MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasaddflem Structured version   Visualization version   GIF version

Theorem imasaddflem 16795
Description: The image set operations are closed if the original operation is. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
imasaddf.f (𝜑𝐹:𝑉onto𝐵)
imasaddf.e ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))
imasaddflem.a (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
imasaddflem.c ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → (𝑝 · 𝑞) ∈ 𝑉)
Assertion
Ref Expression
imasaddflem (𝜑 :(𝐵 × 𝐵)⟶𝐵)
Distinct variable groups:   𝑞,𝑝,𝐵   𝑎,𝑏,𝑝,𝑞,𝑉   · ,𝑝,𝑞   𝐹,𝑎,𝑏,𝑝,𝑞   𝜑,𝑎,𝑏,𝑝,𝑞   ,𝑎,𝑏,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑎,𝑏)   · (𝑎,𝑏)

Proof of Theorem imasaddflem
StepHypRef Expression
1 imasaddf.f . . 3 (𝜑𝐹:𝑉onto𝐵)
2 imasaddf.e . . 3 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))
3 imasaddflem.a . . 3 (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
41, 2, 3imasaddfnlem 16793 . 2 (𝜑 Fn (𝐵 × 𝐵))
5 fof 6565 . . . . . . . . . 10 (𝐹:𝑉onto𝐵𝐹:𝑉𝐵)
61, 5syl 17 . . . . . . . . 9 (𝜑𝐹:𝑉𝐵)
7 ffvelrn 6826 . . . . . . . . . . 11 ((𝐹:𝑉𝐵𝑝𝑉) → (𝐹𝑝) ∈ 𝐵)
8 ffvelrn 6826 . . . . . . . . . . 11 ((𝐹:𝑉𝐵𝑞𝑉) → (𝐹𝑞) ∈ 𝐵)
97, 8anim12dan 621 . . . . . . . . . 10 ((𝐹:𝑉𝐵 ∧ (𝑝𝑉𝑞𝑉)) → ((𝐹𝑝) ∈ 𝐵 ∧ (𝐹𝑞) ∈ 𝐵))
10 opelxpi 5556 . . . . . . . . . 10 (((𝐹𝑝) ∈ 𝐵 ∧ (𝐹𝑞) ∈ 𝐵) → ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ (𝐵 × 𝐵))
119, 10syl 17 . . . . . . . . 9 ((𝐹:𝑉𝐵 ∧ (𝑝𝑉𝑞𝑉)) → ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ (𝐵 × 𝐵))
126, 11sylan 583 . . . . . . . 8 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ (𝐵 × 𝐵))
13 imasaddflem.c . . . . . . . . 9 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → (𝑝 · 𝑞) ∈ 𝑉)
14 ffvelrn 6826 . . . . . . . . 9 ((𝐹:𝑉𝐵 ∧ (𝑝 · 𝑞) ∈ 𝑉) → (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵)
156, 13, 14syl2an2r 684 . . . . . . . 8 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵)
1612, 15opelxpd 5557 . . . . . . 7 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩ ∈ ((𝐵 × 𝐵) × 𝐵))
1716snssd 4702 . . . . . 6 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ ((𝐵 × 𝐵) × 𝐵))
1817anassrs 471 . . . . 5 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ ((𝐵 × 𝐵) × 𝐵))
1918iunssd 4937 . . . 4 ((𝜑𝑝𝑉) → 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ ((𝐵 × 𝐵) × 𝐵))
2019iunssd 4937 . . 3 (𝜑 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ ((𝐵 × 𝐵) × 𝐵))
213, 20eqsstrd 3953 . 2 (𝜑 ⊆ ((𝐵 × 𝐵) × 𝐵))
22 dff2 6842 . 2 ( :(𝐵 × 𝐵)⟶𝐵 ↔ ( Fn (𝐵 × 𝐵) ∧ ⊆ ((𝐵 × 𝐵) × 𝐵)))
234, 21, 22sylanbrc 586 1 (𝜑 :(𝐵 × 𝐵)⟶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wss 3881  {csn 4525  cop 4531   ciun 4881   × cxp 5517   Fn wfn 6319  wf 6320  ontowfo 6322  cfv 6324  (class class class)co 7135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fo 6330  df-fv 6332
This theorem is referenced by:  imasaddf  16798  imasmulf  16801  qusaddflem  16817
  Copyright terms: Public domain W3C validator