| Step | Hyp | Ref
| Expression |
| 1 | | cvmtop1 35265 |
. . . . . 6
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top) |
| 2 | 1 | 3ad2ant1 1134 |
. . . . 5
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → 𝐶 ∈ Top) |
| 3 | | cvmcov.1 |
. . . . . . . 8
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
| 4 | 3 | cvmsuni 35274 |
. . . . . . 7
⊢ (𝑇 ∈ (𝑆‘𝑈) → ∪ 𝑇 = (◡𝐹 “ 𝑈)) |
| 5 | 4 | 3ad2ant2 1135 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → ∪ 𝑇 = (◡𝐹 “ 𝑈)) |
| 6 | 3 | cvmsss 35272 |
. . . . . . . 8
⊢ (𝑇 ∈ (𝑆‘𝑈) → 𝑇 ⊆ 𝐶) |
| 7 | 6 | 3ad2ant2 1135 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → 𝑇 ⊆ 𝐶) |
| 8 | 7 | unissd 4917 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → ∪ 𝑇 ⊆ ∪ 𝐶) |
| 9 | 5, 8 | eqsstrrd 4019 |
. . . . 5
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (◡𝐹 “ 𝑈) ⊆ ∪ 𝐶) |
| 10 | | eqid 2737 |
. . . . . 6
⊢ ∪ 𝐶 =
∪ 𝐶 |
| 11 | 10 | restuni 23170 |
. . . . 5
⊢ ((𝐶 ∈ Top ∧ (◡𝐹 “ 𝑈) ⊆ ∪ 𝐶) → (◡𝐹 “ 𝑈) = ∪ (𝐶 ↾t (◡𝐹 “ 𝑈))) |
| 12 | 2, 9, 11 | syl2anc 584 |
. . . 4
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (◡𝐹 “ 𝑈) = ∪ (𝐶 ↾t (◡𝐹 “ 𝑈))) |
| 13 | 12 | difeq1d 4125 |
. . 3
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → ((◡𝐹 “ 𝑈) ∖ ∪
(𝑇 ∖ {𝐴})) = (∪ (𝐶
↾t (◡𝐹 “ 𝑈)) ∖ ∪
(𝑇 ∖ {𝐴}))) |
| 14 | | unisng 4925 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑇 → ∪ {𝐴} = 𝐴) |
| 15 | 14 | 3ad2ant3 1136 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → ∪ {𝐴} = 𝐴) |
| 16 | 15 | uneq2d 4168 |
. . . . 5
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (∪
(𝑇 ∖ {𝐴}) ∪ ∪ {𝐴})
= (∪ (𝑇 ∖ {𝐴}) ∪ 𝐴)) |
| 17 | | uniun 4930 |
. . . . . 6
⊢ ∪ ((𝑇
∖ {𝐴}) ∪ {𝐴}) = (∪ (𝑇
∖ {𝐴}) ∪ ∪ {𝐴}) |
| 18 | | undif1 4476 |
. . . . . . . . 9
⊢ ((𝑇 ∖ {𝐴}) ∪ {𝐴}) = (𝑇 ∪ {𝐴}) |
| 19 | | simp3 1139 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → 𝐴 ∈ 𝑇) |
| 20 | 19 | snssd 4809 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → {𝐴} ⊆ 𝑇) |
| 21 | | ssequn2 4189 |
. . . . . . . . . 10
⊢ ({𝐴} ⊆ 𝑇 ↔ (𝑇 ∪ {𝐴}) = 𝑇) |
| 22 | 20, 21 | sylib 218 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (𝑇 ∪ {𝐴}) = 𝑇) |
| 23 | 18, 22 | eqtrid 2789 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → ((𝑇 ∖ {𝐴}) ∪ {𝐴}) = 𝑇) |
| 24 | 23 | unieqd 4920 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → ∪
((𝑇 ∖ {𝐴}) ∪ {𝐴}) = ∪ 𝑇) |
| 25 | 24, 5 | eqtrd 2777 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → ∪
((𝑇 ∖ {𝐴}) ∪ {𝐴}) = (◡𝐹 “ 𝑈)) |
| 26 | 17, 25 | eqtr3id 2791 |
. . . . 5
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (∪
(𝑇 ∖ {𝐴}) ∪ ∪ {𝐴})
= (◡𝐹 “ 𝑈)) |
| 27 | 16, 26 | eqtr3d 2779 |
. . . 4
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (∪
(𝑇 ∖ {𝐴}) ∪ 𝐴) = (◡𝐹 “ 𝑈)) |
| 28 | | difss 4136 |
. . . . . . 7
⊢ (𝑇 ∖ {𝐴}) ⊆ 𝑇 |
| 29 | 28 | unissi 4916 |
. . . . . 6
⊢ ∪ (𝑇
∖ {𝐴}) ⊆ ∪ 𝑇 |
| 30 | 29, 5 | sseqtrid 4026 |
. . . . 5
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → ∪ (𝑇 ∖ {𝐴}) ⊆ (◡𝐹 “ 𝑈)) |
| 31 | | uniiun 5058 |
. . . . . . . 8
⊢ ∪ (𝑇
∖ {𝐴}) = ∪ 𝑥 ∈ (𝑇 ∖ {𝐴})𝑥 |
| 32 | 31 | ineq2i 4217 |
. . . . . . 7
⊢ (𝐴 ∩ ∪ (𝑇
∖ {𝐴})) = (𝐴 ∩ ∪ 𝑥 ∈ (𝑇 ∖ {𝐴})𝑥) |
| 33 | | incom 4209 |
. . . . . . 7
⊢ (∪ (𝑇
∖ {𝐴}) ∩ 𝐴) = (𝐴 ∩ ∪ (𝑇 ∖ {𝐴})) |
| 34 | | iunin2 5071 |
. . . . . . 7
⊢ ∪ 𝑥 ∈ (𝑇 ∖ {𝐴})(𝐴 ∩ 𝑥) = (𝐴 ∩ ∪
𝑥 ∈ (𝑇 ∖ {𝐴})𝑥) |
| 35 | 32, 33, 34 | 3eqtr4i 2775 |
. . . . . 6
⊢ (∪ (𝑇
∖ {𝐴}) ∩ 𝐴) = ∪ 𝑥 ∈ (𝑇 ∖ {𝐴})(𝐴 ∩ 𝑥) |
| 36 | | eldifsn 4786 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝑇 ∖ {𝐴}) ↔ (𝑥 ∈ 𝑇 ∧ 𝑥 ≠ 𝐴)) |
| 37 | | nesym 2997 |
. . . . . . . . . . . 12
⊢ (𝑥 ≠ 𝐴 ↔ ¬ 𝐴 = 𝑥) |
| 38 | 3 | cvmsdisj 35275 |
. . . . . . . . . . . . . 14
⊢ ((𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇) → (𝐴 = 𝑥 ∨ (𝐴 ∩ 𝑥) = ∅)) |
| 39 | 38 | 3expa 1119 |
. . . . . . . . . . . . 13
⊢ (((𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) ∧ 𝑥 ∈ 𝑇) → (𝐴 = 𝑥 ∨ (𝐴 ∩ 𝑥) = ∅)) |
| 40 | 39 | ord 865 |
. . . . . . . . . . . 12
⊢ (((𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) ∧ 𝑥 ∈ 𝑇) → (¬ 𝐴 = 𝑥 → (𝐴 ∩ 𝑥) = ∅)) |
| 41 | 37, 40 | biimtrid 242 |
. . . . . . . . . . 11
⊢ (((𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) ∧ 𝑥 ∈ 𝑇) → (𝑥 ≠ 𝐴 → (𝐴 ∩ 𝑥) = ∅)) |
| 42 | 41 | impr 454 |
. . . . . . . . . 10
⊢ (((𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) ∧ (𝑥 ∈ 𝑇 ∧ 𝑥 ≠ 𝐴)) → (𝐴 ∩ 𝑥) = ∅) |
| 43 | 36, 42 | sylan2b 594 |
. . . . . . . . 9
⊢ (((𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) ∧ 𝑥 ∈ (𝑇 ∖ {𝐴})) → (𝐴 ∩ 𝑥) = ∅) |
| 44 | 43 | iuneq2dv 5016 |
. . . . . . . 8
⊢ ((𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → ∪
𝑥 ∈ (𝑇 ∖ {𝐴})(𝐴 ∩ 𝑥) = ∪ 𝑥 ∈ (𝑇 ∖ {𝐴})∅) |
| 45 | 44 | 3adant1 1131 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → ∪
𝑥 ∈ (𝑇 ∖ {𝐴})(𝐴 ∩ 𝑥) = ∪ 𝑥 ∈ (𝑇 ∖ {𝐴})∅) |
| 46 | | iun0 5062 |
. . . . . . 7
⊢ ∪ 𝑥 ∈ (𝑇 ∖ {𝐴})∅ = ∅ |
| 47 | 45, 46 | eqtrdi 2793 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → ∪
𝑥 ∈ (𝑇 ∖ {𝐴})(𝐴 ∩ 𝑥) = ∅) |
| 48 | 35, 47 | eqtrid 2789 |
. . . . 5
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (∪
(𝑇 ∖ {𝐴}) ∩ 𝐴) = ∅) |
| 49 | | uneqdifeq 4493 |
. . . . 5
⊢ ((∪ (𝑇
∖ {𝐴}) ⊆ (◡𝐹 “ 𝑈) ∧ (∪ (𝑇 ∖ {𝐴}) ∩ 𝐴) = ∅) → ((∪ (𝑇
∖ {𝐴}) ∪ 𝐴) = (◡𝐹 “ 𝑈) ↔ ((◡𝐹 “ 𝑈) ∖ ∪
(𝑇 ∖ {𝐴})) = 𝐴)) |
| 50 | 30, 48, 49 | syl2anc 584 |
. . . 4
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → ((∪
(𝑇 ∖ {𝐴}) ∪ 𝐴) = (◡𝐹 “ 𝑈) ↔ ((◡𝐹 “ 𝑈) ∖ ∪
(𝑇 ∖ {𝐴})) = 𝐴)) |
| 51 | 27, 50 | mpbid 232 |
. . 3
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → ((◡𝐹 “ 𝑈) ∖ ∪
(𝑇 ∖ {𝐴})) = 𝐴) |
| 52 | 13, 51 | eqtr3d 2779 |
. 2
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (∪
(𝐶 ↾t
(◡𝐹 “ 𝑈)) ∖ ∪
(𝑇 ∖ {𝐴})) = 𝐴) |
| 53 | | uniexg 7760 |
. . . . . 6
⊢ (𝑇 ∈ (𝑆‘𝑈) → ∪ 𝑇 ∈ V) |
| 54 | 53 | 3ad2ant2 1135 |
. . . . 5
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → ∪ 𝑇 ∈ V) |
| 55 | 5, 54 | eqeltrrd 2842 |
. . . 4
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (◡𝐹 “ 𝑈) ∈ V) |
| 56 | | resttop 23168 |
. . . 4
⊢ ((𝐶 ∈ Top ∧ (◡𝐹 “ 𝑈) ∈ V) → (𝐶 ↾t (◡𝐹 “ 𝑈)) ∈ Top) |
| 57 | 2, 55, 56 | syl2anc 584 |
. . 3
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (𝐶 ↾t (◡𝐹 “ 𝑈)) ∈ Top) |
| 58 | | elssuni 4937 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝑇 → 𝑥 ⊆ ∪ 𝑇) |
| 59 | 58 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) ∧ 𝑥 ∈ 𝑇) → 𝑥 ⊆ ∪ 𝑇) |
| 60 | 5 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) ∧ 𝑥 ∈ 𝑇) → ∪ 𝑇 = (◡𝐹 “ 𝑈)) |
| 61 | 59, 60 | sseqtrd 4020 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) ∧ 𝑥 ∈ 𝑇) → 𝑥 ⊆ (◡𝐹 “ 𝑈)) |
| 62 | | dfss2 3969 |
. . . . . . . . 9
⊢ (𝑥 ⊆ (◡𝐹 “ 𝑈) ↔ (𝑥 ∩ (◡𝐹 “ 𝑈)) = 𝑥) |
| 63 | 61, 62 | sylib 218 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) ∧ 𝑥 ∈ 𝑇) → (𝑥 ∩ (◡𝐹 “ 𝑈)) = 𝑥) |
| 64 | 2 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) ∧ 𝑥 ∈ 𝑇) → 𝐶 ∈ Top) |
| 65 | 55 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) ∧ 𝑥 ∈ 𝑇) → (◡𝐹 “ 𝑈) ∈ V) |
| 66 | 7 | sselda 3983 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) ∧ 𝑥 ∈ 𝑇) → 𝑥 ∈ 𝐶) |
| 67 | | elrestr 17473 |
. . . . . . . . 9
⊢ ((𝐶 ∈ Top ∧ (◡𝐹 “ 𝑈) ∈ V ∧ 𝑥 ∈ 𝐶) → (𝑥 ∩ (◡𝐹 “ 𝑈)) ∈ (𝐶 ↾t (◡𝐹 “ 𝑈))) |
| 68 | 64, 65, 66, 67 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) ∧ 𝑥 ∈ 𝑇) → (𝑥 ∩ (◡𝐹 “ 𝑈)) ∈ (𝐶 ↾t (◡𝐹 “ 𝑈))) |
| 69 | 63, 68 | eqeltrrd 2842 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) ∧ 𝑥 ∈ 𝑇) → 𝑥 ∈ (𝐶 ↾t (◡𝐹 “ 𝑈))) |
| 70 | 69 | ex 412 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (𝑥 ∈ 𝑇 → 𝑥 ∈ (𝐶 ↾t (◡𝐹 “ 𝑈)))) |
| 71 | 70 | ssrdv 3989 |
. . . . 5
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → 𝑇 ⊆ (𝐶 ↾t (◡𝐹 “ 𝑈))) |
| 72 | 71 | ssdifssd 4147 |
. . . 4
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (𝑇 ∖ {𝐴}) ⊆ (𝐶 ↾t (◡𝐹 “ 𝑈))) |
| 73 | | uniopn 22903 |
. . . 4
⊢ (((𝐶 ↾t (◡𝐹 “ 𝑈)) ∈ Top ∧ (𝑇 ∖ {𝐴}) ⊆ (𝐶 ↾t (◡𝐹 “ 𝑈))) → ∪
(𝑇 ∖ {𝐴}) ∈ (𝐶 ↾t (◡𝐹 “ 𝑈))) |
| 74 | 57, 72, 73 | syl2anc 584 |
. . 3
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → ∪ (𝑇 ∖ {𝐴}) ∈ (𝐶 ↾t (◡𝐹 “ 𝑈))) |
| 75 | | eqid 2737 |
. . . 4
⊢ ∪ (𝐶
↾t (◡𝐹 “ 𝑈)) = ∪ (𝐶 ↾t (◡𝐹 “ 𝑈)) |
| 76 | 75 | opncld 23041 |
. . 3
⊢ (((𝐶 ↾t (◡𝐹 “ 𝑈)) ∈ Top ∧ ∪ (𝑇
∖ {𝐴}) ∈ (𝐶 ↾t (◡𝐹 “ 𝑈))) → (∪
(𝐶 ↾t
(◡𝐹 “ 𝑈)) ∖ ∪
(𝑇 ∖ {𝐴})) ∈ (Clsd‘(𝐶 ↾t (◡𝐹 “ 𝑈)))) |
| 77 | 57, 74, 76 | syl2anc 584 |
. 2
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (∪
(𝐶 ↾t
(◡𝐹 “ 𝑈)) ∖ ∪
(𝑇 ∖ {𝐴})) ∈ (Clsd‘(𝐶 ↾t (◡𝐹 “ 𝑈)))) |
| 78 | 52, 77 | eqeltrrd 2842 |
1
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → 𝐴 ∈ (Clsd‘(𝐶 ↾t (◡𝐹 “ 𝑈)))) |