Step | Hyp | Ref
| Expression |
1 | | islininds.b |
. . . 4
⊢ 𝐵 = (Base‘𝑀) |
2 | | islininds.z |
. . . 4
⊢ 𝑍 = (0g‘𝑀) |
3 | | islininds.r |
. . . 4
⊢ 𝑅 = (Scalar‘𝑀) |
4 | | islininds.e |
. . . 4
⊢ 𝐸 = (Base‘𝑅) |
5 | | islininds.0 |
. . . 4
⊢ 0 =
(0g‘𝑅) |
6 | 1, 2, 3, 4, 5 | linindsi 45740 |
. . 3
⊢ (𝑆 linIndS 𝑀 → (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
7 | | breq1 5081 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → (𝑓 finSupp 0 ↔ 𝐹 finSupp 0 )) |
8 | | oveq1 7275 |
. . . . . . . . . 10
⊢ (𝑓 = 𝐹 → (𝑓( linC ‘𝑀)𝑆) = (𝐹( linC ‘𝑀)𝑆)) |
9 | 8 | eqeq1d 2741 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 ↔ (𝐹( linC ‘𝑀)𝑆) = 𝑍)) |
10 | 7, 9 | anbi12d 630 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) ↔ (𝐹 finSupp 0 ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍))) |
11 | | fveq1 6767 |
. . . . . . . . . 10
⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) |
12 | 11 | eqeq1d 2741 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → ((𝑓‘𝑥) = 0 ↔ (𝐹‘𝑥) = 0 )) |
13 | 12 | ralbidv 3122 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ↔ ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) = 0 )) |
14 | 10, 13 | imbi12d 344 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → (((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) ↔ ((𝐹 finSupp 0 ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) = 0 ))) |
15 | 14 | rspcv 3555 |
. . . . . 6
⊢ (𝐹 ∈ (𝐸 ↑m 𝑆) → (∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) → ((𝐹 finSupp 0 ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) = 0 ))) |
16 | 15 | com23 86 |
. . . . 5
⊢ (𝐹 ∈ (𝐸 ↑m 𝑆) → ((𝐹 finSupp 0 ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) → ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) = 0 ))) |
17 | 16 | 3impib 1114 |
. . . 4
⊢ ((𝐹 ∈ (𝐸 ↑m 𝑆) ∧ 𝐹 finSupp 0 ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) → ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) = 0 )) |
18 | 17 | com12 32 |
. . 3
⊢
(∀𝑓 ∈
(𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) → ((𝐹 ∈ (𝐸 ↑m 𝑆) ∧ 𝐹 finSupp 0 ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) = 0 )) |
19 | 6, 18 | simpl2im 503 |
. 2
⊢ (𝑆 linIndS 𝑀 → ((𝐹 ∈ (𝐸 ↑m 𝑆) ∧ 𝐹 finSupp 0 ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) = 0 )) |
20 | 19 | imp 406 |
1
⊢ ((𝑆 linIndS 𝑀 ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ 𝐹 finSupp 0 ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍)) → ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) = 0 ) |