Proof of Theorem lmodvneg1
Step | Hyp | Ref
| Expression |
1 | | simpl 482 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ LMod) |
2 | | lmodvneg1.f |
. . . . . 6
⊢ 𝐹 = (Scalar‘𝑊) |
3 | 2 | lmodfgrp 20047 |
. . . . 5
⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
4 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝐹) =
(Base‘𝐹) |
5 | | lmodvneg1.u |
. . . . . . 7
⊢ 1 =
(1r‘𝐹) |
6 | 2, 4, 5 | lmod1cl 20065 |
. . . . . 6
⊢ (𝑊 ∈ LMod → 1 ∈
(Base‘𝐹)) |
7 | 6 | adantr 480 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 1 ∈ (Base‘𝐹)) |
8 | | lmodvneg1.m |
. . . . . 6
⊢ 𝑀 = (invg‘𝐹) |
9 | 4, 8 | grpinvcl 18542 |
. . . . 5
⊢ ((𝐹 ∈ Grp ∧ 1 ∈
(Base‘𝐹)) →
(𝑀‘ 1 ) ∈
(Base‘𝐹)) |
10 | 3, 7, 9 | syl2an2r 681 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑀‘ 1 ) ∈ (Base‘𝐹)) |
11 | | simpr 484 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) |
12 | | lmodvneg1.v |
. . . . 5
⊢ 𝑉 = (Base‘𝑊) |
13 | | lmodvneg1.s |
. . . . 5
⊢ · = (
·𝑠 ‘𝑊) |
14 | 12, 2, 13, 4 | lmodvscl 20055 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ (𝑀‘ 1 ) ∈ (Base‘𝐹) ∧ 𝑋 ∈ 𝑉) → ((𝑀‘ 1 ) · 𝑋) ∈ 𝑉) |
15 | 1, 10, 11, 14 | syl3anc 1369 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑀‘ 1 ) · 𝑋) ∈ 𝑉) |
16 | | eqid 2738 |
. . . 4
⊢
(+g‘𝑊) = (+g‘𝑊) |
17 | | eqid 2738 |
. . . 4
⊢
(0g‘𝑊) = (0g‘𝑊) |
18 | 12, 16, 17 | lmod0vrid 20069 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ ((𝑀‘ 1 ) · 𝑋) ∈ 𝑉) → (((𝑀‘ 1 ) · 𝑋)(+g‘𝑊)(0g‘𝑊)) = ((𝑀‘ 1 ) · 𝑋)) |
19 | 15, 18 | syldan 590 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (((𝑀‘ 1 ) · 𝑋)(+g‘𝑊)(0g‘𝑊)) = ((𝑀‘ 1 ) · 𝑋)) |
20 | | lmodvneg1.n |
. . . . . 6
⊢ 𝑁 = (invg‘𝑊) |
21 | 12, 20 | lmodvnegcl 20079 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘𝑋) ∈ 𝑉) |
22 | 12, 16 | lmodass 20053 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ (((𝑀‘ 1 ) · 𝑋) ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ (𝑁‘𝑋) ∈ 𝑉)) → ((((𝑀‘ 1 ) · 𝑋)(+g‘𝑊)𝑋)(+g‘𝑊)(𝑁‘𝑋)) = (((𝑀‘ 1 ) · 𝑋)(+g‘𝑊)(𝑋(+g‘𝑊)(𝑁‘𝑋)))) |
23 | 1, 15, 11, 21, 22 | syl13anc 1370 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((((𝑀‘ 1 ) · 𝑋)(+g‘𝑊)𝑋)(+g‘𝑊)(𝑁‘𝑋)) = (((𝑀‘ 1 ) · 𝑋)(+g‘𝑊)(𝑋(+g‘𝑊)(𝑁‘𝑋)))) |
24 | 12, 2, 13, 5 | lmodvs1 20066 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ( 1 · 𝑋) = 𝑋) |
25 | 24 | oveq2d 7271 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (((𝑀‘ 1 ) · 𝑋)(+g‘𝑊)( 1 · 𝑋)) = (((𝑀‘ 1 ) · 𝑋)(+g‘𝑊)𝑋)) |
26 | | eqid 2738 |
. . . . . . . . . 10
⊢
(+g‘𝐹) = (+g‘𝐹) |
27 | | eqid 2738 |
. . . . . . . . . 10
⊢
(0g‘𝐹) = (0g‘𝐹) |
28 | 4, 26, 27, 8 | grplinv 18543 |
. . . . . . . . 9
⊢ ((𝐹 ∈ Grp ∧ 1 ∈
(Base‘𝐹)) →
((𝑀‘ 1
)(+g‘𝐹)
1 ) =
(0g‘𝐹)) |
29 | 3, 7, 28 | syl2an2r 681 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑀‘ 1
)(+g‘𝐹)
1 ) =
(0g‘𝐹)) |
30 | 29 | oveq1d 7270 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (((𝑀‘ 1
)(+g‘𝐹)
1 ) · 𝑋) = ((0g‘𝐹) · 𝑋)) |
31 | 12, 16, 2, 13, 4, 26 | lmodvsdir 20062 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ ((𝑀‘ 1 ) ∈ (Base‘𝐹) ∧ 1 ∈ (Base‘𝐹) ∧ 𝑋 ∈ 𝑉)) → (((𝑀‘ 1
)(+g‘𝐹)
1 ) · 𝑋) = (((𝑀‘ 1 ) · 𝑋)(+g‘𝑊)( 1 · 𝑋))) |
32 | 1, 10, 7, 11, 31 | syl13anc 1370 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (((𝑀‘ 1
)(+g‘𝐹)
1 ) · 𝑋) = (((𝑀‘ 1 ) · 𝑋)(+g‘𝑊)( 1 · 𝑋))) |
33 | 12, 2, 13, 27, 17 | lmod0vs 20071 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((0g‘𝐹) · 𝑋) = (0g‘𝑊)) |
34 | 30, 32, 33 | 3eqtr3d 2786 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (((𝑀‘ 1 ) · 𝑋)(+g‘𝑊)( 1 · 𝑋)) = (0g‘𝑊)) |
35 | 25, 34 | eqtr3d 2780 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (((𝑀‘ 1 ) · 𝑋)(+g‘𝑊)𝑋) = (0g‘𝑊)) |
36 | 35 | oveq1d 7270 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((((𝑀‘ 1 ) · 𝑋)(+g‘𝑊)𝑋)(+g‘𝑊)(𝑁‘𝑋)) = ((0g‘𝑊)(+g‘𝑊)(𝑁‘𝑋))) |
37 | 23, 36 | eqtr3d 2780 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (((𝑀‘ 1 ) · 𝑋)(+g‘𝑊)(𝑋(+g‘𝑊)(𝑁‘𝑋))) = ((0g‘𝑊)(+g‘𝑊)(𝑁‘𝑋))) |
38 | 12, 16, 17, 20 | lmodvnegid 20080 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑋(+g‘𝑊)(𝑁‘𝑋)) = (0g‘𝑊)) |
39 | 38 | oveq2d 7271 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (((𝑀‘ 1 ) · 𝑋)(+g‘𝑊)(𝑋(+g‘𝑊)(𝑁‘𝑋))) = (((𝑀‘ 1 ) · 𝑋)(+g‘𝑊)(0g‘𝑊))) |
40 | 12, 16, 17 | lmod0vlid 20068 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ (𝑁‘𝑋) ∈ 𝑉) → ((0g‘𝑊)(+g‘𝑊)(𝑁‘𝑋)) = (𝑁‘𝑋)) |
41 | 21, 40 | syldan 590 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((0g‘𝑊)(+g‘𝑊)(𝑁‘𝑋)) = (𝑁‘𝑋)) |
42 | 37, 39, 41 | 3eqtr3d 2786 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (((𝑀‘ 1 ) · 𝑋)(+g‘𝑊)(0g‘𝑊)) = (𝑁‘𝑋)) |
43 | 19, 42 | eqtr3d 2780 |
1
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑀‘ 1 ) · 𝑋) = (𝑁‘𝑋)) |