Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wallispilem2 Structured version   Visualization version   GIF version

Theorem wallispilem2 43589
Description: A first set of properties for the sequence 𝐼 that will be used in the proof of the Wallis product formula. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypothesis
Ref Expression
wallispilem2.1 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)
Assertion
Ref Expression
wallispilem2 ((𝐼‘0) = π ∧ (𝐼‘1) = 2 ∧ (𝑁 ∈ (ℤ‘2) → (𝐼𝑁) = (((𝑁 − 1) / 𝑁) · (𝐼‘(𝑁 − 2)))))
Distinct variable group:   𝑥,𝑛,𝑁
Allowed substitution hints:   𝐼(𝑥,𝑛)

Proof of Theorem wallispilem2
StepHypRef Expression
1 0nn0 12259 . . 3 0 ∈ ℕ0
2 oveq2 7280 . . . . . . . 8 (𝑛 = 0 → ((sin‘𝑥)↑𝑛) = ((sin‘𝑥)↑0))
32adantr 481 . . . . . . 7 ((𝑛 = 0 ∧ 𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑𝑛) = ((sin‘𝑥)↑0))
4 ioosscn 13152 . . . . . . . . . . 11 (0(,)π) ⊆ ℂ
54sseli 3922 . . . . . . . . . 10 (𝑥 ∈ (0(,)π) → 𝑥 ∈ ℂ)
65sincld 15850 . . . . . . . . 9 (𝑥 ∈ (0(,)π) → (sin‘𝑥) ∈ ℂ)
76adantl 482 . . . . . . . 8 ((𝑛 = 0 ∧ 𝑥 ∈ (0(,)π)) → (sin‘𝑥) ∈ ℂ)
87exp0d 13869 . . . . . . 7 ((𝑛 = 0 ∧ 𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑0) = 1)
93, 8eqtrd 2780 . . . . . 6 ((𝑛 = 0 ∧ 𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑𝑛) = 1)
109itgeq2dv 24957 . . . . 5 (𝑛 = 0 → ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥 = ∫(0(,)π)1 d𝑥)
11 ioombl 24740 . . . . . . 7 (0(,)π) ∈ dom vol
12 0re 10988 . . . . . . . 8 0 ∈ ℝ
13 pire 25626 . . . . . . . 8 π ∈ ℝ
14 ioovolcl 24745 . . . . . . . 8 ((0 ∈ ℝ ∧ π ∈ ℝ) → (vol‘(0(,)π)) ∈ ℝ)
1512, 13, 14mp2an 689 . . . . . . 7 (vol‘(0(,)π)) ∈ ℝ
16 ax-1cn 10940 . . . . . . 7 1 ∈ ℂ
17 itgconst 24994 . . . . . . 7 (((0(,)π) ∈ dom vol ∧ (vol‘(0(,)π)) ∈ ℝ ∧ 1 ∈ ℂ) → ∫(0(,)π)1 d𝑥 = (1 · (vol‘(0(,)π))))
1811, 15, 16, 17mp3an 1460 . . . . . 6 ∫(0(,)π)1 d𝑥 = (1 · (vol‘(0(,)π)))
1915recni 11000 . . . . . . . 8 (vol‘(0(,)π)) ∈ ℂ
2019mulid2i 10991 . . . . . . 7 (1 · (vol‘(0(,)π))) = (vol‘(0(,)π))
21 pipos 25628 . . . . . . . . . 10 0 < π
2212, 13, 21ltleii 11109 . . . . . . . . 9 0 ≤ π
23 volioo 24744 . . . . . . . . 9 ((0 ∈ ℝ ∧ π ∈ ℝ ∧ 0 ≤ π) → (vol‘(0(,)π)) = (π − 0))
2412, 13, 22, 23mp3an 1460 . . . . . . . 8 (vol‘(0(,)π)) = (π − 0)
2513recni 11000 . . . . . . . . 9 π ∈ ℂ
2625subid1i 11304 . . . . . . . 8 (π − 0) = π
2724, 26eqtri 2768 . . . . . . 7 (vol‘(0(,)π)) = π
2820, 27eqtri 2768 . . . . . 6 (1 · (vol‘(0(,)π))) = π
2918, 28eqtri 2768 . . . . 5 ∫(0(,)π)1 d𝑥 = π
3010, 29eqtrdi 2796 . . . 4 (𝑛 = 0 → ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥 = π)
31 wallispilem2.1 . . . 4 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)
3213elexi 3450 . . . 4 π ∈ V
3330, 31, 32fvmpt 6872 . . 3 (0 ∈ ℕ0 → (𝐼‘0) = π)
341, 33ax-mp 5 . 2 (𝐼‘0) = π
35 1nn0 12260 . . . 4 1 ∈ ℕ0
36 simpl 483 . . . . . . . 8 ((𝑛 = 1 ∧ 𝑥 ∈ (0(,)π)) → 𝑛 = 1)
3736oveq2d 7288 . . . . . . 7 ((𝑛 = 1 ∧ 𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑𝑛) = ((sin‘𝑥)↑1))
386adantl 482 . . . . . . . 8 ((𝑛 = 1 ∧ 𝑥 ∈ (0(,)π)) → (sin‘𝑥) ∈ ℂ)
3938exp1d 13870 . . . . . . 7 ((𝑛 = 1 ∧ 𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑1) = (sin‘𝑥))
4037, 39eqtrd 2780 . . . . . 6 ((𝑛 = 1 ∧ 𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑𝑛) = (sin‘𝑥))
4140itgeq2dv 24957 . . . . 5 (𝑛 = 1 → ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥 = ∫(0(,)π)(sin‘𝑥) d𝑥)
42 itgex 24946 . . . . 5 ∫(0(,)π)(sin‘𝑥) d𝑥 ∈ V
4341, 31, 42fvmpt 6872 . . . 4 (1 ∈ ℕ0 → (𝐼‘1) = ∫(0(,)π)(sin‘𝑥) d𝑥)
4435, 43ax-mp 5 . . 3 (𝐼‘1) = ∫(0(,)π)(sin‘𝑥) d𝑥
45 itgsin0pi 43475 . . 3 ∫(0(,)π)(sin‘𝑥) d𝑥 = 2
4644, 45eqtri 2768 . 2 (𝐼‘1) = 2
47 id 22 . . 3 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ (ℤ‘2))
4831, 47itgsinexp 43478 . 2 (𝑁 ∈ (ℤ‘2) → (𝐼𝑁) = (((𝑁 − 1) / 𝑁) · (𝐼‘(𝑁 − 2))))
4934, 46, 483pm3.2i 1338 1 ((𝐼‘0) = π ∧ (𝐼‘1) = 2 ∧ (𝑁 ∈ (ℤ‘2) → (𝐼𝑁) = (((𝑁 − 1) / 𝑁) · (𝐼‘(𝑁 − 2)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1542  wcel 2110   class class class wbr 5079  cmpt 5162  dom cdm 5590  cfv 6432  (class class class)co 7272  cc 10880  cr 10881  0cc0 10882  1c1 10883   · cmul 10887  cle 11021  cmin 11216   / cdiv 11643  2c2 12039  0cn0 12244  cuz 12593  (,)cioo 13090  cexp 13793  sincsin 15784  πcpi 15787  volcvol 24638  citg 24793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-inf2 9387  ax-cc 10202  ax-cnex 10938  ax-resscn 10939  ax-1cn 10940  ax-icn 10941  ax-addcl 10942  ax-addrcl 10943  ax-mulcl 10944  ax-mulrcl 10945  ax-mulcom 10946  ax-addass 10947  ax-mulass 10948  ax-distr 10949  ax-i2m1 10950  ax-1ne0 10951  ax-1rid 10952  ax-rnegex 10953  ax-rrecex 10954  ax-cnre 10955  ax-pre-lttri 10956  ax-pre-lttrn 10957  ax-pre-ltadd 10958  ax-pre-mulgt0 10959  ax-pre-sup 10960  ax-addf 10961  ax-mulf 10962
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-symdif 4182  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-disj 5045  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7229  df-ov 7275  df-oprab 7276  df-mpo 7277  df-of 7528  df-ofr 7529  df-om 7708  df-1st 7825  df-2nd 7826  df-supp 7970  df-frecs 8089  df-wrecs 8120  df-recs 8194  df-rdg 8233  df-1o 8289  df-2o 8290  df-oadd 8293  df-omul 8294  df-er 8490  df-map 8609  df-pm 8610  df-ixp 8678  df-en 8726  df-dom 8727  df-sdom 8728  df-fin 8729  df-fsupp 9117  df-fi 9158  df-sup 9189  df-inf 9190  df-oi 9257  df-dju 9670  df-card 9708  df-acn 9711  df-pnf 11022  df-mnf 11023  df-xr 11024  df-ltxr 11025  df-le 11026  df-sub 11218  df-neg 11219  df-div 11644  df-nn 11985  df-2 12047  df-3 12048  df-4 12049  df-5 12050  df-6 12051  df-7 12052  df-8 12053  df-9 12054  df-n0 12245  df-z 12331  df-dec 12449  df-uz 12594  df-q 12700  df-rp 12742  df-xneg 12859  df-xadd 12860  df-xmul 12861  df-ioo 13094  df-ioc 13095  df-ico 13096  df-icc 13097  df-fz 13251  df-fzo 13394  df-fl 13523  df-mod 13601  df-seq 13733  df-exp 13794  df-fac 13999  df-bc 14028  df-hash 14056  df-shft 14789  df-cj 14821  df-re 14822  df-im 14823  df-sqrt 14957  df-abs 14958  df-limsup 15191  df-clim 15208  df-rlim 15209  df-sum 15409  df-ef 15788  df-sin 15790  df-cos 15791  df-pi 15793  df-struct 16859  df-sets 16876  df-slot 16894  df-ndx 16906  df-base 16924  df-ress 16953  df-plusg 16986  df-mulr 16987  df-starv 16988  df-sca 16989  df-vsca 16990  df-ip 16991  df-tset 16992  df-ple 16993  df-ds 16995  df-unif 16996  df-hom 16997  df-cco 16998  df-rest 17144  df-topn 17145  df-0g 17163  df-gsum 17164  df-topgen 17165  df-pt 17166  df-prds 17169  df-xrs 17224  df-qtop 17229  df-imas 17230  df-xps 17232  df-mre 17306  df-mrc 17307  df-acs 17309  df-mgm 18337  df-sgrp 18386  df-mnd 18397  df-submnd 18442  df-mulg 18712  df-cntz 18934  df-cmn 19399  df-psmet 20600  df-xmet 20601  df-met 20602  df-bl 20603  df-mopn 20604  df-fbas 20605  df-fg 20606  df-cnfld 20609  df-top 22054  df-topon 22071  df-topsp 22093  df-bases 22107  df-cld 22181  df-ntr 22182  df-cls 22183  df-nei 22260  df-lp 22298  df-perf 22299  df-cn 22389  df-cnp 22390  df-haus 22477  df-cmp 22549  df-tx 22724  df-hmeo 22917  df-fil 23008  df-fm 23100  df-flim 23101  df-flf 23102  df-xms 23484  df-ms 23485  df-tms 23486  df-cncf 24052  df-ovol 24639  df-vol 24640  df-mbf 24794  df-itg1 24795  df-itg2 24796  df-ibl 24797  df-itg 24798  df-0p 24845  df-limc 25041  df-dv 25042
This theorem is referenced by:  wallispilem3  43590  wallispilem4  43591
  Copyright terms: Public domain W3C validator