MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfsmo Structured version   Visualization version   GIF version

Theorem cfsmo 10268
Description: The map in cff1 10255 can be assumed to be a strictly monotone ordinal function without loss of generality. (Contributed by Mario Carneiro, 28-Feb-2013.)
Assertion
Ref Expression
cfsmo (𝐴 ∈ On → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤)))
Distinct variable group:   𝐴,𝑓,𝑤,𝑧

Proof of Theorem cfsmo
Dummy variables 𝑚 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmeq 5903 . . . . 5 (𝑥 = 𝑧 → dom 𝑥 = dom 𝑧)
21fveq2d 6895 . . . 4 (𝑥 = 𝑧 → (‘dom 𝑥) = (‘dom 𝑧))
3 fveq2 6891 . . . . . . 7 (𝑛 = 𝑚 → (𝑥𝑛) = (𝑥𝑚))
4 suceq 6430 . . . . . . 7 ((𝑥𝑛) = (𝑥𝑚) → suc (𝑥𝑛) = suc (𝑥𝑚))
53, 4syl 17 . . . . . 6 (𝑛 = 𝑚 → suc (𝑥𝑛) = suc (𝑥𝑚))
65cbviunv 5043 . . . . 5 𝑛 ∈ dom 𝑥 suc (𝑥𝑛) = 𝑚 ∈ dom 𝑥 suc (𝑥𝑚)
7 fveq1 6890 . . . . . . 7 (𝑥 = 𝑧 → (𝑥𝑚) = (𝑧𝑚))
8 suceq 6430 . . . . . . 7 ((𝑥𝑚) = (𝑧𝑚) → suc (𝑥𝑚) = suc (𝑧𝑚))
97, 8syl 17 . . . . . 6 (𝑥 = 𝑧 → suc (𝑥𝑚) = suc (𝑧𝑚))
101, 9iuneq12d 5025 . . . . 5 (𝑥 = 𝑧 𝑚 ∈ dom 𝑥 suc (𝑥𝑚) = 𝑚 ∈ dom 𝑧 suc (𝑧𝑚))
116, 10eqtrid 2784 . . . 4 (𝑥 = 𝑧 𝑛 ∈ dom 𝑥 suc (𝑥𝑛) = 𝑚 ∈ dom 𝑧 suc (𝑧𝑚))
122, 11uneq12d 4164 . . 3 (𝑥 = 𝑧 → ((‘dom 𝑥) ∪ 𝑛 ∈ dom 𝑥 suc (𝑥𝑛)) = ((‘dom 𝑧) ∪ 𝑚 ∈ dom 𝑧 suc (𝑧𝑚)))
1312cbvmptv 5261 . 2 (𝑥 ∈ V ↦ ((‘dom 𝑥) ∪ 𝑛 ∈ dom 𝑥 suc (𝑥𝑛))) = (𝑧 ∈ V ↦ ((‘dom 𝑧) ∪ 𝑚 ∈ dom 𝑧 suc (𝑧𝑚)))
14 eqid 2732 . 2 (recs((𝑥 ∈ V ↦ ((‘dom 𝑥) ∪ 𝑛 ∈ dom 𝑥 suc (𝑥𝑛)))) ↾ (cf‘𝐴)) = (recs((𝑥 ∈ V ↦ ((‘dom 𝑥) ∪ 𝑛 ∈ dom 𝑥 suc (𝑥𝑛)))) ↾ (cf‘𝐴))
1513, 14cfsmolem 10267 1 (𝐴 ∈ On → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wral 3061  wrex 3070  Vcvv 3474  cun 3946  wss 3948   ciun 4997  cmpt 5231  dom cdm 5676  cres 5678  Oncon0 6364  suc csuc 6366  wf 6539  cfv 6543  Smo wsmo 8347  recscrecs 8372  cfccf 9934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-smo 8348  df-recs 8373  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-card 9936  df-cf 9938  df-acn 9939
This theorem is referenced by:  cfidm  10272  pwcfsdom  10580
  Copyright terms: Public domain W3C validator