MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  llyrest Structured version   Visualization version   GIF version

Theorem llyrest 22021
Description: An open subspace of a locally 𝐴 space is also locally 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
llyrest ((𝐽 ∈ Locally 𝐴𝐵𝐽) → (𝐽t 𝐵) ∈ Locally 𝐴)

Proof of Theorem llyrest
Dummy variables 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 llytop 22008 . . 3 (𝐽 ∈ Locally 𝐴𝐽 ∈ Top)
2 resttop 21696 . . 3 ((𝐽 ∈ Top ∧ 𝐵𝐽) → (𝐽t 𝐵) ∈ Top)
31, 2sylan 580 . 2 ((𝐽 ∈ Locally 𝐴𝐵𝐽) → (𝐽t 𝐵) ∈ Top)
4 restopn2 21713 . . . . 5 ((𝐽 ∈ Top ∧ 𝐵𝐽) → (𝑥 ∈ (𝐽t 𝐵) ↔ (𝑥𝐽𝑥𝐵)))
51, 4sylan 580 . . . 4 ((𝐽 ∈ Locally 𝐴𝐵𝐽) → (𝑥 ∈ (𝐽t 𝐵) ↔ (𝑥𝐽𝑥𝐵)))
6 simp1l 1189 . . . . . . . . 9 (((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → 𝐽 ∈ Locally 𝐴)
7 simp2l 1191 . . . . . . . . 9 (((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → 𝑥𝐽)
8 simp3 1130 . . . . . . . . 9 (((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → 𝑦𝑥)
9 llyi 22010 . . . . . . . . 9 ((𝐽 ∈ Locally 𝐴𝑥𝐽𝑦𝑥) → ∃𝑣𝐽 (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))
106, 7, 8, 9syl3anc 1363 . . . . . . . 8 (((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → ∃𝑣𝐽 (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))
11 simprl 767 . . . . . . . . . . . . 13 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → 𝑣𝐽)
12 simprr1 1213 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → 𝑣𝑥)
13 simpl2r 1219 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → 𝑥𝐵)
1412, 13sstrd 3974 . . . . . . . . . . . . 13 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → 𝑣𝐵)
156, 1syl 17 . . . . . . . . . . . . . . 15 (((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → 𝐽 ∈ Top)
1615adantr 481 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → 𝐽 ∈ Top)
17 simpl1r 1217 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → 𝐵𝐽)
18 restopn2 21713 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ 𝐵𝐽) → (𝑣 ∈ (𝐽t 𝐵) ↔ (𝑣𝐽𝑣𝐵)))
1916, 17, 18syl2anc 584 . . . . . . . . . . . . 13 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → (𝑣 ∈ (𝐽t 𝐵) ↔ (𝑣𝐽𝑣𝐵)))
2011, 14, 19mpbir2and 709 . . . . . . . . . . . 12 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → 𝑣 ∈ (𝐽t 𝐵))
21 velpw 4543 . . . . . . . . . . . . 13 (𝑣 ∈ 𝒫 𝑥𝑣𝑥)
2212, 21sylibr 235 . . . . . . . . . . . 12 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → 𝑣 ∈ 𝒫 𝑥)
2320, 22elind 4168 . . . . . . . . . . 11 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → 𝑣 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑥))
24 simprr2 1214 . . . . . . . . . . 11 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → 𝑦𝑣)
25 restabs 21701 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝑣𝐵𝐵𝐽) → ((𝐽t 𝐵) ↾t 𝑣) = (𝐽t 𝑣))
2616, 14, 17, 25syl3anc 1363 . . . . . . . . . . . 12 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → ((𝐽t 𝐵) ↾t 𝑣) = (𝐽t 𝑣))
27 simprr3 1215 . . . . . . . . . . . 12 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → (𝐽t 𝑣) ∈ 𝐴)
2826, 27eqeltrd 2910 . . . . . . . . . . 11 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → ((𝐽t 𝐵) ↾t 𝑣) ∈ 𝐴)
2923, 24, 28jca32 516 . . . . . . . . . 10 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → (𝑣 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑥) ∧ (𝑦𝑣 ∧ ((𝐽t 𝐵) ↾t 𝑣) ∈ 𝐴)))
3029ex 413 . . . . . . . . 9 (((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → ((𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴)) → (𝑣 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑥) ∧ (𝑦𝑣 ∧ ((𝐽t 𝐵) ↾t 𝑣) ∈ 𝐴))))
3130reximdv2 3268 . . . . . . . 8 (((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → (∃𝑣𝐽 (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴) → ∃𝑣 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑥)(𝑦𝑣 ∧ ((𝐽t 𝐵) ↾t 𝑣) ∈ 𝐴)))
3210, 31mpd 15 . . . . . . 7 (((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → ∃𝑣 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑥)(𝑦𝑣 ∧ ((𝐽t 𝐵) ↾t 𝑣) ∈ 𝐴))
33323expa 1110 . . . . . 6 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵)) ∧ 𝑦𝑥) → ∃𝑣 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑥)(𝑦𝑣 ∧ ((𝐽t 𝐵) ↾t 𝑣) ∈ 𝐴))
3433ralrimiva 3179 . . . . 5 (((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵)) → ∀𝑦𝑥𝑣 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑥)(𝑦𝑣 ∧ ((𝐽t 𝐵) ↾t 𝑣) ∈ 𝐴))
3534ex 413 . . . 4 ((𝐽 ∈ Locally 𝐴𝐵𝐽) → ((𝑥𝐽𝑥𝐵) → ∀𝑦𝑥𝑣 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑥)(𝑦𝑣 ∧ ((𝐽t 𝐵) ↾t 𝑣) ∈ 𝐴)))
365, 35sylbid 241 . . 3 ((𝐽 ∈ Locally 𝐴𝐵𝐽) → (𝑥 ∈ (𝐽t 𝐵) → ∀𝑦𝑥𝑣 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑥)(𝑦𝑣 ∧ ((𝐽t 𝐵) ↾t 𝑣) ∈ 𝐴)))
3736ralrimiv 3178 . 2 ((𝐽 ∈ Locally 𝐴𝐵𝐽) → ∀𝑥 ∈ (𝐽t 𝐵)∀𝑦𝑥𝑣 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑥)(𝑦𝑣 ∧ ((𝐽t 𝐵) ↾t 𝑣) ∈ 𝐴))
38 islly 22004 . 2 ((𝐽t 𝐵) ∈ Locally 𝐴 ↔ ((𝐽t 𝐵) ∈ Top ∧ ∀𝑥 ∈ (𝐽t 𝐵)∀𝑦𝑥𝑣 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑥)(𝑦𝑣 ∧ ((𝐽t 𝐵) ↾t 𝑣) ∈ 𝐴)))
393, 37, 38sylanbrc 583 1 ((𝐽 ∈ Locally 𝐴𝐵𝐽) → (𝐽t 𝐵) ∈ Locally 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wral 3135  wrex 3136  cin 3932  wss 3933  𝒫 cpw 4535  (class class class)co 7145  t crest 16682  Topctop 21429  Locally clly 22000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-oadd 8095  df-er 8278  df-en 8498  df-fin 8501  df-fi 8863  df-rest 16684  df-topgen 16705  df-top 21430  df-topon 21447  df-bases 21482  df-lly 22002
This theorem is referenced by:  loclly  22023  llyidm  22024
  Copyright terms: Public domain W3C validator