MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nllytop Structured version   Visualization version   GIF version

Theorem nllytop 23393
Description: A locally 𝐴 space is a topological space. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
nllytop (𝐽 ∈ 𝑛-Locally 𝐴𝐽 ∈ Top)

Proof of Theorem nllytop
Dummy variables 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isnlly 23389 . 2 (𝐽 ∈ 𝑛-Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑦𝑥𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ 𝐴))
21simplbi 497 1 (𝐽 ∈ 𝑛-Locally 𝐴𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wral 3044  wrex 3053  cin 3910  𝒫 cpw 4559  {csn 4585  cfv 6499  (class class class)co 7369  t crest 17359  Topctop 22813  neicnei 23017  𝑛-Locally cnlly 23385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-iota 6452  df-fv 6507  df-ov 7372  df-nlly 23387
This theorem is referenced by:  nlly2i  23396  restnlly  23402  nllyrest  23406  nllyidm  23409  cldllycmp  23415  llycmpkgen  23472  txnlly  23557  txkgen  23572  xkococnlem  23579  xkococn  23580  cnmptkk  23603  xkofvcn  23604  cnmptk1p  23605  cnmptk2  23606  xkocnv  23734  xkohmeo  23735
  Copyright terms: Public domain W3C validator