MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasaddflem Structured version   Visualization version   GIF version

Theorem imasaddflem 17472
Description: The image set operations are closed if the original operation is. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
imasaddf.f (๐œ‘ โ†’ ๐น:๐‘‰โ€“ontoโ†’๐ต)
imasaddf.e ((๐œ‘ โˆง (๐‘Ž โˆˆ ๐‘‰ โˆง ๐‘ โˆˆ ๐‘‰) โˆง (๐‘ โˆˆ ๐‘‰ โˆง ๐‘ž โˆˆ ๐‘‰)) โ†’ (((๐นโ€˜๐‘Ž) = (๐นโ€˜๐‘) โˆง (๐นโ€˜๐‘) = (๐นโ€˜๐‘ž)) โ†’ (๐นโ€˜(๐‘Ž ยท ๐‘)) = (๐นโ€˜(๐‘ ยท ๐‘ž))))
imasaddflem.a (๐œ‘ โ†’ โˆ™ = โˆช ๐‘ โˆˆ ๐‘‰ โˆช ๐‘ž โˆˆ ๐‘‰ {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ})
imasaddflem.c ((๐œ‘ โˆง (๐‘ โˆˆ ๐‘‰ โˆง ๐‘ž โˆˆ ๐‘‰)) โ†’ (๐‘ ยท ๐‘ž) โˆˆ ๐‘‰)
Assertion
Ref Expression
imasaddflem (๐œ‘ โ†’ โˆ™ :(๐ต ร— ๐ต)โŸถ๐ต)
Distinct variable groups:   ๐‘ž,๐‘,๐ต   ๐‘Ž,๐‘,๐‘,๐‘ž,๐‘‰   ยท ,๐‘,๐‘ž   ๐น,๐‘Ž,๐‘,๐‘,๐‘ž   ๐œ‘,๐‘Ž,๐‘,๐‘,๐‘ž   โˆ™ ,๐‘Ž,๐‘,๐‘,๐‘ž
Allowed substitution hints:   ๐ต(๐‘Ž,๐‘)   ยท (๐‘Ž,๐‘)

Proof of Theorem imasaddflem
StepHypRef Expression
1 imasaddf.f . . 3 (๐œ‘ โ†’ ๐น:๐‘‰โ€“ontoโ†’๐ต)
2 imasaddf.e . . 3 ((๐œ‘ โˆง (๐‘Ž โˆˆ ๐‘‰ โˆง ๐‘ โˆˆ ๐‘‰) โˆง (๐‘ โˆˆ ๐‘‰ โˆง ๐‘ž โˆˆ ๐‘‰)) โ†’ (((๐นโ€˜๐‘Ž) = (๐นโ€˜๐‘) โˆง (๐นโ€˜๐‘) = (๐นโ€˜๐‘ž)) โ†’ (๐นโ€˜(๐‘Ž ยท ๐‘)) = (๐นโ€˜(๐‘ ยท ๐‘ž))))
3 imasaddflem.a . . 3 (๐œ‘ โ†’ โˆ™ = โˆช ๐‘ โˆˆ ๐‘‰ โˆช ๐‘ž โˆˆ ๐‘‰ {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ})
41, 2, 3imasaddfnlem 17470 . 2 (๐œ‘ โ†’ โˆ™ Fn (๐ต ร— ๐ต))
5 fof 6802 . . . . . . . . . 10 (๐น:๐‘‰โ€“ontoโ†’๐ต โ†’ ๐น:๐‘‰โŸถ๐ต)
61, 5syl 17 . . . . . . . . 9 (๐œ‘ โ†’ ๐น:๐‘‰โŸถ๐ต)
7 ffvelcdm 7080 . . . . . . . . . . 11 ((๐น:๐‘‰โŸถ๐ต โˆง ๐‘ โˆˆ ๐‘‰) โ†’ (๐นโ€˜๐‘) โˆˆ ๐ต)
8 ffvelcdm 7080 . . . . . . . . . . 11 ((๐น:๐‘‰โŸถ๐ต โˆง ๐‘ž โˆˆ ๐‘‰) โ†’ (๐นโ€˜๐‘ž) โˆˆ ๐ต)
97, 8anim12dan 619 . . . . . . . . . 10 ((๐น:๐‘‰โŸถ๐ต โˆง (๐‘ โˆˆ ๐‘‰ โˆง ๐‘ž โˆˆ ๐‘‰)) โ†’ ((๐นโ€˜๐‘) โˆˆ ๐ต โˆง (๐นโ€˜๐‘ž) โˆˆ ๐ต))
10 opelxpi 5712 . . . . . . . . . 10 (((๐นโ€˜๐‘) โˆˆ ๐ต โˆง (๐นโ€˜๐‘ž) โˆˆ ๐ต) โ†’ โŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ โˆˆ (๐ต ร— ๐ต))
119, 10syl 17 . . . . . . . . 9 ((๐น:๐‘‰โŸถ๐ต โˆง (๐‘ โˆˆ ๐‘‰ โˆง ๐‘ž โˆˆ ๐‘‰)) โ†’ โŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ โˆˆ (๐ต ร— ๐ต))
126, 11sylan 580 . . . . . . . 8 ((๐œ‘ โˆง (๐‘ โˆˆ ๐‘‰ โˆง ๐‘ž โˆˆ ๐‘‰)) โ†’ โŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ โˆˆ (๐ต ร— ๐ต))
13 imasaddflem.c . . . . . . . . 9 ((๐œ‘ โˆง (๐‘ โˆˆ ๐‘‰ โˆง ๐‘ž โˆˆ ๐‘‰)) โ†’ (๐‘ ยท ๐‘ž) โˆˆ ๐‘‰)
14 ffvelcdm 7080 . . . . . . . . 9 ((๐น:๐‘‰โŸถ๐ต โˆง (๐‘ ยท ๐‘ž) โˆˆ ๐‘‰) โ†’ (๐นโ€˜(๐‘ ยท ๐‘ž)) โˆˆ ๐ต)
156, 13, 14syl2an2r 683 . . . . . . . 8 ((๐œ‘ โˆง (๐‘ โˆˆ ๐‘‰ โˆง ๐‘ž โˆˆ ๐‘‰)) โ†’ (๐นโ€˜(๐‘ ยท ๐‘ž)) โˆˆ ๐ต)
1612, 15opelxpd 5713 . . . . . . 7 ((๐œ‘ โˆง (๐‘ โˆˆ ๐‘‰ โˆง ๐‘ž โˆˆ ๐‘‰)) โ†’ โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ โˆˆ ((๐ต ร— ๐ต) ร— ๐ต))
1716snssd 4811 . . . . . 6 ((๐œ‘ โˆง (๐‘ โˆˆ ๐‘‰ โˆง ๐‘ž โˆˆ ๐‘‰)) โ†’ {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ} โŠ† ((๐ต ร— ๐ต) ร— ๐ต))
1817anassrs 468 . . . . 5 (((๐œ‘ โˆง ๐‘ โˆˆ ๐‘‰) โˆง ๐‘ž โˆˆ ๐‘‰) โ†’ {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ} โŠ† ((๐ต ร— ๐ต) ร— ๐ต))
1918iunssd 5052 . . . 4 ((๐œ‘ โˆง ๐‘ โˆˆ ๐‘‰) โ†’ โˆช ๐‘ž โˆˆ ๐‘‰ {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ} โŠ† ((๐ต ร— ๐ต) ร— ๐ต))
2019iunssd 5052 . . 3 (๐œ‘ โ†’ โˆช ๐‘ โˆˆ ๐‘‰ โˆช ๐‘ž โˆˆ ๐‘‰ {โŸจโŸจ(๐นโ€˜๐‘), (๐นโ€˜๐‘ž)โŸฉ, (๐นโ€˜(๐‘ ยท ๐‘ž))โŸฉ} โŠ† ((๐ต ร— ๐ต) ร— ๐ต))
213, 20eqsstrd 4019 . 2 (๐œ‘ โ†’ โˆ™ โŠ† ((๐ต ร— ๐ต) ร— ๐ต))
22 dff2 7097 . 2 ( โˆ™ :(๐ต ร— ๐ต)โŸถ๐ต โ†” ( โˆ™ Fn (๐ต ร— ๐ต) โˆง โˆ™ โŠ† ((๐ต ร— ๐ต) ร— ๐ต)))
234, 21, 22sylanbrc 583 1 (๐œ‘ โ†’ โˆ™ :(๐ต ร— ๐ต)โŸถ๐ต)
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 396   โˆง w3a 1087   = wceq 1541   โˆˆ wcel 2106   โŠ† wss 3947  {csn 4627  โŸจcop 4633  โˆช ciun 4996   ร— cxp 5673   Fn wfn 6535  โŸถwf 6536  โ€“ontoโ†’wfo 6538  โ€˜cfv 6540  (class class class)co 7405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fo 6546  df-fv 6548
This theorem is referenced by:  imasaddf  17475  imasmulf  17478  qusaddflem  17494
  Copyright terms: Public domain W3C validator