Proof of Theorem imasaddflem
Step | Hyp | Ref
| Expression |
1 | | imasaddf.f |
. . 3
⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
2 | | imasaddf.e |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) |
3 | | imasaddflem.a |
. . 3
⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) |
4 | 1, 2, 3 | imasaddfnlem 17156 |
. 2
⊢ (𝜑 → ∙ Fn (𝐵 × 𝐵)) |
5 | | fof 6672 |
. . . . . . . . . 10
⊢ (𝐹:𝑉–onto→𝐵 → 𝐹:𝑉⟶𝐵) |
6 | 1, 5 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:𝑉⟶𝐵) |
7 | | ffvelrn 6941 |
. . . . . . . . . . 11
⊢ ((𝐹:𝑉⟶𝐵 ∧ 𝑝 ∈ 𝑉) → (𝐹‘𝑝) ∈ 𝐵) |
8 | | ffvelrn 6941 |
. . . . . . . . . . 11
⊢ ((𝐹:𝑉⟶𝐵 ∧ 𝑞 ∈ 𝑉) → (𝐹‘𝑞) ∈ 𝐵) |
9 | 7, 8 | anim12dan 618 |
. . . . . . . . . 10
⊢ ((𝐹:𝑉⟶𝐵 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → ((𝐹‘𝑝) ∈ 𝐵 ∧ (𝐹‘𝑞) ∈ 𝐵)) |
10 | | opelxpi 5617 |
. . . . . . . . . 10
⊢ (((𝐹‘𝑝) ∈ 𝐵 ∧ (𝐹‘𝑞) ∈ 𝐵) → 〈(𝐹‘𝑝), (𝐹‘𝑞)〉 ∈ (𝐵 × 𝐵)) |
11 | 9, 10 | syl 17 |
. . . . . . . . 9
⊢ ((𝐹:𝑉⟶𝐵 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → 〈(𝐹‘𝑝), (𝐹‘𝑞)〉 ∈ (𝐵 × 𝐵)) |
12 | 6, 11 | sylan 579 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → 〈(𝐹‘𝑝), (𝐹‘𝑞)〉 ∈ (𝐵 × 𝐵)) |
13 | | imasaddflem.c |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) |
14 | | ffvelrn 6941 |
. . . . . . . . 9
⊢ ((𝐹:𝑉⟶𝐵 ∧ (𝑝 · 𝑞) ∈ 𝑉) → (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵) |
15 | 6, 13, 14 | syl2an2r 681 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵) |
16 | 12, 15 | opelxpd 5618 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → 〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉 ∈ ((𝐵 × 𝐵) × 𝐵)) |
17 | 16 | snssd 4739 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉} ⊆ ((𝐵 × 𝐵) × 𝐵)) |
18 | 17 | anassrs 467 |
. . . . 5
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑉) ∧ 𝑞 ∈ 𝑉) → {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉} ⊆ ((𝐵 × 𝐵) × 𝐵)) |
19 | 18 | iunssd 4976 |
. . . 4
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑉) → ∪
𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉} ⊆ ((𝐵 × 𝐵) × 𝐵)) |
20 | 19 | iunssd 4976 |
. . 3
⊢ (𝜑 → ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉} ⊆ ((𝐵 × 𝐵) × 𝐵)) |
21 | 3, 20 | eqsstrd 3955 |
. 2
⊢ (𝜑 → ∙ ⊆ ((𝐵 × 𝐵) × 𝐵)) |
22 | | dff2 6957 |
. 2
⊢ ( ∙
:(𝐵 × 𝐵)⟶𝐵 ↔ ( ∙ Fn (𝐵 × 𝐵) ∧ ∙ ⊆ ((𝐵 × 𝐵) × 𝐵))) |
23 | 4, 21, 22 | sylanbrc 582 |
1
⊢ (𝜑 → ∙ :(𝐵 × 𝐵)⟶𝐵) |