MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodcom Structured version   Visualization version   GIF version

Theorem lmodcom 20928
Description: Left module vector sum is commutative. (Contributed by Gérard Lang, 25-Jun-2014.)
Hypotheses
Ref Expression
lmodcom.v 𝑉 = (Base‘𝑊)
lmodcom.a + = (+g𝑊)
Assertion
Ref Expression
lmodcom ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑌) = (𝑌 + 𝑋))

Proof of Theorem lmodcom
StepHypRef Expression
1 simp1 1136 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → 𝑊 ∈ LMod)
2 eqid 2740 . . . . . . . . . . 11 (Scalar‘𝑊) = (Scalar‘𝑊)
3 eqid 2740 . . . . . . . . . . 11 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
4 eqid 2740 . . . . . . . . . . 11 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
52, 3, 4lmod1cl 20909 . . . . . . . . . 10 (𝑊 ∈ LMod → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
61, 5syl 17 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
7 eqid 2740 . . . . . . . . . 10 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
82, 3, 7lmodacl 20892 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)) ∧ (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) → ((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)))
91, 6, 6, 8syl3anc 1371 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)))
10 simp2 1137 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → 𝑋𝑉)
11 simp3 1138 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → 𝑌𝑉)
12 lmodcom.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
13 lmodcom.a . . . . . . . . 9 + = (+g𝑊)
14 eqid 2740 . . . . . . . . 9 ( ·𝑠𝑊) = ( ·𝑠𝑊)
1512, 13, 2, 14, 3lmodvsdi 20905 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑋𝑉𝑌𝑉)) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)(𝑋 + 𝑌)) = ((((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋) + (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌)))
161, 9, 10, 11, 15syl13anc 1372 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)(𝑋 + 𝑌)) = ((((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋) + (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌)))
1712, 13lmodvacl 20895 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑌) ∈ 𝑉)
1812, 13, 2, 14, 3, 7lmodvsdir 20906 . . . . . . . 8 ((𝑊 ∈ LMod ∧ ((1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)) ∧ (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋 + 𝑌) ∈ 𝑉)) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)(𝑋 + 𝑌)) = (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌)) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌))))
191, 6, 6, 17, 18syl13anc 1372 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)(𝑋 + 𝑌)) = (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌)) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌))))
2016, 19eqtr3d 2782 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋) + (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌)) = (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌)) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌))))
2112, 13, 2, 14, 3, 7lmodvsdir 20906 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ ((1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)) ∧ (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑋𝑉)) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋) = (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋)))
221, 6, 6, 10, 21syl13anc 1372 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋) = (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋)))
2312, 2, 14, 4lmodvs1 20910 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) = 𝑋)
241, 10, 23syl2anc 583 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) = 𝑋)
2524, 24oveq12d 7466 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋)) = (𝑋 + 𝑋))
2622, 25eqtrd 2780 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋) = (𝑋 + 𝑋))
2712, 13, 2, 14, 3, 7lmodvsdir 20906 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ ((1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)) ∧ (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑌𝑉)) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌) = (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)))
281, 6, 6, 11, 27syl13anc 1372 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌) = (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)))
2912, 2, 14, 4lmodvs1 20910 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = 𝑌)
301, 11, 29syl2anc 583 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = 𝑌)
3130, 30oveq12d 7466 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)) = (𝑌 + 𝑌))
3228, 31eqtrd 2780 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌) = (𝑌 + 𝑌))
3326, 32oveq12d 7466 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋) + (((1r‘(Scalar‘𝑊))(+g‘(Scalar‘𝑊))(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑌)) = ((𝑋 + 𝑋) + (𝑌 + 𝑌)))
3412, 2, 14, 4lmodvs1 20910 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑋 + 𝑌) ∈ 𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌)) = (𝑋 + 𝑌))
351, 17, 34syl2anc 583 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌)) = (𝑋 + 𝑌))
3635, 35oveq12d 7466 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌)) + ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑋 + 𝑌))) = ((𝑋 + 𝑌) + (𝑋 + 𝑌)))
3720, 33, 363eqtr3d 2788 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 + 𝑋) + (𝑌 + 𝑌)) = ((𝑋 + 𝑌) + (𝑋 + 𝑌)))
3812, 13lmodvacl 20895 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑋𝑉) → (𝑋 + 𝑋) ∈ 𝑉)
391, 10, 10, 38syl3anc 1371 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑋) ∈ 𝑉)
4012, 13lmodass 20896 . . . . . 6 ((𝑊 ∈ LMod ∧ ((𝑋 + 𝑋) ∈ 𝑉𝑌𝑉𝑌𝑉)) → (((𝑋 + 𝑋) + 𝑌) + 𝑌) = ((𝑋 + 𝑋) + (𝑌 + 𝑌)))
411, 39, 11, 11, 40syl13anc 1372 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((𝑋 + 𝑋) + 𝑌) + 𝑌) = ((𝑋 + 𝑋) + (𝑌 + 𝑌)))
4212, 13lmodass 20896 . . . . . 6 ((𝑊 ∈ LMod ∧ ((𝑋 + 𝑌) ∈ 𝑉𝑋𝑉𝑌𝑉)) → (((𝑋 + 𝑌) + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + (𝑋 + 𝑌)))
431, 17, 10, 11, 42syl13anc 1372 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((𝑋 + 𝑌) + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + (𝑋 + 𝑌)))
4437, 41, 433eqtr4d 2790 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (((𝑋 + 𝑋) + 𝑌) + 𝑌) = (((𝑋 + 𝑌) + 𝑋) + 𝑌))
45 lmodgrp 20887 . . . . . 6 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
461, 45syl 17 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → 𝑊 ∈ Grp)
4712, 13lmodvacl 20895 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑋 + 𝑋) ∈ 𝑉𝑌𝑉) → ((𝑋 + 𝑋) + 𝑌) ∈ 𝑉)
481, 39, 11, 47syl3anc 1371 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 + 𝑋) + 𝑌) ∈ 𝑉)
4912, 13lmodvacl 20895 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑋 + 𝑌) ∈ 𝑉𝑋𝑉) → ((𝑋 + 𝑌) + 𝑋) ∈ 𝑉)
501, 17, 10, 49syl3anc 1371 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 + 𝑌) + 𝑋) ∈ 𝑉)
5112, 13grprcan 19013 . . . . 5 ((𝑊 ∈ Grp ∧ (((𝑋 + 𝑋) + 𝑌) ∈ 𝑉 ∧ ((𝑋 + 𝑌) + 𝑋) ∈ 𝑉𝑌𝑉)) → ((((𝑋 + 𝑋) + 𝑌) + 𝑌) = (((𝑋 + 𝑌) + 𝑋) + 𝑌) ↔ ((𝑋 + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + 𝑋)))
5246, 48, 50, 11, 51syl13anc 1372 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((((𝑋 + 𝑋) + 𝑌) + 𝑌) = (((𝑋 + 𝑌) + 𝑋) + 𝑌) ↔ ((𝑋 + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + 𝑋)))
5344, 52mpbid 232 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + 𝑋))
5412, 13lmodass 20896 . . . 4 ((𝑊 ∈ LMod ∧ (𝑋𝑉𝑋𝑉𝑌𝑉)) → ((𝑋 + 𝑋) + 𝑌) = (𝑋 + (𝑋 + 𝑌)))
551, 10, 10, 11, 54syl13anc 1372 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 + 𝑋) + 𝑌) = (𝑋 + (𝑋 + 𝑌)))
5612, 13lmodass 20896 . . . 4 ((𝑊 ∈ LMod ∧ (𝑋𝑉𝑌𝑉𝑋𝑉)) → ((𝑋 + 𝑌) + 𝑋) = (𝑋 + (𝑌 + 𝑋)))
571, 10, 11, 10, 56syl13anc 1372 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 + 𝑌) + 𝑋) = (𝑋 + (𝑌 + 𝑋)))
5853, 55, 573eqtr3d 2788 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + (𝑋 + 𝑌)) = (𝑋 + (𝑌 + 𝑋)))
5912, 13lmodvacl 20895 . . . 4 ((𝑊 ∈ LMod ∧ 𝑌𝑉𝑋𝑉) → (𝑌 + 𝑋) ∈ 𝑉)
60593com23 1126 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑌 + 𝑋) ∈ 𝑉)
6112, 13lmodlcan 20897 . . 3 ((𝑊 ∈ LMod ∧ ((𝑋 + 𝑌) ∈ 𝑉 ∧ (𝑌 + 𝑋) ∈ 𝑉𝑋𝑉)) → ((𝑋 + (𝑋 + 𝑌)) = (𝑋 + (𝑌 + 𝑋)) ↔ (𝑋 + 𝑌) = (𝑌 + 𝑋)))
621, 17, 60, 10, 61syl13anc 1372 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 + (𝑋 + 𝑌)) = (𝑋 + (𝑌 + 𝑋)) ↔ (𝑋 + 𝑌) = (𝑌 + 𝑋)))
6358, 62mpbid 232 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  Scalarcsca 17314   ·𝑠 cvsca 17315  Grpcgrp 18973  1rcur 20208  LModclmod 20880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-mgp 20162  df-ur 20209  df-ring 20262  df-lmod 20882
This theorem is referenced by:  lmodabl  20929  lssvsubcl  20965  lssvancl2  20967  lspsolv  21168  lflsub  39023  lcfrlem21  41520  lcfrlem42  41541  mapdindp4  41680
  Copyright terms: Public domain W3C validator