Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nllytop | Structured version Visualization version GIF version |
Description: A locally 𝐴 space is a topological space. (Contributed by Mario Carneiro, 2-Mar-2015.) |
Ref | Expression |
---|---|
nllytop | ⊢ (𝐽 ∈ 𝑛-Locally 𝐴 → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isnlly 22528 | . 2 ⊢ (𝐽 ∈ 𝑛-Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽 ↾t 𝑢) ∈ 𝐴)) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝐽 ∈ 𝑛-Locally 𝐴 → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 ∩ cin 3882 𝒫 cpw 4530 {csn 4558 ‘cfv 6418 (class class class)co 7255 ↾t crest 17048 Topctop 21950 neicnei 22156 𝑛-Locally cnlly 22524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-nlly 22526 |
This theorem is referenced by: nlly2i 22535 restnlly 22541 nllyrest 22545 nllyidm 22548 cldllycmp 22554 llycmpkgen 22611 txnlly 22696 txkgen 22711 xkococnlem 22718 xkococn 22719 cnmptkk 22742 xkofvcn 22743 cnmptk1p 22744 cnmptk2 22745 xkocnv 22873 xkohmeo 22874 |
Copyright terms: Public domain | W3C validator |