MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nllytop Structured version   Visualization version   GIF version

Theorem nllytop 23388
Description: A locally 𝐴 space is a topological space. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
nllytop (𝐽 ∈ 𝑛-Locally 𝐴𝐽 ∈ Top)

Proof of Theorem nllytop
Dummy variables 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isnlly 23384 . 2 (𝐽 ∈ 𝑛-Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑦𝑥𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ 𝐴))
21simplbi 497 1 (𝐽 ∈ 𝑛-Locally 𝐴𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  wral 3047  wrex 3056  cin 3896  𝒫 cpw 4547  {csn 4573  cfv 6481  (class class class)co 7346  t crest 17324  Topctop 22808  neicnei 23012  𝑛-Locally cnlly 23380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-iota 6437  df-fv 6489  df-ov 7349  df-nlly 23382
This theorem is referenced by:  nlly2i  23391  restnlly  23397  nllyrest  23401  nllyidm  23404  cldllycmp  23410  llycmpkgen  23467  txnlly  23552  txkgen  23567  xkococnlem  23574  xkococn  23575  cnmptkk  23598  xkofvcn  23599  cnmptk1p  23600  cnmptk2  23601  xkocnv  23729  xkohmeo  23730
  Copyright terms: Public domain W3C validator