MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvneg1 Structured version   Visualization version   GIF version

Theorem lmodvneg1 20817
Description: Minus 1 times a vector is the negative of the vector. Equation 2 of [Kreyszig] p. 51. (Contributed by NM, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmodvneg1.v 𝑉 = (Base‘𝑊)
lmodvneg1.n 𝑁 = (invg𝑊)
lmodvneg1.f 𝐹 = (Scalar‘𝑊)
lmodvneg1.s · = ( ·𝑠𝑊)
lmodvneg1.u 1 = (1r𝐹)
lmodvneg1.m 𝑀 = (invg𝐹)
Assertion
Ref Expression
lmodvneg1 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑀1 ) · 𝑋) = (𝑁𝑋))

Proof of Theorem lmodvneg1
StepHypRef Expression
1 simpl 481 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑊 ∈ LMod)
2 lmodvneg1.f . . . . . 6 𝐹 = (Scalar‘𝑊)
32lmodfgrp 20781 . . . . 5 (𝑊 ∈ LMod → 𝐹 ∈ Grp)
4 eqid 2725 . . . . . . 7 (Base‘𝐹) = (Base‘𝐹)
5 lmodvneg1.u . . . . . . 7 1 = (1r𝐹)
62, 4, 5lmod1cl 20801 . . . . . 6 (𝑊 ∈ LMod → 1 ∈ (Base‘𝐹))
76adantr 479 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 1 ∈ (Base‘𝐹))
8 lmodvneg1.m . . . . . 6 𝑀 = (invg𝐹)
94, 8grpinvcl 18968 . . . . 5 ((𝐹 ∈ Grp ∧ 1 ∈ (Base‘𝐹)) → (𝑀1 ) ∈ (Base‘𝐹))
103, 7, 9syl2an2r 683 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑀1 ) ∈ (Base‘𝐹))
11 simpr 483 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋𝑉)
12 lmodvneg1.v . . . . 5 𝑉 = (Base‘𝑊)
13 lmodvneg1.s . . . . 5 · = ( ·𝑠𝑊)
1412, 2, 13, 4lmodvscl 20790 . . . 4 ((𝑊 ∈ LMod ∧ (𝑀1 ) ∈ (Base‘𝐹) ∧ 𝑋𝑉) → ((𝑀1 ) · 𝑋) ∈ 𝑉)
151, 10, 11, 14syl3anc 1368 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑀1 ) · 𝑋) ∈ 𝑉)
16 eqid 2725 . . . 4 (+g𝑊) = (+g𝑊)
17 eqid 2725 . . . 4 (0g𝑊) = (0g𝑊)
1812, 16, 17lmod0vrid 20805 . . 3 ((𝑊 ∈ LMod ∧ ((𝑀1 ) · 𝑋) ∈ 𝑉) → (((𝑀1 ) · 𝑋)(+g𝑊)(0g𝑊)) = ((𝑀1 ) · 𝑋))
1915, 18syldan 589 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (((𝑀1 ) · 𝑋)(+g𝑊)(0g𝑊)) = ((𝑀1 ) · 𝑋))
20 lmodvneg1.n . . . . . 6 𝑁 = (invg𝑊)
2112, 20lmodvnegcl 20815 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁𝑋) ∈ 𝑉)
2212, 16lmodass 20788 . . . . 5 ((𝑊 ∈ LMod ∧ (((𝑀1 ) · 𝑋) ∈ 𝑉𝑋𝑉 ∧ (𝑁𝑋) ∈ 𝑉)) → ((((𝑀1 ) · 𝑋)(+g𝑊)𝑋)(+g𝑊)(𝑁𝑋)) = (((𝑀1 ) · 𝑋)(+g𝑊)(𝑋(+g𝑊)(𝑁𝑋))))
231, 15, 11, 21, 22syl13anc 1369 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((((𝑀1 ) · 𝑋)(+g𝑊)𝑋)(+g𝑊)(𝑁𝑋)) = (((𝑀1 ) · 𝑋)(+g𝑊)(𝑋(+g𝑊)(𝑁𝑋))))
2412, 2, 13, 5lmodvs1 20802 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ( 1 · 𝑋) = 𝑋)
2524oveq2d 7435 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (((𝑀1 ) · 𝑋)(+g𝑊)( 1 · 𝑋)) = (((𝑀1 ) · 𝑋)(+g𝑊)𝑋))
26 eqid 2725 . . . . . . . . . 10 (+g𝐹) = (+g𝐹)
27 eqid 2725 . . . . . . . . . 10 (0g𝐹) = (0g𝐹)
284, 26, 27, 8grplinv 18970 . . . . . . . . 9 ((𝐹 ∈ Grp ∧ 1 ∈ (Base‘𝐹)) → ((𝑀1 )(+g𝐹) 1 ) = (0g𝐹))
293, 7, 28syl2an2r 683 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑀1 )(+g𝐹) 1 ) = (0g𝐹))
3029oveq1d 7434 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (((𝑀1 )(+g𝐹) 1 ) · 𝑋) = ((0g𝐹) · 𝑋))
3112, 16, 2, 13, 4, 26lmodvsdir 20798 . . . . . . . 8 ((𝑊 ∈ LMod ∧ ((𝑀1 ) ∈ (Base‘𝐹) ∧ 1 ∈ (Base‘𝐹) ∧ 𝑋𝑉)) → (((𝑀1 )(+g𝐹) 1 ) · 𝑋) = (((𝑀1 ) · 𝑋)(+g𝑊)( 1 · 𝑋)))
321, 10, 7, 11, 31syl13anc 1369 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (((𝑀1 )(+g𝐹) 1 ) · 𝑋) = (((𝑀1 ) · 𝑋)(+g𝑊)( 1 · 𝑋)))
3312, 2, 13, 27, 17lmod0vs 20807 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((0g𝐹) · 𝑋) = (0g𝑊))
3430, 32, 333eqtr3d 2773 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (((𝑀1 ) · 𝑋)(+g𝑊)( 1 · 𝑋)) = (0g𝑊))
3525, 34eqtr3d 2767 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (((𝑀1 ) · 𝑋)(+g𝑊)𝑋) = (0g𝑊))
3635oveq1d 7434 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((((𝑀1 ) · 𝑋)(+g𝑊)𝑋)(+g𝑊)(𝑁𝑋)) = ((0g𝑊)(+g𝑊)(𝑁𝑋)))
3723, 36eqtr3d 2767 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (((𝑀1 ) · 𝑋)(+g𝑊)(𝑋(+g𝑊)(𝑁𝑋))) = ((0g𝑊)(+g𝑊)(𝑁𝑋)))
3812, 16, 17, 20lmodvnegid 20816 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑋(+g𝑊)(𝑁𝑋)) = (0g𝑊))
3938oveq2d 7435 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (((𝑀1 ) · 𝑋)(+g𝑊)(𝑋(+g𝑊)(𝑁𝑋))) = (((𝑀1 ) · 𝑋)(+g𝑊)(0g𝑊)))
4012, 16, 17lmod0vlid 20804 . . . 4 ((𝑊 ∈ LMod ∧ (𝑁𝑋) ∈ 𝑉) → ((0g𝑊)(+g𝑊)(𝑁𝑋)) = (𝑁𝑋))
4121, 40syldan 589 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((0g𝑊)(+g𝑊)(𝑁𝑋)) = (𝑁𝑋))
4237, 39, 413eqtr3d 2773 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (((𝑀1 ) · 𝑋)(+g𝑊)(0g𝑊)) = (𝑁𝑋))
4319, 42eqtr3d 2767 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑀1 ) · 𝑋) = (𝑁𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  cfv 6549  (class class class)co 7419  Basecbs 17199  +gcplusg 17252  Scalarcsca 17255   ·𝑠 cvsca 17256  0gc0g 17440  Grpcgrp 18914  invgcminusg 18915  1rcur 20150  LModclmod 20772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-nn 12251  df-2 12313  df-sets 17152  df-slot 17170  df-ndx 17182  df-base 17200  df-plusg 17265  df-0g 17442  df-mgm 18619  df-sgrp 18698  df-mnd 18714  df-grp 18917  df-minusg 18918  df-mgp 20104  df-ur 20151  df-ring 20204  df-lmod 20774
This theorem is referenced by:  lmodvsneg  20818  lmodvsubval2  20829  lssvnegcl  20869  lspsnneg  20919  lmodvsinv  20950  lspsolvlem  21059  tlmtgp  24161  clmvneg1  25087  deg1invg  26103
  Copyright terms: Public domain W3C validator