Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lmodvacl | Structured version Visualization version GIF version |
Description: Closure of vector addition for a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmodvacl.v | ⊢ 𝑉 = (Base‘𝑊) |
lmodvacl.a | ⊢ + = (+g‘𝑊) |
Ref | Expression |
---|---|
lmodvacl | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodgrp 20045 | . 2 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
2 | lmodvacl.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
3 | lmodvacl.a | . . 3 ⊢ + = (+g‘𝑊) | |
4 | 2, 3 | grpcl 18500 | . 2 ⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
5 | 1, 4 | syl3an1 1161 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 Grpcgrp 18492 LModclmod 20038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-lmod 20040 |
This theorem is referenced by: lmodcom 20084 lmodvsghm 20099 lss1 20115 lspprabs 20272 lspabs2 20297 lspabs3 20298 lspfixed 20305 lspexch 20306 lspsolvlem 20319 ipdir 20756 ipdi 20757 ip2di 20758 ocvlss 20789 frlmphl 20898 frlmup1 20915 nmparlem 24308 minveclem2 24495 lsatfixedN 36950 lfl0f 37010 lfladdcl 37012 lflnegcl 37016 lflvscl 37018 lkrlss 37036 lshpkrlem5 37055 lshpkrlem6 37056 dvh3dim2 39389 dvh3dim3N 39390 lcfrlem17 39500 lcfrlem19 39502 lcfrlem20 39503 lcfrlem23 39506 baerlem3lem1 39648 baerlem5alem1 39649 baerlem5blem1 39650 baerlem5alem2 39652 baerlem5blem2 39653 mapdindp0 39660 mapdindp2 39662 mapdindp4 39664 mapdh6lem2N 39675 mapdh6aN 39676 mapdh6dN 39680 mapdh6eN 39681 mapdh6hN 39684 hdmap1l6lem2 39749 hdmap1l6a 39750 hdmap1l6d 39754 hdmap1l6e 39755 hdmap1l6h 39758 hdmap11lem1 39782 hdmap11lem2 39783 hdmapneg 39787 hdmaprnlem3N 39791 hdmaprnlem3uN 39792 hdmaprnlem6N 39795 hdmaprnlem7N 39796 hdmaprnlem9N 39798 hdmaprnlem3eN 39799 hdmap14lem10 39818 hdmapinvlem3 39861 hdmapinvlem4 39862 hdmapglem7b 39869 hlhilphllem 39904 frlmsnic 40188 lincsumcl 45660 |
Copyright terms: Public domain | W3C validator |