Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmscld Structured version   Visualization version   GIF version

Theorem cvmscld 35278
Description: The sets of an even covering are clopen in the subspace topology on 𝑇. (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypothesis
Ref Expression
cvmcov.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
Assertion
Ref Expression
cvmscld ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → 𝐴 ∈ (Clsd‘(𝐶t (𝐹𝑈))))
Distinct variable groups:   𝑘,𝑠,𝑢,𝑣,𝐶   𝑘,𝐹,𝑠,𝑢,𝑣   𝑘,𝐽,𝑠,𝑢,𝑣   𝑈,𝑘,𝑠,𝑢,𝑣   𝑇,𝑠,𝑢,𝑣   𝑢,𝐴,𝑣
Allowed substitution hints:   𝐴(𝑘,𝑠)   𝑆(𝑣,𝑢,𝑘,𝑠)   𝑇(𝑘)

Proof of Theorem cvmscld
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cvmtop1 35265 . . . . . 6 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top)
213ad2ant1 1134 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → 𝐶 ∈ Top)
3 cvmcov.1 . . . . . . . 8 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
43cvmsuni 35274 . . . . . . 7 (𝑇 ∈ (𝑆𝑈) → 𝑇 = (𝐹𝑈))
543ad2ant2 1135 . . . . . 6 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → 𝑇 = (𝐹𝑈))
63cvmsss 35272 . . . . . . . 8 (𝑇 ∈ (𝑆𝑈) → 𝑇𝐶)
763ad2ant2 1135 . . . . . . 7 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → 𝑇𝐶)
87unissd 4917 . . . . . 6 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → 𝑇 𝐶)
95, 8eqsstrrd 4019 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → (𝐹𝑈) ⊆ 𝐶)
10 eqid 2737 . . . . . 6 𝐶 = 𝐶
1110restuni 23170 . . . . 5 ((𝐶 ∈ Top ∧ (𝐹𝑈) ⊆ 𝐶) → (𝐹𝑈) = (𝐶t (𝐹𝑈)))
122, 9, 11syl2anc 584 . . . 4 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → (𝐹𝑈) = (𝐶t (𝐹𝑈)))
1312difeq1d 4125 . . 3 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → ((𝐹𝑈) ∖ (𝑇 ∖ {𝐴})) = ( (𝐶t (𝐹𝑈)) ∖ (𝑇 ∖ {𝐴})))
14 unisng 4925 . . . . . . 7 (𝐴𝑇 {𝐴} = 𝐴)
15143ad2ant3 1136 . . . . . 6 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → {𝐴} = 𝐴)
1615uneq2d 4168 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → ( (𝑇 ∖ {𝐴}) ∪ {𝐴}) = ( (𝑇 ∖ {𝐴}) ∪ 𝐴))
17 uniun 4930 . . . . . 6 ((𝑇 ∖ {𝐴}) ∪ {𝐴}) = ( (𝑇 ∖ {𝐴}) ∪ {𝐴})
18 undif1 4476 . . . . . . . . 9 ((𝑇 ∖ {𝐴}) ∪ {𝐴}) = (𝑇 ∪ {𝐴})
19 simp3 1139 . . . . . . . . . . 11 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → 𝐴𝑇)
2019snssd 4809 . . . . . . . . . 10 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → {𝐴} ⊆ 𝑇)
21 ssequn2 4189 . . . . . . . . . 10 ({𝐴} ⊆ 𝑇 ↔ (𝑇 ∪ {𝐴}) = 𝑇)
2220, 21sylib 218 . . . . . . . . 9 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → (𝑇 ∪ {𝐴}) = 𝑇)
2318, 22eqtrid 2789 . . . . . . . 8 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → ((𝑇 ∖ {𝐴}) ∪ {𝐴}) = 𝑇)
2423unieqd 4920 . . . . . . 7 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → ((𝑇 ∖ {𝐴}) ∪ {𝐴}) = 𝑇)
2524, 5eqtrd 2777 . . . . . 6 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → ((𝑇 ∖ {𝐴}) ∪ {𝐴}) = (𝐹𝑈))
2617, 25eqtr3id 2791 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → ( (𝑇 ∖ {𝐴}) ∪ {𝐴}) = (𝐹𝑈))
2716, 26eqtr3d 2779 . . . 4 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → ( (𝑇 ∖ {𝐴}) ∪ 𝐴) = (𝐹𝑈))
28 difss 4136 . . . . . . 7 (𝑇 ∖ {𝐴}) ⊆ 𝑇
2928unissi 4916 . . . . . 6 (𝑇 ∖ {𝐴}) ⊆ 𝑇
3029, 5sseqtrid 4026 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → (𝑇 ∖ {𝐴}) ⊆ (𝐹𝑈))
31 uniiun 5058 . . . . . . . 8 (𝑇 ∖ {𝐴}) = 𝑥 ∈ (𝑇 ∖ {𝐴})𝑥
3231ineq2i 4217 . . . . . . 7 (𝐴 (𝑇 ∖ {𝐴})) = (𝐴 𝑥 ∈ (𝑇 ∖ {𝐴})𝑥)
33 incom 4209 . . . . . . 7 ( (𝑇 ∖ {𝐴}) ∩ 𝐴) = (𝐴 (𝑇 ∖ {𝐴}))
34 iunin2 5071 . . . . . . 7 𝑥 ∈ (𝑇 ∖ {𝐴})(𝐴𝑥) = (𝐴 𝑥 ∈ (𝑇 ∖ {𝐴})𝑥)
3532, 33, 343eqtr4i 2775 . . . . . 6 ( (𝑇 ∖ {𝐴}) ∩ 𝐴) = 𝑥 ∈ (𝑇 ∖ {𝐴})(𝐴𝑥)
36 eldifsn 4786 . . . . . . . . . 10 (𝑥 ∈ (𝑇 ∖ {𝐴}) ↔ (𝑥𝑇𝑥𝐴))
37 nesym 2997 . . . . . . . . . . . 12 (𝑥𝐴 ↔ ¬ 𝐴 = 𝑥)
383cvmsdisj 35275 . . . . . . . . . . . . . 14 ((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇𝑥𝑇) → (𝐴 = 𝑥 ∨ (𝐴𝑥) = ∅))
39383expa 1119 . . . . . . . . . . . . 13 (((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) ∧ 𝑥𝑇) → (𝐴 = 𝑥 ∨ (𝐴𝑥) = ∅))
4039ord 865 . . . . . . . . . . . 12 (((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) ∧ 𝑥𝑇) → (¬ 𝐴 = 𝑥 → (𝐴𝑥) = ∅))
4137, 40biimtrid 242 . . . . . . . . . . 11 (((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) ∧ 𝑥𝑇) → (𝑥𝐴 → (𝐴𝑥) = ∅))
4241impr 454 . . . . . . . . . 10 (((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) ∧ (𝑥𝑇𝑥𝐴)) → (𝐴𝑥) = ∅)
4336, 42sylan2b 594 . . . . . . . . 9 (((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) ∧ 𝑥 ∈ (𝑇 ∖ {𝐴})) → (𝐴𝑥) = ∅)
4443iuneq2dv 5016 . . . . . . . 8 ((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → 𝑥 ∈ (𝑇 ∖ {𝐴})(𝐴𝑥) = 𝑥 ∈ (𝑇 ∖ {𝐴})∅)
45443adant1 1131 . . . . . . 7 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → 𝑥 ∈ (𝑇 ∖ {𝐴})(𝐴𝑥) = 𝑥 ∈ (𝑇 ∖ {𝐴})∅)
46 iun0 5062 . . . . . . 7 𝑥 ∈ (𝑇 ∖ {𝐴})∅ = ∅
4745, 46eqtrdi 2793 . . . . . 6 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → 𝑥 ∈ (𝑇 ∖ {𝐴})(𝐴𝑥) = ∅)
4835, 47eqtrid 2789 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → ( (𝑇 ∖ {𝐴}) ∩ 𝐴) = ∅)
49 uneqdifeq 4493 . . . . 5 (( (𝑇 ∖ {𝐴}) ⊆ (𝐹𝑈) ∧ ( (𝑇 ∖ {𝐴}) ∩ 𝐴) = ∅) → (( (𝑇 ∖ {𝐴}) ∪ 𝐴) = (𝐹𝑈) ↔ ((𝐹𝑈) ∖ (𝑇 ∖ {𝐴})) = 𝐴))
5030, 48, 49syl2anc 584 . . . 4 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → (( (𝑇 ∖ {𝐴}) ∪ 𝐴) = (𝐹𝑈) ↔ ((𝐹𝑈) ∖ (𝑇 ∖ {𝐴})) = 𝐴))
5127, 50mpbid 232 . . 3 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → ((𝐹𝑈) ∖ (𝑇 ∖ {𝐴})) = 𝐴)
5213, 51eqtr3d 2779 . 2 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → ( (𝐶t (𝐹𝑈)) ∖ (𝑇 ∖ {𝐴})) = 𝐴)
53 uniexg 7760 . . . . . 6 (𝑇 ∈ (𝑆𝑈) → 𝑇 ∈ V)
54533ad2ant2 1135 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → 𝑇 ∈ V)
555, 54eqeltrrd 2842 . . . 4 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → (𝐹𝑈) ∈ V)
56 resttop 23168 . . . 4 ((𝐶 ∈ Top ∧ (𝐹𝑈) ∈ V) → (𝐶t (𝐹𝑈)) ∈ Top)
572, 55, 56syl2anc 584 . . 3 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → (𝐶t (𝐹𝑈)) ∈ Top)
58 elssuni 4937 . . . . . . . . . . 11 (𝑥𝑇𝑥 𝑇)
5958adantl 481 . . . . . . . . . 10 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) ∧ 𝑥𝑇) → 𝑥 𝑇)
605adantr 480 . . . . . . . . . 10 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) ∧ 𝑥𝑇) → 𝑇 = (𝐹𝑈))
6159, 60sseqtrd 4020 . . . . . . . . 9 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) ∧ 𝑥𝑇) → 𝑥 ⊆ (𝐹𝑈))
62 dfss2 3969 . . . . . . . . 9 (𝑥 ⊆ (𝐹𝑈) ↔ (𝑥 ∩ (𝐹𝑈)) = 𝑥)
6361, 62sylib 218 . . . . . . . 8 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) ∧ 𝑥𝑇) → (𝑥 ∩ (𝐹𝑈)) = 𝑥)
642adantr 480 . . . . . . . . 9 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) ∧ 𝑥𝑇) → 𝐶 ∈ Top)
6555adantr 480 . . . . . . . . 9 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) ∧ 𝑥𝑇) → (𝐹𝑈) ∈ V)
667sselda 3983 . . . . . . . . 9 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) ∧ 𝑥𝑇) → 𝑥𝐶)
67 elrestr 17473 . . . . . . . . 9 ((𝐶 ∈ Top ∧ (𝐹𝑈) ∈ V ∧ 𝑥𝐶) → (𝑥 ∩ (𝐹𝑈)) ∈ (𝐶t (𝐹𝑈)))
6864, 65, 66, 67syl3anc 1373 . . . . . . . 8 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) ∧ 𝑥𝑇) → (𝑥 ∩ (𝐹𝑈)) ∈ (𝐶t (𝐹𝑈)))
6963, 68eqeltrrd 2842 . . . . . . 7 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) ∧ 𝑥𝑇) → 𝑥 ∈ (𝐶t (𝐹𝑈)))
7069ex 412 . . . . . 6 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → (𝑥𝑇𝑥 ∈ (𝐶t (𝐹𝑈))))
7170ssrdv 3989 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → 𝑇 ⊆ (𝐶t (𝐹𝑈)))
7271ssdifssd 4147 . . . 4 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → (𝑇 ∖ {𝐴}) ⊆ (𝐶t (𝐹𝑈)))
73 uniopn 22903 . . . 4 (((𝐶t (𝐹𝑈)) ∈ Top ∧ (𝑇 ∖ {𝐴}) ⊆ (𝐶t (𝐹𝑈))) → (𝑇 ∖ {𝐴}) ∈ (𝐶t (𝐹𝑈)))
7457, 72, 73syl2anc 584 . . 3 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → (𝑇 ∖ {𝐴}) ∈ (𝐶t (𝐹𝑈)))
75 eqid 2737 . . . 4 (𝐶t (𝐹𝑈)) = (𝐶t (𝐹𝑈))
7675opncld 23041 . . 3 (((𝐶t (𝐹𝑈)) ∈ Top ∧ (𝑇 ∖ {𝐴}) ∈ (𝐶t (𝐹𝑈))) → ( (𝐶t (𝐹𝑈)) ∖ (𝑇 ∖ {𝐴})) ∈ (Clsd‘(𝐶t (𝐹𝑈))))
7757, 74, 76syl2anc 584 . 2 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → ( (𝐶t (𝐹𝑈)) ∖ (𝑇 ∖ {𝐴})) ∈ (Clsd‘(𝐶t (𝐹𝑈))))
7852, 77eqeltrrd 2842 1 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → 𝐴 ∈ (Clsd‘(𝐶t (𝐹𝑈))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  {crab 3436  Vcvv 3480  cdif 3948  cun 3949  cin 3950  wss 3951  c0 4333  𝒫 cpw 4600  {csn 4626   cuni 4907   ciun 4991  cmpt 5225  ccnv 5684  cres 5687  cima 5688  cfv 6561  (class class class)co 7431  t crest 17465  Topctop 22899  Clsdccld 23024  Homeochmeo 23761   CovMap ccvm 35260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-en 8986  df-fin 8989  df-fi 9451  df-rest 17467  df-topgen 17488  df-top 22900  df-topon 22917  df-bases 22953  df-cld 23027  df-cvm 35261
This theorem is referenced by:  cvmliftmolem1  35286  cvmlift2lem9  35316  cvmlift3lem6  35329
  Copyright terms: Public domain W3C validator