Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cfsmo | Structured version Visualization version GIF version |
Description: The map in cff1 10007 can be assumed to be a strictly monotone ordinal function without loss of generality. (Contributed by Mario Carneiro, 28-Feb-2013.) |
Ref | Expression |
---|---|
cfsmo | ⊢ (𝐴 ∈ On → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmeq 5810 | . . . . 5 ⊢ (𝑥 = 𝑧 → dom 𝑥 = dom 𝑧) | |
2 | 1 | fveq2d 6773 | . . . 4 ⊢ (𝑥 = 𝑧 → (ℎ‘dom 𝑥) = (ℎ‘dom 𝑧)) |
3 | fveq2 6769 | . . . . . . 7 ⊢ (𝑛 = 𝑚 → (𝑥‘𝑛) = (𝑥‘𝑚)) | |
4 | suceq 6329 | . . . . . . 7 ⊢ ((𝑥‘𝑛) = (𝑥‘𝑚) → suc (𝑥‘𝑛) = suc (𝑥‘𝑚)) | |
5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝑛 = 𝑚 → suc (𝑥‘𝑛) = suc (𝑥‘𝑚)) |
6 | 5 | cbviunv 4975 | . . . . 5 ⊢ ∪ 𝑛 ∈ dom 𝑥 suc (𝑥‘𝑛) = ∪ 𝑚 ∈ dom 𝑥 suc (𝑥‘𝑚) |
7 | fveq1 6768 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝑥‘𝑚) = (𝑧‘𝑚)) | |
8 | suceq 6329 | . . . . . . 7 ⊢ ((𝑥‘𝑚) = (𝑧‘𝑚) → suc (𝑥‘𝑚) = suc (𝑧‘𝑚)) | |
9 | 7, 8 | syl 17 | . . . . . 6 ⊢ (𝑥 = 𝑧 → suc (𝑥‘𝑚) = suc (𝑧‘𝑚)) |
10 | 1, 9 | iuneq12d 4958 | . . . . 5 ⊢ (𝑥 = 𝑧 → ∪ 𝑚 ∈ dom 𝑥 suc (𝑥‘𝑚) = ∪ 𝑚 ∈ dom 𝑧 suc (𝑧‘𝑚)) |
11 | 6, 10 | eqtrid 2792 | . . . 4 ⊢ (𝑥 = 𝑧 → ∪ 𝑛 ∈ dom 𝑥 suc (𝑥‘𝑛) = ∪ 𝑚 ∈ dom 𝑧 suc (𝑧‘𝑚)) |
12 | 2, 11 | uneq12d 4103 | . . 3 ⊢ (𝑥 = 𝑧 → ((ℎ‘dom 𝑥) ∪ ∪ 𝑛 ∈ dom 𝑥 suc (𝑥‘𝑛)) = ((ℎ‘dom 𝑧) ∪ ∪ 𝑚 ∈ dom 𝑧 suc (𝑧‘𝑚))) |
13 | 12 | cbvmptv 5192 | . 2 ⊢ (𝑥 ∈ V ↦ ((ℎ‘dom 𝑥) ∪ ∪ 𝑛 ∈ dom 𝑥 suc (𝑥‘𝑛))) = (𝑧 ∈ V ↦ ((ℎ‘dom 𝑧) ∪ ∪ 𝑚 ∈ dom 𝑧 suc (𝑧‘𝑚))) |
14 | eqid 2740 | . 2 ⊢ (recs((𝑥 ∈ V ↦ ((ℎ‘dom 𝑥) ∪ ∪ 𝑛 ∈ dom 𝑥 suc (𝑥‘𝑛)))) ↾ (cf‘𝐴)) = (recs((𝑥 ∈ V ↦ ((ℎ‘dom 𝑥) ∪ ∪ 𝑛 ∈ dom 𝑥 suc (𝑥‘𝑛)))) ↾ (cf‘𝐴)) | |
15 | 13, 14 | cfsmolem 10019 | 1 ⊢ (𝐴 ∈ On → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1542 ∃wex 1786 ∈ wcel 2110 ∀wral 3066 ∃wrex 3067 Vcvv 3431 ∪ cun 3890 ⊆ wss 3892 ∪ ciun 4930 ↦ cmpt 5162 dom cdm 5589 ↾ cres 5591 Oncon0 6264 suc csuc 6266 ⟶wf 6427 ‘cfv 6431 Smo wsmo 8161 recscrecs 8186 cfccf 9688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-isom 6440 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-1st 7818 df-2nd 7819 df-frecs 8082 df-wrecs 8113 df-smo 8162 df-recs 8187 df-er 8473 df-map 8592 df-en 8709 df-dom 8710 df-sdom 8711 df-card 9690 df-cf 9692 df-acn 9693 |
This theorem is referenced by: cfidm 10024 pwcfsdom 10332 |
Copyright terms: Public domain | W3C validator |