![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wallispilem2 | Structured version Visualization version GIF version |
Description: A first set of properties for the sequence πΌ that will be used in the proof of the Wallis product formula. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
wallispilem2.1 | β’ πΌ = (π β β0 β¦ β«(0(,)Ο)((sinβπ₯)βπ) dπ₯) |
Ref | Expression |
---|---|
wallispilem2 | β’ ((πΌβ0) = Ο β§ (πΌβ1) = 2 β§ (π β (β€β₯β2) β (πΌβπ) = (((π β 1) / π) Β· (πΌβ(π β 2))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nn0 12484 | . . 3 β’ 0 β β0 | |
2 | oveq2 7409 | . . . . . . . 8 β’ (π = 0 β ((sinβπ₯)βπ) = ((sinβπ₯)β0)) | |
3 | 2 | adantr 480 | . . . . . . 7 β’ ((π = 0 β§ π₯ β (0(,)Ο)) β ((sinβπ₯)βπ) = ((sinβπ₯)β0)) |
4 | ioosscn 13383 | . . . . . . . . . . 11 β’ (0(,)Ο) β β | |
5 | 4 | sseli 3970 | . . . . . . . . . 10 β’ (π₯ β (0(,)Ο) β π₯ β β) |
6 | 5 | sincld 16070 | . . . . . . . . 9 β’ (π₯ β (0(,)Ο) β (sinβπ₯) β β) |
7 | 6 | adantl 481 | . . . . . . . 8 β’ ((π = 0 β§ π₯ β (0(,)Ο)) β (sinβπ₯) β β) |
8 | 7 | exp0d 14102 | . . . . . . 7 β’ ((π = 0 β§ π₯ β (0(,)Ο)) β ((sinβπ₯)β0) = 1) |
9 | 3, 8 | eqtrd 2764 | . . . . . 6 β’ ((π = 0 β§ π₯ β (0(,)Ο)) β ((sinβπ₯)βπ) = 1) |
10 | 9 | itgeq2dv 25633 | . . . . 5 β’ (π = 0 β β«(0(,)Ο)((sinβπ₯)βπ) dπ₯ = β«(0(,)Ο)1 dπ₯) |
11 | ioombl 25416 | . . . . . . 7 β’ (0(,)Ο) β dom vol | |
12 | 0re 11213 | . . . . . . . 8 β’ 0 β β | |
13 | pire 26310 | . . . . . . . 8 β’ Ο β β | |
14 | ioovolcl 25421 | . . . . . . . 8 β’ ((0 β β β§ Ο β β) β (volβ(0(,)Ο)) β β) | |
15 | 12, 13, 14 | mp2an 689 | . . . . . . 7 β’ (volβ(0(,)Ο)) β β |
16 | ax-1cn 11164 | . . . . . . 7 β’ 1 β β | |
17 | itgconst 25670 | . . . . . . 7 β’ (((0(,)Ο) β dom vol β§ (volβ(0(,)Ο)) β β β§ 1 β β) β β«(0(,)Ο)1 dπ₯ = (1 Β· (volβ(0(,)Ο)))) | |
18 | 11, 15, 16, 17 | mp3an 1457 | . . . . . 6 β’ β«(0(,)Ο)1 dπ₯ = (1 Β· (volβ(0(,)Ο))) |
19 | 15 | recni 11225 | . . . . . . . 8 β’ (volβ(0(,)Ο)) β β |
20 | 19 | mullidi 11216 | . . . . . . 7 β’ (1 Β· (volβ(0(,)Ο))) = (volβ(0(,)Ο)) |
21 | pipos 26312 | . . . . . . . . . 10 β’ 0 < Ο | |
22 | 12, 13, 21 | ltleii 11334 | . . . . . . . . 9 β’ 0 β€ Ο |
23 | volioo 25420 | . . . . . . . . 9 β’ ((0 β β β§ Ο β β β§ 0 β€ Ο) β (volβ(0(,)Ο)) = (Ο β 0)) | |
24 | 12, 13, 22, 23 | mp3an 1457 | . . . . . . . 8 β’ (volβ(0(,)Ο)) = (Ο β 0) |
25 | 13 | recni 11225 | . . . . . . . . 9 β’ Ο β β |
26 | 25 | subid1i 11529 | . . . . . . . 8 β’ (Ο β 0) = Ο |
27 | 24, 26 | eqtri 2752 | . . . . . . 7 β’ (volβ(0(,)Ο)) = Ο |
28 | 20, 27 | eqtri 2752 | . . . . . 6 β’ (1 Β· (volβ(0(,)Ο))) = Ο |
29 | 18, 28 | eqtri 2752 | . . . . 5 β’ β«(0(,)Ο)1 dπ₯ = Ο |
30 | 10, 29 | eqtrdi 2780 | . . . 4 β’ (π = 0 β β«(0(,)Ο)((sinβπ₯)βπ) dπ₯ = Ο) |
31 | wallispilem2.1 | . . . 4 β’ πΌ = (π β β0 β¦ β«(0(,)Ο)((sinβπ₯)βπ) dπ₯) | |
32 | 13 | elexi 3486 | . . . 4 β’ Ο β V |
33 | 30, 31, 32 | fvmpt 6988 | . . 3 β’ (0 β β0 β (πΌβ0) = Ο) |
34 | 1, 33 | ax-mp 5 | . 2 β’ (πΌβ0) = Ο |
35 | 1nn0 12485 | . . . 4 β’ 1 β β0 | |
36 | simpl 482 | . . . . . . . 8 β’ ((π = 1 β§ π₯ β (0(,)Ο)) β π = 1) | |
37 | 36 | oveq2d 7417 | . . . . . . 7 β’ ((π = 1 β§ π₯ β (0(,)Ο)) β ((sinβπ₯)βπ) = ((sinβπ₯)β1)) |
38 | 6 | adantl 481 | . . . . . . . 8 β’ ((π = 1 β§ π₯ β (0(,)Ο)) β (sinβπ₯) β β) |
39 | 38 | exp1d 14103 | . . . . . . 7 β’ ((π = 1 β§ π₯ β (0(,)Ο)) β ((sinβπ₯)β1) = (sinβπ₯)) |
40 | 37, 39 | eqtrd 2764 | . . . . . 6 β’ ((π = 1 β§ π₯ β (0(,)Ο)) β ((sinβπ₯)βπ) = (sinβπ₯)) |
41 | 40 | itgeq2dv 25633 | . . . . 5 β’ (π = 1 β β«(0(,)Ο)((sinβπ₯)βπ) dπ₯ = β«(0(,)Ο)(sinβπ₯) dπ₯) |
42 | itgex 25622 | . . . . 5 β’ β«(0(,)Ο)(sinβπ₯) dπ₯ β V | |
43 | 41, 31, 42 | fvmpt 6988 | . . . 4 β’ (1 β β0 β (πΌβ1) = β«(0(,)Ο)(sinβπ₯) dπ₯) |
44 | 35, 43 | ax-mp 5 | . . 3 β’ (πΌβ1) = β«(0(,)Ο)(sinβπ₯) dπ₯ |
45 | itgsin0pi 45153 | . . 3 β’ β«(0(,)Ο)(sinβπ₯) dπ₯ = 2 | |
46 | 44, 45 | eqtri 2752 | . 2 β’ (πΌβ1) = 2 |
47 | id 22 | . . 3 β’ (π β (β€β₯β2) β π β (β€β₯β2)) | |
48 | 31, 47 | itgsinexp 45156 | . 2 β’ (π β (β€β₯β2) β (πΌβπ) = (((π β 1) / π) Β· (πΌβ(π β 2)))) |
49 | 34, 46, 48 | 3pm3.2i 1336 | 1 β’ ((πΌβ0) = Ο β§ (πΌβ1) = 2 β§ (π β (β€β₯β2) β (πΌβπ) = (((π β 1) / π) Β· (πΌβ(π β 2))))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1084 = wceq 1533 β wcel 2098 class class class wbr 5138 β¦ cmpt 5221 dom cdm 5666 βcfv 6533 (class class class)co 7401 βcc 11104 βcr 11105 0cc0 11106 1c1 11107 Β· cmul 11111 β€ cle 11246 β cmin 11441 / cdiv 11868 2c2 12264 β0cn0 12469 β€β₯cuz 12819 (,)cioo 13321 βcexp 14024 sincsin 16004 Οcpi 16007 volcvol 25314 β«citg 25469 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-inf2 9632 ax-cc 10426 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-addf 11185 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-symdif 4234 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-iin 4990 df-disj 5104 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-of 7663 df-ofr 7664 df-om 7849 df-1st 7968 df-2nd 7969 df-supp 8141 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-2o 8462 df-oadd 8465 df-omul 8466 df-er 8699 df-map 8818 df-pm 8819 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-fi 9402 df-sup 9433 df-inf 9434 df-oi 9501 df-dju 9892 df-card 9930 df-acn 9933 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-3 12273 df-4 12274 df-5 12275 df-6 12276 df-7 12277 df-8 12278 df-9 12279 df-n0 12470 df-z 12556 df-dec 12675 df-uz 12820 df-q 12930 df-rp 12972 df-xneg 13089 df-xadd 13090 df-xmul 13091 df-ioo 13325 df-ioc 13326 df-ico 13327 df-icc 13328 df-fz 13482 df-fzo 13625 df-fl 13754 df-mod 13832 df-seq 13964 df-exp 14025 df-fac 14231 df-bc 14260 df-hash 14288 df-shft 15011 df-cj 15043 df-re 15044 df-im 15045 df-sqrt 15179 df-abs 15180 df-limsup 15412 df-clim 15429 df-rlim 15430 df-sum 15630 df-ef 16008 df-sin 16010 df-cos 16011 df-pi 16013 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17367 df-topn 17368 df-0g 17386 df-gsum 17387 df-topgen 17388 df-pt 17389 df-prds 17392 df-xrs 17447 df-qtop 17452 df-imas 17453 df-xps 17455 df-mre 17529 df-mrc 17530 df-acs 17532 df-mgm 18563 df-sgrp 18642 df-mnd 18658 df-submnd 18704 df-mulg 18986 df-cntz 19223 df-cmn 19692 df-psmet 21220 df-xmet 21221 df-met 21222 df-bl 21223 df-mopn 21224 df-fbas 21225 df-fg 21226 df-cnfld 21229 df-top 22718 df-topon 22735 df-topsp 22757 df-bases 22771 df-cld 22845 df-ntr 22846 df-cls 22847 df-nei 22924 df-lp 22962 df-perf 22963 df-cn 23053 df-cnp 23054 df-haus 23141 df-cmp 23213 df-tx 23388 df-hmeo 23581 df-fil 23672 df-fm 23764 df-flim 23765 df-flf 23766 df-xms 24148 df-ms 24149 df-tms 24150 df-cncf 24720 df-ovol 25315 df-vol 25316 df-mbf 25470 df-itg1 25471 df-itg2 25472 df-ibl 25473 df-itg 25474 df-0p 25521 df-limc 25717 df-dv 25718 |
This theorem is referenced by: wallispilem3 45268 wallispilem4 45269 |
Copyright terms: Public domain | W3C validator |