MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfsmo Structured version   Visualization version   GIF version

Theorem cfsmo 9489
Description: The map in cff1 9476 can be assumed to be a strictly monotone ordinal function without loss of generality. (Contributed by Mario Carneiro, 28-Feb-2013.)
Assertion
Ref Expression
cfsmo (𝐴 ∈ On → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤)))
Distinct variable group:   𝐴,𝑓,𝑤,𝑧

Proof of Theorem cfsmo
Dummy variables 𝑚 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmeq 5618 . . . . 5 (𝑥 = 𝑧 → dom 𝑥 = dom 𝑧)
21fveq2d 6500 . . . 4 (𝑥 = 𝑧 → (‘dom 𝑥) = (‘dom 𝑧))
3 fveq2 6496 . . . . . . 7 (𝑛 = 𝑚 → (𝑥𝑛) = (𝑥𝑚))
4 suceq 6091 . . . . . . 7 ((𝑥𝑛) = (𝑥𝑚) → suc (𝑥𝑛) = suc (𝑥𝑚))
53, 4syl 17 . . . . . 6 (𝑛 = 𝑚 → suc (𝑥𝑛) = suc (𝑥𝑚))
65cbviunv 4829 . . . . 5 𝑛 ∈ dom 𝑥 suc (𝑥𝑛) = 𝑚 ∈ dom 𝑥 suc (𝑥𝑚)
7 fveq1 6495 . . . . . . 7 (𝑥 = 𝑧 → (𝑥𝑚) = (𝑧𝑚))
8 suceq 6091 . . . . . . 7 ((𝑥𝑚) = (𝑧𝑚) → suc (𝑥𝑚) = suc (𝑧𝑚))
97, 8syl 17 . . . . . 6 (𝑥 = 𝑧 → suc (𝑥𝑚) = suc (𝑧𝑚))
101, 9iuneq12d 4815 . . . . 5 (𝑥 = 𝑧 𝑚 ∈ dom 𝑥 suc (𝑥𝑚) = 𝑚 ∈ dom 𝑧 suc (𝑧𝑚))
116, 10syl5eq 2820 . . . 4 (𝑥 = 𝑧 𝑛 ∈ dom 𝑥 suc (𝑥𝑛) = 𝑚 ∈ dom 𝑧 suc (𝑧𝑚))
122, 11uneq12d 4023 . . 3 (𝑥 = 𝑧 → ((‘dom 𝑥) ∪ 𝑛 ∈ dom 𝑥 suc (𝑥𝑛)) = ((‘dom 𝑧) ∪ 𝑚 ∈ dom 𝑧 suc (𝑧𝑚)))
1312cbvmptv 5024 . 2 (𝑥 ∈ V ↦ ((‘dom 𝑥) ∪ 𝑛 ∈ dom 𝑥 suc (𝑥𝑛))) = (𝑧 ∈ V ↦ ((‘dom 𝑧) ∪ 𝑚 ∈ dom 𝑧 suc (𝑧𝑚)))
14 eqid 2772 . 2 (recs((𝑥 ∈ V ↦ ((‘dom 𝑥) ∪ 𝑛 ∈ dom 𝑥 suc (𝑥𝑛)))) ↾ (cf‘𝐴)) = (recs((𝑥 ∈ V ↦ ((‘dom 𝑥) ∪ 𝑛 ∈ dom 𝑥 suc (𝑥𝑛)))) ↾ (cf‘𝐴))
1513, 14cfsmolem 9488 1 (𝐴 ∈ On → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1068   = wceq 1507  wex 1742  wcel 2050  wral 3082  wrex 3083  Vcvv 3409  cun 3821  wss 3823   ciun 4788  cmpt 5004  dom cdm 5403  cres 5405  Oncon0 6026  suc csuc 6028  wf 6181  cfv 6185  Smo wsmo 7784  recscrecs 7809  cfccf 9158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-rep 5045  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-int 4746  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-se 5363  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-isom 6194  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-1st 7499  df-2nd 7500  df-wrecs 7748  df-smo 7785  df-recs 7810  df-er 8087  df-map 8206  df-en 8305  df-dom 8306  df-sdom 8307  df-card 9160  df-cf 9162  df-acn 9163
This theorem is referenced by:  cfidm  9493  pwcfsdom  9801
  Copyright terms: Public domain W3C validator