Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigaclfu2 Structured version   Visualization version   GIF version

Theorem sigaclfu2 33417
Description: A sigma-algebra is closed under finite union - indexing on (1..^𝑁). (Contributed by Thierry Arnoux, 28-Dec-2016.)
Assertion
Ref Expression
sigaclfu2 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ (1..^𝑁)𝐴𝑆) → 𝑘 ∈ (1..^𝑁)𝐴𝑆)
Distinct variable groups:   𝑆,𝑘   𝑘,𝑁
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem sigaclfu2
StepHypRef Expression
1 iunxun 5096 . . . 4 𝑘 ∈ ((1..^𝑁) ∪ (ℕ ∖ (1..^𝑁)))if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = ( 𝑘 ∈ (1..^𝑁)if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∪ 𝑘 ∈ (ℕ ∖ (1..^𝑁))if(𝑘 ∈ (1..^𝑁), 𝐴, ∅))
2 fzossnn 13685 . . . . . 6 (1..^𝑁) ⊆ ℕ
3 undif 4480 . . . . . 6 ((1..^𝑁) ⊆ ℕ ↔ ((1..^𝑁) ∪ (ℕ ∖ (1..^𝑁))) = ℕ)
42, 3mpbi 229 . . . . 5 ((1..^𝑁) ∪ (ℕ ∖ (1..^𝑁))) = ℕ
5 iuneq1 5012 . . . . 5 (((1..^𝑁) ∪ (ℕ ∖ (1..^𝑁))) = ℕ → 𝑘 ∈ ((1..^𝑁) ∪ (ℕ ∖ (1..^𝑁)))if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = 𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅))
64, 5ax-mp 5 . . . 4 𝑘 ∈ ((1..^𝑁) ∪ (ℕ ∖ (1..^𝑁)))if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = 𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅)
7 iftrue 4533 . . . . . 6 (𝑘 ∈ (1..^𝑁) → if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = 𝐴)
87iuneq2i 5017 . . . . 5 𝑘 ∈ (1..^𝑁)if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = 𝑘 ∈ (1..^𝑁)𝐴
9 eldifn 4126 . . . . . . . 8 (𝑘 ∈ (ℕ ∖ (1..^𝑁)) → ¬ 𝑘 ∈ (1..^𝑁))
109iffalsed 4538 . . . . . . 7 (𝑘 ∈ (ℕ ∖ (1..^𝑁)) → if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = ∅)
1110iuneq2i 5017 . . . . . 6 𝑘 ∈ (ℕ ∖ (1..^𝑁))if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = 𝑘 ∈ (ℕ ∖ (1..^𝑁))∅
12 iun0 5064 . . . . . 6 𝑘 ∈ (ℕ ∖ (1..^𝑁))∅ = ∅
1311, 12eqtri 2758 . . . . 5 𝑘 ∈ (ℕ ∖ (1..^𝑁))if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = ∅
148, 13uneq12i 4160 . . . 4 ( 𝑘 ∈ (1..^𝑁)if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∪ 𝑘 ∈ (ℕ ∖ (1..^𝑁))if(𝑘 ∈ (1..^𝑁), 𝐴, ∅)) = ( 𝑘 ∈ (1..^𝑁)𝐴 ∪ ∅)
151, 6, 143eqtr3i 2766 . . 3 𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = ( 𝑘 ∈ (1..^𝑁)𝐴 ∪ ∅)
16 un0 4389 . . 3 ( 𝑘 ∈ (1..^𝑁)𝐴 ∪ ∅) = 𝑘 ∈ (1..^𝑁)𝐴
1715, 16eqtri 2758 . 2 𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = 𝑘 ∈ (1..^𝑁)𝐴
18 0elsiga 33410 . . . 4 (𝑆 ran sigAlgebra → ∅ ∈ 𝑆)
19 simpr 483 . . . . . . . . 9 ((((∅ ∈ 𝑆 ∧ (𝑘 ∈ (1..^𝑁) → 𝐴𝑆)) ∧ 𝑘 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑁)) → 𝑘 ∈ (1..^𝑁))
20 simpllr 772 . . . . . . . . 9 ((((∅ ∈ 𝑆 ∧ (𝑘 ∈ (1..^𝑁) → 𝐴𝑆)) ∧ 𝑘 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑁)) → (𝑘 ∈ (1..^𝑁) → 𝐴𝑆))
2119, 20mpd 15 . . . . . . . 8 ((((∅ ∈ 𝑆 ∧ (𝑘 ∈ (1..^𝑁) → 𝐴𝑆)) ∧ 𝑘 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑁)) → 𝐴𝑆)
22 simplll 771 . . . . . . . 8 ((((∅ ∈ 𝑆 ∧ (𝑘 ∈ (1..^𝑁) → 𝐴𝑆)) ∧ 𝑘 ∈ ℕ) ∧ ¬ 𝑘 ∈ (1..^𝑁)) → ∅ ∈ 𝑆)
2321, 22ifclda 4562 . . . . . . 7 (((∅ ∈ 𝑆 ∧ (𝑘 ∈ (1..^𝑁) → 𝐴𝑆)) ∧ 𝑘 ∈ ℕ) → if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆)
2423exp31 418 . . . . . 6 (∅ ∈ 𝑆 → ((𝑘 ∈ (1..^𝑁) → 𝐴𝑆) → (𝑘 ∈ ℕ → if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆)))
2524ralimdv2 3161 . . . . 5 (∅ ∈ 𝑆 → (∀𝑘 ∈ (1..^𝑁)𝐴𝑆 → ∀𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆))
2625imp 405 . . . 4 ((∅ ∈ 𝑆 ∧ ∀𝑘 ∈ (1..^𝑁)𝐴𝑆) → ∀𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆)
2718, 26sylan 578 . . 3 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ (1..^𝑁)𝐴𝑆) → ∀𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆)
28 sigaclcu2 33416 . . 3 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆) → 𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆)
2927, 28syldan 589 . 2 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ (1..^𝑁)𝐴𝑆) → 𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆)
3017, 29eqeltrrid 2836 1 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ (1..^𝑁)𝐴𝑆) → 𝑘 ∈ (1..^𝑁)𝐴𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1539  wcel 2104  wral 3059  cdif 3944  cun 3945  wss 3947  c0 4321  ifcif 4527   cuni 4907   ciun 4996  ran crn 5676  (class class class)co 7411  1c1 11113  cn 12216  ..^cfzo 13631  sigAlgebracsiga 33404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-card 9936  df-acn 9939  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13489  df-fzo 13632  df-siga 33405
This theorem is referenced by:  sigaclcu3  33418  measiuns  33513  measiun  33514  meascnbl  33515
  Copyright terms: Public domain W3C validator