![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodvacl | Structured version Visualization version GIF version |
Description: Closure of vector addition for a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmodvacl.v | ⊢ 𝑉 = (Base‘𝑊) |
lmodvacl.a | ⊢ + = (+g‘𝑊) |
Ref | Expression |
---|---|
lmodvacl | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodgrp 20478 | . 2 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
2 | lmodvacl.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
3 | lmodvacl.a | . . 3 ⊢ + = (+g‘𝑊) | |
4 | 2, 3 | grpcl 18827 | . 2 ⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
5 | 1, 4 | syl3an1 1164 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ‘cfv 6544 (class class class)co 7409 Basecbs 17144 +gcplusg 17197 Grpcgrp 18819 LModclmod 20471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-nul 5307 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-iota 6496 df-fv 6552 df-ov 7412 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-grp 18822 df-lmod 20473 |
This theorem is referenced by: lmodcom 20518 lmodvsghm 20533 lss1 20549 lspprabs 20706 lspabs2 20733 lspabs3 20734 lspfixed 20741 lspexch 20742 lspsolvlem 20755 ipdir 21192 ipdi 21193 ip2di 21194 ocvlss 21225 frlmphl 21336 frlmup1 21353 nmparlem 24756 minveclem2 24943 lsatfixedN 37879 lfl0f 37939 lfladdcl 37941 lflnegcl 37945 lflvscl 37947 lkrlss 37965 lshpkrlem5 37984 lshpkrlem6 37985 dvh3dim2 40319 dvh3dim3N 40320 lcfrlem17 40430 lcfrlem19 40432 lcfrlem20 40433 lcfrlem23 40436 baerlem3lem1 40578 baerlem5alem1 40579 baerlem5blem1 40580 baerlem5alem2 40582 baerlem5blem2 40583 mapdindp0 40590 mapdindp2 40592 mapdindp4 40594 mapdh6lem2N 40605 mapdh6aN 40606 mapdh6dN 40610 mapdh6eN 40611 mapdh6hN 40614 hdmap1l6lem2 40679 hdmap1l6a 40680 hdmap1l6d 40684 hdmap1l6e 40685 hdmap1l6h 40688 hdmap11lem1 40712 hdmap11lem2 40713 hdmapneg 40717 hdmaprnlem3N 40721 hdmaprnlem3uN 40722 hdmaprnlem6N 40725 hdmaprnlem7N 40726 hdmaprnlem9N 40728 hdmaprnlem3eN 40729 hdmap14lem10 40748 hdmapinvlem3 40791 hdmapinvlem4 40792 hdmapglem7b 40799 hlhilphllem 40834 frlmsnic 41110 lincsumcl 47112 |
Copyright terms: Public domain | W3C validator |