| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nllytop | Structured version Visualization version GIF version | ||
| Description: A locally 𝐴 space is a topological space. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| Ref | Expression |
|---|---|
| nllytop | ⊢ (𝐽 ∈ 𝑛-Locally 𝐴 → 𝐽 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnlly 23384 | . 2 ⊢ (𝐽 ∈ 𝑛-Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽 ↾t 𝑢) ∈ 𝐴)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐽 ∈ 𝑛-Locally 𝐴 → 𝐽 ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ∩ cin 3896 𝒫 cpw 4547 {csn 4573 ‘cfv 6481 (class class class)co 7346 ↾t crest 17324 Topctop 22808 neicnei 23012 𝑛-Locally cnlly 23380 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 df-nlly 23382 |
| This theorem is referenced by: nlly2i 23391 restnlly 23397 nllyrest 23401 nllyidm 23404 cldllycmp 23410 llycmpkgen 23467 txnlly 23552 txkgen 23567 xkococnlem 23574 xkococn 23575 cnmptkk 23598 xkofvcn 23599 cnmptk1p 23600 cnmptk2 23601 xkocnv 23729 xkohmeo 23730 |
| Copyright terms: Public domain | W3C validator |