Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linindslinci Structured version   Visualization version   GIF version

Theorem linindslinci 45847
Description: The implications of being a linearly independent subset and a linear combination of this subset being 0. (Contributed by AV, 24-Apr-2019.) (Revised by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
islininds.b 𝐵 = (Base‘𝑀)
islininds.z 𝑍 = (0g𝑀)
islininds.r 𝑅 = (Scalar‘𝑀)
islininds.e 𝐸 = (Base‘𝑅)
islininds.0 0 = (0g𝑅)
Assertion
Ref Expression
linindslinci ((𝑆 linIndS 𝑀 ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ 𝐹 finSupp 0 ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍)) → ∀𝑥𝑆 (𝐹𝑥) = 0 )
Distinct variable groups:   𝑥,𝑀   𝑥,𝑆   𝑥,𝐹
Allowed substitution hints:   𝐵(𝑥)   𝑅(𝑥)   𝐸(𝑥)   0 (𝑥)   𝑍(𝑥)

Proof of Theorem linindslinci
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 islininds.b . . . 4 𝐵 = (Base‘𝑀)
2 islininds.z . . . 4 𝑍 = (0g𝑀)
3 islininds.r . . . 4 𝑅 = (Scalar‘𝑀)
4 islininds.e . . . 4 𝐸 = (Base‘𝑅)
5 islininds.0 . . . 4 0 = (0g𝑅)
61, 2, 3, 4, 5linindsi 45846 . . 3 (𝑆 linIndS 𝑀 → (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
7 breq1 5084 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓 finSupp 0𝐹 finSupp 0 ))
8 oveq1 7314 . . . . . . . . . 10 (𝑓 = 𝐹 → (𝑓( linC ‘𝑀)𝑆) = (𝐹( linC ‘𝑀)𝑆))
98eqeq1d 2738 . . . . . . . . 9 (𝑓 = 𝐹 → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 ↔ (𝐹( linC ‘𝑀)𝑆) = 𝑍))
107, 9anbi12d 632 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) ↔ (𝐹 finSupp 0 ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍)))
11 fveq1 6803 . . . . . . . . . 10 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
1211eqeq1d 2738 . . . . . . . . 9 (𝑓 = 𝐹 → ((𝑓𝑥) = 0 ↔ (𝐹𝑥) = 0 ))
1312ralbidv 3171 . . . . . . . 8 (𝑓 = 𝐹 → (∀𝑥𝑆 (𝑓𝑥) = 0 ↔ ∀𝑥𝑆 (𝐹𝑥) = 0 ))
1410, 13imbi12d 345 . . . . . . 7 (𝑓 = 𝐹 → (((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) ↔ ((𝐹 finSupp 0 ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝐹𝑥) = 0 )))
1514rspcv 3562 . . . . . 6 (𝐹 ∈ (𝐸m 𝑆) → (∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) → ((𝐹 finSupp 0 ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝐹𝑥) = 0 )))
1615com23 86 . . . . 5 (𝐹 ∈ (𝐸m 𝑆) → ((𝐹 finSupp 0 ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) → ∀𝑥𝑆 (𝐹𝑥) = 0 )))
17163impib 1116 . . . 4 ((𝐹 ∈ (𝐸m 𝑆) ∧ 𝐹 finSupp 0 ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) → ∀𝑥𝑆 (𝐹𝑥) = 0 ))
1817com12 32 . . 3 (∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ) → ((𝐹 ∈ (𝐸m 𝑆) ∧ 𝐹 finSupp 0 ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝐹𝑥) = 0 ))
196, 18simpl2im 505 . 2 (𝑆 linIndS 𝑀 → ((𝐹 ∈ (𝐸m 𝑆) ∧ 𝐹 finSupp 0 ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝐹𝑥) = 0 ))
2019imp 408 1 ((𝑆 linIndS 𝑀 ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ 𝐹 finSupp 0 ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍)) → ∀𝑥𝑆 (𝐹𝑥) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087   = wceq 1539  wcel 2104  wral 3062  𝒫 cpw 4539   class class class wbr 5081  cfv 6458  (class class class)co 7307  m cmap 8646   finSupp cfsupp 9172  Basecbs 16957  Scalarcsca 17010  0gc0g 17195   linC clinc 45803   linIndS clininds 45839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-xp 5606  df-rel 5607  df-iota 6410  df-fv 6466  df-ov 7310  df-lininds 45841
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator