MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfsmo Structured version   Visualization version   GIF version

Theorem cfsmo 10069
Description: The map in cff1 10056 can be assumed to be a strictly monotone ordinal function without loss of generality. (Contributed by Mario Carneiro, 28-Feb-2013.)
Assertion
Ref Expression
cfsmo (𝐴 ∈ On → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤)))
Distinct variable group:   𝐴,𝑓,𝑤,𝑧

Proof of Theorem cfsmo
Dummy variables 𝑚 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmeq 5821 . . . . 5 (𝑥 = 𝑧 → dom 𝑥 = dom 𝑧)
21fveq2d 6804 . . . 4 (𝑥 = 𝑧 → (‘dom 𝑥) = (‘dom 𝑧))
3 fveq2 6800 . . . . . . 7 (𝑛 = 𝑚 → (𝑥𝑛) = (𝑥𝑚))
4 suceq 6342 . . . . . . 7 ((𝑥𝑛) = (𝑥𝑚) → suc (𝑥𝑛) = suc (𝑥𝑚))
53, 4syl 17 . . . . . 6 (𝑛 = 𝑚 → suc (𝑥𝑛) = suc (𝑥𝑚))
65cbviunv 4977 . . . . 5 𝑛 ∈ dom 𝑥 suc (𝑥𝑛) = 𝑚 ∈ dom 𝑥 suc (𝑥𝑚)
7 fveq1 6799 . . . . . . 7 (𝑥 = 𝑧 → (𝑥𝑚) = (𝑧𝑚))
8 suceq 6342 . . . . . . 7 ((𝑥𝑚) = (𝑧𝑚) → suc (𝑥𝑚) = suc (𝑧𝑚))
97, 8syl 17 . . . . . 6 (𝑥 = 𝑧 → suc (𝑥𝑚) = suc (𝑧𝑚))
101, 9iuneq12d 4959 . . . . 5 (𝑥 = 𝑧 𝑚 ∈ dom 𝑥 suc (𝑥𝑚) = 𝑚 ∈ dom 𝑧 suc (𝑧𝑚))
116, 10eqtrid 2788 . . . 4 (𝑥 = 𝑧 𝑛 ∈ dom 𝑥 suc (𝑥𝑛) = 𝑚 ∈ dom 𝑧 suc (𝑧𝑚))
122, 11uneq12d 4104 . . 3 (𝑥 = 𝑧 → ((‘dom 𝑥) ∪ 𝑛 ∈ dom 𝑥 suc (𝑥𝑛)) = ((‘dom 𝑧) ∪ 𝑚 ∈ dom 𝑧 suc (𝑧𝑚)))
1312cbvmptv 5194 . 2 (𝑥 ∈ V ↦ ((‘dom 𝑥) ∪ 𝑛 ∈ dom 𝑥 suc (𝑥𝑛))) = (𝑧 ∈ V ↦ ((‘dom 𝑧) ∪ 𝑚 ∈ dom 𝑧 suc (𝑧𝑚)))
14 eqid 2736 . 2 (recs((𝑥 ∈ V ↦ ((‘dom 𝑥) ∪ 𝑛 ∈ dom 𝑥 suc (𝑥𝑛)))) ↾ (cf‘𝐴)) = (recs((𝑥 ∈ V ↦ ((‘dom 𝑥) ∪ 𝑛 ∈ dom 𝑥 suc (𝑥𝑛)))) ↾ (cf‘𝐴))
1513, 14cfsmolem 10068 1 (𝐴 ∈ On → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1539  wex 1779  wcel 2104  wral 3062  wrex 3071  Vcvv 3437  cun 3890  wss 3892   ciun 4931  cmpt 5164  dom cdm 5596  cres 5598  Oncon0 6277  suc csuc 6279  wf 6450  cfv 6454  Smo wsmo 8203  recscrecs 8228  cfccf 9735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7616
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5496  df-eprel 5502  df-po 5510  df-so 5511  df-fr 5551  df-se 5552  df-we 5553  df-xp 5602  df-rel 5603  df-cnv 5604  df-co 5605  df-dm 5606  df-rn 5607  df-res 5608  df-ima 5609  df-pred 6213  df-ord 6280  df-on 6281  df-suc 6283  df-iota 6406  df-fun 6456  df-fn 6457  df-f 6458  df-f1 6459  df-fo 6460  df-f1o 6461  df-fv 6462  df-isom 6463  df-riota 7260  df-ov 7306  df-oprab 7307  df-mpo 7308  df-1st 7859  df-2nd 7860  df-frecs 8124  df-wrecs 8155  df-smo 8204  df-recs 8229  df-er 8525  df-map 8644  df-en 8761  df-dom 8762  df-sdom 8763  df-card 9737  df-cf 9739  df-acn 9740
This theorem is referenced by:  cfidm  10073  pwcfsdom  10381
  Copyright terms: Public domain W3C validator