| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iuneq2d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for indexed union. (Contributed by Drahflow, 22-Oct-2015.) |
| Ref | Expression |
|---|---|
| iuneq2d.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| iuneq2d | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq2d.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
| 3 | 2 | iuneq2dv 4983 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ ciun 4958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-v 3452 df-ss 3934 df-iun 4960 |
| This theorem is referenced by: iununi 5066 oelim2 8562 ituniiun 10382 rtrclreclem1 15030 dfrtrclrec2 15031 rtrclreclem2 15032 rtrclreclem4 15034 imasval 17481 mreacs 17626 pzriprnglem10 21407 cnextval 23955 taylfval 26273 iunpreima 32500 constrlim 33736 reprdifc 34625 msubvrs 35554 neibastop2 36356 voliunnfl 37665 sstotbnd2 37775 equivtotbnd 37779 totbndbnd 37790 heiborlem3 37814 eliunov2 43675 fvmptiunrelexplb0d 43680 fvmptiunrelexplb1d 43682 comptiunov2i 43702 trclrelexplem 43707 dftrcl3 43716 trclfvcom 43719 cnvtrclfv 43720 cotrcltrcl 43721 trclimalb2 43722 trclfvdecomr 43724 dfrtrcl3 43729 dfrtrcl4 43734 isomenndlem 46535 ovnval 46546 hoicvr 46553 hoicvrrex 46561 ovnlecvr 46563 ovncvrrp 46569 ovnsubaddlem1 46575 hoidmvlelem3 46602 hoidmvle 46605 ovnhoilem1 46606 ovnovollem1 46661 smflimlem3 46778 otiunsndisjX 47284 |
| Copyright terms: Public domain | W3C validator |