| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wallispilem2 | Structured version Visualization version GIF version | ||
| Description: A first set of properties for the sequence 𝐼 that will be used in the proof of the Wallis product formula. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| Ref | Expression |
|---|---|
| wallispilem2.1 | ⊢ 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥) |
| Ref | Expression |
|---|---|
| wallispilem2 | ⊢ ((𝐼‘0) = π ∧ (𝐼‘1) = 2 ∧ (𝑁 ∈ (ℤ≥‘2) → (𝐼‘𝑁) = (((𝑁 − 1) / 𝑁) · (𝐼‘(𝑁 − 2))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nn0 12399 | . . 3 ⊢ 0 ∈ ℕ0 | |
| 2 | oveq2 7357 | . . . . . . . 8 ⊢ (𝑛 = 0 → ((sin‘𝑥)↑𝑛) = ((sin‘𝑥)↑0)) | |
| 3 | 2 | adantr 480 | . . . . . . 7 ⊢ ((𝑛 = 0 ∧ 𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑𝑛) = ((sin‘𝑥)↑0)) |
| 4 | ioosscn 13311 | . . . . . . . . . . 11 ⊢ (0(,)π) ⊆ ℂ | |
| 5 | 4 | sseli 3931 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (0(,)π) → 𝑥 ∈ ℂ) |
| 6 | 5 | sincld 16039 | . . . . . . . . 9 ⊢ (𝑥 ∈ (0(,)π) → (sin‘𝑥) ∈ ℂ) |
| 7 | 6 | adantl 481 | . . . . . . . 8 ⊢ ((𝑛 = 0 ∧ 𝑥 ∈ (0(,)π)) → (sin‘𝑥) ∈ ℂ) |
| 8 | 7 | exp0d 14047 | . . . . . . 7 ⊢ ((𝑛 = 0 ∧ 𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑0) = 1) |
| 9 | 3, 8 | eqtrd 2764 | . . . . . 6 ⊢ ((𝑛 = 0 ∧ 𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑𝑛) = 1) |
| 10 | 9 | itgeq2dv 25681 | . . . . 5 ⊢ (𝑛 = 0 → ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥 = ∫(0(,)π)1 d𝑥) |
| 11 | ioombl 25464 | . . . . . . 7 ⊢ (0(,)π) ∈ dom vol | |
| 12 | 0re 11117 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
| 13 | pire 26364 | . . . . . . . 8 ⊢ π ∈ ℝ | |
| 14 | ioovolcl 25469 | . . . . . . . 8 ⊢ ((0 ∈ ℝ ∧ π ∈ ℝ) → (vol‘(0(,)π)) ∈ ℝ) | |
| 15 | 12, 13, 14 | mp2an 692 | . . . . . . 7 ⊢ (vol‘(0(,)π)) ∈ ℝ |
| 16 | ax-1cn 11067 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
| 17 | itgconst 25718 | . . . . . . 7 ⊢ (((0(,)π) ∈ dom vol ∧ (vol‘(0(,)π)) ∈ ℝ ∧ 1 ∈ ℂ) → ∫(0(,)π)1 d𝑥 = (1 · (vol‘(0(,)π)))) | |
| 18 | 11, 15, 16, 17 | mp3an 1463 | . . . . . 6 ⊢ ∫(0(,)π)1 d𝑥 = (1 · (vol‘(0(,)π))) |
| 19 | 15 | recni 11129 | . . . . . . . 8 ⊢ (vol‘(0(,)π)) ∈ ℂ |
| 20 | 19 | mullidi 11120 | . . . . . . 7 ⊢ (1 · (vol‘(0(,)π))) = (vol‘(0(,)π)) |
| 21 | pipos 26366 | . . . . . . . . . 10 ⊢ 0 < π | |
| 22 | 12, 13, 21 | ltleii 11239 | . . . . . . . . 9 ⊢ 0 ≤ π |
| 23 | volioo 25468 | . . . . . . . . 9 ⊢ ((0 ∈ ℝ ∧ π ∈ ℝ ∧ 0 ≤ π) → (vol‘(0(,)π)) = (π − 0)) | |
| 24 | 12, 13, 22, 23 | mp3an 1463 | . . . . . . . 8 ⊢ (vol‘(0(,)π)) = (π − 0) |
| 25 | 13 | recni 11129 | . . . . . . . . 9 ⊢ π ∈ ℂ |
| 26 | 25 | subid1i 11436 | . . . . . . . 8 ⊢ (π − 0) = π |
| 27 | 24, 26 | eqtri 2752 | . . . . . . 7 ⊢ (vol‘(0(,)π)) = π |
| 28 | 20, 27 | eqtri 2752 | . . . . . 6 ⊢ (1 · (vol‘(0(,)π))) = π |
| 29 | 18, 28 | eqtri 2752 | . . . . 5 ⊢ ∫(0(,)π)1 d𝑥 = π |
| 30 | 10, 29 | eqtrdi 2780 | . . . 4 ⊢ (𝑛 = 0 → ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥 = π) |
| 31 | wallispilem2.1 | . . . 4 ⊢ 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥) | |
| 32 | 13 | elexi 3459 | . . . 4 ⊢ π ∈ V |
| 33 | 30, 31, 32 | fvmpt 6930 | . . 3 ⊢ (0 ∈ ℕ0 → (𝐼‘0) = π) |
| 34 | 1, 33 | ax-mp 5 | . 2 ⊢ (𝐼‘0) = π |
| 35 | 1nn0 12400 | . . . 4 ⊢ 1 ∈ ℕ0 | |
| 36 | simpl 482 | . . . . . . . 8 ⊢ ((𝑛 = 1 ∧ 𝑥 ∈ (0(,)π)) → 𝑛 = 1) | |
| 37 | 36 | oveq2d 7365 | . . . . . . 7 ⊢ ((𝑛 = 1 ∧ 𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑𝑛) = ((sin‘𝑥)↑1)) |
| 38 | 6 | adantl 481 | . . . . . . . 8 ⊢ ((𝑛 = 1 ∧ 𝑥 ∈ (0(,)π)) → (sin‘𝑥) ∈ ℂ) |
| 39 | 38 | exp1d 14048 | . . . . . . 7 ⊢ ((𝑛 = 1 ∧ 𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑1) = (sin‘𝑥)) |
| 40 | 37, 39 | eqtrd 2764 | . . . . . 6 ⊢ ((𝑛 = 1 ∧ 𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑𝑛) = (sin‘𝑥)) |
| 41 | 40 | itgeq2dv 25681 | . . . . 5 ⊢ (𝑛 = 1 → ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥 = ∫(0(,)π)(sin‘𝑥) d𝑥) |
| 42 | itgex 25669 | . . . . 5 ⊢ ∫(0(,)π)(sin‘𝑥) d𝑥 ∈ V | |
| 43 | 41, 31, 42 | fvmpt 6930 | . . . 4 ⊢ (1 ∈ ℕ0 → (𝐼‘1) = ∫(0(,)π)(sin‘𝑥) d𝑥) |
| 44 | 35, 43 | ax-mp 5 | . . 3 ⊢ (𝐼‘1) = ∫(0(,)π)(sin‘𝑥) d𝑥 |
| 45 | itgsin0pi 45933 | . . 3 ⊢ ∫(0(,)π)(sin‘𝑥) d𝑥 = 2 | |
| 46 | 44, 45 | eqtri 2752 | . 2 ⊢ (𝐼‘1) = 2 |
| 47 | id 22 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ (ℤ≥‘2)) | |
| 48 | 31, 47 | itgsinexp 45936 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝐼‘𝑁) = (((𝑁 − 1) / 𝑁) · (𝐼‘(𝑁 − 2)))) |
| 49 | 34, 46, 48 | 3pm3.2i 1340 | 1 ⊢ ((𝐼‘0) = π ∧ (𝐼‘1) = 2 ∧ (𝑁 ∈ (ℤ≥‘2) → (𝐼‘𝑁) = (((𝑁 − 1) / 𝑁) · (𝐼‘(𝑁 − 2))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5092 ↦ cmpt 5173 dom cdm 5619 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 ℝcr 11008 0cc0 11009 1c1 11010 · cmul 11014 ≤ cle 11150 − cmin 11347 / cdiv 11777 2c2 12183 ℕ0cn0 12384 ℤ≥cuz 12735 (,)cioo 13248 ↑cexp 13968 sincsin 15970 πcpi 15973 volcvol 25362 ∫citg 25517 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cc 10329 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-symdif 4204 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-disj 5060 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-ofr 7614 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-omul 8393 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-dju 9797 df-card 9835 df-acn 9838 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-ioo 13252 df-ioc 13253 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-fac 14181 df-bc 14210 df-hash 14238 df-shft 14974 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-ef 15974 df-sin 15976 df-cos 15977 df-pi 15979 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-mulg 18947 df-cntz 19196 df-cmn 19661 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-fbas 21258 df-fg 21259 df-cnfld 21262 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-cld 22904 df-ntr 22905 df-cls 22906 df-nei 22983 df-lp 23021 df-perf 23022 df-cn 23112 df-cnp 23113 df-haus 23200 df-cmp 23272 df-tx 23447 df-hmeo 23640 df-fil 23731 df-fm 23823 df-flim 23824 df-flf 23825 df-xms 24206 df-ms 24207 df-tms 24208 df-cncf 24769 df-ovol 25363 df-vol 25364 df-mbf 25518 df-itg1 25519 df-itg2 25520 df-ibl 25521 df-itg 25522 df-0p 25569 df-limc 25765 df-dv 25766 |
| This theorem is referenced by: wallispilem3 46048 wallispilem4 46049 |
| Copyright terms: Public domain | W3C validator |