| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodvacl | Structured version Visualization version GIF version | ||
| Description: Closure of vector addition for a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodvacl.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmodvacl.a | ⊢ + = (+g‘𝑊) |
| Ref | Expression |
|---|---|
| lmodvacl | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodgrp 20802 | . 2 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
| 2 | lmodvacl.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | lmodvacl.a | . . 3 ⊢ + = (+g‘𝑊) | |
| 4 | 2, 3 | grpcl 18856 | . 2 ⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
| 5 | 1, 4 | syl3an1 1163 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 +gcplusg 17163 Grpcgrp 18848 LModclmod 20795 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-ov 7355 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-lmod 20797 |
| This theorem is referenced by: lmodcom 20843 lmodvsghm 20858 lss1 20873 lspprabs 21031 lspabs2 21059 lspabs3 21060 lspfixed 21067 lspexch 21068 lspsolvlem 21081 ipdir 21578 ipdi 21579 ip2di 21580 ocvlss 21611 frlmphl 21720 frlmup1 21737 nmparlem 25167 minveclem2 25354 lsatfixedN 39129 lfl0f 39189 lfladdcl 39191 lflnegcl 39195 lflvscl 39197 lkrlss 39215 lshpkrlem5 39234 lshpkrlem6 39235 dvh3dim2 41568 dvh3dim3N 41569 lcfrlem17 41679 lcfrlem19 41681 lcfrlem20 41682 lcfrlem23 41685 baerlem3lem1 41827 baerlem5alem1 41828 baerlem5blem1 41829 baerlem5alem2 41831 baerlem5blem2 41832 mapdindp0 41839 mapdindp2 41841 mapdindp4 41843 mapdh6lem2N 41854 mapdh6aN 41855 mapdh6dN 41859 mapdh6eN 41860 mapdh6hN 41863 hdmap1l6lem2 41928 hdmap1l6a 41929 hdmap1l6d 41933 hdmap1l6e 41934 hdmap1l6h 41937 hdmap11lem1 41961 hdmap11lem2 41962 hdmapneg 41966 hdmaprnlem3N 41970 hdmaprnlem3uN 41971 hdmaprnlem6N 41974 hdmaprnlem7N 41975 hdmaprnlem9N 41977 hdmaprnlem3eN 41978 hdmap14lem10 41997 hdmapinvlem3 42040 hdmapinvlem4 42041 hdmapglem7b 42048 hlhilphllem 42079 frlmsnic 42659 lincsumcl 48557 |
| Copyright terms: Public domain | W3C validator |