Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iuneq2d | Structured version Visualization version GIF version |
Description: Equality deduction for indexed union. (Contributed by Drahflow, 22-Oct-2015.) |
Ref | Expression |
---|---|
iuneq2d.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
iuneq2d | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq2d.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
2 | 1 | adantr 481 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
3 | 2 | iuneq2dv 4948 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∪ ciun 4924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-v 3434 df-in 3894 df-ss 3904 df-iun 4926 |
This theorem is referenced by: iununi 5028 oelim2 8426 ituniiun 10178 rtrclreclem1 14768 dfrtrclrec2 14769 rtrclreclem2 14770 rtrclreclem4 14772 imasval 17222 mreacs 17367 cnextval 23212 taylfval 25518 iunpreima 30904 reprdifc 32607 msubvrs 33522 neibastop2 34550 voliunnfl 35821 sstotbnd2 35932 equivtotbnd 35936 totbndbnd 35947 heiborlem3 35971 eliunov2 41287 fvmptiunrelexplb0d 41292 fvmptiunrelexplb1d 41294 comptiunov2i 41314 trclrelexplem 41319 dftrcl3 41328 trclfvcom 41331 cnvtrclfv 41332 cotrcltrcl 41333 trclimalb2 41334 trclfvdecomr 41336 dfrtrcl3 41341 dfrtrcl4 41346 isomenndlem 44068 ovnval 44079 hoicvr 44086 hoicvrrex 44094 ovnlecvr 44096 ovncvrrp 44102 ovnsubaddlem1 44108 hoidmvlelem3 44135 hoidmvle 44138 ovnhoilem1 44139 ovnovollem1 44194 smflimlem3 44308 otiunsndisjX 44771 |
Copyright terms: Public domain | W3C validator |