| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodvacl | Structured version Visualization version GIF version | ||
| Description: Closure of vector addition for a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodvacl.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmodvacl.a | ⊢ + = (+g‘𝑊) |
| Ref | Expression |
|---|---|
| lmodvacl | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodgrp 20788 | . 2 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
| 2 | lmodvacl.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | lmodvacl.a | . . 3 ⊢ + = (+g‘𝑊) | |
| 4 | 2, 3 | grpcl 18838 | . 2 ⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
| 5 | 1, 4 | syl3an1 1163 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 +gcplusg 17179 Grpcgrp 18830 LModclmod 20781 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-ov 7356 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-lmod 20783 |
| This theorem is referenced by: lmodcom 20829 lmodvsghm 20844 lss1 20859 lspprabs 21017 lspabs2 21045 lspabs3 21046 lspfixed 21053 lspexch 21054 lspsolvlem 21067 ipdir 21564 ipdi 21565 ip2di 21566 ocvlss 21597 frlmphl 21706 frlmup1 21723 nmparlem 25155 minveclem2 25342 lsatfixedN 38987 lfl0f 39047 lfladdcl 39049 lflnegcl 39053 lflvscl 39055 lkrlss 39073 lshpkrlem5 39092 lshpkrlem6 39093 dvh3dim2 41427 dvh3dim3N 41428 lcfrlem17 41538 lcfrlem19 41540 lcfrlem20 41541 lcfrlem23 41544 baerlem3lem1 41686 baerlem5alem1 41687 baerlem5blem1 41688 baerlem5alem2 41690 baerlem5blem2 41691 mapdindp0 41698 mapdindp2 41700 mapdindp4 41702 mapdh6lem2N 41713 mapdh6aN 41714 mapdh6dN 41718 mapdh6eN 41719 mapdh6hN 41722 hdmap1l6lem2 41787 hdmap1l6a 41788 hdmap1l6d 41792 hdmap1l6e 41793 hdmap1l6h 41796 hdmap11lem1 41820 hdmap11lem2 41821 hdmapneg 41825 hdmaprnlem3N 41829 hdmaprnlem3uN 41830 hdmaprnlem6N 41833 hdmaprnlem7N 41834 hdmaprnlem9N 41836 hdmaprnlem3eN 41837 hdmap14lem10 41856 hdmapinvlem3 41899 hdmapinvlem4 41900 hdmapglem7b 41907 hlhilphllem 41938 frlmsnic 42513 lincsumcl 48417 |
| Copyright terms: Public domain | W3C validator |