MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  llynlly Structured version   Visualization version   GIF version

Theorem llynlly 23381
Description: A locally 𝐴 space is n-locally 𝐴: the "n-locally" predicate is the weaker notion. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
llynlly (𝐽 ∈ Locally 𝐴𝐽 ∈ 𝑛-Locally 𝐴)

Proof of Theorem llynlly
Dummy variables 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 llytop 23376 . 2 (𝐽 ∈ Locally 𝐴𝐽 ∈ Top)
2 llyi 23378 . . . . 5 ((𝐽 ∈ Locally 𝐴𝑥𝐽𝑦𝑥) → ∃𝑢𝐽 (𝑢𝑥𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))
3 simpl1 1192 . . . . . . . 8 (((𝐽 ∈ Locally 𝐴𝑥𝐽𝑦𝑥) ∧ (𝑢𝐽 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → 𝐽 ∈ Locally 𝐴)
43, 1syl 17 . . . . . . 7 (((𝐽 ∈ Locally 𝐴𝑥𝐽𝑦𝑥) ∧ (𝑢𝐽 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → 𝐽 ∈ Top)
5 simprl 770 . . . . . . 7 (((𝐽 ∈ Locally 𝐴𝑥𝐽𝑦𝑥) ∧ (𝑢𝐽 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → 𝑢𝐽)
6 simprr2 1223 . . . . . . 7 (((𝐽 ∈ Locally 𝐴𝑥𝐽𝑦𝑥) ∧ (𝑢𝐽 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → 𝑦𝑢)
7 opnneip 23023 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑢𝐽𝑦𝑢) → 𝑢 ∈ ((nei‘𝐽)‘{𝑦}))
84, 5, 6, 7syl3anc 1373 . . . . . 6 (((𝐽 ∈ Locally 𝐴𝑥𝐽𝑦𝑥) ∧ (𝑢𝐽 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → 𝑢 ∈ ((nei‘𝐽)‘{𝑦}))
9 simprr1 1222 . . . . . . 7 (((𝐽 ∈ Locally 𝐴𝑥𝐽𝑦𝑥) ∧ (𝑢𝐽 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → 𝑢𝑥)
10 velpw 4558 . . . . . . 7 (𝑢 ∈ 𝒫 𝑥𝑢𝑥)
119, 10sylibr 234 . . . . . 6 (((𝐽 ∈ Locally 𝐴𝑥𝐽𝑦𝑥) ∧ (𝑢𝐽 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → 𝑢 ∈ 𝒫 𝑥)
128, 11elind 4153 . . . . 5 (((𝐽 ∈ Locally 𝐴𝑥𝐽𝑦𝑥) ∧ (𝑢𝐽 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → 𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥))
13 simprr3 1224 . . . . 5 (((𝐽 ∈ Locally 𝐴𝑥𝐽𝑦𝑥) ∧ (𝑢𝐽 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → (𝐽t 𝑢) ∈ 𝐴)
142, 12, 13reximssdv 3147 . . . 4 ((𝐽 ∈ Locally 𝐴𝑥𝐽𝑦𝑥) → ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ 𝐴)
15143expb 1120 . . 3 ((𝐽 ∈ Locally 𝐴 ∧ (𝑥𝐽𝑦𝑥)) → ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ 𝐴)
1615ralrimivva 3172 . 2 (𝐽 ∈ Locally 𝐴 → ∀𝑥𝐽𝑦𝑥𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ 𝐴)
17 isnlly 23373 . 2 (𝐽 ∈ 𝑛-Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑦𝑥𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ 𝐴))
181, 16, 17sylanbrc 583 1 (𝐽 ∈ Locally 𝐴𝐽 ∈ 𝑛-Locally 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109  wral 3044  wrex 3053  cin 3904  wss 3905  𝒫 cpw 4553  {csn 4579  cfv 6486  (class class class)co 7353  t crest 17343  Topctop 22797  neicnei 23001  Locally clly 23368  𝑛-Locally cnlly 23369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-top 22798  df-nei 23002  df-lly 23370  df-nlly 23371
This theorem is referenced by:  llyssnlly  23382  efmndtmd  24005
  Copyright terms: Public domain W3C validator