Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigaclfu2 Structured version   Visualization version   GIF version

Theorem sigaclfu2 30993
Description: A sigma-algebra is closed under finite union - indexing on (1..^𝑁). (Contributed by Thierry Arnoux, 28-Dec-2016.)
Assertion
Ref Expression
sigaclfu2 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ (1..^𝑁)𝐴𝑆) → 𝑘 ∈ (1..^𝑁)𝐴𝑆)
Distinct variable groups:   𝑆,𝑘   𝑘,𝑁
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem sigaclfu2
StepHypRef Expression
1 iunxun 4921 . . . 4 𝑘 ∈ ((1..^𝑁) ∪ (ℕ ∖ (1..^𝑁)))if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = ( 𝑘 ∈ (1..^𝑁)if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∪ 𝑘 ∈ (ℕ ∖ (1..^𝑁))if(𝑘 ∈ (1..^𝑁), 𝐴, ∅))
2 fzossnn 12940 . . . . . 6 (1..^𝑁) ⊆ ℕ
3 undif 4350 . . . . . 6 ((1..^𝑁) ⊆ ℕ ↔ ((1..^𝑁) ∪ (ℕ ∖ (1..^𝑁))) = ℕ)
42, 3mpbi 231 . . . . 5 ((1..^𝑁) ∪ (ℕ ∖ (1..^𝑁))) = ℕ
5 iuneq1 4846 . . . . 5 (((1..^𝑁) ∪ (ℕ ∖ (1..^𝑁))) = ℕ → 𝑘 ∈ ((1..^𝑁) ∪ (ℕ ∖ (1..^𝑁)))if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = 𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅))
64, 5ax-mp 5 . . . 4 𝑘 ∈ ((1..^𝑁) ∪ (ℕ ∖ (1..^𝑁)))if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = 𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅)
7 iftrue 4393 . . . . . 6 (𝑘 ∈ (1..^𝑁) → if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = 𝐴)
87iuneq2i 4851 . . . . 5 𝑘 ∈ (1..^𝑁)if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = 𝑘 ∈ (1..^𝑁)𝐴
9 eldifn 4031 . . . . . . . 8 (𝑘 ∈ (ℕ ∖ (1..^𝑁)) → ¬ 𝑘 ∈ (1..^𝑁))
109iffalsed 4398 . . . . . . 7 (𝑘 ∈ (ℕ ∖ (1..^𝑁)) → if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = ∅)
1110iuneq2i 4851 . . . . . 6 𝑘 ∈ (ℕ ∖ (1..^𝑁))if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = 𝑘 ∈ (ℕ ∖ (1..^𝑁))∅
12 iun0 4890 . . . . . 6 𝑘 ∈ (ℕ ∖ (1..^𝑁))∅ = ∅
1311, 12eqtri 2821 . . . . 5 𝑘 ∈ (ℕ ∖ (1..^𝑁))if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = ∅
148, 13uneq12i 4064 . . . 4 ( 𝑘 ∈ (1..^𝑁)if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∪ 𝑘 ∈ (ℕ ∖ (1..^𝑁))if(𝑘 ∈ (1..^𝑁), 𝐴, ∅)) = ( 𝑘 ∈ (1..^𝑁)𝐴 ∪ ∅)
151, 6, 143eqtr3i 2829 . . 3 𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = ( 𝑘 ∈ (1..^𝑁)𝐴 ∪ ∅)
16 un0 4270 . . 3 ( 𝑘 ∈ (1..^𝑁)𝐴 ∪ ∅) = 𝑘 ∈ (1..^𝑁)𝐴
1715, 16eqtri 2821 . 2 𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) = 𝑘 ∈ (1..^𝑁)𝐴
18 0elsiga 30986 . . . 4 (𝑆 ran sigAlgebra → ∅ ∈ 𝑆)
19 simpr 485 . . . . . . . . 9 ((((∅ ∈ 𝑆 ∧ (𝑘 ∈ (1..^𝑁) → 𝐴𝑆)) ∧ 𝑘 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑁)) → 𝑘 ∈ (1..^𝑁))
20 simpllr 772 . . . . . . . . 9 ((((∅ ∈ 𝑆 ∧ (𝑘 ∈ (1..^𝑁) → 𝐴𝑆)) ∧ 𝑘 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑁)) → (𝑘 ∈ (1..^𝑁) → 𝐴𝑆))
2119, 20mpd 15 . . . . . . . 8 ((((∅ ∈ 𝑆 ∧ (𝑘 ∈ (1..^𝑁) → 𝐴𝑆)) ∧ 𝑘 ∈ ℕ) ∧ 𝑘 ∈ (1..^𝑁)) → 𝐴𝑆)
22 simplll 771 . . . . . . . 8 ((((∅ ∈ 𝑆 ∧ (𝑘 ∈ (1..^𝑁) → 𝐴𝑆)) ∧ 𝑘 ∈ ℕ) ∧ ¬ 𝑘 ∈ (1..^𝑁)) → ∅ ∈ 𝑆)
2321, 22ifclda 4421 . . . . . . 7 (((∅ ∈ 𝑆 ∧ (𝑘 ∈ (1..^𝑁) → 𝐴𝑆)) ∧ 𝑘 ∈ ℕ) → if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆)
2423exp31 420 . . . . . 6 (∅ ∈ 𝑆 → ((𝑘 ∈ (1..^𝑁) → 𝐴𝑆) → (𝑘 ∈ ℕ → if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆)))
2524ralimdv2 3145 . . . . 5 (∅ ∈ 𝑆 → (∀𝑘 ∈ (1..^𝑁)𝐴𝑆 → ∀𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆))
2625imp 407 . . . 4 ((∅ ∈ 𝑆 ∧ ∀𝑘 ∈ (1..^𝑁)𝐴𝑆) → ∀𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆)
2718, 26sylan 580 . . 3 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ (1..^𝑁)𝐴𝑆) → ∀𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆)
28 sigaclcu2 30992 . . 3 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆) → 𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆)
2927, 28syldan 591 . 2 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ (1..^𝑁)𝐴𝑆) → 𝑘 ∈ ℕ if(𝑘 ∈ (1..^𝑁), 𝐴, ∅) ∈ 𝑆)
3017, 29syl5eqelr 2890 1 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ (1..^𝑁)𝐴𝑆) → 𝑘 ∈ (1..^𝑁)𝐴𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1525  wcel 2083  wral 3107  cdif 3862  cun 3863  wss 3865  c0 4217  ifcif 4387   cuni 4751   ciun 4831  ran crn 5451  (class class class)co 7023  1c1 10391  cn 11492  ..^cfzo 12887  sigAlgebracsiga 30980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-inf2 8957  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-se 5410  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-isom 6241  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-1st 7552  df-2nd 7553  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-er 8146  df-map 8265  df-en 8365  df-dom 8366  df-sdom 8367  df-card 9221  df-acn 9224  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-nn 11493  df-n0 11752  df-z 11836  df-uz 12098  df-fz 12747  df-fzo 12888  df-siga 30981
This theorem is referenced by:  sigaclcu3  30994  measiuns  31089  measiun  31090  meascnbl  31091
  Copyright terms: Public domain W3C validator