![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodvacl | Structured version Visualization version GIF version |
Description: Closure of vector addition for a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmodvacl.v | ⊢ 𝑉 = (Base‘𝑊) |
lmodvacl.a | ⊢ + = (+g‘𝑊) |
Ref | Expression |
---|---|
lmodvacl | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodgrp 19188 | . 2 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
2 | lmodvacl.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
3 | lmodvacl.a | . . 3 ⊢ + = (+g‘𝑊) | |
4 | 2, 3 | grpcl 17746 | . 2 ⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
5 | 1, 4 | syl3an1 1203 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ‘cfv 6101 (class class class)co 6878 Basecbs 16184 +gcplusg 16267 Grpcgrp 17738 LModclmod 19181 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-nul 4983 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-iota 6064 df-fv 6109 df-ov 6881 df-mgm 17557 df-sgrp 17599 df-mnd 17610 df-grp 17741 df-lmod 19183 |
This theorem is referenced by: lmodcom 19227 lmodvsghm 19242 lss1 19257 lspprabs 19416 lspabs2 19441 lspabs3 19442 lspfixed 19449 lspfixedOLD 19450 lspexch 19451 lspsolvlem 19464 ipdir 20308 ipdi 20309 ip2di 20310 ocvlss 20341 frlmphl 20445 frlmup1 20462 nmparlem 23365 minveclem2 23536 lsatfixedN 35030 lfl0f 35090 lfladdcl 35092 lflnegcl 35096 lflvscl 35098 lkrlss 35116 lshpkrlem5 35135 lshpkrlem6 35136 dvh3dim2 37469 dvh3dim3N 37470 lcfrlem17 37580 lcfrlem19 37582 lcfrlem20 37583 lcfrlem23 37586 baerlem3lem1 37728 baerlem5alem1 37729 baerlem5blem1 37730 baerlem5alem2 37732 baerlem5blem2 37733 mapdindp0 37740 mapdindp2 37742 mapdindp4 37744 mapdh6lem2N 37755 mapdh6aN 37756 mapdh6dN 37760 mapdh6eN 37761 mapdh6hN 37764 hdmap1l6lem2 37829 hdmap1l6a 37830 hdmap1l6d 37834 hdmap1l6e 37835 hdmap1l6h 37838 hdmap11lem1 37862 hdmap11lem2 37863 hdmapneg 37867 hdmaprnlem3N 37871 hdmaprnlem3uN 37872 hdmaprnlem6N 37875 hdmaprnlem7N 37876 hdmaprnlem9N 37878 hdmaprnlem3eN 37879 hdmap14lem10 37898 hdmapinvlem3 37941 hdmapinvlem4 37942 hdmapglem7b 37949 hlhilphllem 37980 lincsumcl 43019 |
Copyright terms: Public domain | W3C validator |