MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funiunfv Structured version   Visualization version   GIF version

Theorem funiunfv 7009
Description: The indexed union of a function's values is the union of its image under the index class.

Note: This theorem depends on the fact that our function value is the empty set outside of its domain. If the antecedent is changed to 𝐹 Fn 𝐴, the theorem can be proved without this dependency. (Contributed by NM, 26-Mar-2006.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)

Assertion
Ref Expression
funiunfv (Fun 𝐹 𝑥𝐴 (𝐹𝑥) = (𝐹𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem funiunfv
StepHypRef Expression
1 funres 6399 . . . 4 (Fun 𝐹 → Fun (𝐹𝐴))
21funfnd 6388 . . 3 (Fun 𝐹 → (𝐹𝐴) Fn dom (𝐹𝐴))
3 fniunfv 7008 . . 3 ((𝐹𝐴) Fn dom (𝐹𝐴) → 𝑥 ∈ dom (𝐹𝐴)((𝐹𝐴)‘𝑥) = ran (𝐹𝐴))
42, 3syl 17 . 2 (Fun 𝐹 𝑥 ∈ dom (𝐹𝐴)((𝐹𝐴)‘𝑥) = ran (𝐹𝐴))
5 undif2 4427 . . . . 5 (dom (𝐹𝐴) ∪ (𝐴 ∖ dom (𝐹𝐴))) = (dom (𝐹𝐴) ∪ 𝐴)
6 dmres 5877 . . . . . . 7 dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹)
7 inss1 4207 . . . . . . 7 (𝐴 ∩ dom 𝐹) ⊆ 𝐴
86, 7eqsstri 4003 . . . . . 6 dom (𝐹𝐴) ⊆ 𝐴
9 ssequn1 4158 . . . . . 6 (dom (𝐹𝐴) ⊆ 𝐴 ↔ (dom (𝐹𝐴) ∪ 𝐴) = 𝐴)
108, 9mpbi 232 . . . . 5 (dom (𝐹𝐴) ∪ 𝐴) = 𝐴
115, 10eqtri 2846 . . . 4 (dom (𝐹𝐴) ∪ (𝐴 ∖ dom (𝐹𝐴))) = 𝐴
12 iuneq1 4937 . . . 4 ((dom (𝐹𝐴) ∪ (𝐴 ∖ dom (𝐹𝐴))) = 𝐴 𝑥 ∈ (dom (𝐹𝐴) ∪ (𝐴 ∖ dom (𝐹𝐴)))((𝐹𝐴)‘𝑥) = 𝑥𝐴 ((𝐹𝐴)‘𝑥))
1311, 12ax-mp 5 . . 3 𝑥 ∈ (dom (𝐹𝐴) ∪ (𝐴 ∖ dom (𝐹𝐴)))((𝐹𝐴)‘𝑥) = 𝑥𝐴 ((𝐹𝐴)‘𝑥)
14 iunxun 5018 . . . 4 𝑥 ∈ (dom (𝐹𝐴) ∪ (𝐴 ∖ dom (𝐹𝐴)))((𝐹𝐴)‘𝑥) = ( 𝑥 ∈ dom (𝐹𝐴)((𝐹𝐴)‘𝑥) ∪ 𝑥 ∈ (𝐴 ∖ dom (𝐹𝐴))((𝐹𝐴)‘𝑥))
15 eldifn 4106 . . . . . . . . 9 (𝑥 ∈ (𝐴 ∖ dom (𝐹𝐴)) → ¬ 𝑥 ∈ dom (𝐹𝐴))
16 ndmfv 6702 . . . . . . . . 9 𝑥 ∈ dom (𝐹𝐴) → ((𝐹𝐴)‘𝑥) = ∅)
1715, 16syl 17 . . . . . . . 8 (𝑥 ∈ (𝐴 ∖ dom (𝐹𝐴)) → ((𝐹𝐴)‘𝑥) = ∅)
1817iuneq2i 4942 . . . . . . 7 𝑥 ∈ (𝐴 ∖ dom (𝐹𝐴))((𝐹𝐴)‘𝑥) = 𝑥 ∈ (𝐴 ∖ dom (𝐹𝐴))∅
19 iun0 4987 . . . . . . 7 𝑥 ∈ (𝐴 ∖ dom (𝐹𝐴))∅ = ∅
2018, 19eqtri 2846 . . . . . 6 𝑥 ∈ (𝐴 ∖ dom (𝐹𝐴))((𝐹𝐴)‘𝑥) = ∅
2120uneq2i 4138 . . . . 5 ( 𝑥 ∈ dom (𝐹𝐴)((𝐹𝐴)‘𝑥) ∪ 𝑥 ∈ (𝐴 ∖ dom (𝐹𝐴))((𝐹𝐴)‘𝑥)) = ( 𝑥 ∈ dom (𝐹𝐴)((𝐹𝐴)‘𝑥) ∪ ∅)
22 un0 4346 . . . . 5 ( 𝑥 ∈ dom (𝐹𝐴)((𝐹𝐴)‘𝑥) ∪ ∅) = 𝑥 ∈ dom (𝐹𝐴)((𝐹𝐴)‘𝑥)
2321, 22eqtri 2846 . . . 4 ( 𝑥 ∈ dom (𝐹𝐴)((𝐹𝐴)‘𝑥) ∪ 𝑥 ∈ (𝐴 ∖ dom (𝐹𝐴))((𝐹𝐴)‘𝑥)) = 𝑥 ∈ dom (𝐹𝐴)((𝐹𝐴)‘𝑥)
2414, 23eqtri 2846 . . 3 𝑥 ∈ (dom (𝐹𝐴) ∪ (𝐴 ∖ dom (𝐹𝐴)))((𝐹𝐴)‘𝑥) = 𝑥 ∈ dom (𝐹𝐴)((𝐹𝐴)‘𝑥)
25 fvres 6691 . . . 4 (𝑥𝐴 → ((𝐹𝐴)‘𝑥) = (𝐹𝑥))
2625iuneq2i 4942 . . 3 𝑥𝐴 ((𝐹𝐴)‘𝑥) = 𝑥𝐴 (𝐹𝑥)
2713, 24, 263eqtr3ri 2855 . 2 𝑥𝐴 (𝐹𝑥) = 𝑥 ∈ dom (𝐹𝐴)((𝐹𝐴)‘𝑥)
28 df-ima 5570 . . 3 (𝐹𝐴) = ran (𝐹𝐴)
2928unieqi 4853 . 2 (𝐹𝐴) = ran (𝐹𝐴)
304, 27, 293eqtr4g 2883 1 (Fun 𝐹 𝑥𝐴 (𝐹𝑥) = (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wcel 2114  cdif 3935  cun 3936  cin 3937  wss 3938  c0 4293   cuni 4840   ciun 4921  dom cdm 5557  ran crn 5558  cres 5559  cima 5560  Fun wfun 6351   Fn wfn 6352  cfv 6357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-fv 6365
This theorem is referenced by:  funiunfvf  7010  eluniima  7011  marypha2lem4  8904  r1limg  9202  r1elssi  9236  r1elss  9237  ackbij2  9667  r1om  9668  ttukeylem6  9938  isacs2  16926  mreacs  16931  acsfn  16932  isacs5  17784  dprdss  19153  dprd2dlem1  19165  dmdprdsplit2lem  19169  uniioombllem3a  24187  uniioombllem4  24189  uniioombllem5  24190  dyadmbl  24203  mblfinlem1  34931  ovoliunnfl  34936  voliunnfl  34938  uniimafveqt  43548  imasetpreimafvbijlemfv  43569
  Copyright terms: Public domain W3C validator