MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  precsexlem10 Structured version   Visualization version   GIF version

Theorem precsexlem10 28027
Description: Lemma for surreal reciprocal. Show that the union of the left sets is less than the union of the right sets. Note that this is the first theorem in the surreal numbers to require the axiom of infinity. (Contributed by Scott Fenton, 15-Mar-2025.)
Hypotheses
Ref Expression
precsexlem.1 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
precsexlem.2 𝐿 = (1st𝐹)
precsexlem.3 𝑅 = (2nd𝐹)
precsexlem.4 (𝜑𝐴 No )
precsexlem.5 (𝜑 → 0s <s 𝐴)
precsexlem.6 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
Assertion
Ref Expression
precsexlem10 (𝜑 (𝐿 “ ω) <<s (𝑅 “ ω))
Distinct variable groups:   𝐴,𝑎,𝑙,𝑝,𝑟,𝑥,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦,𝑦𝐿,𝑦𝑅   𝐹,𝑙,𝑝   𝐿,𝑎,𝑙,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝑅,𝑎,𝑙,𝑟,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝜑,𝑎,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝐿,𝑟   𝜑,𝑟
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑝,𝑙,𝑥𝑂)   𝑅(𝑥,𝑦,𝑝,𝑥𝑂)   𝐹(𝑥,𝑦,𝑟,𝑎,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅)   𝐿(𝑥,𝑦,𝑝,𝑥𝑂)

Proof of Theorem precsexlem10
Dummy variables 𝑖 𝑗 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fo1st 7999 . . . . . . . 8 1st :V–onto→V
2 fofun 6806 . . . . . . . 8 (1st :V–onto→V → Fun 1st )
31, 2ax-mp 5 . . . . . . 7 Fun 1st
4 rdgfun 8422 . . . . . . . 8 Fun rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
5 precsexlem.1 . . . . . . . . 9 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
65funeqi 6569 . . . . . . . 8 (Fun 𝐹 ↔ Fun rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩))
74, 6mpbir 230 . . . . . . 7 Fun 𝐹
8 funco 6588 . . . . . . 7 ((Fun 1st ∧ Fun 𝐹) → Fun (1st𝐹))
93, 7, 8mp2an 689 . . . . . 6 Fun (1st𝐹)
10 precsexlem.2 . . . . . . 7 𝐿 = (1st𝐹)
1110funeqi 6569 . . . . . 6 (Fun 𝐿 ↔ Fun (1st𝐹))
129, 11mpbir 230 . . . . 5 Fun 𝐿
13 dcomex 10448 . . . . . 6 ω ∈ V
1413funimaex 6636 . . . . 5 (Fun 𝐿 → (𝐿 “ ω) ∈ V)
1512, 14ax-mp 5 . . . 4 (𝐿 “ ω) ∈ V
1615uniex 7735 . . 3 (𝐿 “ ω) ∈ V
1716a1i 11 . 2 (𝜑 (𝐿 “ ω) ∈ V)
18 fo2nd 8000 . . . . . . . 8 2nd :V–onto→V
19 fofun 6806 . . . . . . . 8 (2nd :V–onto→V → Fun 2nd )
2018, 19ax-mp 5 . . . . . . 7 Fun 2nd
21 funco 6588 . . . . . . 7 ((Fun 2nd ∧ Fun 𝐹) → Fun (2nd𝐹))
2220, 7, 21mp2an 689 . . . . . 6 Fun (2nd𝐹)
23 precsexlem.3 . . . . . . 7 𝑅 = (2nd𝐹)
2423funeqi 6569 . . . . . 6 (Fun 𝑅 ↔ Fun (2nd𝐹))
2522, 24mpbir 230 . . . . 5 Fun 𝑅
2613funimaex 6636 . . . . 5 (Fun 𝑅 → (𝑅 “ ω) ∈ V)
2725, 26ax-mp 5 . . . 4 (𝑅 “ ω) ∈ V
2827uniex 7735 . . 3 (𝑅 “ ω) ∈ V
2928a1i 11 . 2 (𝜑 (𝑅 “ ω) ∈ V)
30 funiunfv 7250 . . . 4 (Fun 𝐿 𝑖 ∈ ω (𝐿𝑖) = (𝐿 “ ω))
3112, 30ax-mp 5 . . 3 𝑖 ∈ ω (𝐿𝑖) = (𝐿 “ ω)
32 precsexlem.4 . . . . . 6 (𝜑𝐴 No )
33 precsexlem.5 . . . . . 6 (𝜑 → 0s <s 𝐴)
34 precsexlem.6 . . . . . 6 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
355, 10, 23, 32, 33, 34precsexlem8 28025 . . . . 5 ((𝜑𝑖 ∈ ω) → ((𝐿𝑖) ⊆ No ∧ (𝑅𝑖) ⊆ No ))
3635simpld 494 . . . 4 ((𝜑𝑖 ∈ ω) → (𝐿𝑖) ⊆ No )
3736iunssd 5053 . . 3 (𝜑 𝑖 ∈ ω (𝐿𝑖) ⊆ No )
3831, 37eqsstrrid 4031 . 2 (𝜑 (𝐿 “ ω) ⊆ No )
39 funiunfv 7250 . . . 4 (Fun 𝑅 𝑖 ∈ ω (𝑅𝑖) = (𝑅 “ ω))
4025, 39ax-mp 5 . . 3 𝑖 ∈ ω (𝑅𝑖) = (𝑅 “ ω)
4135simprd 495 . . . 4 ((𝜑𝑖 ∈ ω) → (𝑅𝑖) ⊆ No )
4241iunssd 5053 . . 3 (𝜑 𝑖 ∈ ω (𝑅𝑖) ⊆ No )
4340, 42eqsstrrid 4031 . 2 (𝜑 (𝑅 “ ω) ⊆ No )
4431eleq2i 2824 . . . . . . 7 (𝑏 𝑖 ∈ ω (𝐿𝑖) ↔ 𝑏 (𝐿 “ ω))
45 eliun 5001 . . . . . . 7 (𝑏 𝑖 ∈ ω (𝐿𝑖) ↔ ∃𝑖 ∈ ω 𝑏 ∈ (𝐿𝑖))
4644, 45bitr3i 277 . . . . . 6 (𝑏 (𝐿 “ ω) ↔ ∃𝑖 ∈ ω 𝑏 ∈ (𝐿𝑖))
47 funiunfv 7250 . . . . . . . . 9 (Fun 𝑅 𝑗 ∈ ω (𝑅𝑗) = (𝑅 “ ω))
4825, 47ax-mp 5 . . . . . . . 8 𝑗 ∈ ω (𝑅𝑗) = (𝑅 “ ω)
4948eleq2i 2824 . . . . . . 7 (𝑐 𝑗 ∈ ω (𝑅𝑗) ↔ 𝑐 (𝑅 “ ω))
50 eliun 5001 . . . . . . 7 (𝑐 𝑗 ∈ ω (𝑅𝑗) ↔ ∃𝑗 ∈ ω 𝑐 ∈ (𝑅𝑗))
5149, 50bitr3i 277 . . . . . 6 (𝑐 (𝑅 “ ω) ↔ ∃𝑗 ∈ ω 𝑐 ∈ (𝑅𝑗))
5246, 51anbi12i 626 . . . . 5 ((𝑏 (𝐿 “ ω) ∧ 𝑐 (𝑅 “ ω)) ↔ (∃𝑖 ∈ ω 𝑏 ∈ (𝐿𝑖) ∧ ∃𝑗 ∈ ω 𝑐 ∈ (𝑅𝑗)))
53 reeanv 3225 . . . . 5 (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑏 ∈ (𝐿𝑖) ∧ 𝑐 ∈ (𝑅𝑗)) ↔ (∃𝑖 ∈ ω 𝑏 ∈ (𝐿𝑖) ∧ ∃𝑗 ∈ ω 𝑐 ∈ (𝑅𝑗)))
5452, 53bitr4i 278 . . . 4 ((𝑏 (𝐿 “ ω) ∧ 𝑐 (𝑅 “ ω)) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑏 ∈ (𝐿𝑖) ∧ 𝑐 ∈ (𝑅𝑗)))
55 omun 7882 . . . . . . . . 9 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑖𝑗) ∈ ω)
56 ssun1 4172 . . . . . . . . . 10 𝑖 ⊆ (𝑖𝑗)
575, 10, 23precsexlem6 28023 . . . . . . . . . 10 ((𝑖 ∈ ω ∧ (𝑖𝑗) ∈ ω ∧ 𝑖 ⊆ (𝑖𝑗)) → (𝐿𝑖) ⊆ (𝐿‘(𝑖𝑗)))
5856, 57mp3an3 1449 . . . . . . . . 9 ((𝑖 ∈ ω ∧ (𝑖𝑗) ∈ ω) → (𝐿𝑖) ⊆ (𝐿‘(𝑖𝑗)))
5955, 58syldan 590 . . . . . . . 8 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝐿𝑖) ⊆ (𝐿‘(𝑖𝑗)))
6059adantl 481 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → (𝐿𝑖) ⊆ (𝐿‘(𝑖𝑗)))
6160sseld 3981 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → (𝑏 ∈ (𝐿𝑖) → 𝑏 ∈ (𝐿‘(𝑖𝑗))))
62 simpr 484 . . . . . . . . 9 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → 𝑗 ∈ ω)
63 ssun2 4173 . . . . . . . . . 10 𝑗 ⊆ (𝑖𝑗)
645, 10, 23precsexlem7 28024 . . . . . . . . . 10 ((𝑗 ∈ ω ∧ (𝑖𝑗) ∈ ω ∧ 𝑗 ⊆ (𝑖𝑗)) → (𝑅𝑗) ⊆ (𝑅‘(𝑖𝑗)))
6563, 64mp3an3 1449 . . . . . . . . 9 ((𝑗 ∈ ω ∧ (𝑖𝑗) ∈ ω) → (𝑅𝑗) ⊆ (𝑅‘(𝑖𝑗)))
6662, 55, 65syl2anc 583 . . . . . . . 8 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑅𝑗) ⊆ (𝑅‘(𝑖𝑗)))
6766sseld 3981 . . . . . . 7 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑐 ∈ (𝑅𝑗) → 𝑐 ∈ (𝑅‘(𝑖𝑗))))
6867adantl 481 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → (𝑐 ∈ (𝑅𝑗) → 𝑐 ∈ (𝑅‘(𝑖𝑗))))
6932ad2antrr 723 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗)))) → 𝐴 No )
705, 10, 23, 32, 33, 34precsexlem8 28025 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑖𝑗) ∈ ω) → ((𝐿‘(𝑖𝑗)) ⊆ No ∧ (𝑅‘(𝑖𝑗)) ⊆ No ))
7170simpld 494 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑖𝑗) ∈ ω) → (𝐿‘(𝑖𝑗)) ⊆ No )
7271sselda 3982 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ 𝑏 ∈ (𝐿‘(𝑖𝑗))) → 𝑏 No )
7372adantrr 714 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗)))) → 𝑏 No )
7469, 73mulscld 27948 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗)))) → (𝐴 ·s 𝑏) ∈ No )
7570simprd 495 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑖𝑗) ∈ ω) → (𝑅‘(𝑖𝑗)) ⊆ No )
7675sselda 3982 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗))) → 𝑐 No )
7776adantrl 713 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗)))) → 𝑐 No )
7869, 77mulscld 27948 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗)))) → (𝐴 ·s 𝑐) ∈ No )
7974, 78jca 511 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗)))) → ((𝐴 ·s 𝑏) ∈ No ∧ (𝐴 ·s 𝑐) ∈ No ))
805, 10, 23, 32, 33, 34precsexlem9 28026 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑖𝑗) ∈ ω) → (∀𝑏 ∈ (𝐿‘(𝑖𝑗))(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘(𝑖𝑗)) 1s <s (𝐴 ·s 𝑐)))
8180simpld 494 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖𝑗) ∈ ω) → ∀𝑏 ∈ (𝐿‘(𝑖𝑗))(𝐴 ·s 𝑏) <s 1s )
82 rsp 3243 . . . . . . . . . . . . 13 (∀𝑏 ∈ (𝐿‘(𝑖𝑗))(𝐴 ·s 𝑏) <s 1s → (𝑏 ∈ (𝐿‘(𝑖𝑗)) → (𝐴 ·s 𝑏) <s 1s ))
8381, 82syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖𝑗) ∈ ω) → (𝑏 ∈ (𝐿‘(𝑖𝑗)) → (𝐴 ·s 𝑏) <s 1s ))
8480simprd 495 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖𝑗) ∈ ω) → ∀𝑐 ∈ (𝑅‘(𝑖𝑗)) 1s <s (𝐴 ·s 𝑐))
85 rsp 3243 . . . . . . . . . . . . 13 (∀𝑐 ∈ (𝑅‘(𝑖𝑗)) 1s <s (𝐴 ·s 𝑐) → (𝑐 ∈ (𝑅‘(𝑖𝑗)) → 1s <s (𝐴 ·s 𝑐)))
8684, 85syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖𝑗) ∈ ω) → (𝑐 ∈ (𝑅‘(𝑖𝑗)) → 1s <s (𝐴 ·s 𝑐)))
8783, 86anim12d 608 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝑗) ∈ ω) → ((𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗))) → ((𝐴 ·s 𝑏) <s 1s ∧ 1s <s (𝐴 ·s 𝑐))))
8887imp 406 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗)))) → ((𝐴 ·s 𝑏) <s 1s ∧ 1s <s (𝐴 ·s 𝑐)))
89 1sno 27673 . . . . . . . . . . 11 1s No
90 slttr 27593 . . . . . . . . . . 11 (((𝐴 ·s 𝑏) ∈ No ∧ 1s No ∧ (𝐴 ·s 𝑐) ∈ No ) → (((𝐴 ·s 𝑏) <s 1s ∧ 1s <s (𝐴 ·s 𝑐)) → (𝐴 ·s 𝑏) <s (𝐴 ·s 𝑐)))
9189, 90mp3an2 1448 . . . . . . . . . 10 (((𝐴 ·s 𝑏) ∈ No ∧ (𝐴 ·s 𝑐) ∈ No ) → (((𝐴 ·s 𝑏) <s 1s ∧ 1s <s (𝐴 ·s 𝑐)) → (𝐴 ·s 𝑏) <s (𝐴 ·s 𝑐)))
9279, 88, 91sylc 65 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗)))) → (𝐴 ·s 𝑏) <s (𝐴 ·s 𝑐))
9333ad2antrr 723 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗)))) → 0s <s 𝐴)
9473, 77, 69, 93sltmul2d 27985 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗)))) → (𝑏 <s 𝑐 ↔ (𝐴 ·s 𝑏) <s (𝐴 ·s 𝑐)))
9592, 94mpbird 257 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗)))) → 𝑏 <s 𝑐)
9695ex 412 . . . . . . 7 ((𝜑 ∧ (𝑖𝑗) ∈ ω) → ((𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗))) → 𝑏 <s 𝑐))
9755, 96sylan2 592 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗))) → 𝑏 <s 𝑐))
9861, 68, 97syl2and 607 . . . . 5 ((𝜑 ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑏 ∈ (𝐿𝑖) ∧ 𝑐 ∈ (𝑅𝑗)) → 𝑏 <s 𝑐))
9998rexlimdvva 3210 . . . 4 (𝜑 → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑏 ∈ (𝐿𝑖) ∧ 𝑐 ∈ (𝑅𝑗)) → 𝑏 <s 𝑐))
10054, 99biimtrid 241 . . 3 (𝜑 → ((𝑏 (𝐿 “ ω) ∧ 𝑐 (𝑅 “ ω)) → 𝑏 <s 𝑐))
1011003impib 1115 . 2 ((𝜑𝑏 (𝐿 “ ω) ∧ 𝑐 (𝑅 “ ω)) → 𝑏 <s 𝑐)
10217, 29, 38, 43, 101ssltd 27637 1 (𝜑 (𝐿 “ ω) <<s (𝑅 “ ω))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  {cab 2708  wral 3060  wrex 3069  {crab 3431  Vcvv 3473  csb 3893  cun 3946  wss 3948  c0 4322  {csn 4628  cop 4634   cuni 4908   ciun 4997   class class class wbr 5148  cmpt 5231  cima 5679  ccom 5680  Fun wfun 6537  ontowfo 6541  cfv 6543  (class class class)co 7412  ωcom 7859  1st c1st 7977  2nd c2nd 7978  reccrdg 8415   No csur 27486   <s cslt 27487   <<s csslt 27626   0s c0s 27668   1s c1s 27669   L cleft 27685   R cright 27686   +s cadds 27789   -s csubs 27846   ·s cmuls 27919   /su cdivs 28000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-dc 10447
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-ot 4637  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-2o 8473  df-oadd 8476  df-nadd 8671  df-no 27489  df-slt 27490  df-bday 27491  df-sle 27591  df-sslt 27627  df-scut 27629  df-0s 27670  df-1s 27671  df-made 27687  df-old 27688  df-left 27690  df-right 27691  df-norec 27768  df-norec2 27779  df-adds 27790  df-negs 27847  df-subs 27848  df-muls 27920  df-divs 28001
This theorem is referenced by:  precsexlem11  28028  precsex  28029
  Copyright terms: Public domain W3C validator