| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iuneq2d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for indexed union. (Contributed by Drahflow, 22-Oct-2015.) |
| Ref | Expression |
|---|---|
| iuneq2d.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| iuneq2d | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq2d.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
| 3 | 2 | iuneq2dv 4961 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∪ ciun 4936 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-v 3438 df-ss 3914 df-iun 4938 |
| This theorem is referenced by: iununi 5042 oelim2 8505 ituniiun 10308 rtrclreclem1 14959 dfrtrclrec2 14960 rtrclreclem2 14961 rtrclreclem4 14963 imasval 17410 mreacs 17559 pzriprnglem10 21422 cnextval 23971 taylfval 26288 iunpreima 32536 constrlim 33744 reprdifc 34632 msubvrs 35596 neibastop2 36395 voliunnfl 37704 sstotbnd2 37814 equivtotbnd 37818 totbndbnd 37829 heiborlem3 37853 eliunov2 43712 fvmptiunrelexplb0d 43717 fvmptiunrelexplb1d 43719 comptiunov2i 43739 trclrelexplem 43744 dftrcl3 43753 trclfvcom 43756 cnvtrclfv 43757 cotrcltrcl 43758 trclimalb2 43759 trclfvdecomr 43761 dfrtrcl3 43766 dfrtrcl4 43771 isomenndlem 46568 ovnval 46579 hoicvr 46586 hoicvrrex 46594 ovnlecvr 46596 ovncvrrp 46602 ovnsubaddlem1 46608 hoidmvlelem3 46635 hoidmvle 46638 ovnhoilem1 46639 ovnovollem1 46694 smflimlem3 46811 otiunsndisjX 47310 |
| Copyright terms: Public domain | W3C validator |