MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  precsexlem10 Structured version   Visualization version   GIF version

Theorem precsexlem10 28118
Description: Lemma for surreal reciprocal. Show that the union of the left sets is less than the union of the right sets. Note that this is the first theorem in the surreal numbers to require the axiom of infinity. (Contributed by Scott Fenton, 15-Mar-2025.)
Hypotheses
Ref Expression
precsexlem.1 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
precsexlem.2 𝐿 = (1st𝐹)
precsexlem.3 𝑅 = (2nd𝐹)
precsexlem.4 (𝜑𝐴 No )
precsexlem.5 (𝜑 → 0s <s 𝐴)
precsexlem.6 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
Assertion
Ref Expression
precsexlem10 (𝜑 (𝐿 “ ω) <<s (𝑅 “ ω))
Distinct variable groups:   𝐴,𝑎,𝑙,𝑝,𝑟,𝑥,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦,𝑦𝐿,𝑦𝑅   𝐹,𝑙,𝑝   𝐿,𝑎,𝑙,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝑅,𝑎,𝑙,𝑟,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝜑,𝑎,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝐿,𝑟   𝜑,𝑟
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑝,𝑙,𝑥𝑂)   𝑅(𝑥,𝑦,𝑝,𝑥𝑂)   𝐹(𝑥,𝑦,𝑟,𝑎,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅)   𝐿(𝑥,𝑦,𝑝,𝑥𝑂)

Proof of Theorem precsexlem10
Dummy variables 𝑖 𝑗 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fo1st 7988 . . . . . . . 8 1st :V–onto→V
2 fofun 6773 . . . . . . . 8 (1st :V–onto→V → Fun 1st )
31, 2ax-mp 5 . . . . . . 7 Fun 1st
4 rdgfun 8384 . . . . . . . 8 Fun rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
5 precsexlem.1 . . . . . . . . 9 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
65funeqi 6537 . . . . . . . 8 (Fun 𝐹 ↔ Fun rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩))
74, 6mpbir 231 . . . . . . 7 Fun 𝐹
8 funco 6556 . . . . . . 7 ((Fun 1st ∧ Fun 𝐹) → Fun (1st𝐹))
93, 7, 8mp2an 692 . . . . . 6 Fun (1st𝐹)
10 precsexlem.2 . . . . . . 7 𝐿 = (1st𝐹)
1110funeqi 6537 . . . . . 6 (Fun 𝐿 ↔ Fun (1st𝐹))
129, 11mpbir 231 . . . . 5 Fun 𝐿
13 dcomex 10400 . . . . . 6 ω ∈ V
1413funimaex 6605 . . . . 5 (Fun 𝐿 → (𝐿 “ ω) ∈ V)
1512, 14ax-mp 5 . . . 4 (𝐿 “ ω) ∈ V
1615uniex 7717 . . 3 (𝐿 “ ω) ∈ V
1716a1i 11 . 2 (𝜑 (𝐿 “ ω) ∈ V)
18 fo2nd 7989 . . . . . . . 8 2nd :V–onto→V
19 fofun 6773 . . . . . . . 8 (2nd :V–onto→V → Fun 2nd )
2018, 19ax-mp 5 . . . . . . 7 Fun 2nd
21 funco 6556 . . . . . . 7 ((Fun 2nd ∧ Fun 𝐹) → Fun (2nd𝐹))
2220, 7, 21mp2an 692 . . . . . 6 Fun (2nd𝐹)
23 precsexlem.3 . . . . . . 7 𝑅 = (2nd𝐹)
2423funeqi 6537 . . . . . 6 (Fun 𝑅 ↔ Fun (2nd𝐹))
2522, 24mpbir 231 . . . . 5 Fun 𝑅
2613funimaex 6605 . . . . 5 (Fun 𝑅 → (𝑅 “ ω) ∈ V)
2725, 26ax-mp 5 . . . 4 (𝑅 “ ω) ∈ V
2827uniex 7717 . . 3 (𝑅 “ ω) ∈ V
2928a1i 11 . 2 (𝜑 (𝑅 “ ω) ∈ V)
30 funiunfv 7222 . . . 4 (Fun 𝐿 𝑖 ∈ ω (𝐿𝑖) = (𝐿 “ ω))
3112, 30ax-mp 5 . . 3 𝑖 ∈ ω (𝐿𝑖) = (𝐿 “ ω)
32 precsexlem.4 . . . . . 6 (𝜑𝐴 No )
33 precsexlem.5 . . . . . 6 (𝜑 → 0s <s 𝐴)
34 precsexlem.6 . . . . . 6 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
355, 10, 23, 32, 33, 34precsexlem8 28116 . . . . 5 ((𝜑𝑖 ∈ ω) → ((𝐿𝑖) ⊆ No ∧ (𝑅𝑖) ⊆ No ))
3635simpld 494 . . . 4 ((𝜑𝑖 ∈ ω) → (𝐿𝑖) ⊆ No )
3736iunssd 5014 . . 3 (𝜑 𝑖 ∈ ω (𝐿𝑖) ⊆ No )
3831, 37eqsstrrid 3986 . 2 (𝜑 (𝐿 “ ω) ⊆ No )
39 funiunfv 7222 . . . 4 (Fun 𝑅 𝑖 ∈ ω (𝑅𝑖) = (𝑅 “ ω))
4025, 39ax-mp 5 . . 3 𝑖 ∈ ω (𝑅𝑖) = (𝑅 “ ω)
4135simprd 495 . . . 4 ((𝜑𝑖 ∈ ω) → (𝑅𝑖) ⊆ No )
4241iunssd 5014 . . 3 (𝜑 𝑖 ∈ ω (𝑅𝑖) ⊆ No )
4340, 42eqsstrrid 3986 . 2 (𝜑 (𝑅 “ ω) ⊆ No )
4431eleq2i 2820 . . . . . . 7 (𝑏 𝑖 ∈ ω (𝐿𝑖) ↔ 𝑏 (𝐿 “ ω))
45 eliun 4959 . . . . . . 7 (𝑏 𝑖 ∈ ω (𝐿𝑖) ↔ ∃𝑖 ∈ ω 𝑏 ∈ (𝐿𝑖))
4644, 45bitr3i 277 . . . . . 6 (𝑏 (𝐿 “ ω) ↔ ∃𝑖 ∈ ω 𝑏 ∈ (𝐿𝑖))
47 funiunfv 7222 . . . . . . . . 9 (Fun 𝑅 𝑗 ∈ ω (𝑅𝑗) = (𝑅 “ ω))
4825, 47ax-mp 5 . . . . . . . 8 𝑗 ∈ ω (𝑅𝑗) = (𝑅 “ ω)
4948eleq2i 2820 . . . . . . 7 (𝑐 𝑗 ∈ ω (𝑅𝑗) ↔ 𝑐 (𝑅 “ ω))
50 eliun 4959 . . . . . . 7 (𝑐 𝑗 ∈ ω (𝑅𝑗) ↔ ∃𝑗 ∈ ω 𝑐 ∈ (𝑅𝑗))
5149, 50bitr3i 277 . . . . . 6 (𝑐 (𝑅 “ ω) ↔ ∃𝑗 ∈ ω 𝑐 ∈ (𝑅𝑗))
5246, 51anbi12i 628 . . . . 5 ((𝑏 (𝐿 “ ω) ∧ 𝑐 (𝑅 “ ω)) ↔ (∃𝑖 ∈ ω 𝑏 ∈ (𝐿𝑖) ∧ ∃𝑗 ∈ ω 𝑐 ∈ (𝑅𝑗)))
53 reeanv 3209 . . . . 5 (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑏 ∈ (𝐿𝑖) ∧ 𝑐 ∈ (𝑅𝑗)) ↔ (∃𝑖 ∈ ω 𝑏 ∈ (𝐿𝑖) ∧ ∃𝑗 ∈ ω 𝑐 ∈ (𝑅𝑗)))
5452, 53bitr4i 278 . . . 4 ((𝑏 (𝐿 “ ω) ∧ 𝑐 (𝑅 “ ω)) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑏 ∈ (𝐿𝑖) ∧ 𝑐 ∈ (𝑅𝑗)))
55 omun 7864 . . . . . . . . 9 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑖𝑗) ∈ ω)
56 ssun1 4141 . . . . . . . . . 10 𝑖 ⊆ (𝑖𝑗)
575, 10, 23precsexlem6 28114 . . . . . . . . . 10 ((𝑖 ∈ ω ∧ (𝑖𝑗) ∈ ω ∧ 𝑖 ⊆ (𝑖𝑗)) → (𝐿𝑖) ⊆ (𝐿‘(𝑖𝑗)))
5856, 57mp3an3 1452 . . . . . . . . 9 ((𝑖 ∈ ω ∧ (𝑖𝑗) ∈ ω) → (𝐿𝑖) ⊆ (𝐿‘(𝑖𝑗)))
5955, 58syldan 591 . . . . . . . 8 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝐿𝑖) ⊆ (𝐿‘(𝑖𝑗)))
6059adantl 481 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → (𝐿𝑖) ⊆ (𝐿‘(𝑖𝑗)))
6160sseld 3945 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → (𝑏 ∈ (𝐿𝑖) → 𝑏 ∈ (𝐿‘(𝑖𝑗))))
62 simpr 484 . . . . . . . . 9 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → 𝑗 ∈ ω)
63 ssun2 4142 . . . . . . . . . 10 𝑗 ⊆ (𝑖𝑗)
645, 10, 23precsexlem7 28115 . . . . . . . . . 10 ((𝑗 ∈ ω ∧ (𝑖𝑗) ∈ ω ∧ 𝑗 ⊆ (𝑖𝑗)) → (𝑅𝑗) ⊆ (𝑅‘(𝑖𝑗)))
6563, 64mp3an3 1452 . . . . . . . . 9 ((𝑗 ∈ ω ∧ (𝑖𝑗) ∈ ω) → (𝑅𝑗) ⊆ (𝑅‘(𝑖𝑗)))
6662, 55, 65syl2anc 584 . . . . . . . 8 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑅𝑗) ⊆ (𝑅‘(𝑖𝑗)))
6766sseld 3945 . . . . . . 7 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑐 ∈ (𝑅𝑗) → 𝑐 ∈ (𝑅‘(𝑖𝑗))))
6867adantl 481 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → (𝑐 ∈ (𝑅𝑗) → 𝑐 ∈ (𝑅‘(𝑖𝑗))))
6932ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗)))) → 𝐴 No )
705, 10, 23, 32, 33, 34precsexlem8 28116 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑖𝑗) ∈ ω) → ((𝐿‘(𝑖𝑗)) ⊆ No ∧ (𝑅‘(𝑖𝑗)) ⊆ No ))
7170simpld 494 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑖𝑗) ∈ ω) → (𝐿‘(𝑖𝑗)) ⊆ No )
7271sselda 3946 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ 𝑏 ∈ (𝐿‘(𝑖𝑗))) → 𝑏 No )
7372adantrr 717 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗)))) → 𝑏 No )
7469, 73mulscld 28038 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗)))) → (𝐴 ·s 𝑏) ∈ No )
7570simprd 495 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑖𝑗) ∈ ω) → (𝑅‘(𝑖𝑗)) ⊆ No )
7675sselda 3946 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗))) → 𝑐 No )
7776adantrl 716 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗)))) → 𝑐 No )
7869, 77mulscld 28038 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗)))) → (𝐴 ·s 𝑐) ∈ No )
7974, 78jca 511 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗)))) → ((𝐴 ·s 𝑏) ∈ No ∧ (𝐴 ·s 𝑐) ∈ No ))
805, 10, 23, 32, 33, 34precsexlem9 28117 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑖𝑗) ∈ ω) → (∀𝑏 ∈ (𝐿‘(𝑖𝑗))(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘(𝑖𝑗)) 1s <s (𝐴 ·s 𝑐)))
8180simpld 494 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖𝑗) ∈ ω) → ∀𝑏 ∈ (𝐿‘(𝑖𝑗))(𝐴 ·s 𝑏) <s 1s )
82 rsp 3225 . . . . . . . . . . . . 13 (∀𝑏 ∈ (𝐿‘(𝑖𝑗))(𝐴 ·s 𝑏) <s 1s → (𝑏 ∈ (𝐿‘(𝑖𝑗)) → (𝐴 ·s 𝑏) <s 1s ))
8381, 82syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖𝑗) ∈ ω) → (𝑏 ∈ (𝐿‘(𝑖𝑗)) → (𝐴 ·s 𝑏) <s 1s ))
8480simprd 495 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖𝑗) ∈ ω) → ∀𝑐 ∈ (𝑅‘(𝑖𝑗)) 1s <s (𝐴 ·s 𝑐))
85 rsp 3225 . . . . . . . . . . . . 13 (∀𝑐 ∈ (𝑅‘(𝑖𝑗)) 1s <s (𝐴 ·s 𝑐) → (𝑐 ∈ (𝑅‘(𝑖𝑗)) → 1s <s (𝐴 ·s 𝑐)))
8684, 85syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖𝑗) ∈ ω) → (𝑐 ∈ (𝑅‘(𝑖𝑗)) → 1s <s (𝐴 ·s 𝑐)))
8783, 86anim12d 609 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝑗) ∈ ω) → ((𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗))) → ((𝐴 ·s 𝑏) <s 1s ∧ 1s <s (𝐴 ·s 𝑐))))
8887imp 406 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗)))) → ((𝐴 ·s 𝑏) <s 1s ∧ 1s <s (𝐴 ·s 𝑐)))
89 1sno 27739 . . . . . . . . . . 11 1s No
90 slttr 27659 . . . . . . . . . . 11 (((𝐴 ·s 𝑏) ∈ No ∧ 1s No ∧ (𝐴 ·s 𝑐) ∈ No ) → (((𝐴 ·s 𝑏) <s 1s ∧ 1s <s (𝐴 ·s 𝑐)) → (𝐴 ·s 𝑏) <s (𝐴 ·s 𝑐)))
9189, 90mp3an2 1451 . . . . . . . . . 10 (((𝐴 ·s 𝑏) ∈ No ∧ (𝐴 ·s 𝑐) ∈ No ) → (((𝐴 ·s 𝑏) <s 1s ∧ 1s <s (𝐴 ·s 𝑐)) → (𝐴 ·s 𝑏) <s (𝐴 ·s 𝑐)))
9279, 88, 91sylc 65 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗)))) → (𝐴 ·s 𝑏) <s (𝐴 ·s 𝑐))
9333ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗)))) → 0s <s 𝐴)
9473, 77, 69, 93sltmul2d 28075 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗)))) → (𝑏 <s 𝑐 ↔ (𝐴 ·s 𝑏) <s (𝐴 ·s 𝑐)))
9592, 94mpbird 257 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗)))) → 𝑏 <s 𝑐)
9695ex 412 . . . . . . 7 ((𝜑 ∧ (𝑖𝑗) ∈ ω) → ((𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗))) → 𝑏 <s 𝑐))
9755, 96sylan2 593 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗))) → 𝑏 <s 𝑐))
9861, 68, 97syl2and 608 . . . . 5 ((𝜑 ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑏 ∈ (𝐿𝑖) ∧ 𝑐 ∈ (𝑅𝑗)) → 𝑏 <s 𝑐))
9998rexlimdvva 3194 . . . 4 (𝜑 → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑏 ∈ (𝐿𝑖) ∧ 𝑐 ∈ (𝑅𝑗)) → 𝑏 <s 𝑐))
10054, 99biimtrid 242 . . 3 (𝜑 → ((𝑏 (𝐿 “ ω) ∧ 𝑐 (𝑅 “ ω)) → 𝑏 <s 𝑐))
1011003impib 1116 . 2 ((𝜑𝑏 (𝐿 “ ω) ∧ 𝑐 (𝑅 “ ω)) → 𝑏 <s 𝑐)
10217, 29, 38, 43, 101ssltd 27703 1 (𝜑 (𝐿 “ ω) <<s (𝑅 “ ω))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  csb 3862  cun 3912  wss 3914  c0 4296  {csn 4589  cop 4595   cuni 4871   ciun 4955   class class class wbr 5107  cmpt 5188  cima 5641  ccom 5642  Fun wfun 6505  ontowfo 6509  cfv 6511  (class class class)co 7387  ωcom 7842  1st c1st 7966  2nd c2nd 7967  reccrdg 8377   No csur 27551   <s cslt 27552   <<s csslt 27692   0s c0s 27734   1s c1s 27735   L cleft 27753   R cright 27754   +s cadds 27866   -s csubs 27926   ·s cmuls 28009   /su cdivs 28090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-dc 10399
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-nadd 8630  df-no 27554  df-slt 27555  df-bday 27556  df-sle 27657  df-sslt 27693  df-scut 27695  df-0s 27736  df-1s 27737  df-made 27755  df-old 27756  df-left 27758  df-right 27759  df-norec 27845  df-norec2 27856  df-adds 27867  df-negs 27927  df-subs 27928  df-muls 28010  df-divs 28091
This theorem is referenced by:  precsexlem11  28119  precsex  28120
  Copyright terms: Public domain W3C validator