| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iuneq2d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for indexed union. (Contributed by Drahflow, 22-Oct-2015.) |
| Ref | Expression |
|---|---|
| iuneq2d.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| iuneq2d | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq2d.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
| 3 | 2 | iuneq2dv 4980 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ ciun 4955 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-v 3449 df-ss 3931 df-iun 4957 |
| This theorem is referenced by: iununi 5063 oelim2 8559 ituniiun 10375 rtrclreclem1 15023 dfrtrclrec2 15024 rtrclreclem2 15025 rtrclreclem4 15027 imasval 17474 mreacs 17619 pzriprnglem10 21400 cnextval 23948 taylfval 26266 iunpreima 32493 constrlim 33729 reprdifc 34618 msubvrs 35547 neibastop2 36349 voliunnfl 37658 sstotbnd2 37768 equivtotbnd 37772 totbndbnd 37783 heiborlem3 37807 eliunov2 43668 fvmptiunrelexplb0d 43673 fvmptiunrelexplb1d 43675 comptiunov2i 43695 trclrelexplem 43700 dftrcl3 43709 trclfvcom 43712 cnvtrclfv 43713 cotrcltrcl 43714 trclimalb2 43715 trclfvdecomr 43717 dfrtrcl3 43722 dfrtrcl4 43727 isomenndlem 46528 ovnval 46539 hoicvr 46546 hoicvrrex 46554 ovnlecvr 46556 ovncvrrp 46562 ovnsubaddlem1 46568 hoidmvlelem3 46595 hoidmvle 46598 ovnhoilem1 46599 ovnovollem1 46654 smflimlem3 46771 otiunsndisjX 47280 |
| Copyright terms: Public domain | W3C validator |