MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodcom Structured version   Visualization version   GIF version

Theorem lmodcom 20821
Description: Left module vector sum is commutative. (Contributed by Gérard Lang, 25-Jun-2014.)
Hypotheses
Ref Expression
lmodcom.v 𝑉 = (Base‘𝑊)
lmodcom.a + = (+g𝑊)
Assertion
Ref Expression
lmodcom ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑌) = (𝑌 + 𝑋))

Proof of Theorem lmodcom
StepHypRef Expression
1 simp1 1136 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → 𝑊 ∈ LMod)
2 eqid 2730 . . . . . . . . . . 11 (Scalar‘𝑊) = (Scalar‘𝑊)
3 eqid 2730 . . . . . . . . . . 11 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
4 eqid 2730 . . . . . . . . . . 11 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
52, 3, 4lmod1cl 20802 . . . . . . . . . 10 (𝑊 ∈ LMod → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
61, 5syl 17 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
7 eqid 2730 . . . . . . . . . 10 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
82, 3, 7lmodacl 20785 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)) ∧ (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) → ((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)))
91, 6, 6, 8syl3anc 1373 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)))
10 simp2 1137 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → 𝑋𝑉)
11 simp3 1138 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → 𝑌𝑉)
12 lmodcom.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
13 lmodcom.a . . . . . . . . 9 + = (+g𝑊)
14 eqid 2730 . . . . . . . . 9 ( ·𝑠𝑊) = ( ·𝑠𝑊)
1512, 13, 2, 14, 3lmodvsdi 20798 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑋𝑉𝑌𝑉)) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)(𝑋 + 𝑌)) = ((((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋) + (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌)))
161, 9, 10, 11, 15syl13anc 1374 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)(𝑋 + 𝑌)) = ((((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋) + (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌)))
1712, 13lmodvacl 20788 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑌) ∈ 𝑉)
1812, 13, 2, 14, 3, 7lmodvsdir 20799 . . . . . . . 8 ((𝑊 ∈ LMod ∧ ((1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)) ∧ (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋 + 𝑌) ∈ 𝑉)) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)(𝑋 + 𝑌)) = (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌)) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌))))
191, 6, 6, 17, 18syl13anc 1374 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)(𝑋 + 𝑌)) = (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌)) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌))))
2016, 19eqtr3d 2767 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋) + (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌)) = (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌)) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌))))
2112, 13, 2, 14, 3, 7lmodvsdir 20799 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ ((1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)) ∧ (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑋𝑉)) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋) = (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋)))
221, 6, 6, 10, 21syl13anc 1374 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋) = (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋)))
2312, 2, 14, 4lmodvs1 20803 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) = 𝑋)
241, 10, 23syl2anc 584 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) = 𝑋)
2524, 24oveq12d 7408 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋)) = (𝑋 + 𝑋))
2622, 25eqtrd 2765 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋) = (𝑋 + 𝑋))
2712, 13, 2, 14, 3, 7lmodvsdir 20799 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ ((1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)) ∧ (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑌𝑉)) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌) = (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)))
281, 6, 6, 11, 27syl13anc 1374 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌) = (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)))
2912, 2, 14, 4lmodvs1 20803 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = 𝑌)
301, 11, 29syl2anc 584 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = 𝑌)
3130, 30oveq12d 7408 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)) = (𝑌 + 𝑌))
3228, 31eqtrd 2765 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌) = (𝑌 + 𝑌))
3326, 32oveq12d 7408 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋) + (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌)) = ((𝑋 + 𝑋) + (𝑌 + 𝑌)))
3412, 2, 14, 4lmodvs1 20803 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑋 + 𝑌) ∈ 𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌)) = (𝑋 + 𝑌))
351, 17, 34syl2anc 584 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌)) = (𝑋 + 𝑌))
3635, 35oveq12d 7408 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌)) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌))) = ((𝑋 + 𝑌) + (𝑋 + 𝑌)))
3720, 33, 363eqtr3d 2773 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 + 𝑋) + (𝑌 + 𝑌)) = ((𝑋 + 𝑌) + (𝑋 + 𝑌)))
3812, 13lmodvacl 20788 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑋𝑉) → (𝑋 + 𝑋) ∈ 𝑉)
391, 10, 10, 38syl3anc 1373 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑋) ∈ 𝑉)
4012, 13lmodass 20789 . . . . . 6 ((𝑊 ∈ LMod ∧ ((𝑋 + 𝑋) ∈ 𝑉𝑌𝑉𝑌𝑉)) → (((𝑋 + 𝑋) + 𝑌) + 𝑌) = ((𝑋 + 𝑋) + (𝑌 + 𝑌)))
411, 39, 11, 11, 40syl13anc 1374 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((𝑋 + 𝑋) + 𝑌) + 𝑌) = ((𝑋 + 𝑋) + (𝑌 + 𝑌)))
4212, 13lmodass 20789 . . . . . 6 ((𝑊 ∈ LMod ∧ ((𝑋 + 𝑌) ∈ 𝑉𝑋𝑉𝑌𝑉)) → (((𝑋 + 𝑌) + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + (𝑋 + 𝑌)))
431, 17, 10, 11, 42syl13anc 1374 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((𝑋 + 𝑌) + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + (𝑋 + 𝑌)))
4437, 41, 433eqtr4d 2775 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((𝑋 + 𝑋) + 𝑌) + 𝑌) = (((𝑋 + 𝑌) + 𝑋) + 𝑌))
45 lmodgrp 20780 . . . . . 6 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
461, 45syl 17 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → 𝑊 ∈ Grp)
4712, 13lmodvacl 20788 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑋 + 𝑋) ∈ 𝑉𝑌𝑉) → ((𝑋 + 𝑋) + 𝑌) ∈ 𝑉)
481, 39, 11, 47syl3anc 1373 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 + 𝑋) + 𝑌) ∈ 𝑉)
4912, 13lmodvacl 20788 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑋 + 𝑌) ∈ 𝑉𝑋𝑉) → ((𝑋 + 𝑌) + 𝑋) ∈ 𝑉)
501, 17, 10, 49syl3anc 1373 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 + 𝑌) + 𝑋) ∈ 𝑉)
5112, 13grprcan 18912 . . . . 5 ((𝑊 ∈ Grp ∧ (((𝑋 + 𝑋) + 𝑌) ∈ 𝑉 ∧ ((𝑋 + 𝑌) + 𝑋) ∈ 𝑉𝑌𝑉)) → ((((𝑋 + 𝑋) + 𝑌) + 𝑌) = (((𝑋 + 𝑌) + 𝑋) + 𝑌) ↔ ((𝑋 + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + 𝑋)))
5246, 48, 50, 11, 51syl13anc 1374 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((((𝑋 + 𝑋) + 𝑌) + 𝑌) = (((𝑋 + 𝑌) + 𝑋) + 𝑌) ↔ ((𝑋 + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + 𝑋)))
5344, 52mpbid 232 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + 𝑋))
5412, 13lmodass 20789 . . . 4 ((𝑊 ∈ LMod ∧ (𝑋𝑉𝑋𝑉𝑌𝑉)) → ((𝑋 + 𝑋) + 𝑌) = (𝑋 + (𝑋 + 𝑌)))
551, 10, 10, 11, 54syl13anc 1374 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 + 𝑋) + 𝑌) = (𝑋 + (𝑋 + 𝑌)))
5612, 13lmodass 20789 . . . 4 ((𝑊 ∈ LMod ∧ (𝑋𝑉𝑌𝑉𝑋𝑉)) → ((𝑋 + 𝑌) + 𝑋) = (𝑋 + (𝑌 + 𝑋)))
571, 10, 11, 10, 56syl13anc 1374 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 + 𝑌) + 𝑋) = (𝑋 + (𝑌 + 𝑋)))
5853, 55, 573eqtr3d 2773 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + (𝑋 + 𝑌)) = (𝑋 + (𝑌 + 𝑋)))
5912, 13lmodvacl 20788 . . . 4 ((𝑊 ∈ LMod ∧ 𝑌𝑉𝑋𝑉) → (𝑌 + 𝑋) ∈ 𝑉)
60593com23 1126 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑌 + 𝑋) ∈ 𝑉)
6112, 13lmodlcan 20790 . . 3 ((𝑊 ∈ LMod ∧ ((𝑋 + 𝑌) ∈ 𝑉 ∧ (𝑌 + 𝑋) ∈ 𝑉𝑋𝑉)) → ((𝑋 + (𝑋 + 𝑌)) = (𝑋 + (𝑌 + 𝑋)) ↔ (𝑋 + 𝑌) = (𝑌 + 𝑋)))
621, 17, 60, 10, 61syl13anc 1374 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 + (𝑋 + 𝑌)) = (𝑋 + (𝑌 + 𝑋)) ↔ (𝑋 + 𝑌) = (𝑌 + 𝑋)))
6358, 62mpbid 232 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  Scalarcsca 17230   ·𝑠 cvsca 17231  Grpcgrp 18872  1rcur 20097  LModclmod 20773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-mgp 20057  df-ur 20098  df-ring 20151  df-lmod 20775
This theorem is referenced by:  lmodabl  20822  lssvsubcl  20857  lssvancl2  20859  lspsolv  21060  lflsub  39067  lcfrlem21  41564  lcfrlem42  41585  mapdindp4  41724
  Copyright terms: Public domain W3C validator