![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sigaclfu2 | Structured version Visualization version GIF version |
Description: A sigma-algebra is closed under finite union - indexing on (1..^𝑁). (Contributed by Thierry Arnoux, 28-Dec-2016.) |
Ref | Expression |
---|---|
sigaclfu2 | ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ (1..^𝑁)𝐴 ∈ 𝑆) → ∪ 𝑘 ∈ (1..^𝑁)𝐴 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunxun 5096 | . . . 4 ⊢ ∪ 𝑘 ∈ ((1..^𝑁) ∪ (ℕ ∖ (1..^𝑁)))if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = (∪ 𝑘 ∈ (1..^𝑁)if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∪ ∪ 𝑘 ∈ (ℕ ∖ (1..^𝑁))if(𝑘 ∈ (1..^𝑁), 𝐴, ∅)) | |
2 | fzossnn 13685 | . . . . . 6 ⊢ (1..^𝑁) ⊆ ℕ | |
3 | undif 4480 | . . . . . 6 ⊢ ((1..^𝑁) ⊆ ℕ ↔ ((1..^𝑁) ∪ (ℕ ∖ (1..^𝑁))) = ℕ) | |
4 | 2, 3 | mpbi 229 | . . . . 5 ⊢ ((1..^𝑁) ∪ (ℕ ∖ (1..^𝑁))) = ℕ |
5 | iuneq1 5012 | . . . . 5 ⊢ (((1..^𝑁) ∪ (ℕ ∖ (1..^𝑁))) = ℕ → ∪ 𝑘 ∈ ((1..^𝑁) ∪ (ℕ ∖ (1..^𝑁)))if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = ∪ 𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅)) | |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ ∪ 𝑘 ∈ ((1..^𝑁) ∪ (ℕ ∖ (1..^𝑁)))if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = ∪ 𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) |
7 | iftrue 4533 | . . . . . 6 ⊢ (𝑘 ∈ (1..^𝑁) → if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = 𝐴) | |
8 | 7 | iuneq2i 5017 | . . . . 5 ⊢ ∪ 𝑘 ∈ (1..^𝑁)if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = ∪ 𝑘 ∈ (1..^𝑁)𝐴 |
9 | eldifn 4126 | . . . . . . . 8 ⊢ (𝑘 ∈ (ℕ ∖ (1..^𝑁)) → ¬ 𝑘 ∈ (1..^𝑁)) | |
10 | 9 | iffalsed 4538 | . . . . . . 7 ⊢ (𝑘 ∈ (ℕ ∖ (1..^𝑁)) → if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = ∅) |
11 | 10 | iuneq2i 5017 | . . . . . 6 ⊢ ∪ 𝑘 ∈ (ℕ ∖ (1..^𝑁))if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = ∪ 𝑘 ∈ (ℕ ∖ (1..^𝑁))∅ |
12 | iun0 5064 | . . . . . 6 ⊢ ∪ 𝑘 ∈ (ℕ ∖ (1..^𝑁))∅ = ∅ | |
13 | 11, 12 | eqtri 2758 | . . . . 5 ⊢ ∪ 𝑘 ∈ (ℕ ∖ (1..^𝑁))if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = ∅ |
14 | 8, 13 | uneq12i 4160 | . . . 4 ⊢ (∪ 𝑘 ∈ (1..^𝑁)if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∪ ∪ 𝑘 ∈ (ℕ ∖ (1..^𝑁))if(𝑘 ∈ (1..^𝑁), 𝐴, ∅)) = (∪ 𝑘 ∈ (1..^𝑁)𝐴 ∪ ∅) |
15 | 1, 6, 14 | 3eqtr3i 2766 | . . 3 ⊢ ∪ 𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = (∪ 𝑘 ∈ (1..^𝑁)𝐴 ∪ ∅) |
16 | un0 4389 | . . 3 ⊢ (∪ 𝑘 ∈ (1..^𝑁)𝐴 ∪ ∅) = ∪ 𝑘 ∈ (1..^𝑁)𝐴 | |
17 | 15, 16 | eqtri 2758 | . 2 ⊢ ∪ 𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = ∪ 𝑘 ∈ (1..^𝑁)𝐴 |
18 | 0elsiga 33410 | . . . 4 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → ∅ ∈ 𝑆) | |
19 | simpr 483 | . . . . . . . . 9 ⊢ ((((∅ ∈ 𝑆 ∧ (𝑘 ∈ (1..^𝑁) → 𝐴 ∈ 𝑆)) ∧ 𝑘 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑁)) → 𝑘 ∈ (1..^𝑁)) | |
20 | simpllr 772 | . . . . . . . . 9 ⊢ ((((∅ ∈ 𝑆 ∧ (𝑘 ∈ (1..^𝑁) → 𝐴 ∈ 𝑆)) ∧ 𝑘 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑁)) → (𝑘 ∈ (1..^𝑁) → 𝐴 ∈ 𝑆)) | |
21 | 19, 20 | mpd 15 | . . . . . . . 8 ⊢ ((((∅ ∈ 𝑆 ∧ (𝑘 ∈ (1..^𝑁) → 𝐴 ∈ 𝑆)) ∧ 𝑘 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑁)) → 𝐴 ∈ 𝑆) |
22 | simplll 771 | . . . . . . . 8 ⊢ ((((∅ ∈ 𝑆 ∧ (𝑘 ∈ (1..^𝑁) → 𝐴 ∈ 𝑆)) ∧ 𝑘 ∈ ℕ) ∧ ¬ 𝑘 ∈ (1..^𝑁)) → ∅ ∈ 𝑆) | |
23 | 21, 22 | ifclda 4562 | . . . . . . 7 ⊢ (((∅ ∈ 𝑆 ∧ (𝑘 ∈ (1..^𝑁) → 𝐴 ∈ 𝑆)) ∧ 𝑘 ∈ ℕ) → if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆) |
24 | 23 | exp31 418 | . . . . . 6 ⊢ (∅ ∈ 𝑆 → ((𝑘 ∈ (1..^𝑁) → 𝐴 ∈ 𝑆) → (𝑘 ∈ ℕ → if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆))) |
25 | 24 | ralimdv2 3161 | . . . . 5 ⊢ (∅ ∈ 𝑆 → (∀𝑘 ∈ (1..^𝑁)𝐴 ∈ 𝑆 → ∀𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆)) |
26 | 25 | imp 405 | . . . 4 ⊢ ((∅ ∈ 𝑆 ∧ ∀𝑘 ∈ (1..^𝑁)𝐴 ∈ 𝑆) → ∀𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆) |
27 | 18, 26 | sylan 578 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ (1..^𝑁)𝐴 ∈ 𝑆) → ∀𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆) |
28 | sigaclcu2 33416 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆) → ∪ 𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆) | |
29 | 27, 28 | syldan 589 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ (1..^𝑁)𝐴 ∈ 𝑆) → ∪ 𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆) |
30 | 17, 29 | eqeltrrid 2836 | 1 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ (1..^𝑁)𝐴 ∈ 𝑆) → ∪ 𝑘 ∈ (1..^𝑁)𝐴 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ∀wral 3059 ∖ cdif 3944 ∪ cun 3945 ⊆ wss 3947 ∅c0 4321 ifcif 4527 ∪ cuni 4907 ∪ ciun 4996 ran crn 5676 (class class class)co 7411 1c1 11113 ℕcn 12216 ..^cfzo 13631 sigAlgebracsiga 33404 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-inf2 9638 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-card 9936 df-acn 9939 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13489 df-fzo 13632 df-siga 33405 |
This theorem is referenced by: sigaclcu3 33418 measiuns 33513 measiun 33514 meascnbl 33515 |
Copyright terms: Public domain | W3C validator |