Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cfsmo | Structured version Visualization version GIF version |
Description: The map in cff1 9945 can be assumed to be a strictly monotone ordinal function without loss of generality. (Contributed by Mario Carneiro, 28-Feb-2013.) |
Ref | Expression |
---|---|
cfsmo | ⊢ (𝐴 ∈ On → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmeq 5801 | . . . . 5 ⊢ (𝑥 = 𝑧 → dom 𝑥 = dom 𝑧) | |
2 | 1 | fveq2d 6760 | . . . 4 ⊢ (𝑥 = 𝑧 → (ℎ‘dom 𝑥) = (ℎ‘dom 𝑧)) |
3 | fveq2 6756 | . . . . . . 7 ⊢ (𝑛 = 𝑚 → (𝑥‘𝑛) = (𝑥‘𝑚)) | |
4 | suceq 6316 | . . . . . . 7 ⊢ ((𝑥‘𝑛) = (𝑥‘𝑚) → suc (𝑥‘𝑛) = suc (𝑥‘𝑚)) | |
5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝑛 = 𝑚 → suc (𝑥‘𝑛) = suc (𝑥‘𝑚)) |
6 | 5 | cbviunv 4966 | . . . . 5 ⊢ ∪ 𝑛 ∈ dom 𝑥 suc (𝑥‘𝑛) = ∪ 𝑚 ∈ dom 𝑥 suc (𝑥‘𝑚) |
7 | fveq1 6755 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝑥‘𝑚) = (𝑧‘𝑚)) | |
8 | suceq 6316 | . . . . . . 7 ⊢ ((𝑥‘𝑚) = (𝑧‘𝑚) → suc (𝑥‘𝑚) = suc (𝑧‘𝑚)) | |
9 | 7, 8 | syl 17 | . . . . . 6 ⊢ (𝑥 = 𝑧 → suc (𝑥‘𝑚) = suc (𝑧‘𝑚)) |
10 | 1, 9 | iuneq12d 4949 | . . . . 5 ⊢ (𝑥 = 𝑧 → ∪ 𝑚 ∈ dom 𝑥 suc (𝑥‘𝑚) = ∪ 𝑚 ∈ dom 𝑧 suc (𝑧‘𝑚)) |
11 | 6, 10 | eqtrid 2790 | . . . 4 ⊢ (𝑥 = 𝑧 → ∪ 𝑛 ∈ dom 𝑥 suc (𝑥‘𝑛) = ∪ 𝑚 ∈ dom 𝑧 suc (𝑧‘𝑚)) |
12 | 2, 11 | uneq12d 4094 | . . 3 ⊢ (𝑥 = 𝑧 → ((ℎ‘dom 𝑥) ∪ ∪ 𝑛 ∈ dom 𝑥 suc (𝑥‘𝑛)) = ((ℎ‘dom 𝑧) ∪ ∪ 𝑚 ∈ dom 𝑧 suc (𝑧‘𝑚))) |
13 | 12 | cbvmptv 5183 | . 2 ⊢ (𝑥 ∈ V ↦ ((ℎ‘dom 𝑥) ∪ ∪ 𝑛 ∈ dom 𝑥 suc (𝑥‘𝑛))) = (𝑧 ∈ V ↦ ((ℎ‘dom 𝑧) ∪ ∪ 𝑚 ∈ dom 𝑧 suc (𝑧‘𝑚))) |
14 | eqid 2738 | . 2 ⊢ (recs((𝑥 ∈ V ↦ ((ℎ‘dom 𝑥) ∪ ∪ 𝑛 ∈ dom 𝑥 suc (𝑥‘𝑛)))) ↾ (cf‘𝐴)) = (recs((𝑥 ∈ V ↦ ((ℎ‘dom 𝑥) ∪ ∪ 𝑛 ∈ dom 𝑥 suc (𝑥‘𝑛)))) ↾ (cf‘𝐴)) | |
15 | 13, 14 | cfsmolem 9957 | 1 ⊢ (𝐴 ∈ On → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 Vcvv 3422 ∪ cun 3881 ⊆ wss 3883 ∪ ciun 4921 ↦ cmpt 5153 dom cdm 5580 ↾ cres 5582 Oncon0 6251 suc csuc 6253 ⟶wf 6414 ‘cfv 6418 Smo wsmo 8147 recscrecs 8172 cfccf 9626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-smo 8148 df-recs 8173 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-card 9628 df-cf 9630 df-acn 9631 |
This theorem is referenced by: cfidm 9962 pwcfsdom 10270 |
Copyright terms: Public domain | W3C validator |