Step | Hyp | Ref
| Expression |
1 | | llytop 22531 |
. . . 4
⊢ (𝐽 ∈ Locally 𝐴 → 𝐽 ∈ Top) |
2 | 1 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ 𝐽 ∈ Locally 𝐴) → 𝐽 ∈ Top) |
3 | | simplr 765 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐽 ∈ Locally 𝐴) ∧ 𝑦 ∈ 𝑋) → 𝐽 ∈ Locally 𝐴) |
4 | 2 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐽 ∈ Locally 𝐴) ∧ 𝑦 ∈ 𝑋) → 𝐽 ∈ Top) |
5 | | islly2.2 |
. . . . . . . 8
⊢ 𝑋 = ∪
𝐽 |
6 | 5 | topopn 21963 |
. . . . . . 7
⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
7 | 4, 6 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐽 ∈ Locally 𝐴) ∧ 𝑦 ∈ 𝑋) → 𝑋 ∈ 𝐽) |
8 | | simpr 484 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐽 ∈ Locally 𝐴) ∧ 𝑦 ∈ 𝑋) → 𝑦 ∈ 𝑋) |
9 | | llyi 22533 |
. . . . . 6
⊢ ((𝐽 ∈ Locally 𝐴 ∧ 𝑋 ∈ 𝐽 ∧ 𝑦 ∈ 𝑋) → ∃𝑢 ∈ 𝐽 (𝑢 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)) |
10 | 3, 7, 8, 9 | syl3anc 1369 |
. . . . 5
⊢ (((𝜑 ∧ 𝐽 ∈ Locally 𝐴) ∧ 𝑦 ∈ 𝑋) → ∃𝑢 ∈ 𝐽 (𝑢 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)) |
11 | | 3simpc 1148 |
. . . . . 6
⊢ ((𝑢 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴) → (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)) |
12 | 11 | reximi 3174 |
. . . . 5
⊢
(∃𝑢 ∈
𝐽 (𝑢 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴) → ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)) |
13 | 10, 12 | syl 17 |
. . . 4
⊢ (((𝜑 ∧ 𝐽 ∈ Locally 𝐴) ∧ 𝑦 ∈ 𝑋) → ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)) |
14 | 13 | ralrimiva 3107 |
. . 3
⊢ ((𝜑 ∧ 𝐽 ∈ Locally 𝐴) → ∀𝑦 ∈ 𝑋 ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)) |
15 | 2, 14 | jca 511 |
. 2
⊢ ((𝜑 ∧ 𝐽 ∈ Locally 𝐴) → (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝑋 ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) |
16 | | simprl 767 |
. . 3
⊢ ((𝜑 ∧ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝑋 ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → 𝐽 ∈ Top) |
17 | | elssuni 4868 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝐽 → 𝑧 ⊆ ∪ 𝐽) |
18 | 17, 5 | sseqtrrdi 3968 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝐽 → 𝑧 ⊆ 𝑋) |
19 | 18 | adantl 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐽 ∈ Top) ∧ 𝑧 ∈ 𝐽) → 𝑧 ⊆ 𝑋) |
20 | | ssralv 3983 |
. . . . . . 7
⊢ (𝑧 ⊆ 𝑋 → (∀𝑦 ∈ 𝑋 ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴) → ∀𝑦 ∈ 𝑧 ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) |
21 | 19, 20 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐽 ∈ Top) ∧ 𝑧 ∈ 𝐽) → (∀𝑦 ∈ 𝑋 ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴) → ∀𝑦 ∈ 𝑧 ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) |
22 | | simpllr 772 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → 𝐽 ∈ Top) |
23 | | simplrl 773 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → 𝑧 ∈ 𝐽) |
24 | | simprl 767 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → 𝑢 ∈ 𝐽) |
25 | | inopn 21956 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ 𝑧 ∈ 𝐽 ∧ 𝑢 ∈ 𝐽) → (𝑧 ∩ 𝑢) ∈ 𝐽) |
26 | 22, 23, 24, 25 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → (𝑧 ∩ 𝑢) ∈ 𝐽) |
27 | | vex 3426 |
. . . . . . . . . . . . 13
⊢ 𝑧 ∈ V |
28 | | inss1 4159 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∩ 𝑢) ⊆ 𝑧 |
29 | 27, 28 | elpwi2 5265 |
. . . . . . . . . . . 12
⊢ (𝑧 ∩ 𝑢) ∈ 𝒫 𝑧 |
30 | 29 | a1i 11 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → (𝑧 ∩ 𝑢) ∈ 𝒫 𝑧) |
31 | 26, 30 | elind 4124 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → (𝑧 ∩ 𝑢) ∈ (𝐽 ∩ 𝒫 𝑧)) |
32 | | simplrr 774 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → 𝑦 ∈ 𝑧) |
33 | | simprrl 777 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → 𝑦 ∈ 𝑢) |
34 | 32, 33 | elind 4124 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → 𝑦 ∈ (𝑧 ∩ 𝑢)) |
35 | | inss2 4160 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∩ 𝑢) ⊆ 𝑢 |
36 | 35 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → (𝑧 ∩ 𝑢) ⊆ 𝑢) |
37 | | restabs 22224 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ (𝑧 ∩ 𝑢) ⊆ 𝑢 ∧ 𝑢 ∈ 𝐽) → ((𝐽 ↾t 𝑢) ↾t (𝑧 ∩ 𝑢)) = (𝐽 ↾t (𝑧 ∩ 𝑢))) |
38 | 22, 36, 24, 37 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → ((𝐽 ↾t 𝑢) ↾t (𝑧 ∩ 𝑢)) = (𝐽 ↾t (𝑧 ∩ 𝑢))) |
39 | | oveq2 7263 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑧 ∩ 𝑢) → ((𝐽 ↾t 𝑢) ↾t 𝑥) = ((𝐽 ↾t 𝑢) ↾t (𝑧 ∩ 𝑢))) |
40 | 39 | eleq1d 2823 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑧 ∩ 𝑢) → (((𝐽 ↾t 𝑢) ↾t 𝑥) ∈ 𝐴 ↔ ((𝐽 ↾t 𝑢) ↾t (𝑧 ∩ 𝑢)) ∈ 𝐴)) |
41 | | oveq1 7262 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = (𝐽 ↾t 𝑢) → (𝑗 ↾t 𝑥) = ((𝐽 ↾t 𝑢) ↾t 𝑥)) |
42 | 41 | eleq1d 2823 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = (𝐽 ↾t 𝑢) → ((𝑗 ↾t 𝑥) ∈ 𝐴 ↔ ((𝐽 ↾t 𝑢) ↾t 𝑥) ∈ 𝐴)) |
43 | 42 | raleqbi1dv 3331 |
. . . . . . . . . . . . 13
⊢ (𝑗 = (𝐽 ↾t 𝑢) → (∀𝑥 ∈ 𝑗 (𝑗 ↾t 𝑥) ∈ 𝐴 ↔ ∀𝑥 ∈ (𝐽 ↾t 𝑢)((𝐽 ↾t 𝑢) ↾t 𝑥) ∈ 𝐴)) |
44 | | restlly.1 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → (𝑗 ↾t 𝑥) ∈ 𝐴) |
45 | 44 | ralrimivva 3114 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑗 ∈ 𝐴 ∀𝑥 ∈ 𝑗 (𝑗 ↾t 𝑥) ∈ 𝐴) |
46 | 45 | ad3antrrr 726 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → ∀𝑗 ∈ 𝐴 ∀𝑥 ∈ 𝑗 (𝑗 ↾t 𝑥) ∈ 𝐴) |
47 | | simprrr 778 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → (𝐽 ↾t 𝑢) ∈ 𝐴) |
48 | 43, 46, 47 | rspcdva 3554 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → ∀𝑥 ∈ (𝐽 ↾t 𝑢)((𝐽 ↾t 𝑢) ↾t 𝑥) ∈ 𝐴) |
49 | | elrestr 17056 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝐽) → (𝑧 ∩ 𝑢) ∈ (𝐽 ↾t 𝑢)) |
50 | 22, 24, 23, 49 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → (𝑧 ∩ 𝑢) ∈ (𝐽 ↾t 𝑢)) |
51 | 40, 48, 50 | rspcdva 3554 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → ((𝐽 ↾t 𝑢) ↾t (𝑧 ∩ 𝑢)) ∈ 𝐴) |
52 | 38, 51 | eqeltrrd 2840 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → (𝐽 ↾t (𝑧 ∩ 𝑢)) ∈ 𝐴) |
53 | | eleq2 2827 |
. . . . . . . . . . . 12
⊢ (𝑣 = (𝑧 ∩ 𝑢) → (𝑦 ∈ 𝑣 ↔ 𝑦 ∈ (𝑧 ∩ 𝑢))) |
54 | | oveq2 7263 |
. . . . . . . . . . . . 13
⊢ (𝑣 = (𝑧 ∩ 𝑢) → (𝐽 ↾t 𝑣) = (𝐽 ↾t (𝑧 ∩ 𝑢))) |
55 | 54 | eleq1d 2823 |
. . . . . . . . . . . 12
⊢ (𝑣 = (𝑧 ∩ 𝑢) → ((𝐽 ↾t 𝑣) ∈ 𝐴 ↔ (𝐽 ↾t (𝑧 ∩ 𝑢)) ∈ 𝐴)) |
56 | 53, 55 | anbi12d 630 |
. . . . . . . . . . 11
⊢ (𝑣 = (𝑧 ∩ 𝑢) → ((𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴) ↔ (𝑦 ∈ (𝑧 ∩ 𝑢) ∧ (𝐽 ↾t (𝑧 ∩ 𝑢)) ∈ 𝐴))) |
57 | 56 | rspcev 3552 |
. . . . . . . . . 10
⊢ (((𝑧 ∩ 𝑢) ∈ (𝐽 ∩ 𝒫 𝑧) ∧ (𝑦 ∈ (𝑧 ∩ 𝑢) ∧ (𝐽 ↾t (𝑧 ∩ 𝑢)) ∈ 𝐴)) → ∃𝑣 ∈ (𝐽 ∩ 𝒫 𝑧)(𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴)) |
58 | 31, 34, 52, 57 | syl12anc 833 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → ∃𝑣 ∈ (𝐽 ∩ 𝒫 𝑧)(𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴)) |
59 | 58 | rexlimdvaa 3213 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) → (∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴) → ∃𝑣 ∈ (𝐽 ∩ 𝒫 𝑧)(𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) |
60 | 59 | anassrs 467 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ 𝑧 ∈ 𝐽) ∧ 𝑦 ∈ 𝑧) → (∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴) → ∃𝑣 ∈ (𝐽 ∩ 𝒫 𝑧)(𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) |
61 | 60 | ralimdva 3102 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐽 ∈ Top) ∧ 𝑧 ∈ 𝐽) → (∀𝑦 ∈ 𝑧 ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴) → ∀𝑦 ∈ 𝑧 ∃𝑣 ∈ (𝐽 ∩ 𝒫 𝑧)(𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) |
62 | 21, 61 | syld 47 |
. . . . 5
⊢ (((𝜑 ∧ 𝐽 ∈ Top) ∧ 𝑧 ∈ 𝐽) → (∀𝑦 ∈ 𝑋 ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴) → ∀𝑦 ∈ 𝑧 ∃𝑣 ∈ (𝐽 ∩ 𝒫 𝑧)(𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) |
63 | 62 | ralrimdva 3112 |
. . . 4
⊢ ((𝜑 ∧ 𝐽 ∈ Top) → (∀𝑦 ∈ 𝑋 ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴) → ∀𝑧 ∈ 𝐽 ∀𝑦 ∈ 𝑧 ∃𝑣 ∈ (𝐽 ∩ 𝒫 𝑧)(𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) |
64 | 63 | impr 454 |
. . 3
⊢ ((𝜑 ∧ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝑋 ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → ∀𝑧 ∈ 𝐽 ∀𝑦 ∈ 𝑧 ∃𝑣 ∈ (𝐽 ∩ 𝒫 𝑧)(𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴)) |
65 | | islly 22527 |
. . 3
⊢ (𝐽 ∈ Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑧 ∈ 𝐽 ∀𝑦 ∈ 𝑧 ∃𝑣 ∈ (𝐽 ∩ 𝒫 𝑧)(𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) |
66 | 16, 64, 65 | sylanbrc 582 |
. 2
⊢ ((𝜑 ∧ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝑋 ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → 𝐽 ∈ Locally 𝐴) |
67 | 15, 66 | impbida 797 |
1
⊢ (𝜑 → (𝐽 ∈ Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝑋 ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)))) |