MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  llyrest Structured version   Visualization version   GIF version

Theorem llyrest 23509
Description: An open subspace of a locally 𝐴 space is also locally 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
llyrest ((𝐽 ∈ Locally 𝐴𝐵𝐽) → (𝐽t 𝐵) ∈ Locally 𝐴)

Proof of Theorem llyrest
Dummy variables 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 llytop 23496 . . 3 (𝐽 ∈ Locally 𝐴𝐽 ∈ Top)
2 resttop 23184 . . 3 ((𝐽 ∈ Top ∧ 𝐵𝐽) → (𝐽t 𝐵) ∈ Top)
31, 2sylan 580 . 2 ((𝐽 ∈ Locally 𝐴𝐵𝐽) → (𝐽t 𝐵) ∈ Top)
4 restopn2 23201 . . . . 5 ((𝐽 ∈ Top ∧ 𝐵𝐽) → (𝑥 ∈ (𝐽t 𝐵) ↔ (𝑥𝐽𝑥𝐵)))
51, 4sylan 580 . . . 4 ((𝐽 ∈ Locally 𝐴𝐵𝐽) → (𝑥 ∈ (𝐽t 𝐵) ↔ (𝑥𝐽𝑥𝐵)))
6 simp1l 1196 . . . . . . . . 9 (((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → 𝐽 ∈ Locally 𝐴)
7 simp2l 1198 . . . . . . . . 9 (((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → 𝑥𝐽)
8 simp3 1137 . . . . . . . . 9 (((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → 𝑦𝑥)
9 llyi 23498 . . . . . . . . 9 ((𝐽 ∈ Locally 𝐴𝑥𝐽𝑦𝑥) → ∃𝑣𝐽 (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))
106, 7, 8, 9syl3anc 1370 . . . . . . . 8 (((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → ∃𝑣𝐽 (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))
11 simprl 771 . . . . . . . . . . . . 13 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → 𝑣𝐽)
12 simprr1 1220 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → 𝑣𝑥)
13 simpl2r 1226 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → 𝑥𝐵)
1412, 13sstrd 4006 . . . . . . . . . . . . 13 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → 𝑣𝐵)
156, 1syl 17 . . . . . . . . . . . . . . 15 (((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → 𝐽 ∈ Top)
1615adantr 480 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → 𝐽 ∈ Top)
17 simpl1r 1224 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → 𝐵𝐽)
18 restopn2 23201 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ 𝐵𝐽) → (𝑣 ∈ (𝐽t 𝐵) ↔ (𝑣𝐽𝑣𝐵)))
1916, 17, 18syl2anc 584 . . . . . . . . . . . . 13 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → (𝑣 ∈ (𝐽t 𝐵) ↔ (𝑣𝐽𝑣𝐵)))
2011, 14, 19mpbir2and 713 . . . . . . . . . . . 12 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → 𝑣 ∈ (𝐽t 𝐵))
21 velpw 4610 . . . . . . . . . . . . 13 (𝑣 ∈ 𝒫 𝑥𝑣𝑥)
2212, 21sylibr 234 . . . . . . . . . . . 12 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → 𝑣 ∈ 𝒫 𝑥)
2320, 22elind 4210 . . . . . . . . . . 11 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → 𝑣 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑥))
24 simprr2 1221 . . . . . . . . . . 11 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → 𝑦𝑣)
25 restabs 23189 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝑣𝐵𝐵𝐽) → ((𝐽t 𝐵) ↾t 𝑣) = (𝐽t 𝑣))
2616, 14, 17, 25syl3anc 1370 . . . . . . . . . . . 12 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → ((𝐽t 𝐵) ↾t 𝑣) = (𝐽t 𝑣))
27 simprr3 1222 . . . . . . . . . . . 12 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → (𝐽t 𝑣) ∈ 𝐴)
2826, 27eqeltrd 2839 . . . . . . . . . . 11 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → ((𝐽t 𝐵) ↾t 𝑣) ∈ 𝐴)
2923, 24, 28jca32 515 . . . . . . . . . 10 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → (𝑣 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑥) ∧ (𝑦𝑣 ∧ ((𝐽t 𝐵) ↾t 𝑣) ∈ 𝐴)))
3029ex 412 . . . . . . . . 9 (((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → ((𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴)) → (𝑣 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑥) ∧ (𝑦𝑣 ∧ ((𝐽t 𝐵) ↾t 𝑣) ∈ 𝐴))))
3130reximdv2 3162 . . . . . . . 8 (((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → (∃𝑣𝐽 (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴) → ∃𝑣 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑥)(𝑦𝑣 ∧ ((𝐽t 𝐵) ↾t 𝑣) ∈ 𝐴)))
3210, 31mpd 15 . . . . . . 7 (((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → ∃𝑣 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑥)(𝑦𝑣 ∧ ((𝐽t 𝐵) ↾t 𝑣) ∈ 𝐴))
33323expa 1117 . . . . . 6 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵)) ∧ 𝑦𝑥) → ∃𝑣 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑥)(𝑦𝑣 ∧ ((𝐽t 𝐵) ↾t 𝑣) ∈ 𝐴))
3433ralrimiva 3144 . . . . 5 (((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵)) → ∀𝑦𝑥𝑣 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑥)(𝑦𝑣 ∧ ((𝐽t 𝐵) ↾t 𝑣) ∈ 𝐴))
3534ex 412 . . . 4 ((𝐽 ∈ Locally 𝐴𝐵𝐽) → ((𝑥𝐽𝑥𝐵) → ∀𝑦𝑥𝑣 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑥)(𝑦𝑣 ∧ ((𝐽t 𝐵) ↾t 𝑣) ∈ 𝐴)))
365, 35sylbid 240 . . 3 ((𝐽 ∈ Locally 𝐴𝐵𝐽) → (𝑥 ∈ (𝐽t 𝐵) → ∀𝑦𝑥𝑣 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑥)(𝑦𝑣 ∧ ((𝐽t 𝐵) ↾t 𝑣) ∈ 𝐴)))
3736ralrimiv 3143 . 2 ((𝐽 ∈ Locally 𝐴𝐵𝐽) → ∀𝑥 ∈ (𝐽t 𝐵)∀𝑦𝑥𝑣 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑥)(𝑦𝑣 ∧ ((𝐽t 𝐵) ↾t 𝑣) ∈ 𝐴))
38 islly 23492 . 2 ((𝐽t 𝐵) ∈ Locally 𝐴 ↔ ((𝐽t 𝐵) ∈ Top ∧ ∀𝑥 ∈ (𝐽t 𝐵)∀𝑦𝑥𝑣 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑥)(𝑦𝑣 ∧ ((𝐽t 𝐵) ↾t 𝑣) ∈ 𝐴)))
393, 37, 38sylanbrc 583 1 ((𝐽 ∈ Locally 𝐴𝐵𝐽) → (𝐽t 𝐵) ∈ Locally 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wrex 3068  cin 3962  wss 3963  𝒫 cpw 4605  (class class class)co 7431  t crest 17467  Topctop 22915  Locally clly 23488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-en 8985  df-fin 8988  df-fi 9449  df-rest 17469  df-topgen 17490  df-top 22916  df-topon 22933  df-bases 22969  df-lly 23490
This theorem is referenced by:  loclly  23511  llyidm  23512
  Copyright terms: Public domain W3C validator