![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nllytop | Structured version Visualization version GIF version |
Description: A locally 𝐴 space is a topological space. (Contributed by Mario Carneiro, 2-Mar-2015.) |
Ref | Expression |
---|---|
nllytop | ⊢ (𝐽 ∈ 𝑛-Locally 𝐴 → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isnlly 23498 | . 2 ⊢ (𝐽 ∈ 𝑛-Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽 ↾t 𝑢) ∈ 𝐴)) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝐽 ∈ 𝑛-Locally 𝐴 → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ∩ cin 3975 𝒫 cpw 4622 {csn 4648 ‘cfv 6573 (class class class)co 7448 ↾t crest 17480 Topctop 22920 neicnei 23126 𝑛-Locally cnlly 23494 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-nlly 23496 |
This theorem is referenced by: nlly2i 23505 restnlly 23511 nllyrest 23515 nllyidm 23518 cldllycmp 23524 llycmpkgen 23581 txnlly 23666 txkgen 23681 xkococnlem 23688 xkococn 23689 cnmptkk 23712 xkofvcn 23713 cnmptk1p 23714 cnmptk2 23715 xkocnv 23843 xkohmeo 23844 |
Copyright terms: Public domain | W3C validator |