| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > om0r | Structured version Visualization version GIF version | ||
| Description: Ordinal multiplication with zero. Proposition 8.18(1) of [TakeutiZaring] p. 63. (Contributed by NM, 3-Aug-2004.) |
| Ref | Expression |
|---|---|
| om0r | ⊢ (𝐴 ∈ On → (∅ ·o 𝐴) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7361 | . . 3 ⊢ (𝑥 = ∅ → (∅ ·o 𝑥) = (∅ ·o ∅)) | |
| 2 | 1 | eqeq1d 2731 | . 2 ⊢ (𝑥 = ∅ → ((∅ ·o 𝑥) = ∅ ↔ (∅ ·o ∅) = ∅)) |
| 3 | oveq2 7361 | . . 3 ⊢ (𝑥 = 𝑦 → (∅ ·o 𝑥) = (∅ ·o 𝑦)) | |
| 4 | 3 | eqeq1d 2731 | . 2 ⊢ (𝑥 = 𝑦 → ((∅ ·o 𝑥) = ∅ ↔ (∅ ·o 𝑦) = ∅)) |
| 5 | oveq2 7361 | . . 3 ⊢ (𝑥 = suc 𝑦 → (∅ ·o 𝑥) = (∅ ·o suc 𝑦)) | |
| 6 | 5 | eqeq1d 2731 | . 2 ⊢ (𝑥 = suc 𝑦 → ((∅ ·o 𝑥) = ∅ ↔ (∅ ·o suc 𝑦) = ∅)) |
| 7 | oveq2 7361 | . . 3 ⊢ (𝑥 = 𝐴 → (∅ ·o 𝑥) = (∅ ·o 𝐴)) | |
| 8 | 7 | eqeq1d 2731 | . 2 ⊢ (𝑥 = 𝐴 → ((∅ ·o 𝑥) = ∅ ↔ (∅ ·o 𝐴) = ∅)) |
| 9 | 0elon 6366 | . . 3 ⊢ ∅ ∈ On | |
| 10 | om0 8442 | . . 3 ⊢ (∅ ∈ On → (∅ ·o ∅) = ∅) | |
| 11 | 9, 10 | ax-mp 5 | . 2 ⊢ (∅ ·o ∅) = ∅ |
| 12 | oveq1 7360 | . . 3 ⊢ ((∅ ·o 𝑦) = ∅ → ((∅ ·o 𝑦) +o ∅) = (∅ +o ∅)) | |
| 13 | omsuc 8451 | . . . . 5 ⊢ ((∅ ∈ On ∧ 𝑦 ∈ On) → (∅ ·o suc 𝑦) = ((∅ ·o 𝑦) +o ∅)) | |
| 14 | 9, 13 | mpan 690 | . . . 4 ⊢ (𝑦 ∈ On → (∅ ·o suc 𝑦) = ((∅ ·o 𝑦) +o ∅)) |
| 15 | oa0 8441 | . . . . . . 7 ⊢ (∅ ∈ On → (∅ +o ∅) = ∅) | |
| 16 | 9, 15 | ax-mp 5 | . . . . . 6 ⊢ (∅ +o ∅) = ∅ |
| 17 | 16 | eqcomi 2738 | . . . . 5 ⊢ ∅ = (∅ +o ∅) |
| 18 | 17 | a1i 11 | . . . 4 ⊢ (𝑦 ∈ On → ∅ = (∅ +o ∅)) |
| 19 | 14, 18 | eqeq12d 2745 | . . 3 ⊢ (𝑦 ∈ On → ((∅ ·o suc 𝑦) = ∅ ↔ ((∅ ·o 𝑦) +o ∅) = (∅ +o ∅))) |
| 20 | 12, 19 | imbitrrid 246 | . 2 ⊢ (𝑦 ∈ On → ((∅ ·o 𝑦) = ∅ → (∅ ·o suc 𝑦) = ∅)) |
| 21 | iuneq2 4964 | . . . 4 ⊢ (∀𝑦 ∈ 𝑥 (∅ ·o 𝑦) = ∅ → ∪ 𝑦 ∈ 𝑥 (∅ ·o 𝑦) = ∪ 𝑦 ∈ 𝑥 ∅) | |
| 22 | iun0 5014 | . . . 4 ⊢ ∪ 𝑦 ∈ 𝑥 ∅ = ∅ | |
| 23 | 21, 22 | eqtrdi 2780 | . . 3 ⊢ (∀𝑦 ∈ 𝑥 (∅ ·o 𝑦) = ∅ → ∪ 𝑦 ∈ 𝑥 (∅ ·o 𝑦) = ∅) |
| 24 | vex 3442 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 25 | omlim 8458 | . . . . . 6 ⊢ ((∅ ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (∅ ·o 𝑥) = ∪ 𝑦 ∈ 𝑥 (∅ ·o 𝑦)) | |
| 26 | 9, 25 | mpan 690 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ Lim 𝑥) → (∅ ·o 𝑥) = ∪ 𝑦 ∈ 𝑥 (∅ ·o 𝑦)) |
| 27 | 24, 26 | mpan 690 | . . . 4 ⊢ (Lim 𝑥 → (∅ ·o 𝑥) = ∪ 𝑦 ∈ 𝑥 (∅ ·o 𝑦)) |
| 28 | 27 | eqeq1d 2731 | . . 3 ⊢ (Lim 𝑥 → ((∅ ·o 𝑥) = ∅ ↔ ∪ 𝑦 ∈ 𝑥 (∅ ·o 𝑦) = ∅)) |
| 29 | 23, 28 | imbitrrid 246 | . 2 ⊢ (Lim 𝑥 → (∀𝑦 ∈ 𝑥 (∅ ·o 𝑦) = ∅ → (∅ ·o 𝑥) = ∅)) |
| 30 | 2, 4, 6, 8, 11, 20, 29 | tfinds 7800 | 1 ⊢ (𝐴 ∈ On → (∅ ·o 𝐴) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3438 ∅c0 4286 ∪ ciun 4944 Oncon0 6311 Lim wlim 6312 suc csuc 6313 (class class class)co 7353 +o coa 8392 ·o comu 8393 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-oadd 8399 df-omul 8400 |
| This theorem is referenced by: omord 8493 omwordi 8496 om00 8500 odi 8504 omass 8505 oeoa 8522 omxpenlem 9002 onmcl 43304 omcl2 43306 omcl3g 43307 |
| Copyright terms: Public domain | W3C validator |