MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodcom Structured version   Visualization version   GIF version

Theorem lmodcom 20906
Description: Left module vector sum is commutative. (Contributed by Gérard Lang, 25-Jun-2014.)
Hypotheses
Ref Expression
lmodcom.v 𝑉 = (Base‘𝑊)
lmodcom.a + = (+g𝑊)
Assertion
Ref Expression
lmodcom ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑌) = (𝑌 + 𝑋))

Proof of Theorem lmodcom
StepHypRef Expression
1 simp1 1137 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → 𝑊 ∈ LMod)
2 eqid 2737 . . . . . . . . . . 11 (Scalar‘𝑊) = (Scalar‘𝑊)
3 eqid 2737 . . . . . . . . . . 11 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
4 eqid 2737 . . . . . . . . . . 11 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
52, 3, 4lmod1cl 20887 . . . . . . . . . 10 (𝑊 ∈ LMod → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
61, 5syl 17 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
7 eqid 2737 . . . . . . . . . 10 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
82, 3, 7lmodacl 20870 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)) ∧ (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) → ((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)))
91, 6, 6, 8syl3anc 1373 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)))
10 simp2 1138 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → 𝑋𝑉)
11 simp3 1139 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → 𝑌𝑉)
12 lmodcom.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
13 lmodcom.a . . . . . . . . 9 + = (+g𝑊)
14 eqid 2737 . . . . . . . . 9 ( ·𝑠𝑊) = ( ·𝑠𝑊)
1512, 13, 2, 14, 3lmodvsdi 20883 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑋𝑉𝑌𝑉)) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)(𝑋 + 𝑌)) = ((((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋) + (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌)))
161, 9, 10, 11, 15syl13anc 1374 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)(𝑋 + 𝑌)) = ((((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋) + (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌)))
1712, 13lmodvacl 20873 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑌) ∈ 𝑉)
1812, 13, 2, 14, 3, 7lmodvsdir 20884 . . . . . . . 8 ((𝑊 ∈ LMod ∧ ((1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)) ∧ (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋 + 𝑌) ∈ 𝑉)) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)(𝑋 + 𝑌)) = (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌)) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌))))
191, 6, 6, 17, 18syl13anc 1374 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)(𝑋 + 𝑌)) = (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌)) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌))))
2016, 19eqtr3d 2779 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋) + (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌)) = (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌)) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌))))
2112, 13, 2, 14, 3, 7lmodvsdir 20884 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ ((1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)) ∧ (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑋𝑉)) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋) = (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋)))
221, 6, 6, 10, 21syl13anc 1374 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋) = (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋)))
2312, 2, 14, 4lmodvs1 20888 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) = 𝑋)
241, 10, 23syl2anc 584 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) = 𝑋)
2524, 24oveq12d 7449 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋)) = (𝑋 + 𝑋))
2622, 25eqtrd 2777 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋) = (𝑋 + 𝑋))
2712, 13, 2, 14, 3, 7lmodvsdir 20884 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ ((1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)) ∧ (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑌𝑉)) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌) = (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)))
281, 6, 6, 11, 27syl13anc 1374 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌) = (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)))
2912, 2, 14, 4lmodvs1 20888 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = 𝑌)
301, 11, 29syl2anc 584 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = 𝑌)
3130, 30oveq12d 7449 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)) = (𝑌 + 𝑌))
3228, 31eqtrd 2777 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌) = (𝑌 + 𝑌))
3326, 32oveq12d 7449 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋) + (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌)) = ((𝑋 + 𝑋) + (𝑌 + 𝑌)))
3412, 2, 14, 4lmodvs1 20888 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑋 + 𝑌) ∈ 𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌)) = (𝑋 + 𝑌))
351, 17, 34syl2anc 584 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌)) = (𝑋 + 𝑌))
3635, 35oveq12d 7449 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌)) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌))) = ((𝑋 + 𝑌) + (𝑋 + 𝑌)))
3720, 33, 363eqtr3d 2785 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 + 𝑋) + (𝑌 + 𝑌)) = ((𝑋 + 𝑌) + (𝑋 + 𝑌)))
3812, 13lmodvacl 20873 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑋𝑉) → (𝑋 + 𝑋) ∈ 𝑉)
391, 10, 10, 38syl3anc 1373 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑋) ∈ 𝑉)
4012, 13lmodass 20874 . . . . . 6 ((𝑊 ∈ LMod ∧ ((𝑋 + 𝑋) ∈ 𝑉𝑌𝑉𝑌𝑉)) → (((𝑋 + 𝑋) + 𝑌) + 𝑌) = ((𝑋 + 𝑋) + (𝑌 + 𝑌)))
411, 39, 11, 11, 40syl13anc 1374 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((𝑋 + 𝑋) + 𝑌) + 𝑌) = ((𝑋 + 𝑋) + (𝑌 + 𝑌)))
4212, 13lmodass 20874 . . . . . 6 ((𝑊 ∈ LMod ∧ ((𝑋 + 𝑌) ∈ 𝑉𝑋𝑉𝑌𝑉)) → (((𝑋 + 𝑌) + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + (𝑋 + 𝑌)))
431, 17, 10, 11, 42syl13anc 1374 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((𝑋 + 𝑌) + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + (𝑋 + 𝑌)))
4437, 41, 433eqtr4d 2787 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((𝑋 + 𝑋) + 𝑌) + 𝑌) = (((𝑋 + 𝑌) + 𝑋) + 𝑌))
45 lmodgrp 20865 . . . . . 6 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
461, 45syl 17 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → 𝑊 ∈ Grp)
4712, 13lmodvacl 20873 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑋 + 𝑋) ∈ 𝑉𝑌𝑉) → ((𝑋 + 𝑋) + 𝑌) ∈ 𝑉)
481, 39, 11, 47syl3anc 1373 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 + 𝑋) + 𝑌) ∈ 𝑉)
4912, 13lmodvacl 20873 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑋 + 𝑌) ∈ 𝑉𝑋𝑉) → ((𝑋 + 𝑌) + 𝑋) ∈ 𝑉)
501, 17, 10, 49syl3anc 1373 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 + 𝑌) + 𝑋) ∈ 𝑉)
5112, 13grprcan 18991 . . . . 5 ((𝑊 ∈ Grp ∧ (((𝑋 + 𝑋) + 𝑌) ∈ 𝑉 ∧ ((𝑋 + 𝑌) + 𝑋) ∈ 𝑉𝑌𝑉)) → ((((𝑋 + 𝑋) + 𝑌) + 𝑌) = (((𝑋 + 𝑌) + 𝑋) + 𝑌) ↔ ((𝑋 + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + 𝑋)))
5246, 48, 50, 11, 51syl13anc 1374 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((((𝑋 + 𝑋) + 𝑌) + 𝑌) = (((𝑋 + 𝑌) + 𝑋) + 𝑌) ↔ ((𝑋 + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + 𝑋)))
5344, 52mpbid 232 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + 𝑋))
5412, 13lmodass 20874 . . . 4 ((𝑊 ∈ LMod ∧ (𝑋𝑉𝑋𝑉𝑌𝑉)) → ((𝑋 + 𝑋) + 𝑌) = (𝑋 + (𝑋 + 𝑌)))
551, 10, 10, 11, 54syl13anc 1374 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 + 𝑋) + 𝑌) = (𝑋 + (𝑋 + 𝑌)))
5612, 13lmodass 20874 . . . 4 ((𝑊 ∈ LMod ∧ (𝑋𝑉𝑌𝑉𝑋𝑉)) → ((𝑋 + 𝑌) + 𝑋) = (𝑋 + (𝑌 + 𝑋)))
571, 10, 11, 10, 56syl13anc 1374 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 + 𝑌) + 𝑋) = (𝑋 + (𝑌 + 𝑋)))
5853, 55, 573eqtr3d 2785 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + (𝑋 + 𝑌)) = (𝑋 + (𝑌 + 𝑋)))
5912, 13lmodvacl 20873 . . . 4 ((𝑊 ∈ LMod ∧ 𝑌𝑉𝑋𝑉) → (𝑌 + 𝑋) ∈ 𝑉)
60593com23 1127 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑌 + 𝑋) ∈ 𝑉)
6112, 13lmodlcan 20875 . . 3 ((𝑊 ∈ LMod ∧ ((𝑋 + 𝑌) ∈ 𝑉 ∧ (𝑌 + 𝑋) ∈ 𝑉𝑋𝑉)) → ((𝑋 + (𝑋 + 𝑌)) = (𝑋 + (𝑌 + 𝑋)) ↔ (𝑋 + 𝑌) = (𝑌 + 𝑋)))
621, 17, 60, 10, 61syl13anc 1374 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 + (𝑋 + 𝑌)) = (𝑋 + (𝑌 + 𝑋)) ↔ (𝑋 + 𝑌) = (𝑌 + 𝑋)))
6358, 62mpbid 232 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087   = wceq 1540  wcel 2108  cfv 6561  (class class class)co 7431  Basecbs 17247  +gcplusg 17297  Scalarcsca 17300   ·𝑠 cvsca 17301  Grpcgrp 18951  1rcur 20178  LModclmod 20858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-mgp 20138  df-ur 20179  df-ring 20232  df-lmod 20860
This theorem is referenced by:  lmodabl  20907  lssvsubcl  20942  lssvancl2  20944  lspsolv  21145  lflsub  39068  lcfrlem21  41565  lcfrlem42  41586  mapdindp4  41725
  Copyright terms: Public domain W3C validator