![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iuneq2d | Structured version Visualization version GIF version |
Description: Equality deduction for indexed union. (Contributed by Drahflow, 22-Oct-2015.) |
Ref | Expression |
---|---|
iuneq2d.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
iuneq2d | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq2d.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
3 | 2 | iuneq2dv 5021 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ∪ ciun 4996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-v 3480 df-ss 3980 df-iun 4998 |
This theorem is referenced by: iununi 5104 oelim2 8632 ituniiun 10460 rtrclreclem1 15093 dfrtrclrec2 15094 rtrclreclem2 15095 rtrclreclem4 15097 imasval 17558 mreacs 17703 pzriprnglem10 21519 cnextval 24085 taylfval 26415 iunpreima 32585 constrlim 33744 reprdifc 34621 msubvrs 35545 neibastop2 36344 voliunnfl 37651 sstotbnd2 37761 equivtotbnd 37765 totbndbnd 37776 heiborlem3 37800 eliunov2 43669 fvmptiunrelexplb0d 43674 fvmptiunrelexplb1d 43676 comptiunov2i 43696 trclrelexplem 43701 dftrcl3 43710 trclfvcom 43713 cnvtrclfv 43714 cotrcltrcl 43715 trclimalb2 43716 trclfvdecomr 43718 dfrtrcl3 43723 dfrtrcl4 43728 isomenndlem 46486 ovnval 46497 hoicvr 46504 hoicvrrex 46512 ovnlecvr 46514 ovncvrrp 46520 ovnsubaddlem1 46526 hoidmvlelem3 46553 hoidmvle 46556 ovnhoilem1 46557 ovnovollem1 46612 smflimlem3 46729 otiunsndisjX 47229 |
Copyright terms: Public domain | W3C validator |