![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > om0r | Structured version Visualization version GIF version |
Description: Ordinal multiplication with zero. Proposition 8.18(1) of [TakeutiZaring] p. 63. (Contributed by NM, 3-Aug-2004.) |
Ref | Expression |
---|---|
om0r | ⊢ (𝐴 ∈ On → (∅ ·o 𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7456 | . . 3 ⊢ (𝑥 = ∅ → (∅ ·o 𝑥) = (∅ ·o ∅)) | |
2 | 1 | eqeq1d 2742 | . 2 ⊢ (𝑥 = ∅ → ((∅ ·o 𝑥) = ∅ ↔ (∅ ·o ∅) = ∅)) |
3 | oveq2 7456 | . . 3 ⊢ (𝑥 = 𝑦 → (∅ ·o 𝑥) = (∅ ·o 𝑦)) | |
4 | 3 | eqeq1d 2742 | . 2 ⊢ (𝑥 = 𝑦 → ((∅ ·o 𝑥) = ∅ ↔ (∅ ·o 𝑦) = ∅)) |
5 | oveq2 7456 | . . 3 ⊢ (𝑥 = suc 𝑦 → (∅ ·o 𝑥) = (∅ ·o suc 𝑦)) | |
6 | 5 | eqeq1d 2742 | . 2 ⊢ (𝑥 = suc 𝑦 → ((∅ ·o 𝑥) = ∅ ↔ (∅ ·o suc 𝑦) = ∅)) |
7 | oveq2 7456 | . . 3 ⊢ (𝑥 = 𝐴 → (∅ ·o 𝑥) = (∅ ·o 𝐴)) | |
8 | 7 | eqeq1d 2742 | . 2 ⊢ (𝑥 = 𝐴 → ((∅ ·o 𝑥) = ∅ ↔ (∅ ·o 𝐴) = ∅)) |
9 | 0elon 6449 | . . 3 ⊢ ∅ ∈ On | |
10 | om0 8573 | . . 3 ⊢ (∅ ∈ On → (∅ ·o ∅) = ∅) | |
11 | 9, 10 | ax-mp 5 | . 2 ⊢ (∅ ·o ∅) = ∅ |
12 | oveq1 7455 | . . 3 ⊢ ((∅ ·o 𝑦) = ∅ → ((∅ ·o 𝑦) +o ∅) = (∅ +o ∅)) | |
13 | omsuc 8582 | . . . . 5 ⊢ ((∅ ∈ On ∧ 𝑦 ∈ On) → (∅ ·o suc 𝑦) = ((∅ ·o 𝑦) +o ∅)) | |
14 | 9, 13 | mpan 689 | . . . 4 ⊢ (𝑦 ∈ On → (∅ ·o suc 𝑦) = ((∅ ·o 𝑦) +o ∅)) |
15 | oa0 8572 | . . . . . . 7 ⊢ (∅ ∈ On → (∅ +o ∅) = ∅) | |
16 | 9, 15 | ax-mp 5 | . . . . . 6 ⊢ (∅ +o ∅) = ∅ |
17 | 16 | eqcomi 2749 | . . . . 5 ⊢ ∅ = (∅ +o ∅) |
18 | 17 | a1i 11 | . . . 4 ⊢ (𝑦 ∈ On → ∅ = (∅ +o ∅)) |
19 | 14, 18 | eqeq12d 2756 | . . 3 ⊢ (𝑦 ∈ On → ((∅ ·o suc 𝑦) = ∅ ↔ ((∅ ·o 𝑦) +o ∅) = (∅ +o ∅))) |
20 | 12, 19 | imbitrrid 246 | . 2 ⊢ (𝑦 ∈ On → ((∅ ·o 𝑦) = ∅ → (∅ ·o suc 𝑦) = ∅)) |
21 | iuneq2 5034 | . . . 4 ⊢ (∀𝑦 ∈ 𝑥 (∅ ·o 𝑦) = ∅ → ∪ 𝑦 ∈ 𝑥 (∅ ·o 𝑦) = ∪ 𝑦 ∈ 𝑥 ∅) | |
22 | iun0 5085 | . . . 4 ⊢ ∪ 𝑦 ∈ 𝑥 ∅ = ∅ | |
23 | 21, 22 | eqtrdi 2796 | . . 3 ⊢ (∀𝑦 ∈ 𝑥 (∅ ·o 𝑦) = ∅ → ∪ 𝑦 ∈ 𝑥 (∅ ·o 𝑦) = ∅) |
24 | vex 3492 | . . . . 5 ⊢ 𝑥 ∈ V | |
25 | omlim 8589 | . . . . . 6 ⊢ ((∅ ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (∅ ·o 𝑥) = ∪ 𝑦 ∈ 𝑥 (∅ ·o 𝑦)) | |
26 | 9, 25 | mpan 689 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ Lim 𝑥) → (∅ ·o 𝑥) = ∪ 𝑦 ∈ 𝑥 (∅ ·o 𝑦)) |
27 | 24, 26 | mpan 689 | . . . 4 ⊢ (Lim 𝑥 → (∅ ·o 𝑥) = ∪ 𝑦 ∈ 𝑥 (∅ ·o 𝑦)) |
28 | 27 | eqeq1d 2742 | . . 3 ⊢ (Lim 𝑥 → ((∅ ·o 𝑥) = ∅ ↔ ∪ 𝑦 ∈ 𝑥 (∅ ·o 𝑦) = ∅)) |
29 | 23, 28 | imbitrrid 246 | . 2 ⊢ (Lim 𝑥 → (∀𝑦 ∈ 𝑥 (∅ ·o 𝑦) = ∅ → (∅ ·o 𝑥) = ∅)) |
30 | 2, 4, 6, 8, 11, 20, 29 | tfinds 7897 | 1 ⊢ (𝐴 ∈ On → (∅ ·o 𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ∅c0 4352 ∪ ciun 5015 Oncon0 6395 Lim wlim 6396 suc csuc 6397 (class class class)co 7448 +o coa 8519 ·o comu 8520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-oadd 8526 df-omul 8527 |
This theorem is referenced by: omord 8624 omwordi 8627 om00 8631 odi 8635 omass 8636 oeoa 8653 omxpenlem 9139 onmcl 43293 omcl2 43295 omcl3g 43296 |
Copyright terms: Public domain | W3C validator |