MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodass Structured version   Visualization version   GIF version

Theorem lmodass 20720
Description: Left module vector sum is associative. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmodvacl.v 𝑉 = (Base‘𝑊)
lmodvacl.a + = (+g𝑊)
Assertion
Ref Expression
lmodass ((𝑊 ∈ LMod ∧ (𝑋𝑉𝑌𝑉𝑍𝑉)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))

Proof of Theorem lmodass
StepHypRef Expression
1 lmodgrp 20711 . 2 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
2 lmodvacl.v . . 3 𝑉 = (Base‘𝑊)
3 lmodvacl.a . . 3 + = (+g𝑊)
42, 3grpass 18870 . 2 ((𝑊 ∈ Grp ∧ (𝑋𝑉𝑌𝑉𝑍𝑉)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
51, 4sylan 579 1 ((𝑊 ∈ LMod ∧ (𝑋𝑉𝑌𝑉𝑍𝑉)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084   = wceq 1533  wcel 2098  cfv 6536  (class class class)co 7404  Basecbs 17151  +gcplusg 17204  Grpcgrp 18861  LModclmod 20704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697  ax-nul 5299
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-iota 6488  df-fv 6544  df-ov 7407  df-sgrp 18650  df-mnd 18666  df-grp 18864  df-lmod 20706
This theorem is referenced by:  lmodvneg1  20749  lmodcom  20752  baerlem5alem1  41090  mapdh6gN  41124  mapdh6hN  41125  hdmap1l6g  41198  hdmap1l6h  41199
  Copyright terms: Public domain W3C validator