| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodvacl | Structured version Visualization version GIF version | ||
| Description: Closure of vector addition for a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodvacl.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmodvacl.a | ⊢ + = (+g‘𝑊) |
| Ref | Expression |
|---|---|
| lmodvacl | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodgrp 20798 | . 2 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
| 2 | lmodvacl.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | lmodvacl.a | . . 3 ⊢ + = (+g‘𝑊) | |
| 4 | 2, 3 | grpcl 18851 | . 2 ⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
| 5 | 1, 4 | syl3an1 1163 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 +gcplusg 17158 Grpcgrp 18843 LModclmod 20791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5244 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-ov 7349 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-grp 18846 df-lmod 20793 |
| This theorem is referenced by: lmodcom 20839 lmodvsghm 20854 lss1 20869 lspprabs 21027 lspabs2 21055 lspabs3 21056 lspfixed 21063 lspexch 21064 lspsolvlem 21077 ipdir 21574 ipdi 21575 ip2di 21576 ocvlss 21607 frlmphl 21716 frlmup1 21733 nmparlem 25164 minveclem2 25351 lsatfixedN 39047 lfl0f 39107 lfladdcl 39109 lflnegcl 39113 lflvscl 39115 lkrlss 39133 lshpkrlem5 39152 lshpkrlem6 39153 dvh3dim2 41486 dvh3dim3N 41487 lcfrlem17 41597 lcfrlem19 41599 lcfrlem20 41600 lcfrlem23 41603 baerlem3lem1 41745 baerlem5alem1 41746 baerlem5blem1 41747 baerlem5alem2 41749 baerlem5blem2 41750 mapdindp0 41757 mapdindp2 41759 mapdindp4 41761 mapdh6lem2N 41772 mapdh6aN 41773 mapdh6dN 41777 mapdh6eN 41778 mapdh6hN 41781 hdmap1l6lem2 41846 hdmap1l6a 41847 hdmap1l6d 41851 hdmap1l6e 41852 hdmap1l6h 41855 hdmap11lem1 41879 hdmap11lem2 41880 hdmapneg 41884 hdmaprnlem3N 41888 hdmaprnlem3uN 41889 hdmaprnlem6N 41892 hdmaprnlem7N 41893 hdmaprnlem9N 41895 hdmaprnlem3eN 41896 hdmap14lem10 41915 hdmapinvlem3 41958 hdmapinvlem4 41959 hdmapglem7b 41966 hlhilphllem 41997 frlmsnic 42572 lincsumcl 48462 |
| Copyright terms: Public domain | W3C validator |