Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1l6h Structured version   Visualization version   GIF version

Theorem hdmap1l6h 40491
Description: Lemmma for hdmap1l6 40495. Part (6) of [Baer] p. 48 line 2. (Contributed by NM, 1-May-2015.)
Hypotheses
Ref Expression
hdmap1l6.h 𝐻 = (LHyp‘𝐾)
hdmap1l6.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap1l6.v 𝑉 = (Base‘𝑈)
hdmap1l6.p + = (+g𝑈)
hdmap1l6.s = (-g𝑈)
hdmap1l6c.o 0 = (0g𝑈)
hdmap1l6.n 𝑁 = (LSpan‘𝑈)
hdmap1l6.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap1l6.d 𝐷 = (Base‘𝐶)
hdmap1l6.a = (+g𝐶)
hdmap1l6.r 𝑅 = (-g𝐶)
hdmap1l6.q 𝑄 = (0g𝐶)
hdmap1l6.l 𝐿 = (LSpan‘𝐶)
hdmap1l6.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmap1l6.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
hdmap1l6.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap1l6.f (𝜑𝐹𝐷)
hdmap1l6cl.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
hdmap1l6.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
hdmap1l6d.xn (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
hdmap1l6d.yz (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
hdmap1l6d.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
hdmap1l6d.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
hdmap1l6d.w (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
hdmap1l6d.wn (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
Assertion
Ref Expression
hdmap1l6h (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))

Proof of Theorem hdmap1l6h
StepHypRef Expression
1 hdmap1l6.h . . . 4 𝐻 = (LHyp‘𝐾)
2 hdmap1l6.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmap1l6.v . . . 4 𝑉 = (Base‘𝑈)
4 hdmap1l6.p . . . 4 + = (+g𝑈)
5 hdmap1l6.s . . . 4 = (-g𝑈)
6 hdmap1l6c.o . . . 4 0 = (0g𝑈)
7 hdmap1l6.n . . . 4 𝑁 = (LSpan‘𝑈)
8 hdmap1l6.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
9 hdmap1l6.d . . . 4 𝐷 = (Base‘𝐶)
10 hdmap1l6.a . . . 4 = (+g𝐶)
11 hdmap1l6.r . . . 4 𝑅 = (-g𝐶)
12 hdmap1l6.q . . . 4 𝑄 = (0g𝐶)
13 hdmap1l6.l . . . 4 𝐿 = (LSpan‘𝐶)
14 hdmap1l6.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
15 hdmap1l6.i . . . 4 𝐼 = ((HDMap1‘𝐾)‘𝑊)
16 hdmap1l6.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
17 hdmap1l6.f . . . 4 (𝜑𝐹𝐷)
18 hdmap1l6cl.x . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
19 hdmap1l6.mn . . . 4 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
20 hdmap1l6d.xn . . . 4 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
21 hdmap1l6d.yz . . . 4 (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
22 hdmap1l6d.y . . . 4 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
23 hdmap1l6d.z . . . 4 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
24 hdmap1l6d.w . . . 4 (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
25 hdmap1l6d.wn . . . 4 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
261, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25hdmap1l6g 40490 . . 3 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩)) = (((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, 𝑌⟩)) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))
271, 8, 16lcdlmod 40266 . . . 4 (𝜑𝐶 ∈ LMod)
281, 2, 16dvhlvec 39783 . . . . . . . 8 (𝜑𝑈 ∈ LVec)
2924eldifad 3956 . . . . . . . 8 (𝜑𝑤𝑉)
3018eldifad 3956 . . . . . . . 8 (𝜑𝑋𝑉)
3122eldifad 3956 . . . . . . . 8 (𝜑𝑌𝑉)
323, 7, 28, 29, 30, 31, 25lspindpi 20694 . . . . . . 7 (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌})))
3332simpld 495 . . . . . 6 (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}))
3433necomd 2995 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑤}))
351, 2, 3, 6, 7, 8, 9, 13, 14, 15, 16, 17, 19, 34, 18, 29hdmap1cl 40478 . . . 4 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑤⟩) ∈ 𝐷)
3623eldifad 3956 . . . . . . 7 (𝜑𝑍𝑉)
373, 7, 28, 30, 31, 36, 20lspindpi 20694 . . . . . 6 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})))
3837simpld 495 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
391, 2, 3, 6, 7, 8, 9, 13, 14, 15, 16, 17, 19, 38, 18, 31hdmap1cl 40478 . . . 4 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) ∈ 𝐷)
4037simprd 496 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
411, 2, 3, 6, 7, 8, 9, 13, 14, 15, 16, 17, 19, 40, 18, 36hdmap1cl 40478 . . . 4 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) ∈ 𝐷)
429, 10lmodass 20436 . . . 4 ((𝐶 ∈ LMod ∧ ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) ∈ 𝐷 ∧ (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) ∈ 𝐷 ∧ (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) ∈ 𝐷)) → (((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, 𝑌⟩)) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)) = ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩))))
4327, 35, 39, 41, 42syl13anc 1372 . . 3 (𝜑 → (((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, 𝑌⟩)) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)) = ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩))))
4426, 43eqtrd 2771 . 2 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩)) = ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩))))
453, 4, 6, 7, 28, 18, 22, 23, 24, 21, 38, 25mapdindp1 40394 . . . 4 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑌 + 𝑍)}))
461, 2, 16dvhlmod 39784 . . . . 5 (𝜑𝑈 ∈ LMod)
473, 4lmodvacl 20435 . . . . 5 ((𝑈 ∈ LMod ∧ 𝑌𝑉𝑍𝑉) → (𝑌 + 𝑍) ∈ 𝑉)
4846, 31, 36, 47syl3anc 1371 . . . 4 (𝜑 → (𝑌 + 𝑍) ∈ 𝑉)
491, 2, 3, 6, 7, 8, 9, 13, 14, 15, 16, 17, 19, 45, 18, 48hdmap1cl 40478 . . 3 (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) ∈ 𝐷)
509, 10lmodvacl 20435 . . . 4 ((𝐶 ∈ LMod ∧ (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) ∈ 𝐷 ∧ (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) ∈ 𝐷) → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)) ∈ 𝐷)
5127, 39, 41, 50syl3anc 1371 . . 3 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)) ∈ 𝐷)
529, 10lmodlcan 20437 . . 3 ((𝐶 ∈ LMod ∧ ((𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) ∈ 𝐷 ∧ ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)) ∈ 𝐷 ∧ (𝐼‘⟨𝑋, 𝐹, 𝑤⟩) ∈ 𝐷)) → (((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩)) = ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩))) ↔ (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩))))
5327, 49, 51, 35, 52syl13anc 1372 . 2 (𝜑 → (((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩)) = ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩))) ↔ (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩))))
5444, 53mpbid 231 1 (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2939  cdif 3941  {csn 4622  {cpr 4624  cotp 4630  cfv 6532  (class class class)co 7393  Basecbs 17126  +gcplusg 17179  0gc0g 17367  -gcsg 18796  LModclmod 20420  LSpanclspn 20531  HLchlt 38023  LHypclh 38658  DVecHcdvh 39752  LCDualclcd 40260  mapdcmpd 40298  HDMap1chdma1 40465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169  ax-riotaBAD 37626
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-tp 4627  df-op 4629  df-ot 4631  df-uni 4902  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-of 7653  df-om 7839  df-1st 7957  df-2nd 7958  df-tpos 8193  df-undef 8240  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-er 8686  df-map 8805  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-nn 12195  df-2 12257  df-3 12258  df-4 12259  df-5 12260  df-6 12261  df-n0 12455  df-z 12541  df-uz 12805  df-fz 13467  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17127  df-ress 17156  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-0g 17369  df-mre 17512  df-mrc 17513  df-acs 17515  df-proset 18230  df-poset 18248  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-p1 18361  df-lat 18367  df-clat 18434  df-mgm 18543  df-sgrp 18592  df-mnd 18603  df-submnd 18648  df-grp 18797  df-minusg 18798  df-sbg 18799  df-subg 18975  df-cntz 19147  df-oppg 19174  df-lsm 19468  df-cmn 19614  df-abl 19615  df-mgp 19947  df-ur 19964  df-ring 20016  df-oppr 20102  df-dvdsr 20123  df-unit 20124  df-invr 20154  df-dvr 20165  df-drng 20267  df-lmod 20422  df-lss 20492  df-lsp 20532  df-lvec 20663  df-lsatoms 37649  df-lshyp 37650  df-lcv 37692  df-lfl 37731  df-lkr 37759  df-ldual 37797  df-oposet 37849  df-ol 37851  df-oml 37852  df-covers 37939  df-ats 37940  df-atl 37971  df-cvlat 37995  df-hlat 38024  df-llines 38172  df-lplanes 38173  df-lvols 38174  df-lines 38175  df-psubsp 38177  df-pmap 38178  df-padd 38470  df-lhyp 38662  df-laut 38663  df-ldil 38778  df-ltrn 38779  df-trl 38833  df-tgrp 39417  df-tendo 39429  df-edring 39431  df-dveca 39677  df-disoa 39703  df-dvech 39753  df-dib 39813  df-dic 39847  df-dih 39903  df-doch 40022  df-djh 40069  df-lcdual 40261  df-mapd 40299  df-hdmap1 40467
This theorem is referenced by:  hdmap1l6i  40492
  Copyright terms: Public domain W3C validator