![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodvacl | Structured version Visualization version GIF version |
Description: Closure of vector addition for a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmodvacl.v | ⊢ 𝑉 = (Base‘𝑊) |
lmodvacl.a | ⊢ + = (+g‘𝑊) |
Ref | Expression |
---|---|
lmodvacl | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodgrp 20887 | . 2 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
2 | lmodvacl.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
3 | lmodvacl.a | . . 3 ⊢ + = (+g‘𝑊) | |
4 | 2, 3 | grpcl 18981 | . 2 ⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
5 | 1, 4 | syl3an1 1163 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 Grpcgrp 18973 LModclmod 20880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-lmod 20882 |
This theorem is referenced by: lmodcom 20928 lmodvsghm 20943 lss1 20959 lspprabs 21117 lspabs2 21145 lspabs3 21146 lspfixed 21153 lspexch 21154 lspsolvlem 21167 ipdir 21680 ipdi 21681 ip2di 21682 ocvlss 21713 frlmphl 21824 frlmup1 21841 nmparlem 25292 minveclem2 25479 lsatfixedN 38965 lfl0f 39025 lfladdcl 39027 lflnegcl 39031 lflvscl 39033 lkrlss 39051 lshpkrlem5 39070 lshpkrlem6 39071 dvh3dim2 41405 dvh3dim3N 41406 lcfrlem17 41516 lcfrlem19 41518 lcfrlem20 41519 lcfrlem23 41522 baerlem3lem1 41664 baerlem5alem1 41665 baerlem5blem1 41666 baerlem5alem2 41668 baerlem5blem2 41669 mapdindp0 41676 mapdindp2 41678 mapdindp4 41680 mapdh6lem2N 41691 mapdh6aN 41692 mapdh6dN 41696 mapdh6eN 41697 mapdh6hN 41700 hdmap1l6lem2 41765 hdmap1l6a 41766 hdmap1l6d 41770 hdmap1l6e 41771 hdmap1l6h 41774 hdmap11lem1 41798 hdmap11lem2 41799 hdmapneg 41803 hdmaprnlem3N 41807 hdmaprnlem3uN 41808 hdmaprnlem6N 41811 hdmaprnlem7N 41812 hdmaprnlem9N 41814 hdmaprnlem3eN 41815 hdmap14lem10 41834 hdmapinvlem3 41877 hdmapinvlem4 41878 hdmapglem7b 41885 hlhilphllem 41920 frlmsnic 42495 lincsumcl 48160 |
Copyright terms: Public domain | W3C validator |