Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh6gN Structured version   Visualization version   GIF version

Theorem mapdh6gN 40416
Description: Lemmma for mapdh6N 40421. Part (6) of [Baer] p. 47 line 39. (Contributed by NM, 1-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdh.q 𝑄 = (0g𝐶)
mapdh.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh.h 𝐻 = (LHyp‘𝐾)
mapdh.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh.v 𝑉 = (Base‘𝑈)
mapdh.s = (-g𝑈)
mapdhc.o 0 = (0g𝑈)
mapdh.n 𝑁 = (LSpan‘𝑈)
mapdh.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh.d 𝐷 = (Base‘𝐶)
mapdh.r 𝑅 = (-g𝐶)
mapdh.j 𝐽 = (LSpan‘𝐶)
mapdh.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdhc.f (𝜑𝐹𝐷)
mapdh.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdhcl.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdh.p + = (+g𝑈)
mapdh.a = (+g𝐶)
mapdh6d.xn (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
mapdh6d.yz (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
mapdh6d.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdh6d.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
mapdh6d.w (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
mapdh6d.wn (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
Assertion
Ref Expression
mapdh6gN (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩)) = (((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, 𝑌⟩)) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))
Distinct variable groups:   𝑥,𝐷,   ,𝐹,𝑥   𝑥,𝐽   𝑥,𝑀   𝑥,𝑁   𝑥, 0   𝑥,𝑄   𝑥,𝑅   𝑥,   ,𝑋,𝑥   ,𝑌,𝑥   𝜑,   0 ,   𝐶,   𝐷,   ,𝐽   ,𝑀   ,𝑁   𝑅,   𝑈,   ,   𝑤,   ,𝑍,𝑥   ,   ,𝐼,𝑥   + ,,𝑥   𝑥,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑤)   𝐶(𝑥,𝑤)   𝐷(𝑤)   + (𝑤)   (𝑥,𝑤)   𝑄(𝑤,)   𝑅(𝑤)   𝑈(𝑥,𝑤)   𝐹(𝑤)   𝐻(𝑥,𝑤,)   𝐼(𝑤)   𝐽(𝑤)   𝐾(𝑥,𝑤,)   𝑀(𝑤)   (𝑤)   𝑁(𝑤)   𝑉(𝑥,𝑤,)   𝑊(𝑥,𝑤,)   𝑋(𝑤)   𝑌(𝑤)   0 (𝑤)   𝑍(𝑤)

Proof of Theorem mapdh6gN
StepHypRef Expression
1 mapdh.q . . 3 𝑄 = (0g𝐶)
2 mapdh.i . . 3 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
3 mapdh.h . . 3 𝐻 = (LHyp‘𝐾)
4 mapdh.m . . 3 𝑀 = ((mapd‘𝐾)‘𝑊)
5 mapdh.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
6 mapdh.v . . 3 𝑉 = (Base‘𝑈)
7 mapdh.s . . 3 = (-g𝑈)
8 mapdhc.o . . 3 0 = (0g𝑈)
9 mapdh.n . . 3 𝑁 = (LSpan‘𝑈)
10 mapdh.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
11 mapdh.d . . 3 𝐷 = (Base‘𝐶)
12 mapdh.r . . 3 𝑅 = (-g𝐶)
13 mapdh.j . . 3 𝐽 = (LSpan‘𝐶)
14 mapdh.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 mapdhc.f . . 3 (𝜑𝐹𝐷)
16 mapdh.mn . . 3 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
17 mapdhcl.x . . 3 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
18 mapdh.p . . 3 + = (+g𝑈)
19 mapdh.a . . 3 = (+g𝐶)
20 mapdh6d.xn . . 3 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
21 mapdh6d.yz . . 3 (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
22 mapdh6d.y . . 3 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
23 mapdh6d.z . . 3 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
24 mapdh6d.w . . 3 (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
25 mapdh6d.wn . . 3 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
261, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25mapdh6dN 40413 . 2 (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩)))
271, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25mapdh6eN 40414 . . 3 (𝜑 → (𝐼‘⟨𝑋, 𝐹, ((𝑤 + 𝑌) + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, (𝑤 + 𝑌)⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))
283, 5, 14dvhlmod 39784 . . . . . 6 (𝜑𝑈 ∈ LMod)
2924eldifad 3956 . . . . . 6 (𝜑𝑤𝑉)
3022eldifad 3956 . . . . . 6 (𝜑𝑌𝑉)
3123eldifad 3956 . . . . . 6 (𝜑𝑍𝑉)
326, 18lmodass 20436 . . . . . 6 ((𝑈 ∈ LMod ∧ (𝑤𝑉𝑌𝑉𝑍𝑉)) → ((𝑤 + 𝑌) + 𝑍) = (𝑤 + (𝑌 + 𝑍)))
3328, 29, 30, 31, 32syl13anc 1372 . . . . 5 (𝜑 → ((𝑤 + 𝑌) + 𝑍) = (𝑤 + (𝑌 + 𝑍)))
3433oteq3d 4880 . . . 4 (𝜑 → ⟨𝑋, 𝐹, ((𝑤 + 𝑌) + 𝑍)⟩ = ⟨𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))⟩)
3534fveq2d 6882 . . 3 (𝜑 → (𝐼‘⟨𝑋, 𝐹, ((𝑤 + 𝑌) + 𝑍)⟩) = (𝐼‘⟨𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))⟩))
361, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25mapdh6fN 40415 . . . 4 (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑤 + 𝑌)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, 𝑌⟩)))
3736oveq1d 7408 . . 3 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, (𝑤 + 𝑌)⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)) = (((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, 𝑌⟩)) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))
3827, 35, 373eqtr3d 2779 . 2 (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))⟩) = (((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, 𝑌⟩)) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))
3926, 38eqtr3d 2773 1 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩)) = (((𝐼‘⟨𝑋, 𝐹, 𝑤⟩) (𝐼‘⟨𝑋, 𝐹, 𝑌⟩)) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3473  cdif 3941  ifcif 4522  {csn 4622  {cpr 4624  cotp 4630  cmpt 5224  cfv 6532  crio 7348  (class class class)co 7393  1st c1st 7955  2nd c2nd 7956  Basecbs 17126  +gcplusg 17179  0gc0g 17367  -gcsg 18796  LModclmod 20420  LSpanclspn 20531  HLchlt 38023  LHypclh 38658  DVecHcdvh 39752  LCDualclcd 40260  mapdcmpd 40298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169  ax-riotaBAD 37626
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-tp 4627  df-op 4629  df-ot 4631  df-uni 4902  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-of 7653  df-om 7839  df-1st 7957  df-2nd 7958  df-tpos 8193  df-undef 8240  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-er 8686  df-map 8805  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-nn 12195  df-2 12257  df-3 12258  df-4 12259  df-5 12260  df-6 12261  df-n0 12455  df-z 12541  df-uz 12805  df-fz 13467  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17127  df-ress 17156  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-0g 17369  df-mre 17512  df-mrc 17513  df-acs 17515  df-proset 18230  df-poset 18248  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-p1 18361  df-lat 18367  df-clat 18434  df-mgm 18543  df-sgrp 18592  df-mnd 18603  df-submnd 18648  df-grp 18797  df-minusg 18798  df-sbg 18799  df-subg 18975  df-cntz 19147  df-oppg 19174  df-lsm 19468  df-cmn 19614  df-abl 19615  df-mgp 19947  df-ur 19964  df-ring 20016  df-oppr 20102  df-dvdsr 20123  df-unit 20124  df-invr 20154  df-dvr 20165  df-drng 20267  df-lmod 20422  df-lss 20492  df-lsp 20532  df-lvec 20663  df-lsatoms 37649  df-lshyp 37650  df-lcv 37692  df-lfl 37731  df-lkr 37759  df-ldual 37797  df-oposet 37849  df-ol 37851  df-oml 37852  df-covers 37939  df-ats 37940  df-atl 37971  df-cvlat 37995  df-hlat 38024  df-llines 38172  df-lplanes 38173  df-lvols 38174  df-lines 38175  df-psubsp 38177  df-pmap 38178  df-padd 38470  df-lhyp 38662  df-laut 38663  df-ldil 38778  df-ltrn 38779  df-trl 38833  df-tgrp 39417  df-tendo 39429  df-edring 39431  df-dveca 39677  df-disoa 39703  df-dvech 39753  df-dib 39813  df-dic 39847  df-dih 39903  df-doch 40022  df-djh 40069  df-lcdual 40261  df-mapd 40299
This theorem is referenced by:  mapdh6hN  40417
  Copyright terms: Public domain W3C validator