Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > om0r | Structured version Visualization version GIF version |
Description: Ordinal multiplication with zero. Proposition 8.18(1) of [TakeutiZaring] p. 63. (Contributed by NM, 3-Aug-2004.) |
Ref | Expression |
---|---|
om0r | ⊢ (𝐴 ∈ On → (∅ ·o 𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7283 | . . 3 ⊢ (𝑥 = ∅ → (∅ ·o 𝑥) = (∅ ·o ∅)) | |
2 | 1 | eqeq1d 2740 | . 2 ⊢ (𝑥 = ∅ → ((∅ ·o 𝑥) = ∅ ↔ (∅ ·o ∅) = ∅)) |
3 | oveq2 7283 | . . 3 ⊢ (𝑥 = 𝑦 → (∅ ·o 𝑥) = (∅ ·o 𝑦)) | |
4 | 3 | eqeq1d 2740 | . 2 ⊢ (𝑥 = 𝑦 → ((∅ ·o 𝑥) = ∅ ↔ (∅ ·o 𝑦) = ∅)) |
5 | oveq2 7283 | . . 3 ⊢ (𝑥 = suc 𝑦 → (∅ ·o 𝑥) = (∅ ·o suc 𝑦)) | |
6 | 5 | eqeq1d 2740 | . 2 ⊢ (𝑥 = suc 𝑦 → ((∅ ·o 𝑥) = ∅ ↔ (∅ ·o suc 𝑦) = ∅)) |
7 | oveq2 7283 | . . 3 ⊢ (𝑥 = 𝐴 → (∅ ·o 𝑥) = (∅ ·o 𝐴)) | |
8 | 7 | eqeq1d 2740 | . 2 ⊢ (𝑥 = 𝐴 → ((∅ ·o 𝑥) = ∅ ↔ (∅ ·o 𝐴) = ∅)) |
9 | 0elon 6319 | . . 3 ⊢ ∅ ∈ On | |
10 | om0 8347 | . . 3 ⊢ (∅ ∈ On → (∅ ·o ∅) = ∅) | |
11 | 9, 10 | ax-mp 5 | . 2 ⊢ (∅ ·o ∅) = ∅ |
12 | oveq1 7282 | . . 3 ⊢ ((∅ ·o 𝑦) = ∅ → ((∅ ·o 𝑦) +o ∅) = (∅ +o ∅)) | |
13 | omsuc 8356 | . . . . 5 ⊢ ((∅ ∈ On ∧ 𝑦 ∈ On) → (∅ ·o suc 𝑦) = ((∅ ·o 𝑦) +o ∅)) | |
14 | 9, 13 | mpan 687 | . . . 4 ⊢ (𝑦 ∈ On → (∅ ·o suc 𝑦) = ((∅ ·o 𝑦) +o ∅)) |
15 | oa0 8346 | . . . . . . 7 ⊢ (∅ ∈ On → (∅ +o ∅) = ∅) | |
16 | 9, 15 | ax-mp 5 | . . . . . 6 ⊢ (∅ +o ∅) = ∅ |
17 | 16 | eqcomi 2747 | . . . . 5 ⊢ ∅ = (∅ +o ∅) |
18 | 17 | a1i 11 | . . . 4 ⊢ (𝑦 ∈ On → ∅ = (∅ +o ∅)) |
19 | 14, 18 | eqeq12d 2754 | . . 3 ⊢ (𝑦 ∈ On → ((∅ ·o suc 𝑦) = ∅ ↔ ((∅ ·o 𝑦) +o ∅) = (∅ +o ∅))) |
20 | 12, 19 | syl5ibr 245 | . 2 ⊢ (𝑦 ∈ On → ((∅ ·o 𝑦) = ∅ → (∅ ·o suc 𝑦) = ∅)) |
21 | iuneq2 4943 | . . . 4 ⊢ (∀𝑦 ∈ 𝑥 (∅ ·o 𝑦) = ∅ → ∪ 𝑦 ∈ 𝑥 (∅ ·o 𝑦) = ∪ 𝑦 ∈ 𝑥 ∅) | |
22 | iun0 4991 | . . . 4 ⊢ ∪ 𝑦 ∈ 𝑥 ∅ = ∅ | |
23 | 21, 22 | eqtrdi 2794 | . . 3 ⊢ (∀𝑦 ∈ 𝑥 (∅ ·o 𝑦) = ∅ → ∪ 𝑦 ∈ 𝑥 (∅ ·o 𝑦) = ∅) |
24 | vex 3436 | . . . . 5 ⊢ 𝑥 ∈ V | |
25 | omlim 8363 | . . . . . 6 ⊢ ((∅ ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (∅ ·o 𝑥) = ∪ 𝑦 ∈ 𝑥 (∅ ·o 𝑦)) | |
26 | 9, 25 | mpan 687 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ Lim 𝑥) → (∅ ·o 𝑥) = ∪ 𝑦 ∈ 𝑥 (∅ ·o 𝑦)) |
27 | 24, 26 | mpan 687 | . . . 4 ⊢ (Lim 𝑥 → (∅ ·o 𝑥) = ∪ 𝑦 ∈ 𝑥 (∅ ·o 𝑦)) |
28 | 27 | eqeq1d 2740 | . . 3 ⊢ (Lim 𝑥 → ((∅ ·o 𝑥) = ∅ ↔ ∪ 𝑦 ∈ 𝑥 (∅ ·o 𝑦) = ∅)) |
29 | 23, 28 | syl5ibr 245 | . 2 ⊢ (Lim 𝑥 → (∀𝑦 ∈ 𝑥 (∅ ·o 𝑦) = ∅ → (∅ ·o 𝑥) = ∅)) |
30 | 2, 4, 6, 8, 11, 20, 29 | tfinds 7706 | 1 ⊢ (𝐴 ∈ On → (∅ ·o 𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 ∅c0 4256 ∪ ciun 4924 Oncon0 6266 Lim wlim 6267 suc csuc 6268 (class class class)co 7275 +o coa 8294 ·o comu 8295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-oadd 8301 df-omul 8302 |
This theorem is referenced by: omord 8399 omwordi 8402 om00 8406 odi 8410 omass 8411 oeoa 8428 omxpenlem 8860 |
Copyright terms: Public domain | W3C validator |