| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cfsmo | Structured version Visualization version GIF version | ||
| Description: The map in cff1 10298 can be assumed to be a strictly monotone ordinal function without loss of generality. (Contributed by Mario Carneiro, 28-Feb-2013.) |
| Ref | Expression |
|---|---|
| cfsmo | ⊢ (𝐴 ∈ On → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmeq 5914 | . . . . 5 ⊢ (𝑥 = 𝑧 → dom 𝑥 = dom 𝑧) | |
| 2 | 1 | fveq2d 6910 | . . . 4 ⊢ (𝑥 = 𝑧 → (ℎ‘dom 𝑥) = (ℎ‘dom 𝑧)) |
| 3 | fveq2 6906 | . . . . . . 7 ⊢ (𝑛 = 𝑚 → (𝑥‘𝑛) = (𝑥‘𝑚)) | |
| 4 | suceq 6450 | . . . . . . 7 ⊢ ((𝑥‘𝑛) = (𝑥‘𝑚) → suc (𝑥‘𝑛) = suc (𝑥‘𝑚)) | |
| 5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝑛 = 𝑚 → suc (𝑥‘𝑛) = suc (𝑥‘𝑚)) |
| 6 | 5 | cbviunv 5040 | . . . . 5 ⊢ ∪ 𝑛 ∈ dom 𝑥 suc (𝑥‘𝑛) = ∪ 𝑚 ∈ dom 𝑥 suc (𝑥‘𝑚) |
| 7 | fveq1 6905 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝑥‘𝑚) = (𝑧‘𝑚)) | |
| 8 | suceq 6450 | . . . . . . 7 ⊢ ((𝑥‘𝑚) = (𝑧‘𝑚) → suc (𝑥‘𝑚) = suc (𝑧‘𝑚)) | |
| 9 | 7, 8 | syl 17 | . . . . . 6 ⊢ (𝑥 = 𝑧 → suc (𝑥‘𝑚) = suc (𝑧‘𝑚)) |
| 10 | 1, 9 | iuneq12d 5021 | . . . . 5 ⊢ (𝑥 = 𝑧 → ∪ 𝑚 ∈ dom 𝑥 suc (𝑥‘𝑚) = ∪ 𝑚 ∈ dom 𝑧 suc (𝑧‘𝑚)) |
| 11 | 6, 10 | eqtrid 2789 | . . . 4 ⊢ (𝑥 = 𝑧 → ∪ 𝑛 ∈ dom 𝑥 suc (𝑥‘𝑛) = ∪ 𝑚 ∈ dom 𝑧 suc (𝑧‘𝑚)) |
| 12 | 2, 11 | uneq12d 4169 | . . 3 ⊢ (𝑥 = 𝑧 → ((ℎ‘dom 𝑥) ∪ ∪ 𝑛 ∈ dom 𝑥 suc (𝑥‘𝑛)) = ((ℎ‘dom 𝑧) ∪ ∪ 𝑚 ∈ dom 𝑧 suc (𝑧‘𝑚))) |
| 13 | 12 | cbvmptv 5255 | . 2 ⊢ (𝑥 ∈ V ↦ ((ℎ‘dom 𝑥) ∪ ∪ 𝑛 ∈ dom 𝑥 suc (𝑥‘𝑛))) = (𝑧 ∈ V ↦ ((ℎ‘dom 𝑧) ∪ ∪ 𝑚 ∈ dom 𝑧 suc (𝑧‘𝑚))) |
| 14 | eqid 2737 | . 2 ⊢ (recs((𝑥 ∈ V ↦ ((ℎ‘dom 𝑥) ∪ ∪ 𝑛 ∈ dom 𝑥 suc (𝑥‘𝑛)))) ↾ (cf‘𝐴)) = (recs((𝑥 ∈ V ↦ ((ℎ‘dom 𝑥) ∪ ∪ 𝑛 ∈ dom 𝑥 suc (𝑥‘𝑛)))) ↾ (cf‘𝐴)) | |
| 15 | 13, 14 | cfsmolem 10310 | 1 ⊢ (𝐴 ∈ On → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 Vcvv 3480 ∪ cun 3949 ⊆ wss 3951 ∪ ciun 4991 ↦ cmpt 5225 dom cdm 5685 ↾ cres 5687 Oncon0 6384 suc csuc 6386 ⟶wf 6557 ‘cfv 6561 Smo wsmo 8385 recscrecs 8410 cfccf 9977 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-smo 8386 df-recs 8411 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-card 9979 df-cf 9981 df-acn 9982 |
| This theorem is referenced by: cfidm 10315 pwcfsdom 10623 |
| Copyright terms: Public domain | W3C validator |