| Step | Hyp | Ref
| Expression |
| 1 | | llytop 23410 |
. . . 4
⊢ (𝐽 ∈ Locally 𝐴 → 𝐽 ∈ Top) |
| 2 | 1 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ 𝐽 ∈ Locally 𝐴) → 𝐽 ∈ Top) |
| 3 | | simplr 768 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐽 ∈ Locally 𝐴) ∧ 𝑦 ∈ 𝑋) → 𝐽 ∈ Locally 𝐴) |
| 4 | 2 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐽 ∈ Locally 𝐴) ∧ 𝑦 ∈ 𝑋) → 𝐽 ∈ Top) |
| 5 | | islly2.2 |
. . . . . . . 8
⊢ 𝑋 = ∪
𝐽 |
| 6 | 5 | topopn 22844 |
. . . . . . 7
⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| 7 | 4, 6 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐽 ∈ Locally 𝐴) ∧ 𝑦 ∈ 𝑋) → 𝑋 ∈ 𝐽) |
| 8 | | simpr 484 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐽 ∈ Locally 𝐴) ∧ 𝑦 ∈ 𝑋) → 𝑦 ∈ 𝑋) |
| 9 | | llyi 23412 |
. . . . . 6
⊢ ((𝐽 ∈ Locally 𝐴 ∧ 𝑋 ∈ 𝐽 ∧ 𝑦 ∈ 𝑋) → ∃𝑢 ∈ 𝐽 (𝑢 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)) |
| 10 | 3, 7, 8, 9 | syl3anc 1373 |
. . . . 5
⊢ (((𝜑 ∧ 𝐽 ∈ Locally 𝐴) ∧ 𝑦 ∈ 𝑋) → ∃𝑢 ∈ 𝐽 (𝑢 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)) |
| 11 | | 3simpc 1150 |
. . . . . 6
⊢ ((𝑢 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴) → (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)) |
| 12 | 11 | reximi 3074 |
. . . . 5
⊢
(∃𝑢 ∈
𝐽 (𝑢 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴) → ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)) |
| 13 | 10, 12 | syl 17 |
. . . 4
⊢ (((𝜑 ∧ 𝐽 ∈ Locally 𝐴) ∧ 𝑦 ∈ 𝑋) → ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)) |
| 14 | 13 | ralrimiva 3132 |
. . 3
⊢ ((𝜑 ∧ 𝐽 ∈ Locally 𝐴) → ∀𝑦 ∈ 𝑋 ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)) |
| 15 | 2, 14 | jca 511 |
. 2
⊢ ((𝜑 ∧ 𝐽 ∈ Locally 𝐴) → (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝑋 ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) |
| 16 | | simprl 770 |
. . 3
⊢ ((𝜑 ∧ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝑋 ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → 𝐽 ∈ Top) |
| 17 | | elssuni 4913 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝐽 → 𝑧 ⊆ ∪ 𝐽) |
| 18 | 17, 5 | sseqtrrdi 4000 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝐽 → 𝑧 ⊆ 𝑋) |
| 19 | 18 | adantl 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐽 ∈ Top) ∧ 𝑧 ∈ 𝐽) → 𝑧 ⊆ 𝑋) |
| 20 | | ssralv 4027 |
. . . . . . 7
⊢ (𝑧 ⊆ 𝑋 → (∀𝑦 ∈ 𝑋 ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴) → ∀𝑦 ∈ 𝑧 ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) |
| 21 | 19, 20 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐽 ∈ Top) ∧ 𝑧 ∈ 𝐽) → (∀𝑦 ∈ 𝑋 ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴) → ∀𝑦 ∈ 𝑧 ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) |
| 22 | | simpllr 775 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → 𝐽 ∈ Top) |
| 23 | | simplrl 776 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → 𝑧 ∈ 𝐽) |
| 24 | | simprl 770 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → 𝑢 ∈ 𝐽) |
| 25 | | inopn 22837 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ 𝑧 ∈ 𝐽 ∧ 𝑢 ∈ 𝐽) → (𝑧 ∩ 𝑢) ∈ 𝐽) |
| 26 | 22, 23, 24, 25 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → (𝑧 ∩ 𝑢) ∈ 𝐽) |
| 27 | | vex 3463 |
. . . . . . . . . . . . 13
⊢ 𝑧 ∈ V |
| 28 | | inss1 4212 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∩ 𝑢) ⊆ 𝑧 |
| 29 | 27, 28 | elpwi2 5305 |
. . . . . . . . . . . 12
⊢ (𝑧 ∩ 𝑢) ∈ 𝒫 𝑧 |
| 30 | 29 | a1i 11 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → (𝑧 ∩ 𝑢) ∈ 𝒫 𝑧) |
| 31 | 26, 30 | elind 4175 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → (𝑧 ∩ 𝑢) ∈ (𝐽 ∩ 𝒫 𝑧)) |
| 32 | | simplrr 777 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → 𝑦 ∈ 𝑧) |
| 33 | | simprrl 780 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → 𝑦 ∈ 𝑢) |
| 34 | 32, 33 | elind 4175 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → 𝑦 ∈ (𝑧 ∩ 𝑢)) |
| 35 | | inss2 4213 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∩ 𝑢) ⊆ 𝑢 |
| 36 | 35 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → (𝑧 ∩ 𝑢) ⊆ 𝑢) |
| 37 | | restabs 23103 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ (𝑧 ∩ 𝑢) ⊆ 𝑢 ∧ 𝑢 ∈ 𝐽) → ((𝐽 ↾t 𝑢) ↾t (𝑧 ∩ 𝑢)) = (𝐽 ↾t (𝑧 ∩ 𝑢))) |
| 38 | 22, 36, 24, 37 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → ((𝐽 ↾t 𝑢) ↾t (𝑧 ∩ 𝑢)) = (𝐽 ↾t (𝑧 ∩ 𝑢))) |
| 39 | | oveq2 7413 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑧 ∩ 𝑢) → ((𝐽 ↾t 𝑢) ↾t 𝑥) = ((𝐽 ↾t 𝑢) ↾t (𝑧 ∩ 𝑢))) |
| 40 | 39 | eleq1d 2819 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑧 ∩ 𝑢) → (((𝐽 ↾t 𝑢) ↾t 𝑥) ∈ 𝐴 ↔ ((𝐽 ↾t 𝑢) ↾t (𝑧 ∩ 𝑢)) ∈ 𝐴)) |
| 41 | | oveq1 7412 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = (𝐽 ↾t 𝑢) → (𝑗 ↾t 𝑥) = ((𝐽 ↾t 𝑢) ↾t 𝑥)) |
| 42 | 41 | eleq1d 2819 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = (𝐽 ↾t 𝑢) → ((𝑗 ↾t 𝑥) ∈ 𝐴 ↔ ((𝐽 ↾t 𝑢) ↾t 𝑥) ∈ 𝐴)) |
| 43 | 42 | raleqbi1dv 3317 |
. . . . . . . . . . . . 13
⊢ (𝑗 = (𝐽 ↾t 𝑢) → (∀𝑥 ∈ 𝑗 (𝑗 ↾t 𝑥) ∈ 𝐴 ↔ ∀𝑥 ∈ (𝐽 ↾t 𝑢)((𝐽 ↾t 𝑢) ↾t 𝑥) ∈ 𝐴)) |
| 44 | | restlly.1 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → (𝑗 ↾t 𝑥) ∈ 𝐴) |
| 45 | 44 | ralrimivva 3187 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑗 ∈ 𝐴 ∀𝑥 ∈ 𝑗 (𝑗 ↾t 𝑥) ∈ 𝐴) |
| 46 | 45 | ad3antrrr 730 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → ∀𝑗 ∈ 𝐴 ∀𝑥 ∈ 𝑗 (𝑗 ↾t 𝑥) ∈ 𝐴) |
| 47 | | simprrr 781 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → (𝐽 ↾t 𝑢) ∈ 𝐴) |
| 48 | 43, 46, 47 | rspcdva 3602 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → ∀𝑥 ∈ (𝐽 ↾t 𝑢)((𝐽 ↾t 𝑢) ↾t 𝑥) ∈ 𝐴) |
| 49 | | elrestr 17442 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝐽) → (𝑧 ∩ 𝑢) ∈ (𝐽 ↾t 𝑢)) |
| 50 | 22, 24, 23, 49 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → (𝑧 ∩ 𝑢) ∈ (𝐽 ↾t 𝑢)) |
| 51 | 40, 48, 50 | rspcdva 3602 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → ((𝐽 ↾t 𝑢) ↾t (𝑧 ∩ 𝑢)) ∈ 𝐴) |
| 52 | 38, 51 | eqeltrrd 2835 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → (𝐽 ↾t (𝑧 ∩ 𝑢)) ∈ 𝐴) |
| 53 | | eleq2 2823 |
. . . . . . . . . . . 12
⊢ (𝑣 = (𝑧 ∩ 𝑢) → (𝑦 ∈ 𝑣 ↔ 𝑦 ∈ (𝑧 ∩ 𝑢))) |
| 54 | | oveq2 7413 |
. . . . . . . . . . . . 13
⊢ (𝑣 = (𝑧 ∩ 𝑢) → (𝐽 ↾t 𝑣) = (𝐽 ↾t (𝑧 ∩ 𝑢))) |
| 55 | 54 | eleq1d 2819 |
. . . . . . . . . . . 12
⊢ (𝑣 = (𝑧 ∩ 𝑢) → ((𝐽 ↾t 𝑣) ∈ 𝐴 ↔ (𝐽 ↾t (𝑧 ∩ 𝑢)) ∈ 𝐴)) |
| 56 | 53, 55 | anbi12d 632 |
. . . . . . . . . . 11
⊢ (𝑣 = (𝑧 ∩ 𝑢) → ((𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴) ↔ (𝑦 ∈ (𝑧 ∩ 𝑢) ∧ (𝐽 ↾t (𝑧 ∩ 𝑢)) ∈ 𝐴))) |
| 57 | 56 | rspcev 3601 |
. . . . . . . . . 10
⊢ (((𝑧 ∩ 𝑢) ∈ (𝐽 ∩ 𝒫 𝑧) ∧ (𝑦 ∈ (𝑧 ∩ 𝑢) ∧ (𝐽 ↾t (𝑧 ∩ 𝑢)) ∈ 𝐴)) → ∃𝑣 ∈ (𝐽 ∩ 𝒫 𝑧)(𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴)) |
| 58 | 31, 34, 52, 57 | syl12anc 836 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → ∃𝑣 ∈ (𝐽 ∩ 𝒫 𝑧)(𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴)) |
| 59 | 58 | rexlimdvaa 3142 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) → (∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴) → ∃𝑣 ∈ (𝐽 ∩ 𝒫 𝑧)(𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) |
| 60 | 59 | anassrs 467 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ 𝑧 ∈ 𝐽) ∧ 𝑦 ∈ 𝑧) → (∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴) → ∃𝑣 ∈ (𝐽 ∩ 𝒫 𝑧)(𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) |
| 61 | 60 | ralimdva 3152 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐽 ∈ Top) ∧ 𝑧 ∈ 𝐽) → (∀𝑦 ∈ 𝑧 ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴) → ∀𝑦 ∈ 𝑧 ∃𝑣 ∈ (𝐽 ∩ 𝒫 𝑧)(𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) |
| 62 | 21, 61 | syld 47 |
. . . . 5
⊢ (((𝜑 ∧ 𝐽 ∈ Top) ∧ 𝑧 ∈ 𝐽) → (∀𝑦 ∈ 𝑋 ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴) → ∀𝑦 ∈ 𝑧 ∃𝑣 ∈ (𝐽 ∩ 𝒫 𝑧)(𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) |
| 63 | 62 | ralrimdva 3140 |
. . . 4
⊢ ((𝜑 ∧ 𝐽 ∈ Top) → (∀𝑦 ∈ 𝑋 ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴) → ∀𝑧 ∈ 𝐽 ∀𝑦 ∈ 𝑧 ∃𝑣 ∈ (𝐽 ∩ 𝒫 𝑧)(𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) |
| 64 | 63 | impr 454 |
. . 3
⊢ ((𝜑 ∧ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝑋 ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → ∀𝑧 ∈ 𝐽 ∀𝑦 ∈ 𝑧 ∃𝑣 ∈ (𝐽 ∩ 𝒫 𝑧)(𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴)) |
| 65 | | islly 23406 |
. . 3
⊢ (𝐽 ∈ Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑧 ∈ 𝐽 ∀𝑦 ∈ 𝑧 ∃𝑣 ∈ (𝐽 ∩ 𝒫 𝑧)(𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) |
| 66 | 16, 64, 65 | sylanbrc 583 |
. 2
⊢ ((𝜑 ∧ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝑋 ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → 𝐽 ∈ Locally 𝐴) |
| 67 | 15, 66 | impbida 800 |
1
⊢ (𝜑 → (𝐽 ∈ Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝑋 ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)))) |