MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om0r Structured version   Visualization version   GIF version

Theorem om0r 8464
Description: Ordinal multiplication with zero. Proposition 8.18(1) of [TakeutiZaring] p. 63. (Contributed by NM, 3-Aug-2004.)
Assertion
Ref Expression
om0r (𝐴 ∈ On → (∅ ·o 𝐴) = ∅)

Proof of Theorem om0r
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7361 . . 3 (𝑥 = ∅ → (∅ ·o 𝑥) = (∅ ·o ∅))
21eqeq1d 2731 . 2 (𝑥 = ∅ → ((∅ ·o 𝑥) = ∅ ↔ (∅ ·o ∅) = ∅))
3 oveq2 7361 . . 3 (𝑥 = 𝑦 → (∅ ·o 𝑥) = (∅ ·o 𝑦))
43eqeq1d 2731 . 2 (𝑥 = 𝑦 → ((∅ ·o 𝑥) = ∅ ↔ (∅ ·o 𝑦) = ∅))
5 oveq2 7361 . . 3 (𝑥 = suc 𝑦 → (∅ ·o 𝑥) = (∅ ·o suc 𝑦))
65eqeq1d 2731 . 2 (𝑥 = suc 𝑦 → ((∅ ·o 𝑥) = ∅ ↔ (∅ ·o suc 𝑦) = ∅))
7 oveq2 7361 . . 3 (𝑥 = 𝐴 → (∅ ·o 𝑥) = (∅ ·o 𝐴))
87eqeq1d 2731 . 2 (𝑥 = 𝐴 → ((∅ ·o 𝑥) = ∅ ↔ (∅ ·o 𝐴) = ∅))
9 0elon 6366 . . 3 ∅ ∈ On
10 om0 8442 . . 3 (∅ ∈ On → (∅ ·o ∅) = ∅)
119, 10ax-mp 5 . 2 (∅ ·o ∅) = ∅
12 oveq1 7360 . . 3 ((∅ ·o 𝑦) = ∅ → ((∅ ·o 𝑦) +o ∅) = (∅ +o ∅))
13 omsuc 8451 . . . . 5 ((∅ ∈ On ∧ 𝑦 ∈ On) → (∅ ·o suc 𝑦) = ((∅ ·o 𝑦) +o ∅))
149, 13mpan 690 . . . 4 (𝑦 ∈ On → (∅ ·o suc 𝑦) = ((∅ ·o 𝑦) +o ∅))
15 oa0 8441 . . . . . . 7 (∅ ∈ On → (∅ +o ∅) = ∅)
169, 15ax-mp 5 . . . . . 6 (∅ +o ∅) = ∅
1716eqcomi 2738 . . . . 5 ∅ = (∅ +o ∅)
1817a1i 11 . . . 4 (𝑦 ∈ On → ∅ = (∅ +o ∅))
1914, 18eqeq12d 2745 . . 3 (𝑦 ∈ On → ((∅ ·o suc 𝑦) = ∅ ↔ ((∅ ·o 𝑦) +o ∅) = (∅ +o ∅)))
2012, 19imbitrrid 246 . 2 (𝑦 ∈ On → ((∅ ·o 𝑦) = ∅ → (∅ ·o suc 𝑦) = ∅))
21 iuneq2 4964 . . . 4 (∀𝑦𝑥 (∅ ·o 𝑦) = ∅ → 𝑦𝑥 (∅ ·o 𝑦) = 𝑦𝑥 ∅)
22 iun0 5014 . . . 4 𝑦𝑥 ∅ = ∅
2321, 22eqtrdi 2780 . . 3 (∀𝑦𝑥 (∅ ·o 𝑦) = ∅ → 𝑦𝑥 (∅ ·o 𝑦) = ∅)
24 vex 3442 . . . . 5 𝑥 ∈ V
25 omlim 8458 . . . . . 6 ((∅ ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (∅ ·o 𝑥) = 𝑦𝑥 (∅ ·o 𝑦))
269, 25mpan 690 . . . . 5 ((𝑥 ∈ V ∧ Lim 𝑥) → (∅ ·o 𝑥) = 𝑦𝑥 (∅ ·o 𝑦))
2724, 26mpan 690 . . . 4 (Lim 𝑥 → (∅ ·o 𝑥) = 𝑦𝑥 (∅ ·o 𝑦))
2827eqeq1d 2731 . . 3 (Lim 𝑥 → ((∅ ·o 𝑥) = ∅ ↔ 𝑦𝑥 (∅ ·o 𝑦) = ∅))
2923, 28imbitrrid 246 . 2 (Lim 𝑥 → (∀𝑦𝑥 (∅ ·o 𝑦) = ∅ → (∅ ·o 𝑥) = ∅))
302, 4, 6, 8, 11, 20, 29tfinds 7800 1 (𝐴 ∈ On → (∅ ·o 𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3438  c0 4286   ciun 4944  Oncon0 6311  Lim wlim 6312  suc csuc 6313  (class class class)co 7353   +o coa 8392   ·o comu 8393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-oadd 8399  df-omul 8400
This theorem is referenced by:  omord  8493  omwordi  8496  om00  8500  odi  8504  omass  8505  oeoa  8522  omxpenlem  9002  onmcl  43304  omcl2  43306  omcl3g  43307
  Copyright terms: Public domain W3C validator