Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap1l6g | Structured version Visualization version GIF version |
Description: Lemmma for hdmap1l6 39397. Part (6) of [Baer] p. 47 line 39. (Contributed by NM, 1-May-2015.) |
Ref | Expression |
---|---|
hdmap1l6.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmap1l6.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmap1l6.v | ⊢ 𝑉 = (Base‘𝑈) |
hdmap1l6.p | ⊢ + = (+g‘𝑈) |
hdmap1l6.s | ⊢ − = (-g‘𝑈) |
hdmap1l6c.o | ⊢ 0 = (0g‘𝑈) |
hdmap1l6.n | ⊢ 𝑁 = (LSpan‘𝑈) |
hdmap1l6.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
hdmap1l6.d | ⊢ 𝐷 = (Base‘𝐶) |
hdmap1l6.a | ⊢ ✚ = (+g‘𝐶) |
hdmap1l6.r | ⊢ 𝑅 = (-g‘𝐶) |
hdmap1l6.q | ⊢ 𝑄 = (0g‘𝐶) |
hdmap1l6.l | ⊢ 𝐿 = (LSpan‘𝐶) |
hdmap1l6.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
hdmap1l6.i | ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) |
hdmap1l6.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmap1l6.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
hdmap1l6cl.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
hdmap1l6.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) |
hdmap1l6d.xn | ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
hdmap1l6d.yz | ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) |
hdmap1l6d.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
hdmap1l6d.z | ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) |
hdmap1l6d.w | ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) |
hdmap1l6d.wn | ⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) |
Ref | Expression |
---|---|
hdmap1l6g | ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉)) = (((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑌〉)) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmap1l6.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hdmap1l6.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | hdmap1l6.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
4 | hdmap1l6.p | . . 3 ⊢ + = (+g‘𝑈) | |
5 | hdmap1l6.s | . . 3 ⊢ − = (-g‘𝑈) | |
6 | hdmap1l6c.o | . . 3 ⊢ 0 = (0g‘𝑈) | |
7 | hdmap1l6.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
8 | hdmap1l6.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
9 | hdmap1l6.d | . . 3 ⊢ 𝐷 = (Base‘𝐶) | |
10 | hdmap1l6.a | . . 3 ⊢ ✚ = (+g‘𝐶) | |
11 | hdmap1l6.r | . . 3 ⊢ 𝑅 = (-g‘𝐶) | |
12 | hdmap1l6.q | . . 3 ⊢ 𝑄 = (0g‘𝐶) | |
13 | hdmap1l6.l | . . 3 ⊢ 𝐿 = (LSpan‘𝐶) | |
14 | hdmap1l6.m | . . 3 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
15 | hdmap1l6.i | . . 3 ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) | |
16 | hdmap1l6.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
17 | hdmap1l6.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
18 | hdmap1l6cl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
19 | hdmap1l6.mn | . . 3 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) | |
20 | hdmap1l6d.xn | . . 3 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) | |
21 | hdmap1l6d.yz | . . 3 ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) | |
22 | hdmap1l6d.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
23 | hdmap1l6d.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) | |
24 | hdmap1l6d.w | . . 3 ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) | |
25 | hdmap1l6d.wn | . . 3 ⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) | |
26 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 | hdmap1l6d 39389 | . 2 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))〉) = ((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉))) |
27 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 | hdmap1l6e 39390 | . . 3 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, ((𝑤 + 𝑌) + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, (𝑤 + 𝑌)〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
28 | 1, 2, 16 | dvhlmod 38686 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ LMod) |
29 | 24 | eldifad 3870 | . . . . . 6 ⊢ (𝜑 → 𝑤 ∈ 𝑉) |
30 | 22 | eldifad 3870 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
31 | 23 | eldifad 3870 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
32 | 3, 4 | lmodass 19717 | . . . . . 6 ⊢ ((𝑈 ∈ LMod ∧ (𝑤 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → ((𝑤 + 𝑌) + 𝑍) = (𝑤 + (𝑌 + 𝑍))) |
33 | 28, 29, 30, 31, 32 | syl13anc 1369 | . . . . 5 ⊢ (𝜑 → ((𝑤 + 𝑌) + 𝑍) = (𝑤 + (𝑌 + 𝑍))) |
34 | 33 | oteq3d 4777 | . . . 4 ⊢ (𝜑 → 〈𝑋, 𝐹, ((𝑤 + 𝑌) + 𝑍)〉 = 〈𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))〉) |
35 | 34 | fveq2d 6662 | . . 3 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, ((𝑤 + 𝑌) + 𝑍)〉) = (𝐼‘〈𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))〉)) |
36 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 | hdmap1l6f 39391 | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑤 + 𝑌)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑌〉))) |
37 | 36 | oveq1d 7165 | . . 3 ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, (𝑤 + 𝑌)〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)) = (((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑌〉)) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
38 | 27, 35, 37 | 3eqtr3d 2801 | . 2 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))〉) = (((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑌〉)) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
39 | 26, 38 | eqtr3d 2795 | 1 ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉)) = (((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑌〉)) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∖ cdif 3855 {csn 4522 {cpr 4524 〈cotp 4530 ‘cfv 6335 (class class class)co 7150 Basecbs 16541 +gcplusg 16623 0gc0g 16771 -gcsg 18171 LModclmod 19702 LSpanclspn 19811 HLchlt 36926 LHypclh 37560 DVecHcdvh 38654 LCDualclcd 39162 mapdcmpd 39200 HDMap1chdma1 39367 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-riotaBAD 36529 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-ot 4531 df-uni 4799 df-int 4839 df-iun 4885 df-iin 4886 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-of 7405 df-om 7580 df-1st 7693 df-2nd 7694 df-tpos 7902 df-undef 7949 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-er 8299 df-map 8418 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-2 11737 df-3 11738 df-4 11739 df-5 11740 df-6 11741 df-n0 11935 df-z 12021 df-uz 12283 df-fz 12940 df-struct 16543 df-ndx 16544 df-slot 16545 df-base 16547 df-sets 16548 df-ress 16549 df-plusg 16636 df-mulr 16637 df-sca 16639 df-vsca 16640 df-0g 16773 df-mre 16915 df-mrc 16916 df-acs 16918 df-proset 17604 df-poset 17622 df-plt 17634 df-lub 17650 df-glb 17651 df-join 17652 df-meet 17653 df-p0 17715 df-p1 17716 df-lat 17722 df-clat 17784 df-mgm 17918 df-sgrp 17967 df-mnd 17978 df-submnd 18023 df-grp 18172 df-minusg 18173 df-sbg 18174 df-subg 18343 df-cntz 18514 df-oppg 18541 df-lsm 18828 df-cmn 18975 df-abl 18976 df-mgp 19308 df-ur 19320 df-ring 19367 df-oppr 19444 df-dvdsr 19462 df-unit 19463 df-invr 19493 df-dvr 19504 df-drng 19572 df-lmod 19704 df-lss 19772 df-lsp 19812 df-lvec 19943 df-lsatoms 36552 df-lshyp 36553 df-lcv 36595 df-lfl 36634 df-lkr 36662 df-ldual 36700 df-oposet 36752 df-ol 36754 df-oml 36755 df-covers 36842 df-ats 36843 df-atl 36874 df-cvlat 36898 df-hlat 36927 df-llines 37074 df-lplanes 37075 df-lvols 37076 df-lines 37077 df-psubsp 37079 df-pmap 37080 df-padd 37372 df-lhyp 37564 df-laut 37565 df-ldil 37680 df-ltrn 37681 df-trl 37735 df-tgrp 38319 df-tendo 38331 df-edring 38333 df-dveca 38579 df-disoa 38605 df-dvech 38655 df-dib 38715 df-dic 38749 df-dih 38805 df-doch 38924 df-djh 38971 df-lcdual 39163 df-mapd 39201 df-hdmap1 39369 |
This theorem is referenced by: hdmap1l6h 39393 |
Copyright terms: Public domain | W3C validator |