MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  precsexlem10 Structured version   Visualization version   GIF version

Theorem precsexlem10 28157
Description: Lemma for surreal reciprocal. Show that the union of the left sets is less than the union of the right sets. Note that this is the first theorem in the surreal numbers to require the axiom of infinity. (Contributed by Scott Fenton, 15-Mar-2025.)
Hypotheses
Ref Expression
precsexlem.1 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
precsexlem.2 𝐿 = (1st𝐹)
precsexlem.3 𝑅 = (2nd𝐹)
precsexlem.4 (𝜑𝐴 No )
precsexlem.5 (𝜑 → 0s <s 𝐴)
precsexlem.6 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
Assertion
Ref Expression
precsexlem10 (𝜑 (𝐿 “ ω) <<s (𝑅 “ ω))
Distinct variable groups:   𝐴,𝑎,𝑙,𝑝,𝑟,𝑥,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦,𝑦𝐿,𝑦𝑅   𝐹,𝑙,𝑝   𝐿,𝑎,𝑙,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝑅,𝑎,𝑙,𝑟,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝜑,𝑎,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝐿,𝑟   𝜑,𝑟
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑝,𝑙,𝑥𝑂)   𝑅(𝑥,𝑦,𝑝,𝑥𝑂)   𝐹(𝑥,𝑦,𝑟,𝑎,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅)   𝐿(𝑥,𝑦,𝑝,𝑥𝑂)

Proof of Theorem precsexlem10
Dummy variables 𝑖 𝑗 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fo1st 8006 . . . . . . . 8 1st :V–onto→V
2 fofun 6790 . . . . . . . 8 (1st :V–onto→V → Fun 1st )
31, 2ax-mp 5 . . . . . . 7 Fun 1st
4 rdgfun 8428 . . . . . . . 8 Fun rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
5 precsexlem.1 . . . . . . . . 9 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
65funeqi 6556 . . . . . . . 8 (Fun 𝐹 ↔ Fun rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩))
74, 6mpbir 231 . . . . . . 7 Fun 𝐹
8 funco 6575 . . . . . . 7 ((Fun 1st ∧ Fun 𝐹) → Fun (1st𝐹))
93, 7, 8mp2an 692 . . . . . 6 Fun (1st𝐹)
10 precsexlem.2 . . . . . . 7 𝐿 = (1st𝐹)
1110funeqi 6556 . . . . . 6 (Fun 𝐿 ↔ Fun (1st𝐹))
129, 11mpbir 231 . . . . 5 Fun 𝐿
13 dcomex 10459 . . . . . 6 ω ∈ V
1413funimaex 6624 . . . . 5 (Fun 𝐿 → (𝐿 “ ω) ∈ V)
1512, 14ax-mp 5 . . . 4 (𝐿 “ ω) ∈ V
1615uniex 7733 . . 3 (𝐿 “ ω) ∈ V
1716a1i 11 . 2 (𝜑 (𝐿 “ ω) ∈ V)
18 fo2nd 8007 . . . . . . . 8 2nd :V–onto→V
19 fofun 6790 . . . . . . . 8 (2nd :V–onto→V → Fun 2nd )
2018, 19ax-mp 5 . . . . . . 7 Fun 2nd
21 funco 6575 . . . . . . 7 ((Fun 2nd ∧ Fun 𝐹) → Fun (2nd𝐹))
2220, 7, 21mp2an 692 . . . . . 6 Fun (2nd𝐹)
23 precsexlem.3 . . . . . . 7 𝑅 = (2nd𝐹)
2423funeqi 6556 . . . . . 6 (Fun 𝑅 ↔ Fun (2nd𝐹))
2522, 24mpbir 231 . . . . 5 Fun 𝑅
2613funimaex 6624 . . . . 5 (Fun 𝑅 → (𝑅 “ ω) ∈ V)
2725, 26ax-mp 5 . . . 4 (𝑅 “ ω) ∈ V
2827uniex 7733 . . 3 (𝑅 “ ω) ∈ V
2928a1i 11 . 2 (𝜑 (𝑅 “ ω) ∈ V)
30 funiunfv 7239 . . . 4 (Fun 𝐿 𝑖 ∈ ω (𝐿𝑖) = (𝐿 “ ω))
3112, 30ax-mp 5 . . 3 𝑖 ∈ ω (𝐿𝑖) = (𝐿 “ ω)
32 precsexlem.4 . . . . . 6 (𝜑𝐴 No )
33 precsexlem.5 . . . . . 6 (𝜑 → 0s <s 𝐴)
34 precsexlem.6 . . . . . 6 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
355, 10, 23, 32, 33, 34precsexlem8 28155 . . . . 5 ((𝜑𝑖 ∈ ω) → ((𝐿𝑖) ⊆ No ∧ (𝑅𝑖) ⊆ No ))
3635simpld 494 . . . 4 ((𝜑𝑖 ∈ ω) → (𝐿𝑖) ⊆ No )
3736iunssd 5026 . . 3 (𝜑 𝑖 ∈ ω (𝐿𝑖) ⊆ No )
3831, 37eqsstrrid 3998 . 2 (𝜑 (𝐿 “ ω) ⊆ No )
39 funiunfv 7239 . . . 4 (Fun 𝑅 𝑖 ∈ ω (𝑅𝑖) = (𝑅 “ ω))
4025, 39ax-mp 5 . . 3 𝑖 ∈ ω (𝑅𝑖) = (𝑅 “ ω)
4135simprd 495 . . . 4 ((𝜑𝑖 ∈ ω) → (𝑅𝑖) ⊆ No )
4241iunssd 5026 . . 3 (𝜑 𝑖 ∈ ω (𝑅𝑖) ⊆ No )
4340, 42eqsstrrid 3998 . 2 (𝜑 (𝑅 “ ω) ⊆ No )
4431eleq2i 2826 . . . . . . 7 (𝑏 𝑖 ∈ ω (𝐿𝑖) ↔ 𝑏 (𝐿 “ ω))
45 eliun 4971 . . . . . . 7 (𝑏 𝑖 ∈ ω (𝐿𝑖) ↔ ∃𝑖 ∈ ω 𝑏 ∈ (𝐿𝑖))
4644, 45bitr3i 277 . . . . . 6 (𝑏 (𝐿 “ ω) ↔ ∃𝑖 ∈ ω 𝑏 ∈ (𝐿𝑖))
47 funiunfv 7239 . . . . . . . . 9 (Fun 𝑅 𝑗 ∈ ω (𝑅𝑗) = (𝑅 “ ω))
4825, 47ax-mp 5 . . . . . . . 8 𝑗 ∈ ω (𝑅𝑗) = (𝑅 “ ω)
4948eleq2i 2826 . . . . . . 7 (𝑐 𝑗 ∈ ω (𝑅𝑗) ↔ 𝑐 (𝑅 “ ω))
50 eliun 4971 . . . . . . 7 (𝑐 𝑗 ∈ ω (𝑅𝑗) ↔ ∃𝑗 ∈ ω 𝑐 ∈ (𝑅𝑗))
5149, 50bitr3i 277 . . . . . 6 (𝑐 (𝑅 “ ω) ↔ ∃𝑗 ∈ ω 𝑐 ∈ (𝑅𝑗))
5246, 51anbi12i 628 . . . . 5 ((𝑏 (𝐿 “ ω) ∧ 𝑐 (𝑅 “ ω)) ↔ (∃𝑖 ∈ ω 𝑏 ∈ (𝐿𝑖) ∧ ∃𝑗 ∈ ω 𝑐 ∈ (𝑅𝑗)))
53 reeanv 3213 . . . . 5 (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑏 ∈ (𝐿𝑖) ∧ 𝑐 ∈ (𝑅𝑗)) ↔ (∃𝑖 ∈ ω 𝑏 ∈ (𝐿𝑖) ∧ ∃𝑗 ∈ ω 𝑐 ∈ (𝑅𝑗)))
5452, 53bitr4i 278 . . . 4 ((𝑏 (𝐿 “ ω) ∧ 𝑐 (𝑅 “ ω)) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑏 ∈ (𝐿𝑖) ∧ 𝑐 ∈ (𝑅𝑗)))
55 omun 7881 . . . . . . . . 9 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑖𝑗) ∈ ω)
56 ssun1 4153 . . . . . . . . . 10 𝑖 ⊆ (𝑖𝑗)
575, 10, 23precsexlem6 28153 . . . . . . . . . 10 ((𝑖 ∈ ω ∧ (𝑖𝑗) ∈ ω ∧ 𝑖 ⊆ (𝑖𝑗)) → (𝐿𝑖) ⊆ (𝐿‘(𝑖𝑗)))
5856, 57mp3an3 1452 . . . . . . . . 9 ((𝑖 ∈ ω ∧ (𝑖𝑗) ∈ ω) → (𝐿𝑖) ⊆ (𝐿‘(𝑖𝑗)))
5955, 58syldan 591 . . . . . . . 8 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝐿𝑖) ⊆ (𝐿‘(𝑖𝑗)))
6059adantl 481 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → (𝐿𝑖) ⊆ (𝐿‘(𝑖𝑗)))
6160sseld 3957 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → (𝑏 ∈ (𝐿𝑖) → 𝑏 ∈ (𝐿‘(𝑖𝑗))))
62 simpr 484 . . . . . . . . 9 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → 𝑗 ∈ ω)
63 ssun2 4154 . . . . . . . . . 10 𝑗 ⊆ (𝑖𝑗)
645, 10, 23precsexlem7 28154 . . . . . . . . . 10 ((𝑗 ∈ ω ∧ (𝑖𝑗) ∈ ω ∧ 𝑗 ⊆ (𝑖𝑗)) → (𝑅𝑗) ⊆ (𝑅‘(𝑖𝑗)))
6563, 64mp3an3 1452 . . . . . . . . 9 ((𝑗 ∈ ω ∧ (𝑖𝑗) ∈ ω) → (𝑅𝑗) ⊆ (𝑅‘(𝑖𝑗)))
6662, 55, 65syl2anc 584 . . . . . . . 8 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑅𝑗) ⊆ (𝑅‘(𝑖𝑗)))
6766sseld 3957 . . . . . . 7 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑐 ∈ (𝑅𝑗) → 𝑐 ∈ (𝑅‘(𝑖𝑗))))
6867adantl 481 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → (𝑐 ∈ (𝑅𝑗) → 𝑐 ∈ (𝑅‘(𝑖𝑗))))
6932ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗)))) → 𝐴 No )
705, 10, 23, 32, 33, 34precsexlem8 28155 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑖𝑗) ∈ ω) → ((𝐿‘(𝑖𝑗)) ⊆ No ∧ (𝑅‘(𝑖𝑗)) ⊆ No ))
7170simpld 494 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑖𝑗) ∈ ω) → (𝐿‘(𝑖𝑗)) ⊆ No )
7271sselda 3958 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ 𝑏 ∈ (𝐿‘(𝑖𝑗))) → 𝑏 No )
7372adantrr 717 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗)))) → 𝑏 No )
7469, 73mulscld 28078 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗)))) → (𝐴 ·s 𝑏) ∈ No )
7570simprd 495 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑖𝑗) ∈ ω) → (𝑅‘(𝑖𝑗)) ⊆ No )
7675sselda 3958 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗))) → 𝑐 No )
7776adantrl 716 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗)))) → 𝑐 No )
7869, 77mulscld 28078 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗)))) → (𝐴 ·s 𝑐) ∈ No )
7974, 78jca 511 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗)))) → ((𝐴 ·s 𝑏) ∈ No ∧ (𝐴 ·s 𝑐) ∈ No ))
805, 10, 23, 32, 33, 34precsexlem9 28156 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑖𝑗) ∈ ω) → (∀𝑏 ∈ (𝐿‘(𝑖𝑗))(𝐴 ·s 𝑏) <s 1s ∧ ∀𝑐 ∈ (𝑅‘(𝑖𝑗)) 1s <s (𝐴 ·s 𝑐)))
8180simpld 494 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖𝑗) ∈ ω) → ∀𝑏 ∈ (𝐿‘(𝑖𝑗))(𝐴 ·s 𝑏) <s 1s )
82 rsp 3230 . . . . . . . . . . . . 13 (∀𝑏 ∈ (𝐿‘(𝑖𝑗))(𝐴 ·s 𝑏) <s 1s → (𝑏 ∈ (𝐿‘(𝑖𝑗)) → (𝐴 ·s 𝑏) <s 1s ))
8381, 82syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖𝑗) ∈ ω) → (𝑏 ∈ (𝐿‘(𝑖𝑗)) → (𝐴 ·s 𝑏) <s 1s ))
8480simprd 495 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖𝑗) ∈ ω) → ∀𝑐 ∈ (𝑅‘(𝑖𝑗)) 1s <s (𝐴 ·s 𝑐))
85 rsp 3230 . . . . . . . . . . . . 13 (∀𝑐 ∈ (𝑅‘(𝑖𝑗)) 1s <s (𝐴 ·s 𝑐) → (𝑐 ∈ (𝑅‘(𝑖𝑗)) → 1s <s (𝐴 ·s 𝑐)))
8684, 85syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖𝑗) ∈ ω) → (𝑐 ∈ (𝑅‘(𝑖𝑗)) → 1s <s (𝐴 ·s 𝑐)))
8783, 86anim12d 609 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝑗) ∈ ω) → ((𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗))) → ((𝐴 ·s 𝑏) <s 1s ∧ 1s <s (𝐴 ·s 𝑐))))
8887imp 406 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗)))) → ((𝐴 ·s 𝑏) <s 1s ∧ 1s <s (𝐴 ·s 𝑐)))
89 1sno 27789 . . . . . . . . . . 11 1s No
90 slttr 27709 . . . . . . . . . . 11 (((𝐴 ·s 𝑏) ∈ No ∧ 1s No ∧ (𝐴 ·s 𝑐) ∈ No ) → (((𝐴 ·s 𝑏) <s 1s ∧ 1s <s (𝐴 ·s 𝑐)) → (𝐴 ·s 𝑏) <s (𝐴 ·s 𝑐)))
9189, 90mp3an2 1451 . . . . . . . . . 10 (((𝐴 ·s 𝑏) ∈ No ∧ (𝐴 ·s 𝑐) ∈ No ) → (((𝐴 ·s 𝑏) <s 1s ∧ 1s <s (𝐴 ·s 𝑐)) → (𝐴 ·s 𝑏) <s (𝐴 ·s 𝑐)))
9279, 88, 91sylc 65 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗)))) → (𝐴 ·s 𝑏) <s (𝐴 ·s 𝑐))
9333ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗)))) → 0s <s 𝐴)
9473, 77, 69, 93sltmul2d 28115 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗)))) → (𝑏 <s 𝑐 ↔ (𝐴 ·s 𝑏) <s (𝐴 ·s 𝑐)))
9592, 94mpbird 257 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑗) ∈ ω) ∧ (𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗)))) → 𝑏 <s 𝑐)
9695ex 412 . . . . . . 7 ((𝜑 ∧ (𝑖𝑗) ∈ ω) → ((𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗))) → 𝑏 <s 𝑐))
9755, 96sylan2 593 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑏 ∈ (𝐿‘(𝑖𝑗)) ∧ 𝑐 ∈ (𝑅‘(𝑖𝑗))) → 𝑏 <s 𝑐))
9861, 68, 97syl2and 608 . . . . 5 ((𝜑 ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑏 ∈ (𝐿𝑖) ∧ 𝑐 ∈ (𝑅𝑗)) → 𝑏 <s 𝑐))
9998rexlimdvva 3198 . . . 4 (𝜑 → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑏 ∈ (𝐿𝑖) ∧ 𝑐 ∈ (𝑅𝑗)) → 𝑏 <s 𝑐))
10054, 99biimtrid 242 . . 3 (𝜑 → ((𝑏 (𝐿 “ ω) ∧ 𝑐 (𝑅 “ ω)) → 𝑏 <s 𝑐))
1011003impib 1116 . 2 ((𝜑𝑏 (𝐿 “ ω) ∧ 𝑐 (𝑅 “ ω)) → 𝑏 <s 𝑐)
10217, 29, 38, 43, 101ssltd 27753 1 (𝜑 (𝐿 “ ω) <<s (𝑅 “ ω))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {cab 2713  wral 3051  wrex 3060  {crab 3415  Vcvv 3459  csb 3874  cun 3924  wss 3926  c0 4308  {csn 4601  cop 4607   cuni 4883   ciun 4967   class class class wbr 5119  cmpt 5201  cima 5657  ccom 5658  Fun wfun 6524  ontowfo 6528  cfv 6530  (class class class)co 7403  ωcom 7859  1st c1st 7984  2nd c2nd 7985  reccrdg 8421   No csur 27601   <s cslt 27602   <<s csslt 27742   0s c0s 27784   1s c1s 27785   L cleft 27801   R cright 27802   +s cadds 27909   -s csubs 27969   ·s cmuls 28049   /su cdivs 28130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-dc 10458
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-nadd 8676  df-no 27604  df-slt 27605  df-bday 27606  df-sle 27707  df-sslt 27743  df-scut 27745  df-0s 27786  df-1s 27787  df-made 27803  df-old 27804  df-left 27806  df-right 27807  df-norec 27888  df-norec2 27899  df-adds 27910  df-negs 27970  df-subs 27971  df-muls 28050  df-divs 28131
This theorem is referenced by:  precsexlem11  28158  precsex  28159
  Copyright terms: Public domain W3C validator