| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodvacl | Structured version Visualization version GIF version | ||
| Description: Closure of vector addition for a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodvacl.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmodvacl.a | ⊢ + = (+g‘𝑊) |
| Ref | Expression |
|---|---|
| lmodvacl | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodgrp 20824 | . 2 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
| 2 | lmodvacl.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | lmodvacl.a | . . 3 ⊢ + = (+g‘𝑊) | |
| 4 | 2, 3 | grpcl 18924 | . 2 ⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
| 5 | 1, 4 | syl3an1 1163 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 +gcplusg 17271 Grpcgrp 18916 LModclmod 20817 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-ov 7408 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-lmod 20819 |
| This theorem is referenced by: lmodcom 20865 lmodvsghm 20880 lss1 20895 lspprabs 21053 lspabs2 21081 lspabs3 21082 lspfixed 21089 lspexch 21090 lspsolvlem 21103 ipdir 21599 ipdi 21600 ip2di 21601 ocvlss 21632 frlmphl 21741 frlmup1 21758 nmparlem 25191 minveclem2 25378 lsatfixedN 39027 lfl0f 39087 lfladdcl 39089 lflnegcl 39093 lflvscl 39095 lkrlss 39113 lshpkrlem5 39132 lshpkrlem6 39133 dvh3dim2 41467 dvh3dim3N 41468 lcfrlem17 41578 lcfrlem19 41580 lcfrlem20 41581 lcfrlem23 41584 baerlem3lem1 41726 baerlem5alem1 41727 baerlem5blem1 41728 baerlem5alem2 41730 baerlem5blem2 41731 mapdindp0 41738 mapdindp2 41740 mapdindp4 41742 mapdh6lem2N 41753 mapdh6aN 41754 mapdh6dN 41758 mapdh6eN 41759 mapdh6hN 41762 hdmap1l6lem2 41827 hdmap1l6a 41828 hdmap1l6d 41832 hdmap1l6e 41833 hdmap1l6h 41836 hdmap11lem1 41860 hdmap11lem2 41861 hdmapneg 41865 hdmaprnlem3N 41869 hdmaprnlem3uN 41870 hdmaprnlem6N 41873 hdmaprnlem7N 41874 hdmaprnlem9N 41876 hdmaprnlem3eN 41877 hdmap14lem10 41896 hdmapinvlem3 41939 hdmapinvlem4 41940 hdmapglem7b 41947 hlhilphllem 41978 frlmsnic 42563 lincsumcl 48407 |
| Copyright terms: Public domain | W3C validator |