MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nllytop Structured version   Visualization version   GIF version

Theorem nllytop 22532
Description: A locally 𝐴 space is a topological space. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
nllytop (𝐽 ∈ 𝑛-Locally 𝐴𝐽 ∈ Top)

Proof of Theorem nllytop
Dummy variables 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isnlly 22528 . 2 (𝐽 ∈ 𝑛-Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑦𝑥𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ 𝐴))
21simplbi 497 1 (𝐽 ∈ 𝑛-Locally 𝐴𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wral 3063  wrex 3064  cin 3882  𝒫 cpw 4530  {csn 4558  cfv 6418  (class class class)co 7255  t crest 17048  Topctop 21950  neicnei 22156  𝑛-Locally cnlly 22524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-nlly 22526
This theorem is referenced by:  nlly2i  22535  restnlly  22541  nllyrest  22545  nllyidm  22548  cldllycmp  22554  llycmpkgen  22611  txnlly  22696  txkgen  22711  xkococnlem  22718  xkococn  22719  cnmptkk  22742  xkofvcn  22743  cnmptk1p  22744  cnmptk2  22745  xkocnv  22873  xkohmeo  22874
  Copyright terms: Public domain W3C validator