MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodcom Structured version   Visualization version   GIF version

Theorem lmodcom 20517
Description: Left module vector sum is commutative. (Contributed by GΓ©rard Lang, 25-Jun-2014.)
Hypotheses
Ref Expression
lmodcom.v 𝑉 = (Baseβ€˜π‘Š)
lmodcom.a + = (+gβ€˜π‘Š)
Assertion
Ref Expression
lmodcom ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (𝑋 + π‘Œ) = (π‘Œ + 𝑋))

Proof of Theorem lmodcom
StepHypRef Expression
1 simp1 1136 . . . . . . . 8 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ π‘Š ∈ LMod)
2 eqid 2732 . . . . . . . . . . 11 (Scalarβ€˜π‘Š) = (Scalarβ€˜π‘Š)
3 eqid 2732 . . . . . . . . . . 11 (Baseβ€˜(Scalarβ€˜π‘Š)) = (Baseβ€˜(Scalarβ€˜π‘Š))
4 eqid 2732 . . . . . . . . . . 11 (1rβ€˜(Scalarβ€˜π‘Š)) = (1rβ€˜(Scalarβ€˜π‘Š))
52, 3, 4lmod1cl 20498 . . . . . . . . . 10 (π‘Š ∈ LMod β†’ (1rβ€˜(Scalarβ€˜π‘Š)) ∈ (Baseβ€˜(Scalarβ€˜π‘Š)))
61, 5syl 17 . . . . . . . . 9 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (1rβ€˜(Scalarβ€˜π‘Š)) ∈ (Baseβ€˜(Scalarβ€˜π‘Š)))
7 eqid 2732 . . . . . . . . . 10 (+gβ€˜(Scalarβ€˜π‘Š)) = (+gβ€˜(Scalarβ€˜π‘Š))
82, 3, 7lmodacl 20482 . . . . . . . . 9 ((π‘Š ∈ LMod ∧ (1rβ€˜(Scalarβ€˜π‘Š)) ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ (1rβ€˜(Scalarβ€˜π‘Š)) ∈ (Baseβ€˜(Scalarβ€˜π‘Š))) β†’ ((1rβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(1rβ€˜(Scalarβ€˜π‘Š))) ∈ (Baseβ€˜(Scalarβ€˜π‘Š)))
91, 6, 6, 8syl3anc 1371 . . . . . . . 8 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ ((1rβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(1rβ€˜(Scalarβ€˜π‘Š))) ∈ (Baseβ€˜(Scalarβ€˜π‘Š)))
10 simp2 1137 . . . . . . . 8 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ 𝑋 ∈ 𝑉)
11 simp3 1138 . . . . . . . 8 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ π‘Œ ∈ 𝑉)
12 lmodcom.v . . . . . . . . 9 𝑉 = (Baseβ€˜π‘Š)
13 lmodcom.a . . . . . . . . 9 + = (+gβ€˜π‘Š)
14 eqid 2732 . . . . . . . . 9 ( ·𝑠 β€˜π‘Š) = ( ·𝑠 β€˜π‘Š)
1512, 13, 2, 14, 3lmodvsdi 20494 . . . . . . . 8 ((π‘Š ∈ LMod ∧ (((1rβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(1rβ€˜(Scalarβ€˜π‘Š))) ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉)) β†’ (((1rβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(1rβ€˜(Scalarβ€˜π‘Š)))( ·𝑠 β€˜π‘Š)(𝑋 + π‘Œ)) = ((((1rβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(1rβ€˜(Scalarβ€˜π‘Š)))( ·𝑠 β€˜π‘Š)𝑋) + (((1rβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(1rβ€˜(Scalarβ€˜π‘Š)))( ·𝑠 β€˜π‘Š)π‘Œ)))
161, 9, 10, 11, 15syl13anc 1372 . . . . . . 7 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (((1rβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(1rβ€˜(Scalarβ€˜π‘Š)))( ·𝑠 β€˜π‘Š)(𝑋 + π‘Œ)) = ((((1rβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(1rβ€˜(Scalarβ€˜π‘Š)))( ·𝑠 β€˜π‘Š)𝑋) + (((1rβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(1rβ€˜(Scalarβ€˜π‘Š)))( ·𝑠 β€˜π‘Š)π‘Œ)))
1712, 13lmodvacl 20485 . . . . . . . 8 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (𝑋 + π‘Œ) ∈ 𝑉)
1812, 13, 2, 14, 3, 7lmodvsdir 20495 . . . . . . . 8 ((π‘Š ∈ LMod ∧ ((1rβ€˜(Scalarβ€˜π‘Š)) ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ (1rβ€˜(Scalarβ€˜π‘Š)) ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ (𝑋 + π‘Œ) ∈ 𝑉)) β†’ (((1rβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(1rβ€˜(Scalarβ€˜π‘Š)))( ·𝑠 β€˜π‘Š)(𝑋 + π‘Œ)) = (((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)(𝑋 + π‘Œ)) + ((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)(𝑋 + π‘Œ))))
191, 6, 6, 17, 18syl13anc 1372 . . . . . . 7 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (((1rβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(1rβ€˜(Scalarβ€˜π‘Š)))( ·𝑠 β€˜π‘Š)(𝑋 + π‘Œ)) = (((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)(𝑋 + π‘Œ)) + ((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)(𝑋 + π‘Œ))))
2016, 19eqtr3d 2774 . . . . . 6 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ ((((1rβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(1rβ€˜(Scalarβ€˜π‘Š)))( ·𝑠 β€˜π‘Š)𝑋) + (((1rβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(1rβ€˜(Scalarβ€˜π‘Š)))( ·𝑠 β€˜π‘Š)π‘Œ)) = (((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)(𝑋 + π‘Œ)) + ((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)(𝑋 + π‘Œ))))
2112, 13, 2, 14, 3, 7lmodvsdir 20495 . . . . . . . . 9 ((π‘Š ∈ LMod ∧ ((1rβ€˜(Scalarβ€˜π‘Š)) ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ (1rβ€˜(Scalarβ€˜π‘Š)) ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑋 ∈ 𝑉)) β†’ (((1rβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(1rβ€˜(Scalarβ€˜π‘Š)))( ·𝑠 β€˜π‘Š)𝑋) = (((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)𝑋) + ((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)𝑋)))
221, 6, 6, 10, 21syl13anc 1372 . . . . . . . 8 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (((1rβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(1rβ€˜(Scalarβ€˜π‘Š)))( ·𝑠 β€˜π‘Š)𝑋) = (((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)𝑋) + ((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)𝑋)))
2312, 2, 14, 4lmodvs1 20499 . . . . . . . . . 10 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉) β†’ ((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)𝑋) = 𝑋)
241, 10, 23syl2anc 584 . . . . . . . . 9 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ ((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)𝑋) = 𝑋)
2524, 24oveq12d 7426 . . . . . . . 8 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)𝑋) + ((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)𝑋)) = (𝑋 + 𝑋))
2622, 25eqtrd 2772 . . . . . . 7 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (((1rβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(1rβ€˜(Scalarβ€˜π‘Š)))( ·𝑠 β€˜π‘Š)𝑋) = (𝑋 + 𝑋))
2712, 13, 2, 14, 3, 7lmodvsdir 20495 . . . . . . . . 9 ((π‘Š ∈ LMod ∧ ((1rβ€˜(Scalarβ€˜π‘Š)) ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ (1rβ€˜(Scalarβ€˜π‘Š)) ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ π‘Œ ∈ 𝑉)) β†’ (((1rβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(1rβ€˜(Scalarβ€˜π‘Š)))( ·𝑠 β€˜π‘Š)π‘Œ) = (((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)π‘Œ) + ((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)π‘Œ)))
281, 6, 6, 11, 27syl13anc 1372 . . . . . . . 8 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (((1rβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(1rβ€˜(Scalarβ€˜π‘Š)))( ·𝑠 β€˜π‘Š)π‘Œ) = (((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)π‘Œ) + ((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)π‘Œ)))
2912, 2, 14, 4lmodvs1 20499 . . . . . . . . . 10 ((π‘Š ∈ LMod ∧ π‘Œ ∈ 𝑉) β†’ ((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)π‘Œ) = π‘Œ)
301, 11, 29syl2anc 584 . . . . . . . . 9 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ ((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)π‘Œ) = π‘Œ)
3130, 30oveq12d 7426 . . . . . . . 8 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)π‘Œ) + ((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)π‘Œ)) = (π‘Œ + π‘Œ))
3228, 31eqtrd 2772 . . . . . . 7 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (((1rβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(1rβ€˜(Scalarβ€˜π‘Š)))( ·𝑠 β€˜π‘Š)π‘Œ) = (π‘Œ + π‘Œ))
3326, 32oveq12d 7426 . . . . . 6 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ ((((1rβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(1rβ€˜(Scalarβ€˜π‘Š)))( ·𝑠 β€˜π‘Š)𝑋) + (((1rβ€˜(Scalarβ€˜π‘Š))(+gβ€˜(Scalarβ€˜π‘Š))(1rβ€˜(Scalarβ€˜π‘Š)))( ·𝑠 β€˜π‘Š)π‘Œ)) = ((𝑋 + 𝑋) + (π‘Œ + π‘Œ)))
3412, 2, 14, 4lmodvs1 20499 . . . . . . . 8 ((π‘Š ∈ LMod ∧ (𝑋 + π‘Œ) ∈ 𝑉) β†’ ((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)(𝑋 + π‘Œ)) = (𝑋 + π‘Œ))
351, 17, 34syl2anc 584 . . . . . . 7 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ ((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)(𝑋 + π‘Œ)) = (𝑋 + π‘Œ))
3635, 35oveq12d 7426 . . . . . 6 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)(𝑋 + π‘Œ)) + ((1rβ€˜(Scalarβ€˜π‘Š))( ·𝑠 β€˜π‘Š)(𝑋 + π‘Œ))) = ((𝑋 + π‘Œ) + (𝑋 + π‘Œ)))
3720, 33, 363eqtr3d 2780 . . . . 5 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ ((𝑋 + 𝑋) + (π‘Œ + π‘Œ)) = ((𝑋 + π‘Œ) + (𝑋 + π‘Œ)))
3812, 13lmodvacl 20485 . . . . . . 7 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) β†’ (𝑋 + 𝑋) ∈ 𝑉)
391, 10, 10, 38syl3anc 1371 . . . . . 6 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (𝑋 + 𝑋) ∈ 𝑉)
4012, 13lmodass 20486 . . . . . 6 ((π‘Š ∈ LMod ∧ ((𝑋 + 𝑋) ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ π‘Œ ∈ 𝑉)) β†’ (((𝑋 + 𝑋) + π‘Œ) + π‘Œ) = ((𝑋 + 𝑋) + (π‘Œ + π‘Œ)))
411, 39, 11, 11, 40syl13anc 1372 . . . . 5 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (((𝑋 + 𝑋) + π‘Œ) + π‘Œ) = ((𝑋 + 𝑋) + (π‘Œ + π‘Œ)))
4212, 13lmodass 20486 . . . . . 6 ((π‘Š ∈ LMod ∧ ((𝑋 + π‘Œ) ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉)) β†’ (((𝑋 + π‘Œ) + 𝑋) + π‘Œ) = ((𝑋 + π‘Œ) + (𝑋 + π‘Œ)))
431, 17, 10, 11, 42syl13anc 1372 . . . . 5 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (((𝑋 + π‘Œ) + 𝑋) + π‘Œ) = ((𝑋 + π‘Œ) + (𝑋 + π‘Œ)))
4437, 41, 433eqtr4d 2782 . . . 4 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (((𝑋 + 𝑋) + π‘Œ) + π‘Œ) = (((𝑋 + π‘Œ) + 𝑋) + π‘Œ))
45 lmodgrp 20477 . . . . . 6 (π‘Š ∈ LMod β†’ π‘Š ∈ Grp)
461, 45syl 17 . . . . 5 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ π‘Š ∈ Grp)
4712, 13lmodvacl 20485 . . . . . 6 ((π‘Š ∈ LMod ∧ (𝑋 + 𝑋) ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ ((𝑋 + 𝑋) + π‘Œ) ∈ 𝑉)
481, 39, 11, 47syl3anc 1371 . . . . 5 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ ((𝑋 + 𝑋) + π‘Œ) ∈ 𝑉)
4912, 13lmodvacl 20485 . . . . . 6 ((π‘Š ∈ LMod ∧ (𝑋 + π‘Œ) ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) β†’ ((𝑋 + π‘Œ) + 𝑋) ∈ 𝑉)
501, 17, 10, 49syl3anc 1371 . . . . 5 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ ((𝑋 + π‘Œ) + 𝑋) ∈ 𝑉)
5112, 13grprcan 18857 . . . . 5 ((π‘Š ∈ Grp ∧ (((𝑋 + 𝑋) + π‘Œ) ∈ 𝑉 ∧ ((𝑋 + π‘Œ) + 𝑋) ∈ 𝑉 ∧ π‘Œ ∈ 𝑉)) β†’ ((((𝑋 + 𝑋) + π‘Œ) + π‘Œ) = (((𝑋 + π‘Œ) + 𝑋) + π‘Œ) ↔ ((𝑋 + 𝑋) + π‘Œ) = ((𝑋 + π‘Œ) + 𝑋)))
5246, 48, 50, 11, 51syl13anc 1372 . . . 4 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ ((((𝑋 + 𝑋) + π‘Œ) + π‘Œ) = (((𝑋 + π‘Œ) + 𝑋) + π‘Œ) ↔ ((𝑋 + 𝑋) + π‘Œ) = ((𝑋 + π‘Œ) + 𝑋)))
5344, 52mpbid 231 . . 3 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ ((𝑋 + 𝑋) + π‘Œ) = ((𝑋 + π‘Œ) + 𝑋))
5412, 13lmodass 20486 . . . 4 ((π‘Š ∈ LMod ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉)) β†’ ((𝑋 + 𝑋) + π‘Œ) = (𝑋 + (𝑋 + π‘Œ)))
551, 10, 10, 11, 54syl13anc 1372 . . 3 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ ((𝑋 + 𝑋) + π‘Œ) = (𝑋 + (𝑋 + π‘Œ)))
5612, 13lmodass 20486 . . . 4 ((π‘Š ∈ LMod ∧ (𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) β†’ ((𝑋 + π‘Œ) + 𝑋) = (𝑋 + (π‘Œ + 𝑋)))
571, 10, 11, 10, 56syl13anc 1372 . . 3 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ ((𝑋 + π‘Œ) + 𝑋) = (𝑋 + (π‘Œ + 𝑋)))
5853, 55, 573eqtr3d 2780 . 2 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (𝑋 + (𝑋 + π‘Œ)) = (𝑋 + (π‘Œ + 𝑋)))
5912, 13lmodvacl 20485 . . . 4 ((π‘Š ∈ LMod ∧ π‘Œ ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) β†’ (π‘Œ + 𝑋) ∈ 𝑉)
60593com23 1126 . . 3 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (π‘Œ + 𝑋) ∈ 𝑉)
6112, 13lmodlcan 20487 . . 3 ((π‘Š ∈ LMod ∧ ((𝑋 + π‘Œ) ∈ 𝑉 ∧ (π‘Œ + 𝑋) ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) β†’ ((𝑋 + (𝑋 + π‘Œ)) = (𝑋 + (π‘Œ + 𝑋)) ↔ (𝑋 + π‘Œ) = (π‘Œ + 𝑋)))
621, 17, 60, 10, 61syl13anc 1372 . 2 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ ((𝑋 + (𝑋 + π‘Œ)) = (𝑋 + (π‘Œ + 𝑋)) ↔ (𝑋 + π‘Œ) = (π‘Œ + 𝑋)))
6358, 62mpbid 231 1 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (𝑋 + π‘Œ) = (π‘Œ + 𝑋))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  β€˜cfv 6543  (class class class)co 7408  Basecbs 17143  +gcplusg 17196  Scalarcsca 17199   ·𝑠 cvsca 17200  Grpcgrp 18818  1rcur 20003  LModclmod 20470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-plusg 17209  df-0g 17386  df-mgm 18560  df-sgrp 18609  df-mnd 18625  df-grp 18821  df-minusg 18822  df-mgp 19987  df-ur 20004  df-ring 20057  df-lmod 20472
This theorem is referenced by:  lmodabl  20518  lssvsubcl  20553  lssvancl2  20555  lspsolv  20755  lflsub  37932  lcfrlem21  40429  lcfrlem42  40450  mapdindp4  40589
  Copyright terms: Public domain W3C validator