Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > toplly | Structured version Visualization version GIF version |
Description: A topology is locally a topology. (Contributed by Mario Carneiro, 2-Mar-2015.) |
Ref | Expression |
---|---|
toplly | ⊢ Locally Top = Top |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | llytop 22651 | . . 3 ⊢ (𝑗 ∈ Locally Top → 𝑗 ∈ Top) | |
2 | 1 | ssriv 3927 | . 2 ⊢ Locally Top ⊆ Top |
3 | resttop 22339 | . . . . 5 ⊢ ((𝑗 ∈ Top ∧ 𝑥 ∈ 𝑗) → (𝑗 ↾t 𝑥) ∈ Top) | |
4 | 3 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ (𝑗 ∈ Top ∧ 𝑥 ∈ 𝑗)) → (𝑗 ↾t 𝑥) ∈ Top) |
5 | ssidd 3946 | . . . 4 ⊢ (⊤ → Top ⊆ Top) | |
6 | 4, 5 | restlly 22662 | . . 3 ⊢ (⊤ → Top ⊆ Locally Top) |
7 | 6 | mptru 1544 | . 2 ⊢ Top ⊆ Locally Top |
8 | 2, 7 | eqssi 3939 | 1 ⊢ Locally Top = Top |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ⊤wtru 1538 ∈ wcel 2101 ⊆ wss 3889 (class class class)co 7295 ↾t crest 17159 Topctop 22070 Locally clly 22643 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-int 4883 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-ov 7298 df-oprab 7299 df-mpo 7300 df-om 7733 df-1st 7851 df-2nd 7852 df-en 8754 df-fin 8757 df-fi 9198 df-rest 17161 df-topgen 17182 df-top 22071 df-bases 22124 df-lly 22645 |
This theorem is referenced by: topnlly 22670 |
Copyright terms: Public domain | W3C validator |