MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  llynlly Structured version   Visualization version   GIF version

Theorem llynlly 22536
Description: A locally 𝐴 space is n-locally 𝐴: the "n-locally" predicate is the weaker notion. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
llynlly (𝐽 ∈ Locally 𝐴𝐽 ∈ 𝑛-Locally 𝐴)

Proof of Theorem llynlly
Dummy variables 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 llytop 22531 . 2 (𝐽 ∈ Locally 𝐴𝐽 ∈ Top)
2 llyi 22533 . . . . 5 ((𝐽 ∈ Locally 𝐴𝑥𝐽𝑦𝑥) → ∃𝑢𝐽 (𝑢𝑥𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))
3 simpl1 1189 . . . . . . . 8 (((𝐽 ∈ Locally 𝐴𝑥𝐽𝑦𝑥) ∧ (𝑢𝐽 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → 𝐽 ∈ Locally 𝐴)
43, 1syl 17 . . . . . . 7 (((𝐽 ∈ Locally 𝐴𝑥𝐽𝑦𝑥) ∧ (𝑢𝐽 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → 𝐽 ∈ Top)
5 simprl 767 . . . . . . 7 (((𝐽 ∈ Locally 𝐴𝑥𝐽𝑦𝑥) ∧ (𝑢𝐽 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → 𝑢𝐽)
6 simprr2 1220 . . . . . . 7 (((𝐽 ∈ Locally 𝐴𝑥𝐽𝑦𝑥) ∧ (𝑢𝐽 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → 𝑦𝑢)
7 opnneip 22178 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑢𝐽𝑦𝑢) → 𝑢 ∈ ((nei‘𝐽)‘{𝑦}))
84, 5, 6, 7syl3anc 1369 . . . . . 6 (((𝐽 ∈ Locally 𝐴𝑥𝐽𝑦𝑥) ∧ (𝑢𝐽 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → 𝑢 ∈ ((nei‘𝐽)‘{𝑦}))
9 simprr1 1219 . . . . . . 7 (((𝐽 ∈ Locally 𝐴𝑥𝐽𝑦𝑥) ∧ (𝑢𝐽 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → 𝑢𝑥)
10 velpw 4535 . . . . . . 7 (𝑢 ∈ 𝒫 𝑥𝑢𝑥)
119, 10sylibr 233 . . . . . 6 (((𝐽 ∈ Locally 𝐴𝑥𝐽𝑦𝑥) ∧ (𝑢𝐽 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → 𝑢 ∈ 𝒫 𝑥)
128, 11elind 4124 . . . . 5 (((𝐽 ∈ Locally 𝐴𝑥𝐽𝑦𝑥) ∧ (𝑢𝐽 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → 𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥))
13 simprr3 1221 . . . . 5 (((𝐽 ∈ Locally 𝐴𝑥𝐽𝑦𝑥) ∧ (𝑢𝐽 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))) → (𝐽t 𝑢) ∈ 𝐴)
142, 12, 13reximssdv 3204 . . . 4 ((𝐽 ∈ Locally 𝐴𝑥𝐽𝑦𝑥) → ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ 𝐴)
15143expb 1118 . . 3 ((𝐽 ∈ Locally 𝐴 ∧ (𝑥𝐽𝑦𝑥)) → ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ 𝐴)
1615ralrimivva 3114 . 2 (𝐽 ∈ Locally 𝐴 → ∀𝑥𝐽𝑦𝑥𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ 𝐴)
17 isnlly 22528 . 2 (𝐽 ∈ 𝑛-Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑦𝑥𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ 𝐴))
181, 16, 17sylanbrc 582 1 (𝐽 ∈ Locally 𝐴𝐽 ∈ 𝑛-Locally 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wcel 2108  wral 3063  wrex 3064  cin 3882  wss 3883  𝒫 cpw 4530  {csn 4558  cfv 6418  (class class class)co 7255  t crest 17048  Topctop 21950  neicnei 22156  Locally clly 22523  𝑛-Locally cnlly 22524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-top 21951  df-nei 22157  df-lly 22525  df-nlly 22526
This theorem is referenced by:  llyssnlly  22537  efmndtmd  23160
  Copyright terms: Public domain W3C validator