![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iuneq2d | Structured version Visualization version GIF version |
Description: Equality deduction for indexed union. (Contributed by Drahflow, 22-Oct-2015.) |
Ref | Expression |
---|---|
iuneq2d.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
iuneq2d | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq2d.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
3 | 2 | iuneq2dv 5039 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∪ ciun 5015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-v 3490 df-ss 3993 df-iun 5017 |
This theorem is referenced by: iununi 5122 oelim2 8651 ituniiun 10491 rtrclreclem1 15106 dfrtrclrec2 15107 rtrclreclem2 15108 rtrclreclem4 15110 imasval 17571 mreacs 17716 pzriprnglem10 21524 cnextval 24090 taylfval 26418 iunpreima 32587 constrlim 33729 reprdifc 34604 msubvrs 35528 neibastop2 36327 voliunnfl 37624 sstotbnd2 37734 equivtotbnd 37738 totbndbnd 37749 heiborlem3 37773 eliunov2 43641 fvmptiunrelexplb0d 43646 fvmptiunrelexplb1d 43648 comptiunov2i 43668 trclrelexplem 43673 dftrcl3 43682 trclfvcom 43685 cnvtrclfv 43686 cotrcltrcl 43687 trclimalb2 43688 trclfvdecomr 43690 dfrtrcl3 43695 dfrtrcl4 43700 isomenndlem 46451 ovnval 46462 hoicvr 46469 hoicvrrex 46477 ovnlecvr 46479 ovncvrrp 46485 ovnsubaddlem1 46491 hoidmvlelem3 46518 hoidmvle 46521 ovnhoilem1 46522 ovnovollem1 46577 smflimlem3 46694 otiunsndisjX 47194 |
Copyright terms: Public domain | W3C validator |