MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1lem1 Structured version   Visualization version   GIF version

Theorem ftc1lem1 25305
Description: Lemma for ftc1a 25307 and ftc1 25312. (Contributed by Mario Carneiro, 31-Aug-2014.)
Hypotheses
Ref Expression
ftc1.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1.a (𝜑𝐴 ∈ ℝ)
ftc1.b (𝜑𝐵 ∈ ℝ)
ftc1.le (𝜑𝐴𝐵)
ftc1.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
ftc1.d (𝜑𝐷 ⊆ ℝ)
ftc1.i (𝜑𝐹 ∈ 𝐿1)
ftc1a.f (𝜑𝐹:𝐷⟶ℂ)
ftc1lem1.x (𝜑𝑋 ∈ (𝐴[,]𝐵))
ftc1lem1.y (𝜑𝑌 ∈ (𝐴[,]𝐵))
Assertion
Ref Expression
ftc1lem1 ((𝜑𝑋𝑌) → ((𝐺𝑌) − (𝐺𝑋)) = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
Distinct variable groups:   𝑥,𝑡,𝐷   𝑡,𝐴,𝑥   𝑡,𝐵,𝑥   𝑡,𝑋,𝑥   𝜑,𝑡,𝑥   𝑡,𝑌,𝑥   𝑡,𝐹,𝑥
Allowed substitution hints:   𝐺(𝑥,𝑡)

Proof of Theorem ftc1lem1
StepHypRef Expression
1 ftc1lem1.y . . . . . 6 (𝜑𝑌 ∈ (𝐴[,]𝐵))
2 oveq2 7350 . . . . . . . 8 (𝑥 = 𝑌 → (𝐴(,)𝑥) = (𝐴(,)𝑌))
3 itgeq1 25043 . . . . . . . 8 ((𝐴(,)𝑥) = (𝐴(,)𝑌) → ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡 = ∫(𝐴(,)𝑌)(𝐹𝑡) d𝑡)
42, 3syl 17 . . . . . . 7 (𝑥 = 𝑌 → ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡 = ∫(𝐴(,)𝑌)(𝐹𝑡) d𝑡)
5 ftc1.g . . . . . . 7 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
6 itgex 25041 . . . . . . 7 ∫(𝐴(,)𝑌)(𝐹𝑡) d𝑡 ∈ V
74, 5, 6fvmpt 6936 . . . . . 6 (𝑌 ∈ (𝐴[,]𝐵) → (𝐺𝑌) = ∫(𝐴(,)𝑌)(𝐹𝑡) d𝑡)
81, 7syl 17 . . . . 5 (𝜑 → (𝐺𝑌) = ∫(𝐴(,)𝑌)(𝐹𝑡) d𝑡)
98adantr 482 . . . 4 ((𝜑𝑋𝑌) → (𝐺𝑌) = ∫(𝐴(,)𝑌)(𝐹𝑡) d𝑡)
10 ftc1.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
1110adantr 482 . . . . 5 ((𝜑𝑋𝑌) → 𝐴 ∈ ℝ)
12 ftc1.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
13 iccssre 13267 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
1410, 12, 13syl2anc 585 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
1514, 1sseldd 3937 . . . . . 6 (𝜑𝑌 ∈ ℝ)
1615adantr 482 . . . . 5 ((𝜑𝑋𝑌) → 𝑌 ∈ ℝ)
17 ftc1lem1.x . . . . . . . 8 (𝜑𝑋 ∈ (𝐴[,]𝐵))
1814, 17sseldd 3937 . . . . . . 7 (𝜑𝑋 ∈ ℝ)
1918adantr 482 . . . . . 6 ((𝜑𝑋𝑌) → 𝑋 ∈ ℝ)
20 elicc2 13250 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
2110, 12, 20syl2anc 585 . . . . . . . . 9 (𝜑 → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
2217, 21mpbid 231 . . . . . . . 8 (𝜑 → (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵))
2322simp2d 1143 . . . . . . 7 (𝜑𝐴𝑋)
2423adantr 482 . . . . . 6 ((𝜑𝑋𝑌) → 𝐴𝑋)
25 simpr 486 . . . . . 6 ((𝜑𝑋𝑌) → 𝑋𝑌)
26 elicc2 13250 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑋 ∈ (𝐴[,]𝑌) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝑌)))
2710, 15, 26syl2anc 585 . . . . . . 7 (𝜑 → (𝑋 ∈ (𝐴[,]𝑌) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝑌)))
2827adantr 482 . . . . . 6 ((𝜑𝑋𝑌) → (𝑋 ∈ (𝐴[,]𝑌) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝑌)))
2919, 24, 25, 28mpbir3and 1342 . . . . 5 ((𝜑𝑋𝑌) → 𝑋 ∈ (𝐴[,]𝑌))
3012rexrd 11131 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ*)
31 elicc2 13250 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑌 ∈ (𝐴[,]𝐵) ↔ (𝑌 ∈ ℝ ∧ 𝐴𝑌𝑌𝐵)))
3210, 12, 31syl2anc 585 . . . . . . . . . . . 12 (𝜑 → (𝑌 ∈ (𝐴[,]𝐵) ↔ (𝑌 ∈ ℝ ∧ 𝐴𝑌𝑌𝐵)))
331, 32mpbid 231 . . . . . . . . . . 11 (𝜑 → (𝑌 ∈ ℝ ∧ 𝐴𝑌𝑌𝐵))
3433simp3d 1144 . . . . . . . . . 10 (𝜑𝑌𝐵)
35 iooss2 13221 . . . . . . . . . 10 ((𝐵 ∈ ℝ*𝑌𝐵) → (𝐴(,)𝑌) ⊆ (𝐴(,)𝐵))
3630, 34, 35syl2anc 585 . . . . . . . . 9 (𝜑 → (𝐴(,)𝑌) ⊆ (𝐴(,)𝐵))
37 ftc1.s . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
3836, 37sstrd 3946 . . . . . . . 8 (𝜑 → (𝐴(,)𝑌) ⊆ 𝐷)
3938adantr 482 . . . . . . 7 ((𝜑𝑋𝑌) → (𝐴(,)𝑌) ⊆ 𝐷)
4039sselda 3936 . . . . . 6 (((𝜑𝑋𝑌) ∧ 𝑡 ∈ (𝐴(,)𝑌)) → 𝑡𝐷)
41 ftc1a.f . . . . . . . 8 (𝜑𝐹:𝐷⟶ℂ)
4241ffvelcdmda 7022 . . . . . . 7 ((𝜑𝑡𝐷) → (𝐹𝑡) ∈ ℂ)
4342adantlr 713 . . . . . 6 (((𝜑𝑋𝑌) ∧ 𝑡𝐷) → (𝐹𝑡) ∈ ℂ)
4440, 43syldan 592 . . . . 5 (((𝜑𝑋𝑌) ∧ 𝑡 ∈ (𝐴(,)𝑌)) → (𝐹𝑡) ∈ ℂ)
4522simp3d 1144 . . . . . . . . 9 (𝜑𝑋𝐵)
46 iooss2 13221 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝑋𝐵) → (𝐴(,)𝑋) ⊆ (𝐴(,)𝐵))
4730, 45, 46syl2anc 585 . . . . . . . 8 (𝜑 → (𝐴(,)𝑋) ⊆ (𝐴(,)𝐵))
4847, 37sstrd 3946 . . . . . . 7 (𝜑 → (𝐴(,)𝑋) ⊆ 𝐷)
49 ioombl 24835 . . . . . . . 8 (𝐴(,)𝑋) ∈ dom vol
5049a1i 11 . . . . . . 7 (𝜑 → (𝐴(,)𝑋) ∈ dom vol)
51 fvexd 6845 . . . . . . 7 ((𝜑𝑡𝐷) → (𝐹𝑡) ∈ V)
5241feqmptd 6898 . . . . . . . 8 (𝜑𝐹 = (𝑡𝐷 ↦ (𝐹𝑡)))
53 ftc1.i . . . . . . . 8 (𝜑𝐹 ∈ 𝐿1)
5452, 53eqeltrrd 2839 . . . . . . 7 (𝜑 → (𝑡𝐷 ↦ (𝐹𝑡)) ∈ 𝐿1)
5548, 50, 51, 54iblss 25075 . . . . . 6 (𝜑 → (𝑡 ∈ (𝐴(,)𝑋) ↦ (𝐹𝑡)) ∈ 𝐿1)
5655adantr 482 . . . . 5 ((𝜑𝑋𝑌) → (𝑡 ∈ (𝐴(,)𝑋) ↦ (𝐹𝑡)) ∈ 𝐿1)
5710rexrd 11131 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ*)
58 iooss1 13220 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐴𝑋) → (𝑋(,)𝑌) ⊆ (𝐴(,)𝑌))
5957, 23, 58syl2anc 585 . . . . . . . . 9 (𝜑 → (𝑋(,)𝑌) ⊆ (𝐴(,)𝑌))
6059, 36sstrd 3946 . . . . . . . 8 (𝜑 → (𝑋(,)𝑌) ⊆ (𝐴(,)𝐵))
6160, 37sstrd 3946 . . . . . . 7 (𝜑 → (𝑋(,)𝑌) ⊆ 𝐷)
62 ioombl 24835 . . . . . . . 8 (𝑋(,)𝑌) ∈ dom vol
6362a1i 11 . . . . . . 7 (𝜑 → (𝑋(,)𝑌) ∈ dom vol)
6461, 63, 51, 54iblss 25075 . . . . . 6 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑡)) ∈ 𝐿1)
6564adantr 482 . . . . 5 ((𝜑𝑋𝑌) → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑡)) ∈ 𝐿1)
6611, 16, 29, 44, 56, 65itgsplitioo 25108 . . . 4 ((𝜑𝑋𝑌) → ∫(𝐴(,)𝑌)(𝐹𝑡) d𝑡 = (∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡))
679, 66eqtrd 2777 . . 3 ((𝜑𝑋𝑌) → (𝐺𝑌) = (∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡))
68 oveq2 7350 . . . . . . 7 (𝑥 = 𝑋 → (𝐴(,)𝑥) = (𝐴(,)𝑋))
69 itgeq1 25043 . . . . . . 7 ((𝐴(,)𝑥) = (𝐴(,)𝑋) → ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡 = ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡)
7068, 69syl 17 . . . . . 6 (𝑥 = 𝑋 → ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡 = ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡)
71 itgex 25041 . . . . . 6 ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡 ∈ V
7270, 5, 71fvmpt 6936 . . . . 5 (𝑋 ∈ (𝐴[,]𝐵) → (𝐺𝑋) = ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡)
7317, 72syl 17 . . . 4 (𝜑 → (𝐺𝑋) = ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡)
7473adantr 482 . . 3 ((𝜑𝑋𝑌) → (𝐺𝑋) = ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡)
7567, 74oveq12d 7360 . 2 ((𝜑𝑋𝑌) → ((𝐺𝑌) − (𝐺𝑋)) = ((∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡) − ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡))
76 fvexd 6845 . . . . 5 ((𝜑𝑡 ∈ (𝐴(,)𝑋)) → (𝐹𝑡) ∈ V)
7776, 55itgcl 25054 . . . 4 (𝜑 → ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡 ∈ ℂ)
7861sselda 3936 . . . . . 6 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑡𝐷)
7978, 42syldan 592 . . . . 5 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐹𝑡) ∈ ℂ)
8079, 64itgcl 25054 . . . 4 (𝜑 → ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡 ∈ ℂ)
8177, 80pncan2d 11440 . . 3 (𝜑 → ((∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡) − ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡) = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
8281adantr 482 . 2 ((𝜑𝑋𝑌) → ((∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡) − ∫(𝐴(,)𝑋)(𝐹𝑡) d𝑡) = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
8375, 82eqtrd 2777 1 ((𝜑𝑋𝑌) → ((𝐺𝑌) − (𝐺𝑋)) = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1087   = wceq 1541  wcel 2106  Vcvv 3442  wss 3902   class class class wbr 5097  cmpt 5180  dom cdm 5625  wf 6480  cfv 6484  (class class class)co 7342  cc 10975  cr 10976   + caddc 10980  *cxr 11114  cle 11116  cmin 11311  (,)cioo 13185  [,]cicc 13188  volcvol 24733  𝐿1cibl 24887  citg 24888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5234  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655  ax-inf2 9503  ax-cnex 11033  ax-resscn 11034  ax-1cn 11035  ax-icn 11036  ax-addcl 11037  ax-addrcl 11038  ax-mulcl 11039  ax-mulrcl 11040  ax-mulcom 11041  ax-addass 11042  ax-mulass 11043  ax-distr 11044  ax-i2m1 11045  ax-1ne0 11046  ax-1rid 11047  ax-rnegex 11048  ax-rrecex 11049  ax-cnre 11050  ax-pre-lttri 11051  ax-pre-lttrn 11052  ax-pre-ltadd 11053  ax-pre-mulgt0 11054  ax-pre-sup 11055  ax-addf 11056
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3921  df-symdif 4194  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-int 4900  df-iun 4948  df-disj 5063  df-br 5098  df-opab 5160  df-mpt 5181  df-tr 5215  df-id 5523  df-eprel 5529  df-po 5537  df-so 5538  df-fr 5580  df-se 5581  df-we 5582  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-pred 6243  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-isom 6493  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-of 7600  df-ofr 7601  df-om 7786  df-1st 7904  df-2nd 7905  df-frecs 8172  df-wrecs 8203  df-recs 8277  df-rdg 8316  df-1o 8372  df-2o 8373  df-er 8574  df-map 8693  df-pm 8694  df-en 8810  df-dom 8811  df-sdom 8812  df-fin 8813  df-fi 9273  df-sup 9304  df-inf 9305  df-oi 9372  df-dju 9763  df-card 9801  df-pnf 11117  df-mnf 11118  df-xr 11119  df-ltxr 11120  df-le 11121  df-sub 11313  df-neg 11314  df-div 11739  df-nn 12080  df-2 12142  df-3 12143  df-4 12144  df-n0 12340  df-z 12426  df-uz 12689  df-q 12795  df-rp 12837  df-xneg 12954  df-xadd 12955  df-xmul 12956  df-ioo 13189  df-ico 13191  df-icc 13192  df-fz 13346  df-fzo 13489  df-fl 13618  df-mod 13696  df-seq 13828  df-exp 13889  df-hash 14151  df-cj 14910  df-re 14911  df-im 14912  df-sqrt 15046  df-abs 15047  df-clim 15297  df-rlim 15298  df-sum 15498  df-rest 17231  df-topgen 17252  df-psmet 20695  df-xmet 20696  df-met 20697  df-bl 20698  df-mopn 20699  df-top 22149  df-topon 22166  df-bases 22202  df-cmp 22644  df-ovol 24734  df-vol 24735  df-mbf 24889  df-itg1 24890  df-itg2 24891  df-ibl 24892  df-itg 24893  df-0p 24940
This theorem is referenced by:  ftc1a  25307  ftc1lem4  25309  ftc1cnnclem  36002
  Copyright terms: Public domain W3C validator