![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap1l6g | Structured version Visualization version GIF version |
Description: Lemmma for hdmap1l6 40630. Part (6) of [Baer] p. 47 line 39. (Contributed by NM, 1-May-2015.) |
Ref | Expression |
---|---|
hdmap1l6.h | β’ π» = (LHypβπΎ) |
hdmap1l6.u | β’ π = ((DVecHβπΎ)βπ) |
hdmap1l6.v | β’ π = (Baseβπ) |
hdmap1l6.p | β’ + = (+gβπ) |
hdmap1l6.s | β’ β = (-gβπ) |
hdmap1l6c.o | β’ 0 = (0gβπ) |
hdmap1l6.n | β’ π = (LSpanβπ) |
hdmap1l6.c | β’ πΆ = ((LCDualβπΎ)βπ) |
hdmap1l6.d | β’ π· = (BaseβπΆ) |
hdmap1l6.a | β’ β = (+gβπΆ) |
hdmap1l6.r | β’ π = (-gβπΆ) |
hdmap1l6.q | β’ π = (0gβπΆ) |
hdmap1l6.l | β’ πΏ = (LSpanβπΆ) |
hdmap1l6.m | β’ π = ((mapdβπΎ)βπ) |
hdmap1l6.i | β’ πΌ = ((HDMap1βπΎ)βπ) |
hdmap1l6.k | β’ (π β (πΎ β HL β§ π β π»)) |
hdmap1l6.f | β’ (π β πΉ β π·) |
hdmap1l6cl.x | β’ (π β π β (π β { 0 })) |
hdmap1l6.mn | β’ (π β (πβ(πβ{π})) = (πΏβ{πΉ})) |
hdmap1l6d.xn | β’ (π β Β¬ π β (πβ{π, π})) |
hdmap1l6d.yz | β’ (π β (πβ{π}) = (πβ{π})) |
hdmap1l6d.y | β’ (π β π β (π β { 0 })) |
hdmap1l6d.z | β’ (π β π β (π β { 0 })) |
hdmap1l6d.w | β’ (π β π€ β (π β { 0 })) |
hdmap1l6d.wn | β’ (π β Β¬ π€ β (πβ{π, π})) |
Ref | Expression |
---|---|
hdmap1l6g | β’ (π β ((πΌββ¨π, πΉ, π€β©) β (πΌββ¨π, πΉ, (π + π)β©)) = (((πΌββ¨π, πΉ, π€β©) β (πΌββ¨π, πΉ, πβ©)) β (πΌββ¨π, πΉ, πβ©))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmap1l6.h | . . 3 β’ π» = (LHypβπΎ) | |
2 | hdmap1l6.u | . . 3 β’ π = ((DVecHβπΎ)βπ) | |
3 | hdmap1l6.v | . . 3 β’ π = (Baseβπ) | |
4 | hdmap1l6.p | . . 3 β’ + = (+gβπ) | |
5 | hdmap1l6.s | . . 3 β’ β = (-gβπ) | |
6 | hdmap1l6c.o | . . 3 β’ 0 = (0gβπ) | |
7 | hdmap1l6.n | . . 3 β’ π = (LSpanβπ) | |
8 | hdmap1l6.c | . . 3 β’ πΆ = ((LCDualβπΎ)βπ) | |
9 | hdmap1l6.d | . . 3 β’ π· = (BaseβπΆ) | |
10 | hdmap1l6.a | . . 3 β’ β = (+gβπΆ) | |
11 | hdmap1l6.r | . . 3 β’ π = (-gβπΆ) | |
12 | hdmap1l6.q | . . 3 β’ π = (0gβπΆ) | |
13 | hdmap1l6.l | . . 3 β’ πΏ = (LSpanβπΆ) | |
14 | hdmap1l6.m | . . 3 β’ π = ((mapdβπΎ)βπ) | |
15 | hdmap1l6.i | . . 3 β’ πΌ = ((HDMap1βπΎ)βπ) | |
16 | hdmap1l6.k | . . 3 β’ (π β (πΎ β HL β§ π β π»)) | |
17 | hdmap1l6.f | . . 3 β’ (π β πΉ β π·) | |
18 | hdmap1l6cl.x | . . 3 β’ (π β π β (π β { 0 })) | |
19 | hdmap1l6.mn | . . 3 β’ (π β (πβ(πβ{π})) = (πΏβ{πΉ})) | |
20 | hdmap1l6d.xn | . . 3 β’ (π β Β¬ π β (πβ{π, π})) | |
21 | hdmap1l6d.yz | . . 3 β’ (π β (πβ{π}) = (πβ{π})) | |
22 | hdmap1l6d.y | . . 3 β’ (π β π β (π β { 0 })) | |
23 | hdmap1l6d.z | . . 3 β’ (π β π β (π β { 0 })) | |
24 | hdmap1l6d.w | . . 3 β’ (π β π€ β (π β { 0 })) | |
25 | hdmap1l6d.wn | . . 3 β’ (π β Β¬ π€ β (πβ{π, π})) | |
26 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 | hdmap1l6d 40622 | . 2 β’ (π β (πΌββ¨π, πΉ, (π€ + (π + π))β©) = ((πΌββ¨π, πΉ, π€β©) β (πΌββ¨π, πΉ, (π + π)β©))) |
27 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 | hdmap1l6e 40623 | . . 3 β’ (π β (πΌββ¨π, πΉ, ((π€ + π) + π)β©) = ((πΌββ¨π, πΉ, (π€ + π)β©) β (πΌββ¨π, πΉ, πβ©))) |
28 | 1, 2, 16 | dvhlmod 39919 | . . . . . 6 β’ (π β π β LMod) |
29 | 24 | eldifad 3959 | . . . . . 6 β’ (π β π€ β π) |
30 | 22 | eldifad 3959 | . . . . . 6 β’ (π β π β π) |
31 | 23 | eldifad 3959 | . . . . . 6 β’ (π β π β π) |
32 | 3, 4 | lmodass 20475 | . . . . . 6 β’ ((π β LMod β§ (π€ β π β§ π β π β§ π β π)) β ((π€ + π) + π) = (π€ + (π + π))) |
33 | 28, 29, 30, 31, 32 | syl13anc 1373 | . . . . 5 β’ (π β ((π€ + π) + π) = (π€ + (π + π))) |
34 | 33 | oteq3d 4886 | . . . 4 β’ (π β β¨π, πΉ, ((π€ + π) + π)β© = β¨π, πΉ, (π€ + (π + π))β©) |
35 | 34 | fveq2d 6892 | . . 3 β’ (π β (πΌββ¨π, πΉ, ((π€ + π) + π)β©) = (πΌββ¨π, πΉ, (π€ + (π + π))β©)) |
36 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 | hdmap1l6f 40624 | . . . 4 β’ (π β (πΌββ¨π, πΉ, (π€ + π)β©) = ((πΌββ¨π, πΉ, π€β©) β (πΌββ¨π, πΉ, πβ©))) |
37 | 36 | oveq1d 7419 | . . 3 β’ (π β ((πΌββ¨π, πΉ, (π€ + π)β©) β (πΌββ¨π, πΉ, πβ©)) = (((πΌββ¨π, πΉ, π€β©) β (πΌββ¨π, πΉ, πβ©)) β (πΌββ¨π, πΉ, πβ©))) |
38 | 27, 35, 37 | 3eqtr3d 2781 | . 2 β’ (π β (πΌββ¨π, πΉ, (π€ + (π + π))β©) = (((πΌββ¨π, πΉ, π€β©) β (πΌββ¨π, πΉ, πβ©)) β (πΌββ¨π, πΉ, πβ©))) |
39 | 26, 38 | eqtr3d 2775 | 1 β’ (π β ((πΌββ¨π, πΉ, π€β©) β (πΌββ¨π, πΉ, (π + π)β©)) = (((πΌββ¨π, πΉ, π€β©) β (πΌββ¨π, πΉ, πβ©)) β (πΌββ¨π, πΉ, πβ©))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 β cdif 3944 {csn 4627 {cpr 4629 β¨cotp 4635 βcfv 6540 (class class class)co 7404 Basecbs 17140 +gcplusg 17193 0gc0g 17381 -gcsg 18817 LModclmod 20459 LSpanclspn 20570 HLchlt 38158 LHypclh 38793 DVecHcdvh 39887 LCDualclcd 40395 mapdcmpd 40433 HDMap1chdma1 40600 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-riotaBAD 37761 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-ot 4636 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-of 7665 df-om 7851 df-1st 7970 df-2nd 7971 df-tpos 8206 df-undef 8253 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-0g 17383 df-mre 17526 df-mrc 17527 df-acs 17529 df-proset 18244 df-poset 18262 df-plt 18279 df-lub 18295 df-glb 18296 df-join 18297 df-meet 18298 df-p0 18374 df-p1 18375 df-lat 18381 df-clat 18448 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-submnd 18668 df-grp 18818 df-minusg 18819 df-sbg 18820 df-subg 18997 df-cntz 19175 df-oppg 19203 df-lsm 19497 df-cmn 19643 df-abl 19644 df-mgp 19980 df-ur 19997 df-ring 20049 df-oppr 20139 df-dvdsr 20160 df-unit 20161 df-invr 20191 df-dvr 20204 df-drng 20306 df-lmod 20461 df-lss 20531 df-lsp 20571 df-lvec 20702 df-lsatoms 37784 df-lshyp 37785 df-lcv 37827 df-lfl 37866 df-lkr 37894 df-ldual 37932 df-oposet 37984 df-ol 37986 df-oml 37987 df-covers 38074 df-ats 38075 df-atl 38106 df-cvlat 38130 df-hlat 38159 df-llines 38307 df-lplanes 38308 df-lvols 38309 df-lines 38310 df-psubsp 38312 df-pmap 38313 df-padd 38605 df-lhyp 38797 df-laut 38798 df-ldil 38913 df-ltrn 38914 df-trl 38968 df-tgrp 39552 df-tendo 39564 df-edring 39566 df-dveca 39812 df-disoa 39838 df-dvech 39888 df-dib 39948 df-dic 39982 df-dih 40038 df-doch 40157 df-djh 40204 df-lcdual 40396 df-mapd 40434 df-hdmap1 40602 |
This theorem is referenced by: hdmap1l6h 40626 |
Copyright terms: Public domain | W3C validator |