Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmscld Structured version   Visualization version   GIF version

Theorem cvmscld 35267
Description: The sets of an even covering are clopen in the subspace topology on 𝑇. (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypothesis
Ref Expression
cvmcov.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
Assertion
Ref Expression
cvmscld ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → 𝐴 ∈ (Clsd‘(𝐶t (𝐹𝑈))))
Distinct variable groups:   𝑘,𝑠,𝑢,𝑣,𝐶   𝑘,𝐹,𝑠,𝑢,𝑣   𝑘,𝐽,𝑠,𝑢,𝑣   𝑈,𝑘,𝑠,𝑢,𝑣   𝑇,𝑠,𝑢,𝑣   𝑢,𝐴,𝑣
Allowed substitution hints:   𝐴(𝑘,𝑠)   𝑆(𝑣,𝑢,𝑘,𝑠)   𝑇(𝑘)

Proof of Theorem cvmscld
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cvmtop1 35254 . . . . . 6 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top)
213ad2ant1 1133 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → 𝐶 ∈ Top)
3 cvmcov.1 . . . . . . . 8 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
43cvmsuni 35263 . . . . . . 7 (𝑇 ∈ (𝑆𝑈) → 𝑇 = (𝐹𝑈))
543ad2ant2 1134 . . . . . 6 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → 𝑇 = (𝐹𝑈))
63cvmsss 35261 . . . . . . . 8 (𝑇 ∈ (𝑆𝑈) → 𝑇𝐶)
763ad2ant2 1134 . . . . . . 7 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → 𝑇𝐶)
87unissd 4884 . . . . . 6 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → 𝑇 𝐶)
95, 8eqsstrrd 3985 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → (𝐹𝑈) ⊆ 𝐶)
10 eqid 2730 . . . . . 6 𝐶 = 𝐶
1110restuni 23056 . . . . 5 ((𝐶 ∈ Top ∧ (𝐹𝑈) ⊆ 𝐶) → (𝐹𝑈) = (𝐶t (𝐹𝑈)))
122, 9, 11syl2anc 584 . . . 4 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → (𝐹𝑈) = (𝐶t (𝐹𝑈)))
1312difeq1d 4091 . . 3 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → ((𝐹𝑈) ∖ (𝑇 ∖ {𝐴})) = ( (𝐶t (𝐹𝑈)) ∖ (𝑇 ∖ {𝐴})))
14 unisng 4892 . . . . . . 7 (𝐴𝑇 {𝐴} = 𝐴)
15143ad2ant3 1135 . . . . . 6 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → {𝐴} = 𝐴)
1615uneq2d 4134 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → ( (𝑇 ∖ {𝐴}) ∪ {𝐴}) = ( (𝑇 ∖ {𝐴}) ∪ 𝐴))
17 uniun 4897 . . . . . 6 ((𝑇 ∖ {𝐴}) ∪ {𝐴}) = ( (𝑇 ∖ {𝐴}) ∪ {𝐴})
18 undif1 4442 . . . . . . . . 9 ((𝑇 ∖ {𝐴}) ∪ {𝐴}) = (𝑇 ∪ {𝐴})
19 simp3 1138 . . . . . . . . . . 11 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → 𝐴𝑇)
2019snssd 4776 . . . . . . . . . 10 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → {𝐴} ⊆ 𝑇)
21 ssequn2 4155 . . . . . . . . . 10 ({𝐴} ⊆ 𝑇 ↔ (𝑇 ∪ {𝐴}) = 𝑇)
2220, 21sylib 218 . . . . . . . . 9 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → (𝑇 ∪ {𝐴}) = 𝑇)
2318, 22eqtrid 2777 . . . . . . . 8 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → ((𝑇 ∖ {𝐴}) ∪ {𝐴}) = 𝑇)
2423unieqd 4887 . . . . . . 7 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → ((𝑇 ∖ {𝐴}) ∪ {𝐴}) = 𝑇)
2524, 5eqtrd 2765 . . . . . 6 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → ((𝑇 ∖ {𝐴}) ∪ {𝐴}) = (𝐹𝑈))
2617, 25eqtr3id 2779 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → ( (𝑇 ∖ {𝐴}) ∪ {𝐴}) = (𝐹𝑈))
2716, 26eqtr3d 2767 . . . 4 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → ( (𝑇 ∖ {𝐴}) ∪ 𝐴) = (𝐹𝑈))
28 difss 4102 . . . . . . 7 (𝑇 ∖ {𝐴}) ⊆ 𝑇
2928unissi 4883 . . . . . 6 (𝑇 ∖ {𝐴}) ⊆ 𝑇
3029, 5sseqtrid 3992 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → (𝑇 ∖ {𝐴}) ⊆ (𝐹𝑈))
31 uniiun 5025 . . . . . . . 8 (𝑇 ∖ {𝐴}) = 𝑥 ∈ (𝑇 ∖ {𝐴})𝑥
3231ineq2i 4183 . . . . . . 7 (𝐴 (𝑇 ∖ {𝐴})) = (𝐴 𝑥 ∈ (𝑇 ∖ {𝐴})𝑥)
33 incom 4175 . . . . . . 7 ( (𝑇 ∖ {𝐴}) ∩ 𝐴) = (𝐴 (𝑇 ∖ {𝐴}))
34 iunin2 5038 . . . . . . 7 𝑥 ∈ (𝑇 ∖ {𝐴})(𝐴𝑥) = (𝐴 𝑥 ∈ (𝑇 ∖ {𝐴})𝑥)
3532, 33, 343eqtr4i 2763 . . . . . 6 ( (𝑇 ∖ {𝐴}) ∩ 𝐴) = 𝑥 ∈ (𝑇 ∖ {𝐴})(𝐴𝑥)
36 eldifsn 4753 . . . . . . . . . 10 (𝑥 ∈ (𝑇 ∖ {𝐴}) ↔ (𝑥𝑇𝑥𝐴))
37 nesym 2982 . . . . . . . . . . . 12 (𝑥𝐴 ↔ ¬ 𝐴 = 𝑥)
383cvmsdisj 35264 . . . . . . . . . . . . . 14 ((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇𝑥𝑇) → (𝐴 = 𝑥 ∨ (𝐴𝑥) = ∅))
39383expa 1118 . . . . . . . . . . . . 13 (((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) ∧ 𝑥𝑇) → (𝐴 = 𝑥 ∨ (𝐴𝑥) = ∅))
4039ord 864 . . . . . . . . . . . 12 (((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) ∧ 𝑥𝑇) → (¬ 𝐴 = 𝑥 → (𝐴𝑥) = ∅))
4137, 40biimtrid 242 . . . . . . . . . . 11 (((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) ∧ 𝑥𝑇) → (𝑥𝐴 → (𝐴𝑥) = ∅))
4241impr 454 . . . . . . . . . 10 (((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) ∧ (𝑥𝑇𝑥𝐴)) → (𝐴𝑥) = ∅)
4336, 42sylan2b 594 . . . . . . . . 9 (((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) ∧ 𝑥 ∈ (𝑇 ∖ {𝐴})) → (𝐴𝑥) = ∅)
4443iuneq2dv 4983 . . . . . . . 8 ((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → 𝑥 ∈ (𝑇 ∖ {𝐴})(𝐴𝑥) = 𝑥 ∈ (𝑇 ∖ {𝐴})∅)
45443adant1 1130 . . . . . . 7 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → 𝑥 ∈ (𝑇 ∖ {𝐴})(𝐴𝑥) = 𝑥 ∈ (𝑇 ∖ {𝐴})∅)
46 iun0 5029 . . . . . . 7 𝑥 ∈ (𝑇 ∖ {𝐴})∅ = ∅
4745, 46eqtrdi 2781 . . . . . 6 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → 𝑥 ∈ (𝑇 ∖ {𝐴})(𝐴𝑥) = ∅)
4835, 47eqtrid 2777 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → ( (𝑇 ∖ {𝐴}) ∩ 𝐴) = ∅)
49 uneqdifeq 4459 . . . . 5 (( (𝑇 ∖ {𝐴}) ⊆ (𝐹𝑈) ∧ ( (𝑇 ∖ {𝐴}) ∩ 𝐴) = ∅) → (( (𝑇 ∖ {𝐴}) ∪ 𝐴) = (𝐹𝑈) ↔ ((𝐹𝑈) ∖ (𝑇 ∖ {𝐴})) = 𝐴))
5030, 48, 49syl2anc 584 . . . 4 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → (( (𝑇 ∖ {𝐴}) ∪ 𝐴) = (𝐹𝑈) ↔ ((𝐹𝑈) ∖ (𝑇 ∖ {𝐴})) = 𝐴))
5127, 50mpbid 232 . . 3 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → ((𝐹𝑈) ∖ (𝑇 ∖ {𝐴})) = 𝐴)
5213, 51eqtr3d 2767 . 2 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → ( (𝐶t (𝐹𝑈)) ∖ (𝑇 ∖ {𝐴})) = 𝐴)
53 uniexg 7719 . . . . . 6 (𝑇 ∈ (𝑆𝑈) → 𝑇 ∈ V)
54533ad2ant2 1134 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → 𝑇 ∈ V)
555, 54eqeltrrd 2830 . . . 4 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → (𝐹𝑈) ∈ V)
56 resttop 23054 . . . 4 ((𝐶 ∈ Top ∧ (𝐹𝑈) ∈ V) → (𝐶t (𝐹𝑈)) ∈ Top)
572, 55, 56syl2anc 584 . . 3 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → (𝐶t (𝐹𝑈)) ∈ Top)
58 elssuni 4904 . . . . . . . . . . 11 (𝑥𝑇𝑥 𝑇)
5958adantl 481 . . . . . . . . . 10 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) ∧ 𝑥𝑇) → 𝑥 𝑇)
605adantr 480 . . . . . . . . . 10 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) ∧ 𝑥𝑇) → 𝑇 = (𝐹𝑈))
6159, 60sseqtrd 3986 . . . . . . . . 9 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) ∧ 𝑥𝑇) → 𝑥 ⊆ (𝐹𝑈))
62 dfss2 3935 . . . . . . . . 9 (𝑥 ⊆ (𝐹𝑈) ↔ (𝑥 ∩ (𝐹𝑈)) = 𝑥)
6361, 62sylib 218 . . . . . . . 8 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) ∧ 𝑥𝑇) → (𝑥 ∩ (𝐹𝑈)) = 𝑥)
642adantr 480 . . . . . . . . 9 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) ∧ 𝑥𝑇) → 𝐶 ∈ Top)
6555adantr 480 . . . . . . . . 9 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) ∧ 𝑥𝑇) → (𝐹𝑈) ∈ V)
667sselda 3949 . . . . . . . . 9 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) ∧ 𝑥𝑇) → 𝑥𝐶)
67 elrestr 17398 . . . . . . . . 9 ((𝐶 ∈ Top ∧ (𝐹𝑈) ∈ V ∧ 𝑥𝐶) → (𝑥 ∩ (𝐹𝑈)) ∈ (𝐶t (𝐹𝑈)))
6864, 65, 66, 67syl3anc 1373 . . . . . . . 8 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) ∧ 𝑥𝑇) → (𝑥 ∩ (𝐹𝑈)) ∈ (𝐶t (𝐹𝑈)))
6963, 68eqeltrrd 2830 . . . . . . 7 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) ∧ 𝑥𝑇) → 𝑥 ∈ (𝐶t (𝐹𝑈)))
7069ex 412 . . . . . 6 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → (𝑥𝑇𝑥 ∈ (𝐶t (𝐹𝑈))))
7170ssrdv 3955 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → 𝑇 ⊆ (𝐶t (𝐹𝑈)))
7271ssdifssd 4113 . . . 4 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → (𝑇 ∖ {𝐴}) ⊆ (𝐶t (𝐹𝑈)))
73 uniopn 22791 . . . 4 (((𝐶t (𝐹𝑈)) ∈ Top ∧ (𝑇 ∖ {𝐴}) ⊆ (𝐶t (𝐹𝑈))) → (𝑇 ∖ {𝐴}) ∈ (𝐶t (𝐹𝑈)))
7457, 72, 73syl2anc 584 . . 3 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → (𝑇 ∖ {𝐴}) ∈ (𝐶t (𝐹𝑈)))
75 eqid 2730 . . . 4 (𝐶t (𝐹𝑈)) = (𝐶t (𝐹𝑈))
7675opncld 22927 . . 3 (((𝐶t (𝐹𝑈)) ∈ Top ∧ (𝑇 ∖ {𝐴}) ∈ (𝐶t (𝐹𝑈))) → ( (𝐶t (𝐹𝑈)) ∖ (𝑇 ∖ {𝐴})) ∈ (Clsd‘(𝐶t (𝐹𝑈))))
7757, 74, 76syl2anc 584 . 2 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → ( (𝐶t (𝐹𝑈)) ∖ (𝑇 ∖ {𝐴})) ∈ (Clsd‘(𝐶t (𝐹𝑈))))
7852, 77eqeltrrd 2830 1 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → 𝐴 ∈ (Clsd‘(𝐶t (𝐹𝑈))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  {crab 3408  Vcvv 3450  cdif 3914  cun 3915  cin 3916  wss 3917  c0 4299  𝒫 cpw 4566  {csn 4592   cuni 4874   ciun 4958  cmpt 5191  ccnv 5640  cres 5643  cima 5644  cfv 6514  (class class class)co 7390  t crest 17390  Topctop 22787  Clsdccld 22910  Homeochmeo 23647   CovMap ccvm 35249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-en 8922  df-fin 8925  df-fi 9369  df-rest 17392  df-topgen 17413  df-top 22788  df-topon 22805  df-bases 22840  df-cld 22913  df-cvm 35250
This theorem is referenced by:  cvmliftmolem1  35275  cvmlift2lem9  35305  cvmlift3lem6  35318
  Copyright terms: Public domain W3C validator