MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  llynlly Structured version   Visualization version   GIF version

Theorem llynlly 23412
Description: A locally 𝐴 space is n-locally 𝐴: the "n-locally" predicate is the weaker notion. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
llynlly (𝐽 ∈ Locally 𝐴𝐽 ∈ 𝑛-Locally 𝐴)

Proof of Theorem llynlly
Dummy variables 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 llytop 23407 . 2 (𝐽 ∈ Locally 𝐴𝐽 ∈ Top)
2 llyi 23409 . . . . 5 ((𝐽 ∈ Locally 𝐴𝑥𝐽𝑦𝑥) → ∃𝑢𝐽 (𝑢𝑥𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))
3 simpl1 1192 . . . . . . . 8 (((𝐽 ∈ Locally 𝐴𝑥𝐽𝑦𝑥) ∧ (𝑢𝐽 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → 𝐽 ∈ Locally 𝐴)
43, 1syl 17 . . . . . . 7 (((𝐽 ∈ Locally 𝐴𝑥𝐽𝑦𝑥) ∧ (𝑢𝐽 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → 𝐽 ∈ Top)
5 simprl 770 . . . . . . 7 (((𝐽 ∈ Locally 𝐴𝑥𝐽𝑦𝑥) ∧ (𝑢𝐽 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → 𝑢𝐽)
6 simprr2 1223 . . . . . . 7 (((𝐽 ∈ Locally 𝐴𝑥𝐽𝑦𝑥) ∧ (𝑢𝐽 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → 𝑦𝑢)
7 opnneip 23054 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑢𝐽𝑦𝑢) → 𝑢 ∈ ((nei‘𝐽)‘{𝑦}))
84, 5, 6, 7syl3anc 1373 . . . . . 6 (((𝐽 ∈ Locally 𝐴𝑥𝐽𝑦𝑥) ∧ (𝑢𝐽 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → 𝑢 ∈ ((nei‘𝐽)‘{𝑦}))
9 simprr1 1222 . . . . . . 7 (((𝐽 ∈ Locally 𝐴𝑥𝐽𝑦𝑥) ∧ (𝑢𝐽 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → 𝑢𝑥)
10 velpw 4556 . . . . . . 7 (𝑢 ∈ 𝒫 𝑥𝑢𝑥)
119, 10sylibr 234 . . . . . 6 (((𝐽 ∈ Locally 𝐴𝑥𝐽𝑦𝑥) ∧ (𝑢𝐽 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → 𝑢 ∈ 𝒫 𝑥)
128, 11elind 4149 . . . . 5 (((𝐽 ∈ Locally 𝐴𝑥𝐽𝑦𝑥) ∧ (𝑢𝐽 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → 𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥))
13 simprr3 1224 . . . . 5 (((𝐽 ∈ Locally 𝐴𝑥𝐽𝑦𝑥) ∧ (𝑢𝐽 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → (𝐽t 𝑢) ∈ 𝐴)
142, 12, 13reximssdv 3151 . . . 4 ((𝐽 ∈ Locally 𝐴𝑥𝐽𝑦𝑥) → ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ 𝐴)
15143expb 1120 . . 3 ((𝐽 ∈ Locally 𝐴 ∧ (𝑥𝐽𝑦𝑥)) → ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ 𝐴)
1615ralrimivva 3176 . 2 (𝐽 ∈ Locally 𝐴 → ∀𝑥𝐽𝑦𝑥𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ 𝐴)
17 isnlly 23404 . 2 (𝐽 ∈ 𝑛-Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑦𝑥𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ 𝐴))
181, 16, 17sylanbrc 583 1 (𝐽 ∈ Locally 𝐴𝐽 ∈ 𝑛-Locally 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2113  wral 3048  wrex 3057  cin 3897  wss 3898  𝒫 cpw 4551  {csn 4577  cfv 6489  (class class class)co 7355  t crest 17331  Topctop 22828  neicnei 23032  Locally clly 23399  𝑛-Locally cnlly 23400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-top 22829  df-nei 23033  df-lly 23401  df-nlly 23402
This theorem is referenced by:  llyssnlly  23413  efmndtmd  24036
  Copyright terms: Public domain W3C validator