Proof of Theorem sigaclfu2
Step | Hyp | Ref
| Expression |
1 | | iunxun 5019 |
. . . 4
⊢ ∪ 𝑘 ∈ ((1..^𝑁) ∪ (ℕ ∖ (1..^𝑁)))if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = (∪ 𝑘 ∈ (1..^𝑁)if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∪ ∪ 𝑘 ∈ (ℕ ∖ (1..^𝑁))if(𝑘 ∈ (1..^𝑁), 𝐴, ∅)) |
2 | | fzossnn 13364 |
. . . . . 6
⊢
(1..^𝑁) ⊆
ℕ |
3 | | undif 4412 |
. . . . . 6
⊢
((1..^𝑁) ⊆
ℕ ↔ ((1..^𝑁)
∪ (ℕ ∖ (1..^𝑁))) = ℕ) |
4 | 2, 3 | mpbi 229 |
. . . . 5
⊢
((1..^𝑁) ∪
(ℕ ∖ (1..^𝑁)))
= ℕ |
5 | | iuneq1 4937 |
. . . . 5
⊢
(((1..^𝑁) ∪
(ℕ ∖ (1..^𝑁)))
= ℕ → ∪ 𝑘 ∈ ((1..^𝑁) ∪ (ℕ ∖ (1..^𝑁)))if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = ∪ 𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅)) |
6 | 4, 5 | ax-mp 5 |
. . . 4
⊢ ∪ 𝑘 ∈ ((1..^𝑁) ∪ (ℕ ∖ (1..^𝑁)))if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = ∪ 𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) |
7 | | iftrue 4462 |
. . . . . 6
⊢ (𝑘 ∈ (1..^𝑁) → if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = 𝐴) |
8 | 7 | iuneq2i 4942 |
. . . . 5
⊢ ∪ 𝑘 ∈ (1..^𝑁)if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = ∪ 𝑘 ∈ (1..^𝑁)𝐴 |
9 | | eldifn 4058 |
. . . . . . . 8
⊢ (𝑘 ∈ (ℕ ∖
(1..^𝑁)) → ¬ 𝑘 ∈ (1..^𝑁)) |
10 | 9 | iffalsed 4467 |
. . . . . . 7
⊢ (𝑘 ∈ (ℕ ∖
(1..^𝑁)) → if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = ∅) |
11 | 10 | iuneq2i 4942 |
. . . . . 6
⊢ ∪ 𝑘 ∈ (ℕ ∖ (1..^𝑁))if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = ∪ 𝑘 ∈ (ℕ ∖ (1..^𝑁))∅ |
12 | | iun0 4987 |
. . . . . 6
⊢ ∪ 𝑘 ∈ (ℕ ∖ (1..^𝑁))∅ =
∅ |
13 | 11, 12 | eqtri 2766 |
. . . . 5
⊢ ∪ 𝑘 ∈ (ℕ ∖ (1..^𝑁))if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = ∅ |
14 | 8, 13 | uneq12i 4091 |
. . . 4
⊢ (∪ 𝑘 ∈ (1..^𝑁)if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∪ ∪ 𝑘 ∈ (ℕ ∖ (1..^𝑁))if(𝑘 ∈ (1..^𝑁), 𝐴, ∅)) = (∪ 𝑘 ∈ (1..^𝑁)𝐴 ∪ ∅) |
15 | 1, 6, 14 | 3eqtr3i 2774 |
. . 3
⊢ ∪ 𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = (∪ 𝑘 ∈ (1..^𝑁)𝐴 ∪ ∅) |
16 | | un0 4321 |
. . 3
⊢ (∪ 𝑘 ∈ (1..^𝑁)𝐴 ∪ ∅) = ∪ 𝑘 ∈ (1..^𝑁)𝐴 |
17 | 15, 16 | eqtri 2766 |
. 2
⊢ ∪ 𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = ∪ 𝑘 ∈ (1..^𝑁)𝐴 |
18 | | 0elsiga 31982 |
. . . 4
⊢ (𝑆 ∈ ∪ ran sigAlgebra → ∅ ∈ 𝑆) |
19 | | simpr 484 |
. . . . . . . . 9
⊢
((((∅ ∈ 𝑆
∧ (𝑘 ∈ (1..^𝑁) → 𝐴 ∈ 𝑆)) ∧ 𝑘 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑁)) → 𝑘 ∈ (1..^𝑁)) |
20 | | simpllr 772 |
. . . . . . . . 9
⊢
((((∅ ∈ 𝑆
∧ (𝑘 ∈ (1..^𝑁) → 𝐴 ∈ 𝑆)) ∧ 𝑘 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑁)) → (𝑘 ∈ (1..^𝑁) → 𝐴 ∈ 𝑆)) |
21 | 19, 20 | mpd 15 |
. . . . . . . 8
⊢
((((∅ ∈ 𝑆
∧ (𝑘 ∈ (1..^𝑁) → 𝐴 ∈ 𝑆)) ∧ 𝑘 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑁)) → 𝐴 ∈ 𝑆) |
22 | | simplll 771 |
. . . . . . . 8
⊢
((((∅ ∈ 𝑆
∧ (𝑘 ∈ (1..^𝑁) → 𝐴 ∈ 𝑆)) ∧ 𝑘 ∈ ℕ) ∧ ¬ 𝑘 ∈ (1..^𝑁)) → ∅ ∈ 𝑆) |
23 | 21, 22 | ifclda 4491 |
. . . . . . 7
⊢
(((∅ ∈ 𝑆
∧ (𝑘 ∈ (1..^𝑁) → 𝐴 ∈ 𝑆)) ∧ 𝑘 ∈ ℕ) → if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆) |
24 | 23 | exp31 419 |
. . . . . 6
⊢ (∅
∈ 𝑆 → ((𝑘 ∈ (1..^𝑁) → 𝐴 ∈ 𝑆) → (𝑘 ∈ ℕ → if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆))) |
25 | 24 | ralimdv2 3101 |
. . . . 5
⊢ (∅
∈ 𝑆 →
(∀𝑘 ∈
(1..^𝑁)𝐴 ∈ 𝑆 → ∀𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆)) |
26 | 25 | imp 406 |
. . . 4
⊢ ((∅
∈ 𝑆 ∧
∀𝑘 ∈ (1..^𝑁)𝐴 ∈ 𝑆) → ∀𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆) |
27 | 18, 26 | sylan 579 |
. . 3
⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ (1..^𝑁)𝐴 ∈ 𝑆) → ∀𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆) |
28 | | sigaclcu2 31988 |
. . 3
⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆) → ∪
𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆) |
29 | 27, 28 | syldan 590 |
. 2
⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ (1..^𝑁)𝐴 ∈ 𝑆) → ∪
𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆) |
30 | 17, 29 | eqeltrrid 2844 |
1
⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ (1..^𝑁)𝐴 ∈ 𝑆) → ∪
𝑘 ∈ (1..^𝑁)𝐴 ∈ 𝑆) |