MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om0r Structured version   Visualization version   GIF version

Theorem om0r 8449
Description: Ordinal multiplication with zero. Proposition 8.18(1) of [TakeutiZaring] p. 63. (Contributed by NM, 3-Aug-2004.)
Assertion
Ref Expression
om0r (𝐴 ∈ On → (∅ ·o 𝐴) = ∅)

Proof of Theorem om0r
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7349 . . 3 (𝑥 = ∅ → (∅ ·o 𝑥) = (∅ ·o ∅))
21eqeq1d 2732 . 2 (𝑥 = ∅ → ((∅ ·o 𝑥) = ∅ ↔ (∅ ·o ∅) = ∅))
3 oveq2 7349 . . 3 (𝑥 = 𝑦 → (∅ ·o 𝑥) = (∅ ·o 𝑦))
43eqeq1d 2732 . 2 (𝑥 = 𝑦 → ((∅ ·o 𝑥) = ∅ ↔ (∅ ·o 𝑦) = ∅))
5 oveq2 7349 . . 3 (𝑥 = suc 𝑦 → (∅ ·o 𝑥) = (∅ ·o suc 𝑦))
65eqeq1d 2732 . 2 (𝑥 = suc 𝑦 → ((∅ ·o 𝑥) = ∅ ↔ (∅ ·o suc 𝑦) = ∅))
7 oveq2 7349 . . 3 (𝑥 = 𝐴 → (∅ ·o 𝑥) = (∅ ·o 𝐴))
87eqeq1d 2732 . 2 (𝑥 = 𝐴 → ((∅ ·o 𝑥) = ∅ ↔ (∅ ·o 𝐴) = ∅))
9 0elon 6357 . . 3 ∅ ∈ On
10 om0 8427 . . 3 (∅ ∈ On → (∅ ·o ∅) = ∅)
119, 10ax-mp 5 . 2 (∅ ·o ∅) = ∅
12 oveq1 7348 . . 3 ((∅ ·o 𝑦) = ∅ → ((∅ ·o 𝑦) +o ∅) = (∅ +o ∅))
13 omsuc 8436 . . . . 5 ((∅ ∈ On ∧ 𝑦 ∈ On) → (∅ ·o suc 𝑦) = ((∅ ·o 𝑦) +o ∅))
149, 13mpan 690 . . . 4 (𝑦 ∈ On → (∅ ·o suc 𝑦) = ((∅ ·o 𝑦) +o ∅))
15 oa0 8426 . . . . . . 7 (∅ ∈ On → (∅ +o ∅) = ∅)
169, 15ax-mp 5 . . . . . 6 (∅ +o ∅) = ∅
1716eqcomi 2739 . . . . 5 ∅ = (∅ +o ∅)
1817a1i 11 . . . 4 (𝑦 ∈ On → ∅ = (∅ +o ∅))
1914, 18eqeq12d 2746 . . 3 (𝑦 ∈ On → ((∅ ·o suc 𝑦) = ∅ ↔ ((∅ ·o 𝑦) +o ∅) = (∅ +o ∅)))
2012, 19imbitrrid 246 . 2 (𝑦 ∈ On → ((∅ ·o 𝑦) = ∅ → (∅ ·o suc 𝑦) = ∅))
21 iuneq2 4959 . . . 4 (∀𝑦𝑥 (∅ ·o 𝑦) = ∅ → 𝑦𝑥 (∅ ·o 𝑦) = 𝑦𝑥 ∅)
22 iun0 5008 . . . 4 𝑦𝑥 ∅ = ∅
2321, 22eqtrdi 2781 . . 3 (∀𝑦𝑥 (∅ ·o 𝑦) = ∅ → 𝑦𝑥 (∅ ·o 𝑦) = ∅)
24 vex 3438 . . . . 5 𝑥 ∈ V
25 omlim 8443 . . . . . 6 ((∅ ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (∅ ·o 𝑥) = 𝑦𝑥 (∅ ·o 𝑦))
269, 25mpan 690 . . . . 5 ((𝑥 ∈ V ∧ Lim 𝑥) → (∅ ·o 𝑥) = 𝑦𝑥 (∅ ·o 𝑦))
2724, 26mpan 690 . . . 4 (Lim 𝑥 → (∅ ·o 𝑥) = 𝑦𝑥 (∅ ·o 𝑦))
2827eqeq1d 2732 . . 3 (Lim 𝑥 → ((∅ ·o 𝑥) = ∅ ↔ 𝑦𝑥 (∅ ·o 𝑦) = ∅))
2923, 28imbitrrid 246 . 2 (Lim 𝑥 → (∀𝑦𝑥 (∅ ·o 𝑦) = ∅ → (∅ ·o 𝑥) = ∅))
302, 4, 6, 8, 11, 20, 29tfinds 7785 1 (𝐴 ∈ On → (∅ ·o 𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2110  wral 3045  Vcvv 3434  c0 4281   ciun 4939  Oncon0 6302  Lim wlim 6303  suc csuc 6304  (class class class)co 7341   +o coa 8377   ·o comu 8378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-oadd 8384  df-omul 8385
This theorem is referenced by:  omord  8478  omwordi  8481  om00  8485  odi  8489  omass  8490  oeoa  8507  omxpenlem  8986  onmcl  43343  omcl2  43345  omcl3g  43346
  Copyright terms: Public domain W3C validator