MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1lem1 Structured version   Visualization version   GIF version

Theorem ftc1lem1 24315
Description: Lemma for ftc1a 24317 and ftc1 24322. (Contributed by Mario Carneiro, 31-Aug-2014.)
Hypotheses
Ref Expression
ftc1.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1.a (𝜑𝐴 ∈ ℝ)
ftc1.b (𝜑𝐵 ∈ ℝ)
ftc1.le (𝜑𝐴𝐵)
ftc1.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
ftc1.d (𝜑𝐷 ⊆ ℝ)
ftc1.i (𝜑𝐹 ∈ 𝐿1)
ftc1a.f (𝜑𝐹:𝐷⟶ℂ)
ftc1lem1.x (𝜑𝑋 ∈ (𝐴[,]𝐵))
ftc1lem1.y (𝜑𝑌 ∈ (𝐴[,]𝐵))
Assertion
Ref Expression
ftc1lem1 ((𝜑𝑋𝑌) → ((𝐺𝑌) − (𝐺𝑋)) = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
Distinct variable groups:   𝑥,𝑡,𝐷   𝑡,𝐴,𝑥   𝑡,𝐵,𝑥   𝑡,𝑋,𝑥   𝜑,𝑡,𝑥   𝑡,𝑌,𝑥   𝑡,𝐹,𝑥
Allowed substitution hints:   𝐺(𝑥,𝑡)

Proof of Theorem ftc1lem1
StepHypRef Expression
1 ftc1lem1.y . . . . . 6 (𝜑𝑌 ∈ (𝐴[,]𝐵))
2 oveq2 7024 . . . . . . . 8 (𝑥 = 𝑌 → (𝐴(,)𝑥) = (𝐴(,)𝑌))
3 itgeq1 24056 . . . . . . . 8 ((𝐴(,)𝑥) = (𝐴(,)𝑌) → ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡 = ∫(𝐴(,)𝑌)(𝐹𝑡) d𝑡)
42, 3syl 17 . . . . . . 7 (𝑥 = 𝑌 → ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡 = ∫(𝐴(,)𝑌)(𝐹𝑡) d𝑡)
5 ftc1.g . . . . . . 7 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
6 itgex 24054 . . . . . . 7 ∫(𝐴(,)𝑌)(𝐹𝑡) d𝑡 ∈ V
74, 5, 6fvmpt 6635 . . . . . 6 (𝑌 ∈ (𝐴[,]𝐵) → (𝐺𝑌) = ∫(𝐴(,)𝑌)(𝐹𝑡) d𝑡)
81, 7syl 17 . . . . 5 (𝜑 → (𝐺𝑌) = ∫(𝐴(,)𝑌)(𝐹𝑡) d𝑡)
98adantr 481 . . . 4 ((𝜑𝑋𝑌) → (𝐺𝑌) = ∫(𝐴(,)𝑌)(𝐹𝑡) d𝑡)
10 ftc1.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
1110adantr 481 . . . . 5 ((𝜑𝑋𝑌) → 𝐴 ∈ ℝ)
12 ftc1.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
13 iccssre 12668 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
1410, 12, 13syl2anc 584 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
1514, 1sseldd 3890 . . . . . 6 (𝜑𝑌 ∈ ℝ)
1615adantr 481 . . . . 5 ((𝜑𝑋𝑌) → 𝑌 ∈ ℝ)
17 ftc1lem1.x . . . . . . . 8 (𝜑𝑋 ∈ (𝐴[,]𝐵))
1814, 17sseldd 3890 . . . . . . 7 (𝜑𝑋 ∈ ℝ)
1918adantr 481 . . . . . 6 ((𝜑𝑋𝑌) → 𝑋 ∈ ℝ)
20 elicc2 12651 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
2110, 12, 20syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
2217, 21mpbid 233 . . . . . . . 8 (𝜑 → (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵))
2322simp2d 1136 . . . . . . 7 (𝜑𝐴𝑋)
2423adantr 481 . . . . . 6 ((𝜑𝑋𝑌) → 𝐴𝑋)
25 simpr 485 . . . . . 6 ((𝜑𝑋𝑌) → 𝑋𝑌)
26 elicc2 12651 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑋 ∈ (𝐴[,]𝑌) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝑌)))
2710, 15, 26syl2anc 584 . . . . . . 7 (𝜑 → (𝑋 ∈ (𝐴[,]𝑌) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝑌)))
2827adantr 481 . . . . . 6 ((𝜑𝑋𝑌) → (𝑋 ∈ (𝐴[,]𝑌) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝑌)))
2919, 24, 25, 28mpbir3and 1335 . . . . 5 ((𝜑𝑋𝑌) → 𝑋 ∈ (𝐴[,]𝑌))
3012rexrd 10537 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ*)
31 elicc2 12651 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑌 ∈ (𝐴[,]𝐵) ↔ (𝑌 ∈ ℝ ∧ 𝐴𝑌𝑌𝐵)))
3210, 12, 31syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝑌 ∈ (𝐴[,]𝐵) ↔ (𝑌 ∈ ℝ ∧ 𝐴𝑌𝑌𝐵)))
331, 32mpbid 233 . . . . . . . . . . 11 (𝜑 → (𝑌 ∈ ℝ ∧ 𝐴𝑌𝑌𝐵))
3433simp3d 1137 . . . . . . . . . 10 (𝜑𝑌𝐵)
35 iooss2 12624 . . . . . . . . . 10 ((𝐵 ∈ ℝ*𝑌𝐵) → (𝐴(,)𝑌) ⊆ (𝐴(,)𝐵))
3630, 34, 35syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐴(,)𝑌) ⊆ (𝐴(,)𝐵))
37 ftc1.s . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
3836, 37sstrd 3899 . . . . . . . 8 (𝜑 → (𝐴(,)𝑌) ⊆ 𝐷)
3938adantr 481 . . . . . . 7 ((𝜑𝑋𝑌) → (𝐴(,)𝑌) ⊆ 𝐷)
4039sselda 3889 . . . . . 6 (((𝜑𝑋𝑌) ∧ 𝑡 ∈ (𝐴(,)𝑌)) → 𝑡𝐷)
41 ftc1a.f . . . . . . . 8 (𝜑𝐹:𝐷⟶ℂ)
4241ffvelrnda 6716 . . . . . . 7 ((𝜑𝑡𝐷) → (𝐹𝑡) ∈ ℂ)
4342adantlr 711 . . . . . 6 (((𝜑𝑋𝑌) ∧ 𝑡𝐷) → (𝐹𝑡) ∈ ℂ)
4440, 43syldan 591 . . . . 5 (((𝜑𝑋𝑌) ∧ 𝑡 ∈ (𝐴(,)𝑌)) → (𝐹𝑡) ∈ ℂ)
4522simp3d 1137 . . . . . . . . 9 (𝜑𝑋𝐵)
46 iooss2 12624 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝑋𝐵) → (𝐴(,)𝑋) ⊆ (𝐴(,)𝐵))
4730, 45, 46syl2anc 584 . . . . . . . 8 (𝜑 → (𝐴(,)𝑋) ⊆ (𝐴(,)𝐵))
4847, 37sstrd 3899 . . . . . . 7 (𝜑 → (𝐴(,)𝑋) ⊆ 𝐷)
49 ioombl 23849 . . . . . . . 8 (𝐴(,)𝑋) ∈ dom vol
5049a1i 11 . . . . . . 7 (𝜑 → (𝐴(,)𝑋) ∈ dom vol)
51 fvexd 6553 . . . . . . 7 ((𝜑𝑡𝐷) → (𝐹𝑡) ∈ V)
5241feqmptd 6601 . . . . . . . 8 (𝜑𝐹 = (𝑡𝐷 ↦ (𝐹𝑡)))
53 ftc1.i . . . . . . . 8 (𝜑𝐹 ∈ 𝐿1)
5452, 53eqeltrrd 2884 . . . . . . 7 (𝜑 → (𝑡𝐷 ↦ (𝐹𝑡)) ∈ 𝐿1)
5548, 50, 51, 54iblss 24088 . . . . . 6 (𝜑 → (𝑡 ∈ (𝐴(,)𝑋) ↦ (𝐹𝑡)) ∈ 𝐿1)
5655adantr 481 . . . . 5 ((𝜑𝑋𝑌) → (𝑡 ∈ (𝐴(,)𝑋) ↦ (𝐹𝑡)) ∈ 𝐿1)
5710rexrd 10537 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ*)
58 iooss1 12623 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐴𝑋) → (𝑋(,)𝑌) ⊆ (𝐴(,)𝑌))
5957, 23, 58syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑋(,)𝑌) ⊆ (𝐴(,)𝑌))
6059, 36sstrd 3899 . . . . . . . 8 (𝜑 → (𝑋(,)𝑌) ⊆ (𝐴(,)𝐵))
6160, 37sstrd 3899 . . . . . . 7 (𝜑 → (𝑋(,)𝑌) ⊆ 𝐷)
62 ioombl 23849 . . . . . . . 8 (𝑋(,)𝑌) ∈ dom vol
6362a1i 11 . . . . . . 7 (𝜑 → (𝑋(,)𝑌) ∈ dom vol)
6461, 63, 51, 54iblss 24088 . . . . . 6 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑡)) ∈ 𝐿1)
6564adantr 481 . . . . 5 ((𝜑𝑋𝑌) → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑡)) ∈ 𝐿1)
6611, 16, 29, 44, 56, 65itgsplitioo 24121 . . . 4 ((𝜑𝑋𝑌) → ∫(𝐴(,)𝑌)(𝐹𝑡) d𝑡 = (∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡))
679, 66eqtrd 2831 . . 3 ((𝜑𝑋𝑌) → (𝐺𝑌) = (∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡))
68 oveq2 7024 . . . . . . 7 (𝑥 = 𝑋 → (𝐴(,)𝑥) = (𝐴(,)𝑋))
69 itgeq1 24056 . . . . . . 7 ((𝐴(,)𝑥) = (𝐴(,)𝑋) → ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡 = ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡)
7068, 69syl 17 . . . . . 6 (𝑥 = 𝑋 → ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡 = ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡)
71 itgex 24054 . . . . . 6 ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡 ∈ V
7270, 5, 71fvmpt 6635 . . . . 5 (𝑋 ∈ (𝐴[,]𝐵) → (𝐺𝑋) = ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡)
7317, 72syl 17 . . . 4 (𝜑 → (𝐺𝑋) = ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡)
7473adantr 481 . . 3 ((𝜑𝑋𝑌) → (𝐺𝑋) = ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡)
7567, 74oveq12d 7034 . 2 ((𝜑𝑋𝑌) → ((𝐺𝑌) − (𝐺𝑋)) = ((∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡) − ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡))
76 fvexd 6553 . . . . 5 ((𝜑𝑡 ∈ (𝐴(,)𝑋)) → (𝐹𝑡) ∈ V)
7776, 55itgcl 24067 . . . 4 (𝜑 → ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡 ∈ ℂ)
7861sselda 3889 . . . . . 6 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑡𝐷)
7978, 42syldan 591 . . . . 5 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐹𝑡) ∈ ℂ)
8079, 64itgcl 24067 . . . 4 (𝜑 → ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡 ∈ ℂ)
8177, 80pncan2d 10847 . . 3 (𝜑 → ((∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡) − ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡) = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
8281adantr 481 . 2 ((𝜑𝑋𝑌) → ((∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡) − ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡) = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
8375, 82eqtrd 2831 1 ((𝜑𝑋𝑌) → ((𝐺𝑌) − (𝐺𝑋)) = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1080   = wceq 1522  wcel 2081  Vcvv 3437  wss 3859   class class class wbr 4962  cmpt 5041  dom cdm 5443  wf 6221  cfv 6225  (class class class)co 7016  cc 10381  cr 10382   + caddc 10386  *cxr 10520  cle 10522  cmin 10717  (,)cioo 12588  [,]cicc 12591  volcvol 23747  𝐿1cibl 23901  citg 23902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-inf2 8950  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461  ax-addf 10462
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-symdif 4139  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-disj 4931  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-of 7267  df-ofr 7268  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-2o 7954  df-oadd 7957  df-er 8139  df-map 8258  df-pm 8259  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-fi 8721  df-sup 8752  df-inf 8753  df-oi 8820  df-dju 9176  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-n0 11746  df-z 11830  df-uz 12094  df-q 12198  df-rp 12240  df-xneg 12357  df-xadd 12358  df-xmul 12359  df-ioo 12592  df-ico 12594  df-icc 12595  df-fz 12743  df-fzo 12884  df-fl 13012  df-mod 13088  df-seq 13220  df-exp 13280  df-hash 13541  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-clim 14679  df-rlim 14680  df-sum 14877  df-rest 16525  df-topgen 16546  df-psmet 20219  df-xmet 20220  df-met 20221  df-bl 20222  df-mopn 20223  df-top 21186  df-topon 21203  df-bases 21238  df-cmp 21679  df-ovol 23748  df-vol 23749  df-mbf 23903  df-itg1 23904  df-itg2 23905  df-ibl 23906  df-itg 23907  df-0p 23954
This theorem is referenced by:  ftc1a  24317  ftc1lem4  24319  ftc1cnnclem  34496
  Copyright terms: Public domain W3C validator