜑𝐹:𝐷⟶ℂ)
4241ffvelrnda 6882 . . . . . . 7 ((𝜑𝑡𝐷) → (𝐹𝑡) ∈ ℂ)
4342adantlr 715 . . . . . 6 (((𝜑𝑋𝑌) ∧ 𝑡𝐷) → (𝐹𝑡) ∈ ℂ)
4440, 43syldan 594 . . . . 5 (((𝜑𝑋𝑌) ∧ 𝑡 ∈ (𝐴(,)𝑌)) → (𝐹𝑡) ∈ ℂ)
4522simp3d 1146 . . . . . . . . 9 (𝜑𝑋𝐵)
46 iooss2 12936 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝑋𝐵) → (𝐴(,)𝑋) ⊆ (𝐴(,)𝐵))
4730, 45, 46syl2anc 587 . . . . . . . 8 (𝜑 → (𝐴(,)𝑋) ⊆ (𝐴(,)𝐵))
4847, 37sstrd 3897 . . . . . . 7 (𝜑 → (𝐴(,)𝑋) ⊆ 𝐷)
49 ioombl 24416 . . . . . . . 8 (𝐴(,)𝑋) ∈ dom vol
5049a1i 11 . . . . . . 7 (𝜑 → (𝐴(,)𝑋) ∈ dom vol)
51 fvexd 6710 . . . . . . 7 ((𝜑𝑡𝐷) → (𝐹𝑡) ∈ V)
5241feqmptd 6758 . . . . . . . 8 (𝜑𝐹 = (𝑡𝐷 ↦ (𝐹𝑡)))
53 ftc1.i . . . . . . . 8 (𝜑𝐹 ∈ 𝐿1)
5452, 53eqeltrrd 2832 . . . . . . 7 (𝜑 → (𝑡𝐷 ↦ (𝐹𝑡)) ∈ 𝐿1)
5548, 50, 51, 54iblss 24656 . . . . . 6 (𝜑 → (𝑡 ∈ (𝐴(,)𝑋) ↦ (𝐹𝑡)) ∈ 𝐿1)
5655adantr 484 . . . . 5 ((𝜑𝑋𝑌) → (𝑡 ∈ (𝐴(,)𝑋) ↦ (𝐹𝑡)) ∈ 𝐿1)
5710rexrd 10848 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ*)
58 iooss1 12935 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐴𝑋) → (𝑋(,)𝑌) ⊆ (𝐴(,)𝑌))
5957, 23, 58syl2anc 587 . . . . . . . . 9 (𝜑 → (𝑋(,)𝑌) ⊆ (𝐴(,)𝑌))
6059, 36sstrd 3897 . . . . . . . 8 (𝜑 → (𝑋(,)𝑌) ⊆ (𝐴(,)𝐵))
6160, 37sstrd 3897 . . . . . . 7 (𝜑 → (𝑋(,)𝑌) ⊆ 𝐷)
62 ioombl 24416 . . . . . . . 8 (𝑋(,)𝑌) ∈ dom vol
6362a1i 11 . . . . . . 7 (𝜑 → (𝑋(,)𝑌) ∈ dom vol)
6461, 63, 51, 54iblss 24656 . . . . . 6 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑡)) ∈ 𝐿1)
6564adantr 484 . . . . 5 ((𝜑𝑋𝑌) → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑡)) ∈ 𝐿1)
6611, 16, 29, 44, 56, 65itgsplitioo 24689 . . . 4 ((𝜑𝑋𝑌) → ∫(𝐴(,)𝑌)(𝐹𝑡) d𝑡 = (∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡))
679, 66eqtrd 2771 . . 3 ((𝜑𝑋𝑌) → (𝐺𝑌) = (∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡))
68 oveq2 7199 . . . . . . 7 (𝑥 = 𝑋 → (𝐴(,)𝑥) = (𝐴(,)𝑋))
69 itgeq1 24624 . . . . . . 7 ((𝐴(,)𝑥) = (𝐴(,)𝑋) → ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡 = ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡)
7068, 69syl 17 . . . . . 6 (𝑥 = 𝑋 → ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡 = ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡)
71 itgex 24622 . . . . . 6 ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡 ∈ V
7270, 5, 71fvmpt 6796 . . . . 5 (𝑋 ∈ (𝐴[,]𝐵) → (𝐺𝑋) = ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡)
7317, 72syl 17 . . . 4 (𝜑 → (𝐺𝑋) = ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡)
7473adantr 484 . . 3 ((𝜑𝑋𝑌) → (𝐺𝑋) = ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡)
7567, 74oveq12d 7209 . 2 ((𝜑𝑋𝑌) → ((𝐺𝑌) − (𝐺𝑋)) = ((∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡) − ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡))
76 fvexd 6710 . . . . 5 ((𝜑𝑡 ∈ (𝐴(,)𝑋)) → (𝐹𝑡) ∈ V)
7776, 55itgcl 24635 . . . 4 (𝜑 → ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡 ∈ ℂ)
7861sselda 3887 . . . . . 6 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑡𝐷)
7978, 42syldan 594 . . . . 5 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐹𝑡) ∈ ℂ)
8079, 64itgcl 24635 . . . 4 (𝜑 → ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡 ∈ ℂ)
8177, 80pncan2d 11156 . . 3 (𝜑 → ((∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡) − ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡) = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
8281adantr 484 . 2 ((𝜑𝑋𝑌) → ((∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡) − ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡) = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
8375, 82eqtrd 2771 1 ((𝜑𝑋𝑌) → ((𝐺𝑌) − (𝐺𝑋)) = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  Vcvv 3398  wss 3853   class class class wbr 5039  cmpt 5120  dom cdm 5536  wf 6354  cfv 6358  (class class class)co 7191  cc 10692  cr 10693   + caddc 10697  *cxr 10831  cle 10833  cmin 11027  (,)cioo 12900  [,]cicc 12903  volcvol 24314  𝐿1cibl 24468  citg 24469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-inf2 9234  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772  ax-addf 10773
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-symdif 4143  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-disj 5005  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-of 7447  df-ofr 7448  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-2o 8181  df-er 8369  df-map 8488  df-pm 8489  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-fi 9005  df-sup 9036  df-inf 9037  df-oi 9104  df-dju 9482  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-n0 12056  df-z 12142  df-uz 12404  df-q 12510  df-rp 12552  df-xneg 12669  df-xadd 12670  df-xmul 12671  df-ioo 12904  df-ico 12906  df-icc 12907  df-fz 13061  df-fzo 13204  df-fl 13332  df-mod 13408  df-seq 13540  df-exp 13601  df-hash 13862  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-clim 15014  df-rlim 15015  df-sum 15215  df-rest 16881  df-topgen 16902  df-psmet 20309  df-xmet 20310  df-met 20311  df-bl 20312  df-mopn 20313  df-top 21745  df-topon 21762  df-bases 21797  df-cmp 22238  df-ovol 24315  df-vol 24316  df-mbf 24470  df-itg1 24471  df-itg2 24472  df-ibl 24473  df-itg 24474  df-0p 24521
This theorem is referenced by:  ftc1a  24888  ftc1lem4  24890  ftc1cnnclem  35534
  Copyright terms: Public domain W3C validator