Step | Hyp | Ref
| Expression |
1 | | cvmtop1 33231 |
. . . . . 6
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top) |
2 | 1 | 3ad2ant1 1132 |
. . . . 5
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → 𝐶 ∈ Top) |
3 | | cvmcov.1 |
. . . . . . . 8
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
4 | 3 | cvmsuni 33240 |
. . . . . . 7
⊢ (𝑇 ∈ (𝑆‘𝑈) → ∪ 𝑇 = (◡𝐹 “ 𝑈)) |
5 | 4 | 3ad2ant2 1133 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → ∪ 𝑇 = (◡𝐹 “ 𝑈)) |
6 | 3 | cvmsss 33238 |
. . . . . . . 8
⊢ (𝑇 ∈ (𝑆‘𝑈) → 𝑇 ⊆ 𝐶) |
7 | 6 | 3ad2ant2 1133 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → 𝑇 ⊆ 𝐶) |
8 | 7 | unissd 4850 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → ∪ 𝑇 ⊆ ∪ 𝐶) |
9 | 5, 8 | eqsstrrd 3961 |
. . . . 5
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (◡𝐹 “ 𝑈) ⊆ ∪ 𝐶) |
10 | | eqid 2739 |
. . . . . 6
⊢ ∪ 𝐶 =
∪ 𝐶 |
11 | 10 | restuni 22322 |
. . . . 5
⊢ ((𝐶 ∈ Top ∧ (◡𝐹 “ 𝑈) ⊆ ∪ 𝐶) → (◡𝐹 “ 𝑈) = ∪ (𝐶 ↾t (◡𝐹 “ 𝑈))) |
12 | 2, 9, 11 | syl2anc 584 |
. . . 4
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (◡𝐹 “ 𝑈) = ∪ (𝐶 ↾t (◡𝐹 “ 𝑈))) |
13 | 12 | difeq1d 4057 |
. . 3
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → ((◡𝐹 “ 𝑈) ∖ ∪
(𝑇 ∖ {𝐴})) = (∪ (𝐶
↾t (◡𝐹 “ 𝑈)) ∖ ∪
(𝑇 ∖ {𝐴}))) |
14 | | unisng 4861 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑇 → ∪ {𝐴} = 𝐴) |
15 | 14 | 3ad2ant3 1134 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → ∪ {𝐴} = 𝐴) |
16 | 15 | uneq2d 4098 |
. . . . 5
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (∪
(𝑇 ∖ {𝐴}) ∪ ∪ {𝐴})
= (∪ (𝑇 ∖ {𝐴}) ∪ 𝐴)) |
17 | | uniun 4865 |
. . . . . 6
⊢ ∪ ((𝑇
∖ {𝐴}) ∪ {𝐴}) = (∪ (𝑇
∖ {𝐴}) ∪ ∪ {𝐴}) |
18 | | undif1 4410 |
. . . . . . . . 9
⊢ ((𝑇 ∖ {𝐴}) ∪ {𝐴}) = (𝑇 ∪ {𝐴}) |
19 | | simp3 1137 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → 𝐴 ∈ 𝑇) |
20 | 19 | snssd 4743 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → {𝐴} ⊆ 𝑇) |
21 | | ssequn2 4118 |
. . . . . . . . . 10
⊢ ({𝐴} ⊆ 𝑇 ↔ (𝑇 ∪ {𝐴}) = 𝑇) |
22 | 20, 21 | sylib 217 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (𝑇 ∪ {𝐴}) = 𝑇) |
23 | 18, 22 | eqtrid 2791 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → ((𝑇 ∖ {𝐴}) ∪ {𝐴}) = 𝑇) |
24 | 23 | unieqd 4854 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → ∪
((𝑇 ∖ {𝐴}) ∪ {𝐴}) = ∪ 𝑇) |
25 | 24, 5 | eqtrd 2779 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → ∪
((𝑇 ∖ {𝐴}) ∪ {𝐴}) = (◡𝐹 “ 𝑈)) |
26 | 17, 25 | eqtr3id 2793 |
. . . . 5
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (∪
(𝑇 ∖ {𝐴}) ∪ ∪ {𝐴})
= (◡𝐹 “ 𝑈)) |
27 | 16, 26 | eqtr3d 2781 |
. . . 4
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (∪
(𝑇 ∖ {𝐴}) ∪ 𝐴) = (◡𝐹 “ 𝑈)) |
28 | | difss 4067 |
. . . . . . 7
⊢ (𝑇 ∖ {𝐴}) ⊆ 𝑇 |
29 | 28 | unissi 4849 |
. . . . . 6
⊢ ∪ (𝑇
∖ {𝐴}) ⊆ ∪ 𝑇 |
30 | 29, 5 | sseqtrid 3974 |
. . . . 5
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → ∪ (𝑇 ∖ {𝐴}) ⊆ (◡𝐹 “ 𝑈)) |
31 | | uniiun 4989 |
. . . . . . . 8
⊢ ∪ (𝑇
∖ {𝐴}) = ∪ 𝑥 ∈ (𝑇 ∖ {𝐴})𝑥 |
32 | 31 | ineq2i 4144 |
. . . . . . 7
⊢ (𝐴 ∩ ∪ (𝑇
∖ {𝐴})) = (𝐴 ∩ ∪ 𝑥 ∈ (𝑇 ∖ {𝐴})𝑥) |
33 | | incom 4136 |
. . . . . . 7
⊢ (∪ (𝑇
∖ {𝐴}) ∩ 𝐴) = (𝐴 ∩ ∪ (𝑇 ∖ {𝐴})) |
34 | | iunin2 5001 |
. . . . . . 7
⊢ ∪ 𝑥 ∈ (𝑇 ∖ {𝐴})(𝐴 ∩ 𝑥) = (𝐴 ∩ ∪
𝑥 ∈ (𝑇 ∖ {𝐴})𝑥) |
35 | 32, 33, 34 | 3eqtr4i 2777 |
. . . . . 6
⊢ (∪ (𝑇
∖ {𝐴}) ∩ 𝐴) = ∪ 𝑥 ∈ (𝑇 ∖ {𝐴})(𝐴 ∩ 𝑥) |
36 | | eldifsn 4721 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝑇 ∖ {𝐴}) ↔ (𝑥 ∈ 𝑇 ∧ 𝑥 ≠ 𝐴)) |
37 | | nesym 3001 |
. . . . . . . . . . . 12
⊢ (𝑥 ≠ 𝐴 ↔ ¬ 𝐴 = 𝑥) |
38 | 3 | cvmsdisj 33241 |
. . . . . . . . . . . . . 14
⊢ ((𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇) → (𝐴 = 𝑥 ∨ (𝐴 ∩ 𝑥) = ∅)) |
39 | 38 | 3expa 1117 |
. . . . . . . . . . . . 13
⊢ (((𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) ∧ 𝑥 ∈ 𝑇) → (𝐴 = 𝑥 ∨ (𝐴 ∩ 𝑥) = ∅)) |
40 | 39 | ord 861 |
. . . . . . . . . . . 12
⊢ (((𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) ∧ 𝑥 ∈ 𝑇) → (¬ 𝐴 = 𝑥 → (𝐴 ∩ 𝑥) = ∅)) |
41 | 37, 40 | syl5bi 241 |
. . . . . . . . . . 11
⊢ (((𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) ∧ 𝑥 ∈ 𝑇) → (𝑥 ≠ 𝐴 → (𝐴 ∩ 𝑥) = ∅)) |
42 | 41 | impr 455 |
. . . . . . . . . 10
⊢ (((𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) ∧ (𝑥 ∈ 𝑇 ∧ 𝑥 ≠ 𝐴)) → (𝐴 ∩ 𝑥) = ∅) |
43 | 36, 42 | sylan2b 594 |
. . . . . . . . 9
⊢ (((𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) ∧ 𝑥 ∈ (𝑇 ∖ {𝐴})) → (𝐴 ∩ 𝑥) = ∅) |
44 | 43 | iuneq2dv 4949 |
. . . . . . . 8
⊢ ((𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → ∪
𝑥 ∈ (𝑇 ∖ {𝐴})(𝐴 ∩ 𝑥) = ∪ 𝑥 ∈ (𝑇 ∖ {𝐴})∅) |
45 | 44 | 3adant1 1129 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → ∪
𝑥 ∈ (𝑇 ∖ {𝐴})(𝐴 ∩ 𝑥) = ∪ 𝑥 ∈ (𝑇 ∖ {𝐴})∅) |
46 | | iun0 4992 |
. . . . . . 7
⊢ ∪ 𝑥 ∈ (𝑇 ∖ {𝐴})∅ = ∅ |
47 | 45, 46 | eqtrdi 2795 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → ∪
𝑥 ∈ (𝑇 ∖ {𝐴})(𝐴 ∩ 𝑥) = ∅) |
48 | 35, 47 | eqtrid 2791 |
. . . . 5
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (∪
(𝑇 ∖ {𝐴}) ∩ 𝐴) = ∅) |
49 | | uneqdifeq 4424 |
. . . . 5
⊢ ((∪ (𝑇
∖ {𝐴}) ⊆ (◡𝐹 “ 𝑈) ∧ (∪ (𝑇 ∖ {𝐴}) ∩ 𝐴) = ∅) → ((∪ (𝑇
∖ {𝐴}) ∪ 𝐴) = (◡𝐹 “ 𝑈) ↔ ((◡𝐹 “ 𝑈) ∖ ∪
(𝑇 ∖ {𝐴})) = 𝐴)) |
50 | 30, 48, 49 | syl2anc 584 |
. . . 4
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → ((∪
(𝑇 ∖ {𝐴}) ∪ 𝐴) = (◡𝐹 “ 𝑈) ↔ ((◡𝐹 “ 𝑈) ∖ ∪
(𝑇 ∖ {𝐴})) = 𝐴)) |
51 | 27, 50 | mpbid 231 |
. . 3
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → ((◡𝐹 “ 𝑈) ∖ ∪
(𝑇 ∖ {𝐴})) = 𝐴) |
52 | 13, 51 | eqtr3d 2781 |
. 2
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (∪
(𝐶 ↾t
(◡𝐹 “ 𝑈)) ∖ ∪
(𝑇 ∖ {𝐴})) = 𝐴) |
53 | | uniexg 7602 |
. . . . . 6
⊢ (𝑇 ∈ (𝑆‘𝑈) → ∪ 𝑇 ∈ V) |
54 | 53 | 3ad2ant2 1133 |
. . . . 5
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → ∪ 𝑇 ∈ V) |
55 | 5, 54 | eqeltrrd 2841 |
. . . 4
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (◡𝐹 “ 𝑈) ∈ V) |
56 | | resttop 22320 |
. . . 4
⊢ ((𝐶 ∈ Top ∧ (◡𝐹 “ 𝑈) ∈ V) → (𝐶 ↾t (◡𝐹 “ 𝑈)) ∈ Top) |
57 | 2, 55, 56 | syl2anc 584 |
. . 3
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (𝐶 ↾t (◡𝐹 “ 𝑈)) ∈ Top) |
58 | | elssuni 4872 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝑇 → 𝑥 ⊆ ∪ 𝑇) |
59 | 58 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) ∧ 𝑥 ∈ 𝑇) → 𝑥 ⊆ ∪ 𝑇) |
60 | 5 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) ∧ 𝑥 ∈ 𝑇) → ∪ 𝑇 = (◡𝐹 “ 𝑈)) |
61 | 59, 60 | sseqtrd 3962 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) ∧ 𝑥 ∈ 𝑇) → 𝑥 ⊆ (◡𝐹 “ 𝑈)) |
62 | | df-ss 3905 |
. . . . . . . . 9
⊢ (𝑥 ⊆ (◡𝐹 “ 𝑈) ↔ (𝑥 ∩ (◡𝐹 “ 𝑈)) = 𝑥) |
63 | 61, 62 | sylib 217 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) ∧ 𝑥 ∈ 𝑇) → (𝑥 ∩ (◡𝐹 “ 𝑈)) = 𝑥) |
64 | 2 | adantr 481 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) ∧ 𝑥 ∈ 𝑇) → 𝐶 ∈ Top) |
65 | 55 | adantr 481 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) ∧ 𝑥 ∈ 𝑇) → (◡𝐹 “ 𝑈) ∈ V) |
66 | 7 | sselda 3922 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) ∧ 𝑥 ∈ 𝑇) → 𝑥 ∈ 𝐶) |
67 | | elrestr 17148 |
. . . . . . . . 9
⊢ ((𝐶 ∈ Top ∧ (◡𝐹 “ 𝑈) ∈ V ∧ 𝑥 ∈ 𝐶) → (𝑥 ∩ (◡𝐹 “ 𝑈)) ∈ (𝐶 ↾t (◡𝐹 “ 𝑈))) |
68 | 64, 65, 66, 67 | syl3anc 1370 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) ∧ 𝑥 ∈ 𝑇) → (𝑥 ∩ (◡𝐹 “ 𝑈)) ∈ (𝐶 ↾t (◡𝐹 “ 𝑈))) |
69 | 63, 68 | eqeltrrd 2841 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) ∧ 𝑥 ∈ 𝑇) → 𝑥 ∈ (𝐶 ↾t (◡𝐹 “ 𝑈))) |
70 | 69 | ex 413 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (𝑥 ∈ 𝑇 → 𝑥 ∈ (𝐶 ↾t (◡𝐹 “ 𝑈)))) |
71 | 70 | ssrdv 3928 |
. . . . 5
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → 𝑇 ⊆ (𝐶 ↾t (◡𝐹 “ 𝑈))) |
72 | 71 | ssdifssd 4078 |
. . . 4
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (𝑇 ∖ {𝐴}) ⊆ (𝐶 ↾t (◡𝐹 “ 𝑈))) |
73 | | uniopn 22055 |
. . . 4
⊢ (((𝐶 ↾t (◡𝐹 “ 𝑈)) ∈ Top ∧ (𝑇 ∖ {𝐴}) ⊆ (𝐶 ↾t (◡𝐹 “ 𝑈))) → ∪
(𝑇 ∖ {𝐴}) ∈ (𝐶 ↾t (◡𝐹 “ 𝑈))) |
74 | 57, 72, 73 | syl2anc 584 |
. . 3
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → ∪ (𝑇 ∖ {𝐴}) ∈ (𝐶 ↾t (◡𝐹 “ 𝑈))) |
75 | | eqid 2739 |
. . . 4
⊢ ∪ (𝐶
↾t (◡𝐹 “ 𝑈)) = ∪ (𝐶 ↾t (◡𝐹 “ 𝑈)) |
76 | 75 | opncld 22193 |
. . 3
⊢ (((𝐶 ↾t (◡𝐹 “ 𝑈)) ∈ Top ∧ ∪ (𝑇
∖ {𝐴}) ∈ (𝐶 ↾t (◡𝐹 “ 𝑈))) → (∪
(𝐶 ↾t
(◡𝐹 “ 𝑈)) ∖ ∪
(𝑇 ∖ {𝐴})) ∈ (Clsd‘(𝐶 ↾t (◡𝐹 “ 𝑈)))) |
77 | 57, 74, 76 | syl2anc 584 |
. 2
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (∪
(𝐶 ↾t
(◡𝐹 “ 𝑈)) ∖ ∪
(𝑇 ∖ {𝐴})) ∈ (Clsd‘(𝐶 ↾t (◡𝐹 “ 𝑈)))) |
78 | 52, 77 | eqeltrrd 2841 |
1
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → 𝐴 ∈ (Clsd‘(𝐶 ↾t (◡𝐹 “ 𝑈)))) |