Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdh6gN | Structured version Visualization version GIF version |
Description: Lemmma for mapdh6N 39316. Part (6) of [Baer] p. 47 line 39. (Contributed by NM, 1-May-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mapdh.q | ⊢ 𝑄 = (0g‘𝐶) |
mapdh.i | ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
mapdh.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdh.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdh.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdh.v | ⊢ 𝑉 = (Base‘𝑈) |
mapdh.s | ⊢ − = (-g‘𝑈) |
mapdhc.o | ⊢ 0 = (0g‘𝑈) |
mapdh.n | ⊢ 𝑁 = (LSpan‘𝑈) |
mapdh.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
mapdh.d | ⊢ 𝐷 = (Base‘𝐶) |
mapdh.r | ⊢ 𝑅 = (-g‘𝐶) |
mapdh.j | ⊢ 𝐽 = (LSpan‘𝐶) |
mapdh.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
mapdhc.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
mapdh.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
mapdhcl.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
mapdh.p | ⊢ + = (+g‘𝑈) |
mapdh.a | ⊢ ✚ = (+g‘𝐶) |
mapdh6d.xn | ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
mapdh6d.yz | ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) |
mapdh6d.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
mapdh6d.z | ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) |
mapdh6d.w | ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) |
mapdh6d.wn | ⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) |
Ref | Expression |
---|---|
mapdh6gN | ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉)) = (((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑌〉)) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdh.q | . . 3 ⊢ 𝑄 = (0g‘𝐶) | |
2 | mapdh.i | . . 3 ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
3 | mapdh.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | mapdh.m | . . 3 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
5 | mapdh.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
6 | mapdh.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
7 | mapdh.s | . . 3 ⊢ − = (-g‘𝑈) | |
8 | mapdhc.o | . . 3 ⊢ 0 = (0g‘𝑈) | |
9 | mapdh.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
10 | mapdh.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
11 | mapdh.d | . . 3 ⊢ 𝐷 = (Base‘𝐶) | |
12 | mapdh.r | . . 3 ⊢ 𝑅 = (-g‘𝐶) | |
13 | mapdh.j | . . 3 ⊢ 𝐽 = (LSpan‘𝐶) | |
14 | mapdh.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
15 | mapdhc.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
16 | mapdh.mn | . . 3 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) | |
17 | mapdhcl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
18 | mapdh.p | . . 3 ⊢ + = (+g‘𝑈) | |
19 | mapdh.a | . . 3 ⊢ ✚ = (+g‘𝐶) | |
20 | mapdh6d.xn | . . 3 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) | |
21 | mapdh6d.yz | . . 3 ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) | |
22 | mapdh6d.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
23 | mapdh6d.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) | |
24 | mapdh6d.w | . . 3 ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) | |
25 | mapdh6d.wn | . . 3 ⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) | |
26 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 | mapdh6dN 39308 | . 2 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))〉) = ((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉))) |
27 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 | mapdh6eN 39309 | . . 3 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, ((𝑤 + 𝑌) + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, (𝑤 + 𝑌)〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
28 | 3, 5, 14 | dvhlmod 38679 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ LMod) |
29 | 24 | eldifad 3871 | . . . . . 6 ⊢ (𝜑 → 𝑤 ∈ 𝑉) |
30 | 22 | eldifad 3871 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
31 | 23 | eldifad 3871 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
32 | 6, 18 | lmodass 19710 | . . . . . 6 ⊢ ((𝑈 ∈ LMod ∧ (𝑤 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → ((𝑤 + 𝑌) + 𝑍) = (𝑤 + (𝑌 + 𝑍))) |
33 | 28, 29, 30, 31, 32 | syl13anc 1370 | . . . . 5 ⊢ (𝜑 → ((𝑤 + 𝑌) + 𝑍) = (𝑤 + (𝑌 + 𝑍))) |
34 | 33 | oteq3d 4778 | . . . 4 ⊢ (𝜑 → 〈𝑋, 𝐹, ((𝑤 + 𝑌) + 𝑍)〉 = 〈𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))〉) |
35 | 34 | fveq2d 6663 | . . 3 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, ((𝑤 + 𝑌) + 𝑍)〉) = (𝐼‘〈𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))〉)) |
36 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 | mapdh6fN 39310 | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑤 + 𝑌)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑌〉))) |
37 | 36 | oveq1d 7166 | . . 3 ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, (𝑤 + 𝑌)〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)) = (((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑌〉)) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
38 | 27, 35, 37 | 3eqtr3d 2802 | . 2 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑤 + (𝑌 + 𝑍))〉) = (((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑌〉)) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
39 | 26, 38 | eqtr3d 2796 | 1 ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉)) = (((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑌〉)) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 Vcvv 3410 ∖ cdif 3856 ifcif 4421 {csn 4523 {cpr 4525 〈cotp 4531 ↦ cmpt 5113 ‘cfv 6336 ℩crio 7108 (class class class)co 7151 1st c1st 7692 2nd c2nd 7693 Basecbs 16534 +gcplusg 16616 0gc0g 16764 -gcsg 18164 LModclmod 19695 LSpanclspn 19804 HLchlt 36919 LHypclh 37553 DVecHcdvh 38647 LCDualclcd 39155 mapdcmpd 39193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10624 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-addrcl 10629 ax-mulcl 10630 ax-mulrcl 10631 ax-mulcom 10632 ax-addass 10633 ax-mulass 10634 ax-distr 10635 ax-i2m1 10636 ax-1ne0 10637 ax-1rid 10638 ax-rnegex 10639 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 ax-pre-lttrn 10643 ax-pre-ltadd 10644 ax-pre-mulgt0 10645 ax-riotaBAD 36522 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-ot 4532 df-uni 4800 df-int 4840 df-iun 4886 df-iin 4887 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-of 7406 df-om 7581 df-1st 7694 df-2nd 7695 df-tpos 7903 df-undef 7950 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-1o 8113 df-oadd 8117 df-er 8300 df-map 8419 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-pnf 10708 df-mnf 10709 df-xr 10710 df-ltxr 10711 df-le 10712 df-sub 10903 df-neg 10904 df-nn 11668 df-2 11730 df-3 11731 df-4 11732 df-5 11733 df-6 11734 df-n0 11928 df-z 12014 df-uz 12276 df-fz 12933 df-struct 16536 df-ndx 16537 df-slot 16538 df-base 16540 df-sets 16541 df-ress 16542 df-plusg 16629 df-mulr 16630 df-sca 16632 df-vsca 16633 df-0g 16766 df-mre 16908 df-mrc 16909 df-acs 16911 df-proset 17597 df-poset 17615 df-plt 17627 df-lub 17643 df-glb 17644 df-join 17645 df-meet 17646 df-p0 17708 df-p1 17709 df-lat 17715 df-clat 17777 df-mgm 17911 df-sgrp 17960 df-mnd 17971 df-submnd 18016 df-grp 18165 df-minusg 18166 df-sbg 18167 df-subg 18336 df-cntz 18507 df-oppg 18534 df-lsm 18821 df-cmn 18968 df-abl 18969 df-mgp 19301 df-ur 19313 df-ring 19360 df-oppr 19437 df-dvdsr 19455 df-unit 19456 df-invr 19486 df-dvr 19497 df-drng 19565 df-lmod 19697 df-lss 19765 df-lsp 19805 df-lvec 19936 df-lsatoms 36545 df-lshyp 36546 df-lcv 36588 df-lfl 36627 df-lkr 36655 df-ldual 36693 df-oposet 36745 df-ol 36747 df-oml 36748 df-covers 36835 df-ats 36836 df-atl 36867 df-cvlat 36891 df-hlat 36920 df-llines 37067 df-lplanes 37068 df-lvols 37069 df-lines 37070 df-psubsp 37072 df-pmap 37073 df-padd 37365 df-lhyp 37557 df-laut 37558 df-ldil 37673 df-ltrn 37674 df-trl 37728 df-tgrp 38312 df-tendo 38324 df-edring 38326 df-dveca 38572 df-disoa 38598 df-dvech 38648 df-dib 38708 df-dic 38742 df-dih 38798 df-doch 38917 df-djh 38964 df-lcdual 39156 df-mapd 39194 |
This theorem is referenced by: mapdh6hN 39312 |
Copyright terms: Public domain | W3C validator |