MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nllytop Structured version   Visualization version   GIF version

Theorem nllytop 22984
Description: A locally 𝐴 space is a topological space. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
nllytop (𝐽 ∈ 𝑛-Locally 𝐴 β†’ 𝐽 ∈ Top)

Proof of Theorem nllytop
Dummy variables 𝑒 π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isnlly 22980 . 2 (𝐽 ∈ 𝑛-Locally 𝐴 ↔ (𝐽 ∈ Top ∧ βˆ€π‘₯ ∈ 𝐽 βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘’ ∈ (((neiβ€˜π½)β€˜{𝑦}) ∩ 𝒫 π‘₯)(𝐽 β†Ύt 𝑒) ∈ 𝐴))
21simplbi 498 1 (𝐽 ∈ 𝑛-Locally 𝐴 β†’ 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∈ wcel 2106  βˆ€wral 3061  βˆƒwrex 3070   ∩ cin 3947  π’« cpw 4602  {csn 4628  β€˜cfv 6543  (class class class)co 7411   β†Ύt crest 17368  Topctop 22402  neicnei 22608  π‘›-Locally cnlly 22976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7414  df-nlly 22978
This theorem is referenced by:  nlly2i  22987  restnlly  22993  nllyrest  22997  nllyidm  23000  cldllycmp  23006  llycmpkgen  23063  txnlly  23148  txkgen  23163  xkococnlem  23170  xkococn  23171  cnmptkk  23194  xkofvcn  23195  cnmptk1p  23196  cnmptk2  23197  xkocnv  23325  xkohmeo  23326
  Copyright terms: Public domain W3C validator