MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nllytop Structured version   Visualization version   GIF version

Theorem nllytop 22614
Description: A locally 𝐴 space is a topological space. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
nllytop (𝐽 ∈ 𝑛-Locally 𝐴𝐽 ∈ Top)

Proof of Theorem nllytop
Dummy variables 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isnlly 22610 . 2 (𝐽 ∈ 𝑛-Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑦𝑥𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ 𝐴))
21simplbi 498 1 (𝐽 ∈ 𝑛-Locally 𝐴𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2110  wral 3066  wrex 3067  cin 3891  𝒫 cpw 4539  {csn 4567  cfv 6431  (class class class)co 7269  t crest 17121  Topctop 22032  neicnei 22238  𝑛-Locally cnlly 22606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-iota 6389  df-fv 6439  df-ov 7272  df-nlly 22608
This theorem is referenced by:  nlly2i  22617  restnlly  22623  nllyrest  22627  nllyidm  22630  cldllycmp  22636  llycmpkgen  22693  txnlly  22778  txkgen  22793  xkococnlem  22800  xkococn  22801  cnmptkk  22824  xkofvcn  22825  cnmptk1p  22826  cnmptk2  22827  xkocnv  22955  xkohmeo  22956
  Copyright terms: Public domain W3C validator