| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nllytop | Structured version Visualization version GIF version | ||
| Description: A locally 𝐴 space is a topological space. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| Ref | Expression |
|---|---|
| nllytop | ⊢ (𝐽 ∈ 𝑛-Locally 𝐴 → 𝐽 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnlly 23354 | . 2 ⊢ (𝐽 ∈ 𝑛-Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽 ↾t 𝑢) ∈ 𝐴)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐽 ∈ 𝑛-Locally 𝐴 → 𝐽 ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ∩ cin 3902 𝒫 cpw 4551 {csn 4577 ‘cfv 6482 (class class class)co 7349 ↾t crest 17324 Topctop 22778 neicnei 22982 𝑛-Locally cnlly 23350 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-ov 7352 df-nlly 23352 |
| This theorem is referenced by: nlly2i 23361 restnlly 23367 nllyrest 23371 nllyidm 23374 cldllycmp 23380 llycmpkgen 23437 txnlly 23522 txkgen 23537 xkococnlem 23544 xkococn 23545 cnmptkk 23568 xkofvcn 23569 cnmptk1p 23570 cnmptk2 23571 xkocnv 23699 xkohmeo 23700 |
| Copyright terms: Public domain | W3C validator |