MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  precsexlem10 Structured version   Visualization version   GIF version

Theorem precsexlem10 28258
Description: Lemma for surreal reciprocal. Show that the union of the left sets is less than the union of the right sets. Note that this is the first theorem in the surreal numbers to require the axiom of infinity. (Contributed by Scott Fenton, 15-Mar-2025.)
Hypotheses
Ref Expression
precsexlem.1 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
precsexlem.2 𝐿 = (1st𝐹)
precsexlem.3 𝑅 = (2nd𝐹)
precsexlem.4 (𝜑𝐴 No )
precsexlem.5 (𝜑 → 0s <s 𝐴)
precsexlem.6 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
Assertion
Ref Expression
precsexlem10 (𝜑 (𝐿 “ ω) <<s (𝑅 “ ω))
Distinct variable groups:   𝐴,𝑎,𝑙,𝑝,𝑟,𝑥,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦,𝑦𝐿,𝑦𝑅   𝐹,𝑙,𝑝   𝐿,𝑎,𝑙,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝑅,𝑎,𝑙,𝑟,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝜑,𝑎,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝐿,𝑟   𝜑,𝑟
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑝,𝑙,𝑥𝑂)   𝑅(𝑥,𝑦,𝑝,𝑥𝑂)   𝐹(𝑥,𝑦,𝑟,𝑎,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅)   𝐿(𝑥,𝑦,𝑝,𝑥𝑂)

Proof of Theorem precsexlem10
Dummy variables 𝑖 𝑗 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fo1st 8050 . . . . . . . 8 1st :V–onto→V
2 fofun 6835 . . . . . . . 8 (1st :V–onto→V → Fun 1st )
31, 2ax-mp 5 . . . . . . 7 Fun 1st
4 rdgfun 8472 . . . . . . . 8 Fun rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
5 precsexlem.1 . . . . . . . . 9 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
65funeqi 6599 . . . . . . . 8 (Fun 𝐹 ↔ Fun rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩))
74, 6mpbir 231 . . . . . . 7 Fun 𝐹
8 funco 6618 . . . . . . 7 ((Fun 1st ∧ Fun 𝐹) → Fun (1st𝐹))
93, 7, 8mp2an 691 . . . . . 6 Fun (1st𝐹)
10 precsexlem.2 . . . . . . 7 𝐿 = (1st𝐹)
1110funeqi 6599 . . . . . 6 (Fun 𝐿 ↔ Fun (1st𝐹))
129, 11mpbir 231 . . . . 5 Fun 𝐿
13 dcomex 10516 . . . . . 6 ω ∈ V
1413funimaex 6666 . . . . 5 (Fun 𝐿 → (𝐿 “ ω) ∈ V)
1512, 14ax-mp 5 . . . 4 (𝐿 “ ω) ∈ V
1615uniex 7776 . . 3 (𝐿 “ ω) ∈ V
1716a1i 11 . 2 (𝜑 (𝐿 “ ω) ∈ V)
18 fo2nd 8051 . . . . . . . 8 2nd :V–onto→V
19 fofun 6835 . . . . . . . 8 (2nd :V–onto→V → Fun 2nd )
2018, 19ax-mp 5 . . . . . . 7 Fun 2nd
21 funco 6618 . . . . . . 7 ((Fun 2nd ∧ Fun 𝐹) → Fun (2nd𝐹))
2220, 7, 21mp2an 691 . . . . . 6 Fun (2nd𝐹)
23 precsexlem.3 . . . . . . 7 𝑅 = (2nd𝐹)
2423funeqi 6599 . . . . . 6 (Fun 𝑅 ↔ Fun (2nd𝐹))
2522, 24mpbir 231 . . . . 5 Fun 𝑅
2613funimaex 6666 . . . . 5 (Fun 𝑅 → (𝑅 “ ω) ∈ V)
2725, 26ax-mp 5 . . . 4 (𝑅 “ ω) ∈ V
2827uniex 7776 . . 3 (𝑅 “ ω) ∈ V
2928a1i 11 . 2 (𝜑 (𝑅 “ ω) ∈ V)
30 funiunfv 7285 . . . 4 (Fun 𝐿 𝑖 ∈ ω (𝐿𝑖) = (𝐿 “ ω))
3112, 30ax-mp 5 . . 3 𝑖 ∈ ω (𝐿𝑖) = (𝐿 “ ω)
32 precsexlem.4 . . . . . 6 (𝜑𝐴 No )
33 precsexlem.5 . . . . . 6 (𝜑 → 0s <s 𝐴)
34 precsexlem.6 . . . . . 6 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
355, 10, 23, 32, 33, 34precsexlem8 28256 . . . . 5 ((𝜑𝑖 ∈ ω) → ((𝐿𝑖) ⊆ No ∧ (𝑅𝑖) ⊆ No ))
3635simpld 494 . . . 4 ((𝜑𝑖 ∈ ω) → (𝐿𝑖) ⊆ No )
3736iunssd 5073 . . 3 (𝜑 𝑖 ∈ ω (𝐿𝑖) ⊆ No )
3831, 37eqsstrrid 4058 . 2 (𝜑 (𝐿 “ ω) ⊆ No )
39 funiunfv 7285 . . . 4 (Fun 𝑅 𝑖 ∈ ω (𝑅𝑖) = (𝑅 “ ω))
4025, 39ax-mp 5 . . 3 𝑖 ∈ ω (𝑅𝑖) = (𝑅 “ ω)
4135simprd 495 . . . 4 ((𝜑𝑖 ∈ ω) → (𝑅𝑖) ⊆ No )
4241iunssd 5073 . . 3 (𝜑 𝑖 ∈ ω (𝑅𝑖) ⊆ No )
4340, 42eqsstrrid 4058 . 2 (𝜑 (𝑅 “ ω) ⊆ No )
4431eleq2i 2836 . . . . . . 7 (𝑏 𝑖 ∈ ω (𝐿𝑖) ↔ 𝑏 (𝐿 “ ω))
45 eliun 5019 . . . . . . 7 (𝑏 𝑖 ∈ ω (𝐿𝑖) ↔ ∃𝑖 ∈ ω 𝑏 ∈ (𝐿𝑖))
4644, 45bitr3i 277 . . . . . 6 (𝑏 (𝐿 “ ω) ↔ ∃𝑖 ∈ ω 𝑏 ∈ (𝐿𝑖))
47 funiunfv 7285 . . . . . . . . 9 (Fun 𝑅 𝑗 ∈ ω (𝑅𝑗) = (𝑅 “ ω))
4825, 47ax-mp 5 . . . . . . . 8 𝑗 ∈ ω (𝑅𝑗) = (𝑅 “ ω)
4948eleq2i 2836 . . . . . . 7 (𝑐 𝑗 ∈ ω (𝑅𝑗) ↔ 𝑐 (𝑅 “ ω))
50 eliun 5019 . . . . . . 7 (𝑐 𝑗 ∈ ω (𝑅𝑗) ↔ ∃𝑗 ∈ ω 𝑐 ∈ (𝑅𝑗))
5149, 50bitr3i 277 . . . . . 6 (𝑐 (𝑅 “ ω) ↔ ∃𝑗 ∈ ω 𝑐 ∈ (𝑅𝑗))
5246, 51anbi12i 627 . . . . 5 ((𝑏 (𝐿 “ ω) ∧ 𝑐 (𝑅 “ ω)) ↔ (∃𝑖 ∈ ω 𝑏 ∈ (𝐿𝑖) ∧ ∃𝑗 ∈ ω 𝑐 ∈ (𝑅𝑗)))
53 reeanv 3235 . . . . 5 (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑏 ∈ (𝐿𝑖) ∧ 𝑐 ∈ (𝑅𝑗)) ↔ (∃𝑖 ∈ ω 𝑏 ∈ (𝐿𝑖) ∧ ∃𝑗 ∈ ω 𝑐 ∈ (𝑅𝑗)))
5452, 53bitr4i 278 . . . 4 ((𝑏 (𝐿 “ ω) ∧ 𝑐 (𝑅 “ ω)) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑏 ∈ (𝐿𝑖) ∧ 𝑐 ∈ (𝑅𝑗)))
55 omun 7926 . . . . . . . . 9 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑖𝑗) ∈ ω)
56 ssun1 4201 . . . . . . . . . 10 𝑖 ⊆ (𝑖𝑗)
575, 10, 23precsexlem6 28254 . . . . . . . . . 10 ((𝑖 ∈ ω ∧ (𝑖𝑗) ∈ ω ∧ 𝑖 ⊆ (𝑖𝑗)) → (𝐿𝑖) ⊆ (𝐿‘(𝑖𝑗)))
5856, 57mp3an3 1450 . . . . . . . . 9 ((𝑖 ∈ ω ∧ (𝑖𝑗) ∈ ω) → (𝐿𝑖) ⊆ (𝐿‘(𝑖𝑗)))
5955, 58syldan 590 . . . . . . . 8 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝐿𝑖) ⊆ (𝐿‘(𝑖𝑗)))
6059adantl 481 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → (𝐿𝑖) ⊆ (𝐿‘(𝑖𝑗)))
6160sseld 4007 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → (𝑏 ∈ (𝐿𝑖) → 𝑏 ∈ (𝐿‘(𝑖𝑗))))
62 simpr 484 . . . . . . . . 9 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → 𝑗 ∈ ω)
63 ssun2 4202 . . . . . . . . . 10 𝑗 ⊆ (𝑖𝑗)
645, 10, 23precsexlem7 28255 . . . . . . . . . 10 ((𝑗 ∈ ω ∧ (𝑖𝑗) ∈ ω ∧ 𝑗 ⊆ (𝑖𝑗)) → (𝑅𝑗) ⊆ (𝑅‘(𝑖𝑗)))
6563, 64mp3an3 1450 . . . . . . . . 9 ((𝑗 ∈ ω ∧ (𝑖𝑗) ∈ ω) → (𝑅𝑗) ⊆ (𝑅‘(𝑖𝑗)))
6662, 55, 65syl2anc 583 . . . . . . . 8 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑅𝑗) ⊆ (𝑅‘(𝑖𝑗)))
6766sseld 4007 . . . . . . 7 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑐 ∈ (𝑅𝑗) → 𝑐 ∈ (𝑅‘(𝑖𝑗))))
6867adantl 481 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → (𝑐 ∈ (𝑅𝑗) → 𝑐 ∈ (𝑅‘(𝑖𝑗))))
6932ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗)))) → 𝐴 No )
705, 10, 23, 32, 33, 34precsexlem8 28256 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑖𝑗) ∈ ω) → ((𝐿‘(𝑖𝑗)) ⊆ No ∧ (𝑅‘(𝑖𝑗)) ⊆ No ))
7170simpld 494 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑖𝑗) ∈ ω) → (𝐿‘(𝑖𝑗)) ⊆ No )
7271sselda 4008 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ 𝑏 ∈ (𝐿‘(𝑖𝑗))) → 𝑏 No )
7372adantrr 716 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗)))) → 𝑏 No )
7469, 73mulscld 28179 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗)))) → (𝐴 ·s 𝑏) ∈ No )
7570simprd 495 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑖𝑗) ∈ ω) → (𝑅‘(𝑖𝑗)) ⊆ No )
7675sselda 4008 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗))) → 𝑐 No )
7776adantrl 715 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗)))) → 𝑐 No )
7869, 77mulscld 28179 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗)))) → (𝐴 ·s 𝑐) ∈ No )
7974, 78jca 511 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗)))) → ((𝐴 ·s 𝑏) ∈ No ∧ (𝐴 ·s 𝑐) ∈ No ))
805, 10, 23, 32, 33, 34precsexlem9 28257 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑖𝑗) ∈ ω) → (∀𝑏 ∈ (𝐿‘(𝑖𝑗))(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘(𝑖𝑗)) 1s <s (𝐴 ·s 𝑐)))
8180simpld 494 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖𝑗) ∈ ω) → ∀𝑏 ∈ (𝐿‘(𝑖𝑗))(𝐴 ·s 𝑏) <s 1s )
82 rsp 3253 . . . . . . . . . . . . 13 (∀𝑏 ∈ (𝐿‘(𝑖𝑗))(𝐴 ·s 𝑏) <s 1s → (𝑏 ∈ (𝐿‘(𝑖𝑗)) → (𝐴 ·s 𝑏) <s 1s ))
8381, 82syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖𝑗) ∈ ω) → (𝑏 ∈ (𝐿‘(𝑖𝑗)) → (𝐴 ·s 𝑏) <s 1s ))
8480simprd 495 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖𝑗) ∈ ω) → ∀𝑐 ∈ (𝑅‘(𝑖𝑗)) 1s <s (𝐴 ·s 𝑐))
85 rsp 3253 . . . . . . . . . . . . 13 (∀𝑐 ∈ (𝑅‘(𝑖𝑗)) 1s <s (𝐴 ·s 𝑐) → (𝑐 ∈ (𝑅‘(𝑖𝑗)) → 1s <s (𝐴 ·s 𝑐)))
8684, 85syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖𝑗) ∈ ω) → (𝑐 ∈ (𝑅‘(𝑖𝑗)) → 1s <s (𝐴 ·s 𝑐)))
8783, 86anim12d 608 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝑗) ∈ ω) → ((𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗))) → ((𝐴 ·s 𝑏) <s 1s ∧ 1s <s (𝐴 ·s 𝑐))))
8887imp 406 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗)))) → ((𝐴 ·s 𝑏) <s 1s ∧ 1s <s (𝐴 ·s 𝑐)))
89 1sno 27890 . . . . . . . . . . 11 1s No
90 slttr 27810 . . . . . . . . . . 11 (((𝐴 ·s 𝑏) ∈ No ∧ 1s No ∧ (𝐴 ·s 𝑐) ∈ No ) → (((𝐴 ·s 𝑏) <s 1s ∧ 1s <s (𝐴 ·s 𝑐)) → (𝐴 ·s 𝑏) <s (𝐴 ·s 𝑐)))
9189, 90mp3an2 1449 . . . . . . . . . 10 (((𝐴 ·s 𝑏) ∈ No ∧ (𝐴 ·s 𝑐) ∈ No ) → (((𝐴 ·s 𝑏) <s 1s ∧ 1s <s (𝐴 ·s 𝑐)) → (𝐴 ·s 𝑏) <s (𝐴 ·s 𝑐)))
9279, 88, 91sylc 65 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗)))) → (𝐴 ·s 𝑏) <s (𝐴 ·s 𝑐))
9333ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗)))) → 0s <s 𝐴)
9473, 77, 69, 93sltmul2d 28216 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗)))) → (𝑏 <s 𝑐 ↔ (𝐴 ·s 𝑏) <s (𝐴 ·s 𝑐)))
9592, 94mpbird 257 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗)))) → 𝑏 <s 𝑐)
9695ex 412 . . . . . . 7 ((𝜑 ∧ (𝑖𝑗) ∈ ω) → ((𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗))) → 𝑏 <s 𝑐))
9755, 96sylan2 592 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗))) → 𝑏 <s 𝑐))
9861, 68, 97syl2and 607 . . . . 5 ((𝜑 ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑏 ∈ (𝐿𝑖) ∧ 𝑐 ∈ (𝑅𝑗)) → 𝑏 <s 𝑐))
9998rexlimdvva 3219 . . . 4 (𝜑 → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑏 ∈ (𝐿𝑖) ∧ 𝑐 ∈ (𝑅𝑗)) → 𝑏 <s 𝑐))
10054, 99biimtrid 242 . . 3 (𝜑 → ((𝑏 (𝐿 “ ω) ∧ 𝑐 (𝑅 “ ω)) → 𝑏 <s 𝑐))
1011003impib 1116 . 2 ((𝜑𝑏 (𝐿 “ ω) ∧ 𝑐 (𝑅 “ ω)) → 𝑏 <s 𝑐)
10217, 29, 38, 43, 101ssltd 27854 1 (𝜑 (𝐿 “ ω) <<s (𝑅 “ ω))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {cab 2717  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  csb 3921  cun 3974  wss 3976  c0 4352  {csn 4648  cop 4654   cuni 4931   ciun 5015   class class class wbr 5166  cmpt 5249  cima 5703  ccom 5704  Fun wfun 6567  ontowfo 6571  cfv 6573  (class class class)co 7448  ωcom 7903  1st c1st 8028  2nd c2nd 8029  reccrdg 8465   No csur 27702   <s cslt 27703   <<s csslt 27843   0s c0s 27885   1s c1s 27886   L cleft 27902   R cright 27903   +s cadds 28010   -s csubs 28070   ·s cmuls 28150   /su cdivs 28231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-dc 10515
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-nadd 8722  df-no 27705  df-slt 27706  df-bday 27707  df-sle 27808  df-sslt 27844  df-scut 27846  df-0s 27887  df-1s 27888  df-made 27904  df-old 27905  df-left 27907  df-right 27908  df-norec 27989  df-norec2 28000  df-adds 28011  df-negs 28071  df-subs 28072  df-muls 28151  df-divs 28232
This theorem is referenced by:  precsexlem11  28259  precsex  28260
  Copyright terms: Public domain W3C validator