Step | Hyp | Ref
| Expression |
1 | | llytop 22531 |
. 2
⊢ (𝐽 ∈ Locally 𝐴 → 𝐽 ∈ Top) |
2 | | llyi 22533 |
. . . . 5
⊢ ((𝐽 ∈ Locally 𝐴 ∧ 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) → ∃𝑢 ∈ 𝐽 (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)) |
3 | | simpl1 1189 |
. . . . . . . 8
⊢ (((𝐽 ∈ Locally 𝐴 ∧ 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝐽 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → 𝐽 ∈ Locally 𝐴) |
4 | 3, 1 | syl 17 |
. . . . . . 7
⊢ (((𝐽 ∈ Locally 𝐴 ∧ 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝐽 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → 𝐽 ∈ Top) |
5 | | simprl 767 |
. . . . . . 7
⊢ (((𝐽 ∈ Locally 𝐴 ∧ 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝐽 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → 𝑢 ∈ 𝐽) |
6 | | simprr2 1220 |
. . . . . . 7
⊢ (((𝐽 ∈ Locally 𝐴 ∧ 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝐽 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → 𝑦 ∈ 𝑢) |
7 | | opnneip 22178 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ 𝑢) → 𝑢 ∈ ((nei‘𝐽)‘{𝑦})) |
8 | 4, 5, 6, 7 | syl3anc 1369 |
. . . . . 6
⊢ (((𝐽 ∈ Locally 𝐴 ∧ 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝐽 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → 𝑢 ∈ ((nei‘𝐽)‘{𝑦})) |
9 | | simprr1 1219 |
. . . . . . 7
⊢ (((𝐽 ∈ Locally 𝐴 ∧ 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝐽 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → 𝑢 ⊆ 𝑥) |
10 | | velpw 4535 |
. . . . . . 7
⊢ (𝑢 ∈ 𝒫 𝑥 ↔ 𝑢 ⊆ 𝑥) |
11 | 9, 10 | sylibr 233 |
. . . . . 6
⊢ (((𝐽 ∈ Locally 𝐴 ∧ 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝐽 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → 𝑢 ∈ 𝒫 𝑥) |
12 | 8, 11 | elind 4124 |
. . . . 5
⊢ (((𝐽 ∈ Locally 𝐴 ∧ 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝐽 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → 𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)) |
13 | | simprr3 1221 |
. . . . 5
⊢ (((𝐽 ∈ Locally 𝐴 ∧ 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝐽 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → (𝐽 ↾t 𝑢) ∈ 𝐴) |
14 | 2, 12, 13 | reximssdv 3204 |
. . . 4
⊢ ((𝐽 ∈ Locally 𝐴 ∧ 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) → ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽 ↾t 𝑢) ∈ 𝐴) |
15 | 14 | 3expb 1118 |
. . 3
⊢ ((𝐽 ∈ Locally 𝐴 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥)) → ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽 ↾t 𝑢) ∈ 𝐴) |
16 | 15 | ralrimivva 3114 |
. 2
⊢ (𝐽 ∈ Locally 𝐴 → ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽 ↾t 𝑢) ∈ 𝐴) |
17 | | isnlly 22528 |
. 2
⊢ (𝐽 ∈ 𝑛-Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽 ↾t 𝑢) ∈ 𝐴)) |
18 | 1, 16, 17 | sylanbrc 582 |
1
⊢ (𝐽 ∈ Locally 𝐴 → 𝐽 ∈ 𝑛-Locally 𝐴) |