Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1l6h Structured version   Visualization version   GIF version

Theorem hdmap1l6h 38985
Description: Lemmma for hdmap1l6 38989. Part (6) of [Baer] p. 48 line 2. (Contributed by NM, 1-May-2015.)
Hypotheses
Ref Expression
hdmap1l6.h 𝐻 = (LHyp‘𝐾)
hdmap1l6.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap1l6.v 𝑉 = (Base‘𝑈)
hdmap1l6.p + = (+g𝑈)
hdmap1l6.s = (-g𝑈)
hdmap1l6c.o 0 = (0g𝑈)
hdmap1l6.n 𝑁 = (LSpan‘𝑈)
hdmap1l6.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap1l6.d 𝐷 = (Base‘𝐶)
hdmap1l6.a = (+g𝐶)
hdmap1l6.r 𝑅 = (-g𝐶)
hdmap1l6.q 𝑄 = (0g𝐶)
hdmap1l6.l 𝐿 = (LSpan‘𝐶)
hdmap1l6.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmap1l6.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
hdmap1l6.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap1l6.f (𝜑𝐹𝐷)
hdmap1l6cl.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
hdmap1l6.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
hdmap1l6d.xn (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
hdmap1l6d.yz (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
hdmap1l6d.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
hdmap1l6d.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
hdmap1l6d.w (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
hdmap1l6d.wn (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
Assertion
Ref Expression
hdmap1l6h (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))

Proof of Theorem hdmap1l6h
StepHypRef Expression
1 hdmap1l6.h . . . 4 𝐻 = (LHyp‘𝐾)
2 hdmap1l6.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmap1l6.v . . . 4 𝑉 = (Base‘𝑈)
4 hdmap1l6.p . . . 4 + = (+g𝑈)
5 hdmap1l6.s . . . 4 = (-g𝑈)
6 hdmap1l6c.o . . . 4 0 = (0g𝑈)
7 hdmap1l6.n . . . 4 𝑁 = (LSpan‘𝑈)
8 hdmap1l6.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
9 hdmap1l6.d . . . 4 𝐷 = (Base‘𝐶)
10 hdmap1l6.a . . . 4 = (+g𝐶)
11 hdmap1l6.r . . . 4 𝑅 = (-g𝐶)
12 hdmap1l6.q . . . 4 𝑄 = (0g𝐶)
13 hdmap1l6.l . . . 4 𝐿 = (LSpan‘𝐶)
14 hdmap1l6.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
15 hdmap1l6.i . . . 4 𝐼 = ((HDMap1‘𝐾)‘𝑊)
16 hdmap1l6.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
17 hdmap1l6.f . . . 4 (𝜑𝐹𝐷)
18 hdmap1l6cl.x . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
19 hdmap1l6.mn . . . 4 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
20 hdmap1l6d.xn . . . 4 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
21 hdmap1l6d.yz . . . 4 (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
22 hdmap1l6d.y . . . 4 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
23 hdmap1l6d.z . . . 4 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
24 hdmap1l6d.w . . . 4 (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
25 hdmap1l6d.wn . . . 4 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
261, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25hdmap1l6g 38984 . . 3 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩)) = (((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, 𝑌⟩)) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))
271, 8, 16lcdlmod 38760 . . . 4 (𝜑𝐶 ∈ LMod)
281, 2, 16dvhlvec 38277 . . . . . . . 8 (𝜑𝑈 ∈ LVec)
2924eldifad 3921 . . . . . . . 8 (𝜑𝑤𝑉)
3018eldifad 3921 . . . . . . . 8 (𝜑𝑋𝑉)
3122eldifad 3921 . . . . . . . 8 (𝜑𝑌𝑉)
323, 7, 28, 29, 30, 31, 25lspindpi 19876 . . . . . . 7 (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌})))
3332simpld 497 . . . . . 6 (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}))
3433necomd 3061 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑤}))
351, 2, 3, 6, 7, 8, 9, 13, 14, 15, 16, 17, 19, 34, 18, 29hdmap1cl 38972 . . . 4 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑤⟩) ∈ 𝐷)
3623eldifad 3921 . . . . . . 7 (𝜑𝑍𝑉)
373, 7, 28, 30, 31, 36, 20lspindpi 19876 . . . . . 6 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})))
3837simpld 497 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
391, 2, 3, 6, 7, 8, 9, 13, 14, 15, 16, 17, 19, 38, 18, 31hdmap1cl 38972 . . . 4 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) ∈ 𝐷)
4037simprd 498 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
411, 2, 3, 6, 7, 8, 9, 13, 14, 15, 16, 17, 19, 40, 18, 36hdmap1cl 38972 . . . 4 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) ∈ 𝐷)
429, 10lmodass 19621 . . . 4 ((𝐶 ∈ LMod ∧ ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) ∈ 𝐷 ∧ (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) ∈ 𝐷 ∧ (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) ∈ 𝐷)) → (((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, 𝑌⟩)) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)) = ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩))))
4327, 35, 39, 41, 42syl13anc 1368 . . 3 (𝜑 → (((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, 𝑌⟩)) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)) = ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩))))
4426, 43eqtrd 2855 . 2 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩)) = ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩))))
453, 4, 6, 7, 28, 18, 22, 23, 24, 21, 38, 25mapdindp1 38888 . . . 4 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑌 + 𝑍)}))
461, 2, 16dvhlmod 38278 . . . . 5 (𝜑𝑈 ∈ LMod)
473, 4lmodvacl 19620 . . . . 5 ((𝑈 ∈ LMod ∧ 𝑌𝑉𝑍𝑉) → (𝑌 + 𝑍) ∈ 𝑉)
4846, 31, 36, 47syl3anc 1367 . . . 4 (𝜑 → (𝑌 + 𝑍) ∈ 𝑉)
491, 2, 3, 6, 7, 8, 9, 13, 14, 15, 16, 17, 19, 45, 18, 48hdmap1cl 38972 . . 3 (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) ∈ 𝐷)
509, 10lmodvacl 19620 . . . 4 ((𝐶 ∈ LMod ∧ (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) ∈ 𝐷 ∧ (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) ∈ 𝐷) → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)) ∈ 𝐷)
5127, 39, 41, 50syl3anc 1367 . . 3 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)) ∈ 𝐷)
529, 10lmodlcan 19622 . . 3 ((𝐶 ∈ LMod ∧ ((𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) ∈ 𝐷 ∧ ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)) ∈ 𝐷 ∧ (𝐼‘⟨𝑋, 𝐹, 𝑤⟩) ∈ 𝐷)) → (((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩)) = ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩))) ↔ (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩))))
5327, 49, 51, 35, 52syl13anc 1368 . 2 (𝜑 → (((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩)) = ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩))) ↔ (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩))))
5444, 53mpbid 234 1 (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3006  cdif 3906  {csn 4539  {cpr 4541  cotp 4547  cfv 6327  (class class class)co 7129  Basecbs 16458  +gcplusg 16540  0gc0g 16688  -gcsg 18080  LModclmod 19606  LSpanclspn 19715  HLchlt 36518  LHypclh 37152  DVecHcdvh 38246  LCDualclcd 38754  mapdcmpd 38792  HDMap1chdma1 38959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5162  ax-sep 5175  ax-nul 5182  ax-pow 5238  ax-pr 5302  ax-un 7435  ax-cnex 10567  ax-resscn 10568  ax-1cn 10569  ax-icn 10570  ax-addcl 10571  ax-addrcl 10572  ax-mulcl 10573  ax-mulrcl 10574  ax-mulcom 10575  ax-addass 10576  ax-mulass 10577  ax-distr 10578  ax-i2m1 10579  ax-1ne0 10580  ax-1rid 10581  ax-rnegex 10582  ax-rrecex 10583  ax-cnre 10584  ax-pre-lttri 10585  ax-pre-lttrn 10586  ax-pre-ltadd 10587  ax-pre-mulgt0 10588  ax-riotaBAD 36121
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3472  df-sbc 3749  df-csb 3857  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-ot 4548  df-uni 4811  df-int 4849  df-iun 4893  df-iin 4894  df-br 5039  df-opab 5101  df-mpt 5119  df-tr 5145  df-id 5432  df-eprel 5437  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6286  df-fun 6329  df-fn 6330  df-f 6331  df-f1 6332  df-fo 6333  df-f1o 6334  df-fv 6335  df-riota 7087  df-ov 7132  df-oprab 7133  df-mpo 7134  df-of 7383  df-om 7555  df-1st 7663  df-2nd 7664  df-tpos 7866  df-undef 7913  df-wrecs 7921  df-recs 7982  df-rdg 8020  df-1o 8076  df-oadd 8080  df-er 8263  df-map 8382  df-en 8484  df-dom 8485  df-sdom 8486  df-fin 8487  df-pnf 10651  df-mnf 10652  df-xr 10653  df-ltxr 10654  df-le 10655  df-sub 10846  df-neg 10847  df-nn 11613  df-2 11675  df-3 11676  df-4 11677  df-5 11678  df-6 11679  df-n0 11873  df-z 11957  df-uz 12219  df-fz 12873  df-struct 16460  df-ndx 16461  df-slot 16462  df-base 16464  df-sets 16465  df-ress 16466  df-plusg 16553  df-mulr 16554  df-sca 16556  df-vsca 16557  df-0g 16690  df-mre 16832  df-mrc 16833  df-acs 16835  df-proset 17513  df-poset 17531  df-plt 17543  df-lub 17559  df-glb 17560  df-join 17561  df-meet 17562  df-p0 17624  df-p1 17625  df-lat 17631  df-clat 17693  df-mgm 17827  df-sgrp 17876  df-mnd 17887  df-submnd 17932  df-grp 18081  df-minusg 18082  df-sbg 18083  df-subg 18251  df-cntz 18422  df-oppg 18449  df-lsm 18736  df-cmn 18883  df-abl 18884  df-mgp 19215  df-ur 19227  df-ring 19274  df-oppr 19348  df-dvdsr 19366  df-unit 19367  df-invr 19397  df-dvr 19408  df-drng 19476  df-lmod 19608  df-lss 19676  df-lsp 19716  df-lvec 19847  df-lsatoms 36144  df-lshyp 36145  df-lcv 36187  df-lfl 36226  df-lkr 36254  df-ldual 36292  df-oposet 36344  df-ol 36346  df-oml 36347  df-covers 36434  df-ats 36435  df-atl 36466  df-cvlat 36490  df-hlat 36519  df-llines 36666  df-lplanes 36667  df-lvols 36668  df-lines 36669  df-psubsp 36671  df-pmap 36672  df-padd 36964  df-lhyp 37156  df-laut 37157  df-ldil 37272  df-ltrn 37273  df-trl 37327  df-tgrp 37911  df-tendo 37923  df-edring 37925  df-dveca 38171  df-disoa 38197  df-dvech 38247  df-dib 38307  df-dic 38341  df-dih 38397  df-doch 38516  df-djh 38563  df-lcdual 38755  df-mapd 38793  df-hdmap1 38961
This theorem is referenced by:  hdmap1l6i  38986
  Copyright terms: Public domain W3C validator