Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iuneq2d | Structured version Visualization version GIF version |
Description: Equality deduction for indexed union. (Contributed by Drahflow, 22-Oct-2015.) |
Ref | Expression |
---|---|
iuneq2d.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
iuneq2d | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq2d.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
3 | 2 | iuneq2dv 4945 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∪ ciun 4921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-v 3424 df-in 3890 df-ss 3900 df-iun 4923 |
This theorem is referenced by: iununi 5024 oelim2 8388 trpredeq1 9398 trpredeq2 9399 ituniiun 10109 rtrclreclem1 14696 dfrtrclrec2 14697 rtrclreclem2 14698 rtrclreclem4 14700 imasval 17139 mreacs 17284 cnextval 23120 taylfval 25423 iunpreima 30805 reprdifc 32507 msubvrs 33422 neibastop2 34477 voliunnfl 35748 sstotbnd2 35859 equivtotbnd 35863 totbndbnd 35874 heiborlem3 35898 eliunov2 41176 fvmptiunrelexplb0d 41181 fvmptiunrelexplb1d 41183 comptiunov2i 41203 trclrelexplem 41208 dftrcl3 41217 trclfvcom 41220 cnvtrclfv 41221 cotrcltrcl 41222 trclimalb2 41223 trclfvdecomr 41225 dfrtrcl3 41230 dfrtrcl4 41235 isomenndlem 43958 ovnval 43969 hoicvr 43976 hoicvrrex 43984 ovnlecvr 43986 ovncvrrp 43992 ovnsubaddlem1 43998 hoidmvlelem3 44025 hoidmvle 44028 ovnhoilem1 44029 ovnovollem1 44084 smflimlem3 44195 otiunsndisjX 44658 |
Copyright terms: Public domain | W3C validator |