Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lmodvacl | Structured version Visualization version GIF version |
Description: Closure of vector addition for a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmodvacl.v | ⊢ 𝑉 = (Base‘𝑊) |
lmodvacl.a | ⊢ + = (+g‘𝑊) |
Ref | Expression |
---|---|
lmodvacl | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodgrp 20139 | . 2 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
2 | lmodvacl.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
3 | lmodvacl.a | . . 3 ⊢ + = (+g‘𝑊) | |
4 | 2, 3 | grpcl 18594 | . 2 ⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
5 | 1, 4 | syl3an1 1162 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ‘cfv 6437 (class class class)co 7284 Basecbs 16921 +gcplusg 16971 Grpcgrp 18586 LModclmod 20132 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-nul 5231 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-sbc 3718 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-iota 6395 df-fv 6445 df-ov 7287 df-mgm 18335 df-sgrp 18384 df-mnd 18395 df-grp 18589 df-lmod 20134 |
This theorem is referenced by: lmodcom 20178 lmodvsghm 20193 lss1 20209 lspprabs 20366 lspabs2 20391 lspabs3 20392 lspfixed 20399 lspexch 20400 lspsolvlem 20413 ipdir 20853 ipdi 20854 ip2di 20855 ocvlss 20886 frlmphl 20997 frlmup1 21014 nmparlem 24412 minveclem2 24599 lsatfixedN 37030 lfl0f 37090 lfladdcl 37092 lflnegcl 37096 lflvscl 37098 lkrlss 37116 lshpkrlem5 37135 lshpkrlem6 37136 dvh3dim2 39469 dvh3dim3N 39470 lcfrlem17 39580 lcfrlem19 39582 lcfrlem20 39583 lcfrlem23 39586 baerlem3lem1 39728 baerlem5alem1 39729 baerlem5blem1 39730 baerlem5alem2 39732 baerlem5blem2 39733 mapdindp0 39740 mapdindp2 39742 mapdindp4 39744 mapdh6lem2N 39755 mapdh6aN 39756 mapdh6dN 39760 mapdh6eN 39761 mapdh6hN 39764 hdmap1l6lem2 39829 hdmap1l6a 39830 hdmap1l6d 39834 hdmap1l6e 39835 hdmap1l6h 39838 hdmap11lem1 39862 hdmap11lem2 39863 hdmapneg 39867 hdmaprnlem3N 39871 hdmaprnlem3uN 39872 hdmaprnlem6N 39875 hdmaprnlem7N 39876 hdmaprnlem9N 39878 hdmaprnlem3eN 39879 hdmap14lem10 39898 hdmapinvlem3 39941 hdmapinvlem4 39942 hdmapglem7b 39949 hlhilphllem 39984 frlmsnic 40270 lincsumcl 45783 |
Copyright terms: Public domain | W3C validator |