Step | Hyp | Ref
| Expression |
1 | | llytop 22531 |
. . 3
⊢ (𝐽 ∈ Locally 𝐴 → 𝐽 ∈ Top) |
2 | | resttop 22219 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐵 ∈ 𝐽) → (𝐽 ↾t 𝐵) ∈ Top) |
3 | 1, 2 | sylan 579 |
. 2
⊢ ((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) → (𝐽 ↾t 𝐵) ∈ Top) |
4 | | restopn2 22236 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐵 ∈ 𝐽) → (𝑥 ∈ (𝐽 ↾t 𝐵) ↔ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵))) |
5 | 1, 4 | sylan 579 |
. . . 4
⊢ ((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) → (𝑥 ∈ (𝐽 ↾t 𝐵) ↔ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵))) |
6 | | simp1l 1195 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) → 𝐽 ∈ Locally 𝐴) |
7 | | simp2l 1197 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) → 𝑥 ∈ 𝐽) |
8 | | simp3 1136 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝑥) |
9 | | llyi 22533 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Locally 𝐴 ∧ 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) → ∃𝑣 ∈ 𝐽 (𝑣 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴)) |
10 | 6, 7, 8, 9 | syl3anc 1369 |
. . . . . . . 8
⊢ (((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) → ∃𝑣 ∈ 𝐽 (𝑣 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴)) |
11 | | simprl 767 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ (𝑣 ∈ 𝐽 ∧ (𝑣 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ 𝐽) |
12 | | simprr1 1219 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ (𝑣 ∈ 𝐽 ∧ (𝑣 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) → 𝑣 ⊆ 𝑥) |
13 | | simpl2r 1225 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ (𝑣 ∈ 𝐽 ∧ (𝑣 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) → 𝑥 ⊆ 𝐵) |
14 | 12, 13 | sstrd 3927 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ (𝑣 ∈ 𝐽 ∧ (𝑣 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) → 𝑣 ⊆ 𝐵) |
15 | 6, 1 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) → 𝐽 ∈ Top) |
16 | 15 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ (𝑣 ∈ 𝐽 ∧ (𝑣 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) → 𝐽 ∈ Top) |
17 | | simpl1r 1223 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ (𝑣 ∈ 𝐽 ∧ (𝑣 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) → 𝐵 ∈ 𝐽) |
18 | | restopn2 22236 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Top ∧ 𝐵 ∈ 𝐽) → (𝑣 ∈ (𝐽 ↾t 𝐵) ↔ (𝑣 ∈ 𝐽 ∧ 𝑣 ⊆ 𝐵))) |
19 | 16, 17, 18 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ (𝑣 ∈ 𝐽 ∧ (𝑣 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) → (𝑣 ∈ (𝐽 ↾t 𝐵) ↔ (𝑣 ∈ 𝐽 ∧ 𝑣 ⊆ 𝐵))) |
20 | 11, 14, 19 | mpbir2and 709 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ (𝑣 ∈ 𝐽 ∧ (𝑣 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ (𝐽 ↾t 𝐵)) |
21 | | velpw 4535 |
. . . . . . . . . . . . 13
⊢ (𝑣 ∈ 𝒫 𝑥 ↔ 𝑣 ⊆ 𝑥) |
22 | 12, 21 | sylibr 233 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ (𝑣 ∈ 𝐽 ∧ (𝑣 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ 𝒫 𝑥) |
23 | 20, 22 | elind 4124 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ (𝑣 ∈ 𝐽 ∧ (𝑣 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ ((𝐽 ↾t 𝐵) ∩ 𝒫 𝑥)) |
24 | | simprr2 1220 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ (𝑣 ∈ 𝐽 ∧ (𝑣 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) → 𝑦 ∈ 𝑣) |
25 | | restabs 22224 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ 𝑣 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐽) → ((𝐽 ↾t 𝐵) ↾t 𝑣) = (𝐽 ↾t 𝑣)) |
26 | 16, 14, 17, 25 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ (𝑣 ∈ 𝐽 ∧ (𝑣 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) → ((𝐽 ↾t 𝐵) ↾t 𝑣) = (𝐽 ↾t 𝑣)) |
27 | | simprr3 1221 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ (𝑣 ∈ 𝐽 ∧ (𝑣 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) → (𝐽 ↾t 𝑣) ∈ 𝐴) |
28 | 26, 27 | eqeltrd 2839 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ (𝑣 ∈ 𝐽 ∧ (𝑣 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) → ((𝐽 ↾t 𝐵) ↾t 𝑣) ∈ 𝐴) |
29 | 23, 24, 28 | jca32 515 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ (𝑣 ∈ 𝐽 ∧ (𝑣 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) → (𝑣 ∈ ((𝐽 ↾t 𝐵) ∩ 𝒫 𝑥) ∧ (𝑦 ∈ 𝑣 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑣) ∈ 𝐴))) |
30 | 29 | ex 412 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) → ((𝑣 ∈ 𝐽 ∧ (𝑣 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴)) → (𝑣 ∈ ((𝐽 ↾t 𝐵) ∩ 𝒫 𝑥) ∧ (𝑦 ∈ 𝑣 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑣) ∈ 𝐴)))) |
31 | 30 | reximdv2 3198 |
. . . . . . . 8
⊢ (((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) → (∃𝑣 ∈ 𝐽 (𝑣 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴) → ∃𝑣 ∈ ((𝐽 ↾t 𝐵) ∩ 𝒫 𝑥)(𝑦 ∈ 𝑣 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑣) ∈ 𝐴))) |
32 | 10, 31 | mpd 15 |
. . . . . . 7
⊢ (((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) → ∃𝑣 ∈ ((𝐽 ↾t 𝐵) ∩ 𝒫 𝑥)(𝑦 ∈ 𝑣 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑣) ∈ 𝐴)) |
33 | 32 | 3expa 1116 |
. . . . . 6
⊢ ((((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵)) ∧ 𝑦 ∈ 𝑥) → ∃𝑣 ∈ ((𝐽 ↾t 𝐵) ∩ 𝒫 𝑥)(𝑦 ∈ 𝑣 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑣) ∈ 𝐴)) |
34 | 33 | ralrimiva 3107 |
. . . . 5
⊢ (((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵)) → ∀𝑦 ∈ 𝑥 ∃𝑣 ∈ ((𝐽 ↾t 𝐵) ∩ 𝒫 𝑥)(𝑦 ∈ 𝑣 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑣) ∈ 𝐴)) |
35 | 34 | ex 412 |
. . . 4
⊢ ((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) → ((𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) → ∀𝑦 ∈ 𝑥 ∃𝑣 ∈ ((𝐽 ↾t 𝐵) ∩ 𝒫 𝑥)(𝑦 ∈ 𝑣 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑣) ∈ 𝐴))) |
36 | 5, 35 | sylbid 239 |
. . 3
⊢ ((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) → (𝑥 ∈ (𝐽 ↾t 𝐵) → ∀𝑦 ∈ 𝑥 ∃𝑣 ∈ ((𝐽 ↾t 𝐵) ∩ 𝒫 𝑥)(𝑦 ∈ 𝑣 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑣) ∈ 𝐴))) |
37 | 36 | ralrimiv 3106 |
. 2
⊢ ((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) → ∀𝑥 ∈ (𝐽 ↾t 𝐵)∀𝑦 ∈ 𝑥 ∃𝑣 ∈ ((𝐽 ↾t 𝐵) ∩ 𝒫 𝑥)(𝑦 ∈ 𝑣 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑣) ∈ 𝐴)) |
38 | | islly 22527 |
. 2
⊢ ((𝐽 ↾t 𝐵) ∈ Locally 𝐴 ↔ ((𝐽 ↾t 𝐵) ∈ Top ∧ ∀𝑥 ∈ (𝐽 ↾t 𝐵)∀𝑦 ∈ 𝑥 ∃𝑣 ∈ ((𝐽 ↾t 𝐵) ∩ 𝒫 𝑥)(𝑦 ∈ 𝑣 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑣) ∈ 𝐴))) |
39 | 3, 37, 38 | sylanbrc 582 |
1
⊢ ((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) → (𝐽 ↾t 𝐵) ∈ Locally 𝐴) |