Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lmodvacl | Structured version Visualization version GIF version |
Description: Closure of vector addition for a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmodvacl.v | ⊢ 𝑉 = (Base‘𝑊) |
lmodvacl.a | ⊢ + = (+g‘𝑊) |
Ref | Expression |
---|---|
lmodvacl | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodgrp 19714 | . 2 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
2 | lmodvacl.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
3 | lmodvacl.a | . . 3 ⊢ + = (+g‘𝑊) | |
4 | 2, 3 | grpcl 18182 | . 2 ⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
5 | 1, 4 | syl3an1 1160 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ‘cfv 6339 (class class class)co 7155 Basecbs 16546 +gcplusg 16628 Grpcgrp 18174 LModclmod 19707 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-nul 5179 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5036 df-iota 6298 df-fv 6347 df-ov 7158 df-mgm 17923 df-sgrp 17972 df-mnd 17983 df-grp 18177 df-lmod 19709 |
This theorem is referenced by: lmodcom 19753 lmodvsghm 19768 lss1 19783 lspprabs 19940 lspabs2 19965 lspabs3 19966 lspfixed 19973 lspexch 19974 lspsolvlem 19987 ipdir 20409 ipdi 20410 ip2di 20411 ocvlss 20442 frlmphl 20551 frlmup1 20568 nmparlem 23944 minveclem2 24131 lsatfixedN 36611 lfl0f 36671 lfladdcl 36673 lflnegcl 36677 lflvscl 36679 lkrlss 36697 lshpkrlem5 36716 lshpkrlem6 36717 dvh3dim2 39050 dvh3dim3N 39051 lcfrlem17 39161 lcfrlem19 39163 lcfrlem20 39164 lcfrlem23 39167 baerlem3lem1 39309 baerlem5alem1 39310 baerlem5blem1 39311 baerlem5alem2 39313 baerlem5blem2 39314 mapdindp0 39321 mapdindp2 39323 mapdindp4 39325 mapdh6lem2N 39336 mapdh6aN 39337 mapdh6dN 39341 mapdh6eN 39342 mapdh6hN 39345 hdmap1l6lem2 39410 hdmap1l6a 39411 hdmap1l6d 39415 hdmap1l6e 39416 hdmap1l6h 39419 hdmap11lem1 39443 hdmap11lem2 39444 hdmapneg 39448 hdmaprnlem3N 39452 hdmaprnlem3uN 39453 hdmaprnlem6N 39456 hdmaprnlem7N 39457 hdmaprnlem9N 39459 hdmaprnlem3eN 39460 hdmap14lem10 39479 hdmapinvlem3 39522 hdmapinvlem4 39523 hdmapglem7b 39530 hlhilphllem 39561 frlmsnic 39798 lincsumcl 45233 |
Copyright terms: Public domain | W3C validator |