| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > om0r | Structured version Visualization version GIF version | ||
| Description: Ordinal multiplication with zero. Proposition 8.18(1) of [TakeutiZaring] p. 63. (Contributed by NM, 3-Aug-2004.) |
| Ref | Expression |
|---|---|
| om0r | ⊢ (𝐴 ∈ On → (∅ ·o 𝐴) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7398 | . . 3 ⊢ (𝑥 = ∅ → (∅ ·o 𝑥) = (∅ ·o ∅)) | |
| 2 | 1 | eqeq1d 2732 | . 2 ⊢ (𝑥 = ∅ → ((∅ ·o 𝑥) = ∅ ↔ (∅ ·o ∅) = ∅)) |
| 3 | oveq2 7398 | . . 3 ⊢ (𝑥 = 𝑦 → (∅ ·o 𝑥) = (∅ ·o 𝑦)) | |
| 4 | 3 | eqeq1d 2732 | . 2 ⊢ (𝑥 = 𝑦 → ((∅ ·o 𝑥) = ∅ ↔ (∅ ·o 𝑦) = ∅)) |
| 5 | oveq2 7398 | . . 3 ⊢ (𝑥 = suc 𝑦 → (∅ ·o 𝑥) = (∅ ·o suc 𝑦)) | |
| 6 | 5 | eqeq1d 2732 | . 2 ⊢ (𝑥 = suc 𝑦 → ((∅ ·o 𝑥) = ∅ ↔ (∅ ·o suc 𝑦) = ∅)) |
| 7 | oveq2 7398 | . . 3 ⊢ (𝑥 = 𝐴 → (∅ ·o 𝑥) = (∅ ·o 𝐴)) | |
| 8 | 7 | eqeq1d 2732 | . 2 ⊢ (𝑥 = 𝐴 → ((∅ ·o 𝑥) = ∅ ↔ (∅ ·o 𝐴) = ∅)) |
| 9 | 0elon 6390 | . . 3 ⊢ ∅ ∈ On | |
| 10 | om0 8484 | . . 3 ⊢ (∅ ∈ On → (∅ ·o ∅) = ∅) | |
| 11 | 9, 10 | ax-mp 5 | . 2 ⊢ (∅ ·o ∅) = ∅ |
| 12 | oveq1 7397 | . . 3 ⊢ ((∅ ·o 𝑦) = ∅ → ((∅ ·o 𝑦) +o ∅) = (∅ +o ∅)) | |
| 13 | omsuc 8493 | . . . . 5 ⊢ ((∅ ∈ On ∧ 𝑦 ∈ On) → (∅ ·o suc 𝑦) = ((∅ ·o 𝑦) +o ∅)) | |
| 14 | 9, 13 | mpan 690 | . . . 4 ⊢ (𝑦 ∈ On → (∅ ·o suc 𝑦) = ((∅ ·o 𝑦) +o ∅)) |
| 15 | oa0 8483 | . . . . . . 7 ⊢ (∅ ∈ On → (∅ +o ∅) = ∅) | |
| 16 | 9, 15 | ax-mp 5 | . . . . . 6 ⊢ (∅ +o ∅) = ∅ |
| 17 | 16 | eqcomi 2739 | . . . . 5 ⊢ ∅ = (∅ +o ∅) |
| 18 | 17 | a1i 11 | . . . 4 ⊢ (𝑦 ∈ On → ∅ = (∅ +o ∅)) |
| 19 | 14, 18 | eqeq12d 2746 | . . 3 ⊢ (𝑦 ∈ On → ((∅ ·o suc 𝑦) = ∅ ↔ ((∅ ·o 𝑦) +o ∅) = (∅ +o ∅))) |
| 20 | 12, 19 | imbitrrid 246 | . 2 ⊢ (𝑦 ∈ On → ((∅ ·o 𝑦) = ∅ → (∅ ·o suc 𝑦) = ∅)) |
| 21 | iuneq2 4978 | . . . 4 ⊢ (∀𝑦 ∈ 𝑥 (∅ ·o 𝑦) = ∅ → ∪ 𝑦 ∈ 𝑥 (∅ ·o 𝑦) = ∪ 𝑦 ∈ 𝑥 ∅) | |
| 22 | iun0 5029 | . . . 4 ⊢ ∪ 𝑦 ∈ 𝑥 ∅ = ∅ | |
| 23 | 21, 22 | eqtrdi 2781 | . . 3 ⊢ (∀𝑦 ∈ 𝑥 (∅ ·o 𝑦) = ∅ → ∪ 𝑦 ∈ 𝑥 (∅ ·o 𝑦) = ∅) |
| 24 | vex 3454 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 25 | omlim 8500 | . . . . . 6 ⊢ ((∅ ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (∅ ·o 𝑥) = ∪ 𝑦 ∈ 𝑥 (∅ ·o 𝑦)) | |
| 26 | 9, 25 | mpan 690 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ Lim 𝑥) → (∅ ·o 𝑥) = ∪ 𝑦 ∈ 𝑥 (∅ ·o 𝑦)) |
| 27 | 24, 26 | mpan 690 | . . . 4 ⊢ (Lim 𝑥 → (∅ ·o 𝑥) = ∪ 𝑦 ∈ 𝑥 (∅ ·o 𝑦)) |
| 28 | 27 | eqeq1d 2732 | . . 3 ⊢ (Lim 𝑥 → ((∅ ·o 𝑥) = ∅ ↔ ∪ 𝑦 ∈ 𝑥 (∅ ·o 𝑦) = ∅)) |
| 29 | 23, 28 | imbitrrid 246 | . 2 ⊢ (Lim 𝑥 → (∀𝑦 ∈ 𝑥 (∅ ·o 𝑦) = ∅ → (∅ ·o 𝑥) = ∅)) |
| 30 | 2, 4, 6, 8, 11, 20, 29 | tfinds 7839 | 1 ⊢ (𝐴 ∈ On → (∅ ·o 𝐴) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 ∅c0 4299 ∪ ciun 4958 Oncon0 6335 Lim wlim 6336 suc csuc 6337 (class class class)co 7390 +o coa 8434 ·o comu 8435 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-oadd 8441 df-omul 8442 |
| This theorem is referenced by: omord 8535 omwordi 8538 om00 8542 odi 8546 omass 8547 oeoa 8564 omxpenlem 9047 onmcl 43327 omcl2 43329 omcl3g 43330 |
| Copyright terms: Public domain | W3C validator |