| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iuneq2d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for indexed union. (Contributed by Drahflow, 22-Oct-2015.) |
| Ref | Expression |
|---|---|
| iuneq2d.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| iuneq2d | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq2d.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
| 3 | 2 | iuneq2dv 4966 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ ciun 4941 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-v 3438 df-ss 3920 df-iun 4943 |
| This theorem is referenced by: iununi 5048 oelim2 8513 ituniiun 10316 rtrclreclem1 14964 dfrtrclrec2 14965 rtrclreclem2 14966 rtrclreclem4 14968 imasval 17415 mreacs 17564 pzriprnglem10 21397 cnextval 23946 taylfval 26264 iunpreima 32508 constrlim 33706 reprdifc 34595 msubvrs 35533 neibastop2 36335 voliunnfl 37644 sstotbnd2 37754 equivtotbnd 37758 totbndbnd 37769 heiborlem3 37793 eliunov2 43652 fvmptiunrelexplb0d 43657 fvmptiunrelexplb1d 43659 comptiunov2i 43679 trclrelexplem 43684 dftrcl3 43693 trclfvcom 43696 cnvtrclfv 43697 cotrcltrcl 43698 trclimalb2 43699 trclfvdecomr 43701 dfrtrcl3 43706 dfrtrcl4 43711 isomenndlem 46511 ovnval 46522 hoicvr 46529 hoicvrrex 46537 ovnlecvr 46539 ovncvrrp 46545 ovnsubaddlem1 46551 hoidmvlelem3 46578 hoidmvle 46581 ovnhoilem1 46582 ovnovollem1 46637 smflimlem3 46754 otiunsndisjX 47263 |
| Copyright terms: Public domain | W3C validator |