MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islly2 Structured version   Visualization version   GIF version

Theorem islly2 23397
Description: An alternative expression for 𝐽 ∈ Locally 𝐴 when 𝐴 passes to open subspaces: A space is locally 𝐴 if every point is contained in an open neighborhood with property 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.)
Hypotheses
Ref Expression
restlly.1 ((𝜑 ∧ (𝑗𝐴𝑥𝑗)) → (𝑗t 𝑥) ∈ 𝐴)
islly2.2 𝑋 = 𝐽
Assertion
Ref Expression
islly2 (𝜑 → (𝐽 ∈ Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑦𝑋𝑢𝐽 (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))))
Distinct variable groups:   𝑢,𝑗,𝑥,𝑦,𝐴   𝑗,𝐽,𝑢,𝑥,𝑦   𝜑,𝑗,𝑢,𝑥,𝑦   𝑢,𝑋,𝑦
Allowed substitution hints:   𝑋(𝑥,𝑗)

Proof of Theorem islly2
Dummy variables 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 llytop 23385 . . . 4 (𝐽 ∈ Locally 𝐴𝐽 ∈ Top)
21adantl 481 . . 3 ((𝜑𝐽 ∈ Locally 𝐴) → 𝐽 ∈ Top)
3 simplr 768 . . . . . 6 (((𝜑𝐽 ∈ Locally 𝐴) ∧ 𝑦𝑋) → 𝐽 ∈ Locally 𝐴)
42adantr 480 . . . . . . 7 (((𝜑𝐽 ∈ Locally 𝐴) ∧ 𝑦𝑋) → 𝐽 ∈ Top)
5 islly2.2 . . . . . . . 8 𝑋 = 𝐽
65topopn 22819 . . . . . . 7 (𝐽 ∈ Top → 𝑋𝐽)
74, 6syl 17 . . . . . 6 (((𝜑𝐽 ∈ Locally 𝐴) ∧ 𝑦𝑋) → 𝑋𝐽)
8 simpr 484 . . . . . 6 (((𝜑𝐽 ∈ Locally 𝐴) ∧ 𝑦𝑋) → 𝑦𝑋)
9 llyi 23387 . . . . . 6 ((𝐽 ∈ Locally 𝐴𝑋𝐽𝑦𝑋) → ∃𝑢𝐽 (𝑢𝑋𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))
103, 7, 8, 9syl3anc 1373 . . . . 5 (((𝜑𝐽 ∈ Locally 𝐴) ∧ 𝑦𝑋) → ∃𝑢𝐽 (𝑢𝑋𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))
11 3simpc 1150 . . . . . 6 ((𝑢𝑋𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴) → (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))
1211reximi 3070 . . . . 5 (∃𝑢𝐽 (𝑢𝑋𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴) → ∃𝑢𝐽 (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))
1310, 12syl 17 . . . 4 (((𝜑𝐽 ∈ Locally 𝐴) ∧ 𝑦𝑋) → ∃𝑢𝐽 (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))
1413ralrimiva 3124 . . 3 ((𝜑𝐽 ∈ Locally 𝐴) → ∀𝑦𝑋𝑢𝐽 (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))
152, 14jca 511 . 2 ((𝜑𝐽 ∈ Locally 𝐴) → (𝐽 ∈ Top ∧ ∀𝑦𝑋𝑢𝐽 (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)))
16 simprl 770 . . 3 ((𝜑 ∧ (𝐽 ∈ Top ∧ ∀𝑦𝑋𝑢𝐽 (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → 𝐽 ∈ Top)
17 elssuni 4889 . . . . . . . . 9 (𝑧𝐽𝑧 𝐽)
1817, 5sseqtrrdi 3976 . . . . . . . 8 (𝑧𝐽𝑧𝑋)
1918adantl 481 . . . . . . 7 (((𝜑𝐽 ∈ Top) ∧ 𝑧𝐽) → 𝑧𝑋)
20 ssralv 4003 . . . . . . 7 (𝑧𝑋 → (∀𝑦𝑋𝑢𝐽 (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴) → ∀𝑦𝑧𝑢𝐽 (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)))
2119, 20syl 17 . . . . . 6 (((𝜑𝐽 ∈ Top) ∧ 𝑧𝐽) → (∀𝑦𝑋𝑢𝐽 (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴) → ∀𝑦𝑧𝑢𝐽 (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)))
22 simpllr 775 . . . . . . . . . . . 12 ((((𝜑𝐽 ∈ Top) ∧ (𝑧𝐽𝑦𝑧)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → 𝐽 ∈ Top)
23 simplrl 776 . . . . . . . . . . . 12 ((((𝜑𝐽 ∈ Top) ∧ (𝑧𝐽𝑦𝑧)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → 𝑧𝐽)
24 simprl 770 . . . . . . . . . . . 12 ((((𝜑𝐽 ∈ Top) ∧ (𝑧𝐽𝑦𝑧)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → 𝑢𝐽)
25 inopn 22812 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝑧𝐽𝑢𝐽) → (𝑧𝑢) ∈ 𝐽)
2622, 23, 24, 25syl3anc 1373 . . . . . . . . . . 11 ((((𝜑𝐽 ∈ Top) ∧ (𝑧𝐽𝑦𝑧)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → (𝑧𝑢) ∈ 𝐽)
27 vex 3440 . . . . . . . . . . . . 13 𝑧 ∈ V
28 inss1 4187 . . . . . . . . . . . . 13 (𝑧𝑢) ⊆ 𝑧
2927, 28elpwi2 5273 . . . . . . . . . . . 12 (𝑧𝑢) ∈ 𝒫 𝑧
3029a1i 11 . . . . . . . . . . 11 ((((𝜑𝐽 ∈ Top) ∧ (𝑧𝐽𝑦𝑧)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → (𝑧𝑢) ∈ 𝒫 𝑧)
3126, 30elind 4150 . . . . . . . . . 10 ((((𝜑𝐽 ∈ Top) ∧ (𝑧𝐽𝑦𝑧)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → (𝑧𝑢) ∈ (𝐽 ∩ 𝒫 𝑧))
32 simplrr 777 . . . . . . . . . . 11 ((((𝜑𝐽 ∈ Top) ∧ (𝑧𝐽𝑦𝑧)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → 𝑦𝑧)
33 simprrl 780 . . . . . . . . . . 11 ((((𝜑𝐽 ∈ Top) ∧ (𝑧𝐽𝑦𝑧)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → 𝑦𝑢)
3432, 33elind 4150 . . . . . . . . . 10 ((((𝜑𝐽 ∈ Top) ∧ (𝑧𝐽𝑦𝑧)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → 𝑦 ∈ (𝑧𝑢))
35 inss2 4188 . . . . . . . . . . . . 13 (𝑧𝑢) ⊆ 𝑢
3635a1i 11 . . . . . . . . . . . 12 ((((𝜑𝐽 ∈ Top) ∧ (𝑧𝐽𝑦𝑧)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → (𝑧𝑢) ⊆ 𝑢)
37 restabs 23078 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ (𝑧𝑢) ⊆ 𝑢𝑢𝐽) → ((𝐽t 𝑢) ↾t (𝑧𝑢)) = (𝐽t (𝑧𝑢)))
3822, 36, 24, 37syl3anc 1373 . . . . . . . . . . 11 ((((𝜑𝐽 ∈ Top) ∧ (𝑧𝐽𝑦𝑧)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → ((𝐽t 𝑢) ↾t (𝑧𝑢)) = (𝐽t (𝑧𝑢)))
39 oveq2 7354 . . . . . . . . . . . . 13 (𝑥 = (𝑧𝑢) → ((𝐽t 𝑢) ↾t 𝑥) = ((𝐽t 𝑢) ↾t (𝑧𝑢)))
4039eleq1d 2816 . . . . . . . . . . . 12 (𝑥 = (𝑧𝑢) → (((𝐽t 𝑢) ↾t 𝑥) ∈ 𝐴 ↔ ((𝐽t 𝑢) ↾t (𝑧𝑢)) ∈ 𝐴))
41 oveq1 7353 . . . . . . . . . . . . . . 15 (𝑗 = (𝐽t 𝑢) → (𝑗t 𝑥) = ((𝐽t 𝑢) ↾t 𝑥))
4241eleq1d 2816 . . . . . . . . . . . . . 14 (𝑗 = (𝐽t 𝑢) → ((𝑗t 𝑥) ∈ 𝐴 ↔ ((𝐽t 𝑢) ↾t 𝑥) ∈ 𝐴))
4342raleqbi1dv 3304 . . . . . . . . . . . . 13 (𝑗 = (𝐽t 𝑢) → (∀𝑥𝑗 (𝑗t 𝑥) ∈ 𝐴 ↔ ∀𝑥 ∈ (𝐽t 𝑢)((𝐽t 𝑢) ↾t 𝑥) ∈ 𝐴))
44 restlly.1 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗𝐴𝑥𝑗)) → (𝑗t 𝑥) ∈ 𝐴)
4544ralrimivva 3175 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑗𝐴𝑥𝑗 (𝑗t 𝑥) ∈ 𝐴)
4645ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝐽 ∈ Top) ∧ (𝑧𝐽𝑦𝑧)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → ∀𝑗𝐴𝑥𝑗 (𝑗t 𝑥) ∈ 𝐴)
47 simprrr 781 . . . . . . . . . . . . 13 ((((𝜑𝐽 ∈ Top) ∧ (𝑧𝐽𝑦𝑧)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → (𝐽t 𝑢) ∈ 𝐴)
4843, 46, 47rspcdva 3578 . . . . . . . . . . . 12 ((((𝜑𝐽 ∈ Top) ∧ (𝑧𝐽𝑦𝑧)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → ∀𝑥 ∈ (𝐽t 𝑢)((𝐽t 𝑢) ↾t 𝑥) ∈ 𝐴)
49 elrestr 17329 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝑢𝐽𝑧𝐽) → (𝑧𝑢) ∈ (𝐽t 𝑢))
5022, 24, 23, 49syl3anc 1373 . . . . . . . . . . . 12 ((((𝜑𝐽 ∈ Top) ∧ (𝑧𝐽𝑦𝑧)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → (𝑧𝑢) ∈ (𝐽t 𝑢))
5140, 48, 50rspcdva 3578 . . . . . . . . . . 11 ((((𝜑𝐽 ∈ Top) ∧ (𝑧𝐽𝑦𝑧)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → ((𝐽t 𝑢) ↾t (𝑧𝑢)) ∈ 𝐴)
5238, 51eqeltrrd 2832 . . . . . . . . . 10 ((((𝜑𝐽 ∈ Top) ∧ (𝑧𝐽𝑦𝑧)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → (𝐽t (𝑧𝑢)) ∈ 𝐴)
53 eleq2 2820 . . . . . . . . . . . 12 (𝑣 = (𝑧𝑢) → (𝑦𝑣𝑦 ∈ (𝑧𝑢)))
54 oveq2 7354 . . . . . . . . . . . . 13 (𝑣 = (𝑧𝑢) → (𝐽t 𝑣) = (𝐽t (𝑧𝑢)))
5554eleq1d 2816 . . . . . . . . . . . 12 (𝑣 = (𝑧𝑢) → ((𝐽t 𝑣) ∈ 𝐴 ↔ (𝐽t (𝑧𝑢)) ∈ 𝐴))
5653, 55anbi12d 632 . . . . . . . . . . 11 (𝑣 = (𝑧𝑢) → ((𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴) ↔ (𝑦 ∈ (𝑧𝑢) ∧ (𝐽t (𝑧𝑢)) ∈ 𝐴)))
5756rspcev 3577 . . . . . . . . . 10 (((𝑧𝑢) ∈ (𝐽 ∩ 𝒫 𝑧) ∧ (𝑦 ∈ (𝑧𝑢) ∧ (𝐽t (𝑧𝑢)) ∈ 𝐴)) → ∃𝑣 ∈ (𝐽 ∩ 𝒫 𝑧)(𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))
5831, 34, 52, 57syl12anc 836 . . . . . . . . 9 ((((𝜑𝐽 ∈ Top) ∧ (𝑧𝐽𝑦𝑧)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → ∃𝑣 ∈ (𝐽 ∩ 𝒫 𝑧)(𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))
5958rexlimdvaa 3134 . . . . . . . 8 (((𝜑𝐽 ∈ Top) ∧ (𝑧𝐽𝑦𝑧)) → (∃𝑢𝐽 (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴) → ∃𝑣 ∈ (𝐽 ∩ 𝒫 𝑧)(𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴)))
6059anassrs 467 . . . . . . 7 ((((𝜑𝐽 ∈ Top) ∧ 𝑧𝐽) ∧ 𝑦𝑧) → (∃𝑢𝐽 (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴) → ∃𝑣 ∈ (𝐽 ∩ 𝒫 𝑧)(𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴)))
6160ralimdva 3144 . . . . . 6 (((𝜑𝐽 ∈ Top) ∧ 𝑧𝐽) → (∀𝑦𝑧𝑢𝐽 (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴) → ∀𝑦𝑧𝑣 ∈ (𝐽 ∩ 𝒫 𝑧)(𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴)))
6221, 61syld 47 . . . . 5 (((𝜑𝐽 ∈ Top) ∧ 𝑧𝐽) → (∀𝑦𝑋𝑢𝐽 (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴) → ∀𝑦𝑧𝑣 ∈ (𝐽 ∩ 𝒫 𝑧)(𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴)))
6362ralrimdva 3132 . . . 4 ((𝜑𝐽 ∈ Top) → (∀𝑦𝑋𝑢𝐽 (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴) → ∀𝑧𝐽𝑦𝑧𝑣 ∈ (𝐽 ∩ 𝒫 𝑧)(𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴)))
6463impr 454 . . 3 ((𝜑 ∧ (𝐽 ∈ Top ∧ ∀𝑦𝑋𝑢𝐽 (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → ∀𝑧𝐽𝑦𝑧𝑣 ∈ (𝐽 ∩ 𝒫 𝑧)(𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))
65 islly 23381 . . 3 (𝐽 ∈ Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑧𝐽𝑦𝑧𝑣 ∈ (𝐽 ∩ 𝒫 𝑧)(𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴)))
6616, 64, 65sylanbrc 583 . 2 ((𝜑 ∧ (𝐽 ∈ Top ∧ ∀𝑦𝑋𝑢𝐽 (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → 𝐽 ∈ Locally 𝐴)
6715, 66impbida 800 1 (𝜑 → (𝐽 ∈ Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑦𝑋𝑢𝐽 (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  cin 3901  wss 3902  𝒫 cpw 4550   cuni 4859  (class class class)co 7346  t crest 17321  Topctop 22806  Locally clly 23377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-rest 17323  df-top 22807  df-lly 23379
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator