Step | Hyp | Ref
| Expression |
1 | | fo1st 7999 |
. . . . . . . 8
⊢
1st :V–onto→V |
2 | | fofun 6806 |
. . . . . . . 8
⊢
(1st :V–onto→V → Fun 1st ) |
3 | 1, 2 | ax-mp 5 |
. . . . . . 7
⊢ Fun
1st |
4 | | rdgfun 8422 |
. . . . . . . 8
⊢ Fun
rec((𝑝 ∈ V ↦
⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd
‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})),
(𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))〉), 〈{
0s }, ∅〉) |
5 | | precsexlem.1 |
. . . . . . . . 9
⊢ 𝐹 = rec((𝑝 ∈ V ↦
⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd
‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})),
(𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))〉), 〈{
0s }, ∅〉) |
6 | 5 | funeqi 6569 |
. . . . . . . 8
⊢ (Fun
𝐹 ↔ Fun rec((𝑝 ∈ V ↦
⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd
‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})),
(𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))〉), 〈{
0s }, ∅〉)) |
7 | 4, 6 | mpbir 230 |
. . . . . . 7
⊢ Fun 𝐹 |
8 | | funco 6588 |
. . . . . . 7
⊢ ((Fun
1st ∧ Fun 𝐹)
→ Fun (1st ∘ 𝐹)) |
9 | 3, 7, 8 | mp2an 689 |
. . . . . 6
⊢ Fun
(1st ∘ 𝐹) |
10 | | precsexlem.2 |
. . . . . . 7
⊢ 𝐿 = (1st ∘ 𝐹) |
11 | 10 | funeqi 6569 |
. . . . . 6
⊢ (Fun
𝐿 ↔ Fun
(1st ∘ 𝐹)) |
12 | 9, 11 | mpbir 230 |
. . . . 5
⊢ Fun 𝐿 |
13 | | dcomex 10448 |
. . . . . 6
⊢ ω
∈ V |
14 | 13 | funimaex 6636 |
. . . . 5
⊢ (Fun
𝐿 → (𝐿 “ ω) ∈ V) |
15 | 12, 14 | ax-mp 5 |
. . . 4
⊢ (𝐿 “ ω) ∈
V |
16 | 15 | uniex 7735 |
. . 3
⊢ ∪ (𝐿
“ ω) ∈ V |
17 | 16 | a1i 11 |
. 2
⊢ (𝜑 → ∪ (𝐿
“ ω) ∈ V) |
18 | | fo2nd 8000 |
. . . . . . . 8
⊢
2nd :V–onto→V |
19 | | fofun 6806 |
. . . . . . . 8
⊢
(2nd :V–onto→V → Fun 2nd ) |
20 | 18, 19 | ax-mp 5 |
. . . . . . 7
⊢ Fun
2nd |
21 | | funco 6588 |
. . . . . . 7
⊢ ((Fun
2nd ∧ Fun 𝐹)
→ Fun (2nd ∘ 𝐹)) |
22 | 20, 7, 21 | mp2an 689 |
. . . . . 6
⊢ Fun
(2nd ∘ 𝐹) |
23 | | precsexlem.3 |
. . . . . . 7
⊢ 𝑅 = (2nd ∘ 𝐹) |
24 | 23 | funeqi 6569 |
. . . . . 6
⊢ (Fun
𝑅 ↔ Fun
(2nd ∘ 𝐹)) |
25 | 22, 24 | mpbir 230 |
. . . . 5
⊢ Fun 𝑅 |
26 | 13 | funimaex 6636 |
. . . . 5
⊢ (Fun
𝑅 → (𝑅 “ ω) ∈ V) |
27 | 25, 26 | ax-mp 5 |
. . . 4
⊢ (𝑅 “ ω) ∈
V |
28 | 27 | uniex 7735 |
. . 3
⊢ ∪ (𝑅
“ ω) ∈ V |
29 | 28 | a1i 11 |
. 2
⊢ (𝜑 → ∪ (𝑅
“ ω) ∈ V) |
30 | | funiunfv 7250 |
. . . 4
⊢ (Fun
𝐿 → ∪ 𝑖 ∈ ω (𝐿‘𝑖) = ∪ (𝐿 “
ω)) |
31 | 12, 30 | ax-mp 5 |
. . 3
⊢ ∪ 𝑖 ∈ ω (𝐿‘𝑖) = ∪ (𝐿 “
ω) |
32 | | precsexlem.4 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ No
) |
33 | | precsexlem.5 |
. . . . . 6
⊢ (𝜑 → 0s <s 𝐴) |
34 | | precsexlem.6 |
. . . . . 6
⊢ (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 →
∃𝑦 ∈ No (𝑥𝑂 ·s
𝑦) = 1s
)) |
35 | 5, 10, 23, 32, 33, 34 | precsexlem8 28025 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → ((𝐿‘𝑖) ⊆ No
∧ (𝑅‘𝑖) ⊆
No )) |
36 | 35 | simpld 494 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → (𝐿‘𝑖) ⊆ No
) |
37 | 36 | iunssd 5053 |
. . 3
⊢ (𝜑 → ∪ 𝑖 ∈ ω (𝐿‘𝑖) ⊆ No
) |
38 | 31, 37 | eqsstrrid 4031 |
. 2
⊢ (𝜑 → ∪ (𝐿
“ ω) ⊆ No ) |
39 | | funiunfv 7250 |
. . . 4
⊢ (Fun
𝑅 → ∪ 𝑖 ∈ ω (𝑅‘𝑖) = ∪ (𝑅 “
ω)) |
40 | 25, 39 | ax-mp 5 |
. . 3
⊢ ∪ 𝑖 ∈ ω (𝑅‘𝑖) = ∪ (𝑅 “
ω) |
41 | 35 | simprd 495 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ ω) → (𝑅‘𝑖) ⊆ No
) |
42 | 41 | iunssd 5053 |
. . 3
⊢ (𝜑 → ∪ 𝑖 ∈ ω (𝑅‘𝑖) ⊆ No
) |
43 | 40, 42 | eqsstrrid 4031 |
. 2
⊢ (𝜑 → ∪ (𝑅
“ ω) ⊆ No ) |
44 | 31 | eleq2i 2824 |
. . . . . . 7
⊢ (𝑏 ∈ ∪ 𝑖 ∈ ω (𝐿‘𝑖) ↔ 𝑏 ∈ ∪ (𝐿 “
ω)) |
45 | | eliun 5001 |
. . . . . . 7
⊢ (𝑏 ∈ ∪ 𝑖 ∈ ω (𝐿‘𝑖) ↔ ∃𝑖 ∈ ω 𝑏 ∈ (𝐿‘𝑖)) |
46 | 44, 45 | bitr3i 277 |
. . . . . 6
⊢ (𝑏 ∈ ∪ (𝐿
“ ω) ↔ ∃𝑖 ∈ ω 𝑏 ∈ (𝐿‘𝑖)) |
47 | | funiunfv 7250 |
. . . . . . . . 9
⊢ (Fun
𝑅 → ∪ 𝑗 ∈ ω (𝑅‘𝑗) = ∪ (𝑅 “
ω)) |
48 | 25, 47 | ax-mp 5 |
. . . . . . . 8
⊢ ∪ 𝑗 ∈ ω (𝑅‘𝑗) = ∪ (𝑅 “
ω) |
49 | 48 | eleq2i 2824 |
. . . . . . 7
⊢ (𝑐 ∈ ∪ 𝑗 ∈ ω (𝑅‘𝑗) ↔ 𝑐 ∈ ∪ (𝑅 “
ω)) |
50 | | eliun 5001 |
. . . . . . 7
⊢ (𝑐 ∈ ∪ 𝑗 ∈ ω (𝑅‘𝑗) ↔ ∃𝑗 ∈ ω 𝑐 ∈ (𝑅‘𝑗)) |
51 | 49, 50 | bitr3i 277 |
. . . . . 6
⊢ (𝑐 ∈ ∪ (𝑅
“ ω) ↔ ∃𝑗 ∈ ω 𝑐 ∈ (𝑅‘𝑗)) |
52 | 46, 51 | anbi12i 626 |
. . . . 5
⊢ ((𝑏 ∈ ∪ (𝐿
“ ω) ∧ 𝑐
∈ ∪ (𝑅 “ ω)) ↔ (∃𝑖 ∈ ω 𝑏 ∈ (𝐿‘𝑖) ∧ ∃𝑗 ∈ ω 𝑐 ∈ (𝑅‘𝑗))) |
53 | | reeanv 3225 |
. . . . 5
⊢
(∃𝑖 ∈
ω ∃𝑗 ∈
ω (𝑏 ∈ (𝐿‘𝑖) ∧ 𝑐 ∈ (𝑅‘𝑗)) ↔ (∃𝑖 ∈ ω 𝑏 ∈ (𝐿‘𝑖) ∧ ∃𝑗 ∈ ω 𝑐 ∈ (𝑅‘𝑗))) |
54 | 52, 53 | bitr4i 278 |
. . . 4
⊢ ((𝑏 ∈ ∪ (𝐿
“ ω) ∧ 𝑐
∈ ∪ (𝑅 “ ω)) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑏 ∈ (𝐿‘𝑖) ∧ 𝑐 ∈ (𝑅‘𝑗))) |
55 | | omun 7882 |
. . . . . . . . 9
⊢ ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑖 ∪ 𝑗) ∈ ω) |
56 | | ssun1 4172 |
. . . . . . . . . 10
⊢ 𝑖 ⊆ (𝑖 ∪ 𝑗) |
57 | 5, 10, 23 | precsexlem6 28023 |
. . . . . . . . . 10
⊢ ((𝑖 ∈ ω ∧ (𝑖 ∪ 𝑗) ∈ ω ∧ 𝑖 ⊆ (𝑖 ∪ 𝑗)) → (𝐿‘𝑖) ⊆ (𝐿‘(𝑖 ∪ 𝑗))) |
58 | 56, 57 | mp3an3 1449 |
. . . . . . . . 9
⊢ ((𝑖 ∈ ω ∧ (𝑖 ∪ 𝑗) ∈ ω) → (𝐿‘𝑖) ⊆ (𝐿‘(𝑖 ∪ 𝑗))) |
59 | 55, 58 | syldan 590 |
. . . . . . . 8
⊢ ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝐿‘𝑖) ⊆ (𝐿‘(𝑖 ∪ 𝑗))) |
60 | 59 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → (𝐿‘𝑖) ⊆ (𝐿‘(𝑖 ∪ 𝑗))) |
61 | 60 | sseld 3981 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → (𝑏 ∈ (𝐿‘𝑖) → 𝑏 ∈ (𝐿‘(𝑖 ∪ 𝑗)))) |
62 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → 𝑗 ∈
ω) |
63 | | ssun2 4173 |
. . . . . . . . . 10
⊢ 𝑗 ⊆ (𝑖 ∪ 𝑗) |
64 | 5, 10, 23 | precsexlem7 28024 |
. . . . . . . . . 10
⊢ ((𝑗 ∈ ω ∧ (𝑖 ∪ 𝑗) ∈ ω ∧ 𝑗 ⊆ (𝑖 ∪ 𝑗)) → (𝑅‘𝑗) ⊆ (𝑅‘(𝑖 ∪ 𝑗))) |
65 | 63, 64 | mp3an3 1449 |
. . . . . . . . 9
⊢ ((𝑗 ∈ ω ∧ (𝑖 ∪ 𝑗) ∈ ω) → (𝑅‘𝑗) ⊆ (𝑅‘(𝑖 ∪ 𝑗))) |
66 | 62, 55, 65 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑅‘𝑗) ⊆ (𝑅‘(𝑖 ∪ 𝑗))) |
67 | 66 | sseld 3981 |
. . . . . . 7
⊢ ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑐 ∈ (𝑅‘𝑗) → 𝑐 ∈ (𝑅‘(𝑖 ∪ 𝑗)))) |
68 | 67 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → (𝑐 ∈ (𝑅‘𝑗) → 𝑐 ∈ (𝑅‘(𝑖 ∪ 𝑗)))) |
69 | 32 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∪ 𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖 ∪ 𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖 ∪ 𝑗)))) → 𝐴 ∈ No
) |
70 | 5, 10, 23, 32, 33, 34 | precsexlem8 28025 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑖 ∪ 𝑗) ∈ ω) → ((𝐿‘(𝑖 ∪ 𝑗)) ⊆ No
∧ (𝑅‘(𝑖 ∪ 𝑗)) ⊆ No
)) |
71 | 70 | simpld 494 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑖 ∪ 𝑗) ∈ ω) → (𝐿‘(𝑖 ∪ 𝑗)) ⊆ No
) |
72 | 71 | sselda 3982 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑖 ∪ 𝑗) ∈ ω) ∧ 𝑏 ∈ (𝐿‘(𝑖 ∪ 𝑗))) → 𝑏 ∈ No
) |
73 | 72 | adantrr 714 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∪ 𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖 ∪ 𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖 ∪ 𝑗)))) → 𝑏 ∈ No
) |
74 | 69, 73 | mulscld 27948 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∪ 𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖 ∪ 𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖 ∪ 𝑗)))) → (𝐴 ·s 𝑏) ∈ No
) |
75 | 70 | simprd 495 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑖 ∪ 𝑗) ∈ ω) → (𝑅‘(𝑖 ∪ 𝑗)) ⊆ No
) |
76 | 75 | sselda 3982 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑖 ∪ 𝑗) ∈ ω) ∧ 𝑐 ∈ (𝑅‘(𝑖 ∪ 𝑗))) → 𝑐 ∈ No
) |
77 | 76 | adantrl 713 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∪ 𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖 ∪ 𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖 ∪ 𝑗)))) → 𝑐 ∈ No
) |
78 | 69, 77 | mulscld 27948 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∪ 𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖 ∪ 𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖 ∪ 𝑗)))) → (𝐴 ·s 𝑐) ∈ No
) |
79 | 74, 78 | jca 511 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∪ 𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖 ∪ 𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖 ∪ 𝑗)))) → ((𝐴 ·s 𝑏) ∈ No
∧ (𝐴
·s 𝑐)
∈ No )) |
80 | 5, 10, 23, 32, 33, 34 | precsexlem9 28026 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑖 ∪ 𝑗) ∈ ω) → (∀𝑏 ∈ (𝐿‘(𝑖 ∪ 𝑗))(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘(𝑖 ∪ 𝑗)) 1s <s (𝐴 ·s 𝑐))) |
81 | 80 | simpld 494 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑖 ∪ 𝑗) ∈ ω) → ∀𝑏 ∈ (𝐿‘(𝑖 ∪ 𝑗))(𝐴 ·s 𝑏) <s 1s ) |
82 | | rsp 3243 |
. . . . . . . . . . . . 13
⊢
(∀𝑏 ∈
(𝐿‘(𝑖 ∪ 𝑗))(𝐴 ·s 𝑏) <s 1s → (𝑏 ∈ (𝐿‘(𝑖 ∪ 𝑗)) → (𝐴 ·s 𝑏) <s 1s )) |
83 | 81, 82 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∪ 𝑗) ∈ ω) → (𝑏 ∈ (𝐿‘(𝑖 ∪ 𝑗)) → (𝐴 ·s 𝑏) <s 1s )) |
84 | 80 | simprd 495 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑖 ∪ 𝑗) ∈ ω) → ∀𝑐 ∈ (𝑅‘(𝑖 ∪ 𝑗)) 1s <s (𝐴 ·s 𝑐)) |
85 | | rsp 3243 |
. . . . . . . . . . . . 13
⊢
(∀𝑐 ∈
(𝑅‘(𝑖 ∪ 𝑗)) 1s <s (𝐴 ·s 𝑐) → (𝑐 ∈ (𝑅‘(𝑖 ∪ 𝑗)) → 1s <s (𝐴 ·s 𝑐))) |
86 | 84, 85 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∪ 𝑗) ∈ ω) → (𝑐 ∈ (𝑅‘(𝑖 ∪ 𝑗)) → 1s <s (𝐴 ·s 𝑐))) |
87 | 83, 86 | anim12d 608 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∪ 𝑗) ∈ ω) → ((𝑏 ∈ (𝐿‘(𝑖 ∪ 𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖 ∪ 𝑗))) → ((𝐴 ·s 𝑏) <s 1s ∧ 1s
<s (𝐴
·s 𝑐)))) |
88 | 87 | imp 406 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∪ 𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖 ∪ 𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖 ∪ 𝑗)))) → ((𝐴 ·s 𝑏) <s 1s ∧ 1s
<s (𝐴
·s 𝑐))) |
89 | | 1sno 27673 |
. . . . . . . . . . 11
⊢
1s ∈ No |
90 | | slttr 27593 |
. . . . . . . . . . 11
⊢ (((𝐴 ·s 𝑏) ∈
No ∧ 1s ∈ No ∧
(𝐴 ·s
𝑐) ∈ No ) → (((𝐴 ·s 𝑏) <s 1s ∧ 1s
<s (𝐴
·s 𝑐))
→ (𝐴
·s 𝑏)
<s (𝐴
·s 𝑐))) |
91 | 89, 90 | mp3an2 1448 |
. . . . . . . . . 10
⊢ (((𝐴 ·s 𝑏) ∈
No ∧ (𝐴
·s 𝑐)
∈ No ) → (((𝐴 ·s 𝑏) <s 1s ∧ 1s
<s (𝐴
·s 𝑐))
→ (𝐴
·s 𝑏)
<s (𝐴
·s 𝑐))) |
92 | 79, 88, 91 | sylc 65 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∪ 𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖 ∪ 𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖 ∪ 𝑗)))) → (𝐴 ·s 𝑏) <s (𝐴 ·s 𝑐)) |
93 | 33 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∪ 𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖 ∪ 𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖 ∪ 𝑗)))) → 0s <s 𝐴) |
94 | 73, 77, 69, 93 | sltmul2d 27985 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∪ 𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖 ∪ 𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖 ∪ 𝑗)))) → (𝑏 <s 𝑐 ↔ (𝐴 ·s 𝑏) <s (𝐴 ·s 𝑐))) |
95 | 92, 94 | mpbird 257 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∪ 𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖 ∪ 𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖 ∪ 𝑗)))) → 𝑏 <s 𝑐) |
96 | 95 | ex 412 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∪ 𝑗) ∈ ω) → ((𝑏 ∈ (𝐿‘(𝑖 ∪ 𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖 ∪ 𝑗))) → 𝑏 <s 𝑐)) |
97 | 55, 96 | sylan2 592 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑏 ∈ (𝐿‘(𝑖 ∪ 𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖 ∪ 𝑗))) → 𝑏 <s 𝑐)) |
98 | 61, 68, 97 | syl2and 607 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑏 ∈ (𝐿‘𝑖) ∧ 𝑐 ∈ (𝑅‘𝑗)) → 𝑏 <s 𝑐)) |
99 | 98 | rexlimdvva 3210 |
. . . 4
⊢ (𝜑 → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑏 ∈ (𝐿‘𝑖) ∧ 𝑐 ∈ (𝑅‘𝑗)) → 𝑏 <s 𝑐)) |
100 | 54, 99 | biimtrid 241 |
. . 3
⊢ (𝜑 → ((𝑏 ∈ ∪ (𝐿 “ ω) ∧ 𝑐 ∈ ∪ (𝑅
“ ω)) → 𝑏
<s 𝑐)) |
101 | 100 | 3impib 1115 |
. 2
⊢ ((𝜑 ∧ 𝑏 ∈ ∪ (𝐿 “ ω) ∧ 𝑐 ∈ ∪ (𝑅
“ ω)) → 𝑏
<s 𝑐) |
102 | 17, 29, 38, 43, 101 | ssltd 27637 |
1
⊢ (𝜑 → ∪ (𝐿
“ ω) <<s ∪ (𝑅 “ ω)) |