| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodvacl | Structured version Visualization version GIF version | ||
| Description: Closure of vector addition for a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodvacl.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmodvacl.a | ⊢ + = (+g‘𝑊) |
| Ref | Expression |
|---|---|
| lmodvacl | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodgrp 20773 | . 2 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
| 2 | lmodvacl.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | lmodvacl.a | . . 3 ⊢ + = (+g‘𝑊) | |
| 4 | 2, 3 | grpcl 18873 | . 2 ⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
| 5 | 1, 4 | syl3an1 1163 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 Grpcgrp 18865 LModclmod 20766 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-lmod 20768 |
| This theorem is referenced by: lmodcom 20814 lmodvsghm 20829 lss1 20844 lspprabs 21002 lspabs2 21030 lspabs3 21031 lspfixed 21038 lspexch 21039 lspsolvlem 21052 ipdir 21548 ipdi 21549 ip2di 21550 ocvlss 21581 frlmphl 21690 frlmup1 21707 nmparlem 25139 minveclem2 25326 lsatfixedN 39002 lfl0f 39062 lfladdcl 39064 lflnegcl 39068 lflvscl 39070 lkrlss 39088 lshpkrlem5 39107 lshpkrlem6 39108 dvh3dim2 41442 dvh3dim3N 41443 lcfrlem17 41553 lcfrlem19 41555 lcfrlem20 41556 lcfrlem23 41559 baerlem3lem1 41701 baerlem5alem1 41702 baerlem5blem1 41703 baerlem5alem2 41705 baerlem5blem2 41706 mapdindp0 41713 mapdindp2 41715 mapdindp4 41717 mapdh6lem2N 41728 mapdh6aN 41729 mapdh6dN 41733 mapdh6eN 41734 mapdh6hN 41737 hdmap1l6lem2 41802 hdmap1l6a 41803 hdmap1l6d 41807 hdmap1l6e 41808 hdmap1l6h 41811 hdmap11lem1 41835 hdmap11lem2 41836 hdmapneg 41840 hdmaprnlem3N 41844 hdmaprnlem3uN 41845 hdmaprnlem6N 41848 hdmaprnlem7N 41849 hdmaprnlem9N 41851 hdmaprnlem3eN 41852 hdmap14lem10 41871 hdmapinvlem3 41914 hdmapinvlem4 41915 hdmapglem7b 41922 hlhilphllem 41953 frlmsnic 42528 lincsumcl 48420 |
| Copyright terms: Public domain | W3C validator |