| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iuneq2d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for indexed union. (Contributed by Drahflow, 22-Oct-2015.) |
| Ref | Expression |
|---|---|
| iuneq2d.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| iuneq2d | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq2d.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
| 3 | 2 | iuneq2dv 4992 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∪ ciun 4967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-v 3461 df-ss 3943 df-iun 4969 |
| This theorem is referenced by: iununi 5075 oelim2 8607 ituniiun 10436 rtrclreclem1 15076 dfrtrclrec2 15077 rtrclreclem2 15078 rtrclreclem4 15080 imasval 17525 mreacs 17670 pzriprnglem10 21451 cnextval 23999 taylfval 26318 iunpreima 32545 constrlim 33773 reprdifc 34659 msubvrs 35582 neibastop2 36379 voliunnfl 37688 sstotbnd2 37798 equivtotbnd 37802 totbndbnd 37813 heiborlem3 37837 eliunov2 43703 fvmptiunrelexplb0d 43708 fvmptiunrelexplb1d 43710 comptiunov2i 43730 trclrelexplem 43735 dftrcl3 43744 trclfvcom 43747 cnvtrclfv 43748 cotrcltrcl 43749 trclimalb2 43750 trclfvdecomr 43752 dfrtrcl3 43757 dfrtrcl4 43762 isomenndlem 46559 ovnval 46570 hoicvr 46577 hoicvrrex 46585 ovnlecvr 46587 ovncvrrp 46593 ovnsubaddlem1 46599 hoidmvlelem3 46626 hoidmvle 46629 ovnhoilem1 46630 ovnovollem1 46685 smflimlem3 46802 otiunsndisjX 47308 |
| Copyright terms: Public domain | W3C validator |