Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iuneq2d | Structured version Visualization version GIF version |
Description: Equality deduction for indexed union. (Contributed by Drahflow, 22-Oct-2015.) |
Ref | Expression |
---|---|
iuneq2d.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
iuneq2d | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq2d.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
3 | 2 | iuneq2dv 4950 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∪ ciun 4926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3067 df-rex 3068 df-v 3429 df-in 3895 df-ss 3905 df-iun 4928 |
This theorem is referenced by: iununi 5029 oelim2 8393 trpredeq1 9414 trpredeq2 9415 ituniiun 10125 rtrclreclem1 14712 dfrtrclrec2 14713 rtrclreclem2 14714 rtrclreclem4 14716 imasval 17166 mreacs 17311 cnextval 23156 taylfval 25461 iunpreima 30845 reprdifc 32549 msubvrs 33464 neibastop2 34519 voliunnfl 35790 sstotbnd2 35901 equivtotbnd 35905 totbndbnd 35916 heiborlem3 35940 eliunov2 41218 fvmptiunrelexplb0d 41223 fvmptiunrelexplb1d 41225 comptiunov2i 41245 trclrelexplem 41250 dftrcl3 41259 trclfvcom 41262 cnvtrclfv 41263 cotrcltrcl 41264 trclimalb2 41265 trclfvdecomr 41267 dfrtrcl3 41272 dfrtrcl4 41277 isomenndlem 44000 ovnval 44011 hoicvr 44018 hoicvrrex 44026 ovnlecvr 44028 ovncvrrp 44034 ovnsubaddlem1 44040 hoidmvlelem3 44067 hoidmvle 44070 ovnhoilem1 44071 ovnovollem1 44126 smflimlem3 44237 otiunsndisjX 44700 |
Copyright terms: Public domain | W3C validator |