![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sigaclfu2 | Structured version Visualization version GIF version |
Description: A sigma-algebra is closed under finite union - indexing on (1..^𝑁). (Contributed by Thierry Arnoux, 28-Dec-2016.) |
Ref | Expression |
---|---|
sigaclfu2 | ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ (1..^𝑁)𝐴 ∈ 𝑆) → ∪ 𝑘 ∈ (1..^𝑁)𝐴 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunxun 5098 | . . . 4 ⊢ ∪ 𝑘 ∈ ((1..^𝑁) ∪ (ℕ ∖ (1..^𝑁)))if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = (∪ 𝑘 ∈ (1..^𝑁)if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∪ ∪ 𝑘 ∈ (ℕ ∖ (1..^𝑁))if(𝑘 ∈ (1..^𝑁), 𝐴, ∅)) | |
2 | fzossnn 13686 | . . . . . 6 ⊢ (1..^𝑁) ⊆ ℕ | |
3 | undif 4482 | . . . . . 6 ⊢ ((1..^𝑁) ⊆ ℕ ↔ ((1..^𝑁) ∪ (ℕ ∖ (1..^𝑁))) = ℕ) | |
4 | 2, 3 | mpbi 229 | . . . . 5 ⊢ ((1..^𝑁) ∪ (ℕ ∖ (1..^𝑁))) = ℕ |
5 | iuneq1 5014 | . . . . 5 ⊢ (((1..^𝑁) ∪ (ℕ ∖ (1..^𝑁))) = ℕ → ∪ 𝑘 ∈ ((1..^𝑁) ∪ (ℕ ∖ (1..^𝑁)))if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = ∪ 𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅)) | |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ ∪ 𝑘 ∈ ((1..^𝑁) ∪ (ℕ ∖ (1..^𝑁)))if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = ∪ 𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) |
7 | iftrue 4535 | . . . . . 6 ⊢ (𝑘 ∈ (1..^𝑁) → if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = 𝐴) | |
8 | 7 | iuneq2i 5019 | . . . . 5 ⊢ ∪ 𝑘 ∈ (1..^𝑁)if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = ∪ 𝑘 ∈ (1..^𝑁)𝐴 |
9 | eldifn 4128 | . . . . . . . 8 ⊢ (𝑘 ∈ (ℕ ∖ (1..^𝑁)) → ¬ 𝑘 ∈ (1..^𝑁)) | |
10 | 9 | iffalsed 4540 | . . . . . . 7 ⊢ (𝑘 ∈ (ℕ ∖ (1..^𝑁)) → if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = ∅) |
11 | 10 | iuneq2i 5019 | . . . . . 6 ⊢ ∪ 𝑘 ∈ (ℕ ∖ (1..^𝑁))if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = ∪ 𝑘 ∈ (ℕ ∖ (1..^𝑁))∅ |
12 | iun0 5066 | . . . . . 6 ⊢ ∪ 𝑘 ∈ (ℕ ∖ (1..^𝑁))∅ = ∅ | |
13 | 11, 12 | eqtri 2759 | . . . . 5 ⊢ ∪ 𝑘 ∈ (ℕ ∖ (1..^𝑁))if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = ∅ |
14 | 8, 13 | uneq12i 4162 | . . . 4 ⊢ (∪ 𝑘 ∈ (1..^𝑁)if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∪ ∪ 𝑘 ∈ (ℕ ∖ (1..^𝑁))if(𝑘 ∈ (1..^𝑁), 𝐴, ∅)) = (∪ 𝑘 ∈ (1..^𝑁)𝐴 ∪ ∅) |
15 | 1, 6, 14 | 3eqtr3i 2767 | . . 3 ⊢ ∪ 𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = (∪ 𝑘 ∈ (1..^𝑁)𝐴 ∪ ∅) |
16 | un0 4391 | . . 3 ⊢ (∪ 𝑘 ∈ (1..^𝑁)𝐴 ∪ ∅) = ∪ 𝑘 ∈ (1..^𝑁)𝐴 | |
17 | 15, 16 | eqtri 2759 | . 2 ⊢ ∪ 𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = ∪ 𝑘 ∈ (1..^𝑁)𝐴 |
18 | 0elsiga 33407 | . . . 4 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → ∅ ∈ 𝑆) | |
19 | simpr 484 | . . . . . . . . 9 ⊢ ((((∅ ∈ 𝑆 ∧ (𝑘 ∈ (1..^𝑁) → 𝐴 ∈ 𝑆)) ∧ 𝑘 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑁)) → 𝑘 ∈ (1..^𝑁)) | |
20 | simpllr 773 | . . . . . . . . 9 ⊢ ((((∅ ∈ 𝑆 ∧ (𝑘 ∈ (1..^𝑁) → 𝐴 ∈ 𝑆)) ∧ 𝑘 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑁)) → (𝑘 ∈ (1..^𝑁) → 𝐴 ∈ 𝑆)) | |
21 | 19, 20 | mpd 15 | . . . . . . . 8 ⊢ ((((∅ ∈ 𝑆 ∧ (𝑘 ∈ (1..^𝑁) → 𝐴 ∈ 𝑆)) ∧ 𝑘 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑁)) → 𝐴 ∈ 𝑆) |
22 | simplll 772 | . . . . . . . 8 ⊢ ((((∅ ∈ 𝑆 ∧ (𝑘 ∈ (1..^𝑁) → 𝐴 ∈ 𝑆)) ∧ 𝑘 ∈ ℕ) ∧ ¬ 𝑘 ∈ (1..^𝑁)) → ∅ ∈ 𝑆) | |
23 | 21, 22 | ifclda 4564 | . . . . . . 7 ⊢ (((∅ ∈ 𝑆 ∧ (𝑘 ∈ (1..^𝑁) → 𝐴 ∈ 𝑆)) ∧ 𝑘 ∈ ℕ) → if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆) |
24 | 23 | exp31 419 | . . . . . 6 ⊢ (∅ ∈ 𝑆 → ((𝑘 ∈ (1..^𝑁) → 𝐴 ∈ 𝑆) → (𝑘 ∈ ℕ → if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆))) |
25 | 24 | ralimdv2 3162 | . . . . 5 ⊢ (∅ ∈ 𝑆 → (∀𝑘 ∈ (1..^𝑁)𝐴 ∈ 𝑆 → ∀𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆)) |
26 | 25 | imp 406 | . . . 4 ⊢ ((∅ ∈ 𝑆 ∧ ∀𝑘 ∈ (1..^𝑁)𝐴 ∈ 𝑆) → ∀𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆) |
27 | 18, 26 | sylan 579 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ (1..^𝑁)𝐴 ∈ 𝑆) → ∀𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆) |
28 | sigaclcu2 33413 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆) → ∪ 𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆) | |
29 | 27, 28 | syldan 590 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ (1..^𝑁)𝐴 ∈ 𝑆) → ∪ 𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆) |
30 | 17, 29 | eqeltrrid 2837 | 1 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ (1..^𝑁)𝐴 ∈ 𝑆) → ∪ 𝑘 ∈ (1..^𝑁)𝐴 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∀wral 3060 ∖ cdif 3946 ∪ cun 3947 ⊆ wss 3949 ∅c0 4323 ifcif 4529 ∪ cuni 4909 ∪ ciun 4998 ran crn 5678 (class class class)co 7412 1c1 11114 ℕcn 12217 ..^cfzo 13632 sigAlgebracsiga 33401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-inf2 9639 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-er 8706 df-map 8825 df-en 8943 df-dom 8944 df-sdom 8945 df-card 9937 df-acn 9940 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-n0 12478 df-z 12564 df-uz 12828 df-fz 13490 df-fzo 13633 df-siga 33402 |
This theorem is referenced by: sigaclcu3 33415 measiuns 33510 measiun 33511 meascnbl 33512 |
Copyright terms: Public domain | W3C validator |