| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iuneq2d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for indexed union. (Contributed by Drahflow, 22-Oct-2015.) |
| Ref | Expression |
|---|---|
| iuneq2d.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| iuneq2d | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq2d.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
| 3 | 2 | iuneq2dv 4976 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ ciun 4951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-v 3446 df-ss 3928 df-iun 4953 |
| This theorem is referenced by: iununi 5058 oelim2 8536 ituniiun 10351 rtrclreclem1 14999 dfrtrclrec2 15000 rtrclreclem2 15001 rtrclreclem4 15003 imasval 17450 mreacs 17595 pzriprnglem10 21376 cnextval 23924 taylfval 26242 iunpreima 32466 constrlim 33702 reprdifc 34591 msubvrs 35520 neibastop2 36322 voliunnfl 37631 sstotbnd2 37741 equivtotbnd 37745 totbndbnd 37756 heiborlem3 37780 eliunov2 43641 fvmptiunrelexplb0d 43646 fvmptiunrelexplb1d 43648 comptiunov2i 43668 trclrelexplem 43673 dftrcl3 43682 trclfvcom 43685 cnvtrclfv 43686 cotrcltrcl 43687 trclimalb2 43688 trclfvdecomr 43690 dfrtrcl3 43695 dfrtrcl4 43700 isomenndlem 46501 ovnval 46512 hoicvr 46519 hoicvrrex 46527 ovnlecvr 46529 ovncvrrp 46535 ovnsubaddlem1 46541 hoidmvlelem3 46568 hoidmvle 46571 ovnhoilem1 46572 ovnovollem1 46627 smflimlem3 46744 otiunsndisjX 47253 |
| Copyright terms: Public domain | W3C validator |