![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iuneq2d | Structured version Visualization version GIF version |
Description: Equality deduction for indexed union. (Contributed by Drahflow, 22-Oct-2015.) |
Ref | Expression |
---|---|
iuneq2d.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
iuneq2d | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq2d.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
2 | 1 | adantr 474 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
3 | 2 | iuneq2dv 4775 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2107 ∪ ciun 4753 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-v 3400 df-in 3799 df-ss 3806 df-iun 4755 |
This theorem is referenced by: iununi 4844 oelim2 7959 ituniiun 9579 dfrtrclrec2 14204 rtrclreclem1 14205 rtrclreclem2 14206 rtrclreclem4 14208 imasval 16557 mreacs 16704 cnextval 22273 taylfval 24550 iunpreima 29945 reprdifc 31307 msubvrs 32056 trpredeq1 32308 trpredeq2 32309 neibastop2 32944 voliunnfl 34081 sstotbnd2 34199 equivtotbnd 34203 totbndbnd 34214 heiborlem3 34238 eliunov2 38932 fvmptiunrelexplb0d 38937 fvmptiunrelexplb1d 38939 comptiunov2i 38959 trclrelexplem 38964 dftrcl3 38973 trclfvcom 38976 cnvtrclfv 38977 cotrcltrcl 38978 trclimalb2 38979 trclfvdecomr 38981 dfrtrcl3 38986 dfrtrcl4 38991 isomenndlem 41675 ovnval 41686 hoicvr 41693 hoicvrrex 41701 ovnlecvr 41703 ovncvrrp 41709 ovnsubaddlem1 41715 hoidmvlelem3 41742 hoidmvle 41745 ovnhoilem1 41746 ovnovollem1 41801 smflimlem3 41912 otiunsndisjX 42324 |
Copyright terms: Public domain | W3C validator |