| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodvacl | Structured version Visualization version GIF version | ||
| Description: Closure of vector addition for a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodvacl.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmodvacl.a | ⊢ + = (+g‘𝑊) |
| Ref | Expression |
|---|---|
| lmodvacl | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodgrp 20780 | . 2 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
| 2 | lmodvacl.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | lmodvacl.a | . . 3 ⊢ + = (+g‘𝑊) | |
| 4 | 2, 3 | grpcl 18880 | . 2 ⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
| 5 | 1, 4 | syl3an1 1163 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 Grpcgrp 18872 LModclmod 20773 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-lmod 20775 |
| This theorem is referenced by: lmodcom 20821 lmodvsghm 20836 lss1 20851 lspprabs 21009 lspabs2 21037 lspabs3 21038 lspfixed 21045 lspexch 21046 lspsolvlem 21059 ipdir 21555 ipdi 21556 ip2di 21557 ocvlss 21588 frlmphl 21697 frlmup1 21714 nmparlem 25146 minveclem2 25333 lsatfixedN 39009 lfl0f 39069 lfladdcl 39071 lflnegcl 39075 lflvscl 39077 lkrlss 39095 lshpkrlem5 39114 lshpkrlem6 39115 dvh3dim2 41449 dvh3dim3N 41450 lcfrlem17 41560 lcfrlem19 41562 lcfrlem20 41563 lcfrlem23 41566 baerlem3lem1 41708 baerlem5alem1 41709 baerlem5blem1 41710 baerlem5alem2 41712 baerlem5blem2 41713 mapdindp0 41720 mapdindp2 41722 mapdindp4 41724 mapdh6lem2N 41735 mapdh6aN 41736 mapdh6dN 41740 mapdh6eN 41741 mapdh6hN 41744 hdmap1l6lem2 41809 hdmap1l6a 41810 hdmap1l6d 41814 hdmap1l6e 41815 hdmap1l6h 41818 hdmap11lem1 41842 hdmap11lem2 41843 hdmapneg 41847 hdmaprnlem3N 41851 hdmaprnlem3uN 41852 hdmaprnlem6N 41855 hdmaprnlem7N 41856 hdmaprnlem9N 41858 hdmaprnlem3eN 41859 hdmap14lem10 41878 hdmapinvlem3 41921 hdmapinvlem4 41922 hdmapglem7b 41929 hlhilphllem 41960 frlmsnic 42535 lincsumcl 48424 |
| Copyright terms: Public domain | W3C validator |